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Abstract
Mantle convection and melt migration are important processes for understanding
Earth’s dynamics and how they relate to observations at the surface. Recently it has
been established that melt migration can be modelled by coupling variable-viscosity
Stokes flow and Darcy flow, where Stokes flow generally captures the long-term
behaviour of themantle and lithosphere, andDarcy flowmodels the two-phase regime.
It is known that approximating the solution by finite element methods requires the use
of mixed inf-sup stable elements or additional stabilization terms. Here, we propose
a formulation with a coercive non-symmetric linear operator which allows the use of
simple equal-order elements.

Keywords Elliptic differential equations · Porous media · Finite elements · Error
estimates

Mathematics Subject Classifications 35J25 · 76Sxx · 65N30

1 Introduction

The need to solve systems of coupled Navier-Stokes and Darcy flow arises is various
fields, such as modelling the interaction of surface water and groundwater aquifers [1,
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2], bloodflowproblems [3,4], and fuel cell dynamics [5,6].Approximating the solution
of coupled Stokes-Darcy systems inmost methods requires solving Stokes or Darcy on
adjacent sub-domains coupled with appropriate interface boundary conditions [7–10],
and [11]. In melt migration modelling the partially molten rock cannot be handled
using the approach above because we cannot identify the boundary between the solid
and fluid phases. Themodel derived byMcMcKenzie [12] for melt migration assumes
a dual continuum mixture of solid matrix and fluid melt. The mixing parameter is the
porosity ϕ, i.e. the volume fraction of fluid melt, which is assumed to be much smaller
than 1 and may be zero in parts of the domain where there is no fluid melt. The
motion of the solid is governed by Stokes flow, and the melt is transported according
to Darcy’s law. In addition, he included a compacting relation that relates the solid
and fluid pressures.

Most of the previous studies of geodynamics do not consider that melt migration
can be modelled by coupling variable-viscosity Stokes flow and Darcy flow, where
Stokes flow generally captures the long-term behaviour of the mantle and lithosphere,
and Darcy flow models the two-phase regime. Their studies either do not consider
melting or treat it in a simplified way [13–16]. Others have simplified the model by
approximating the two-phase flow and the effects of compaction [17–19], and [20].
The correct setting was later proposed by [21]. However, the required computational
effort was limited to 2D problems, and although these models take into account the
compaction of the solid matrix to allowmelt to be expelled or to flow in, they treat both
individual phases as incompressible and often assume their densities to be constant.

The discretization of a similar (but not identical) complex melting problem is suit-
able described by Schimenz et al. [33] by using a mixed discontinuous Galerkin
method in vertical direction and a Fourier method in vertical direction for the elliptic-
hyperbolic system of equations.

In [23], the authors derive such a model for 2D and 3D simulations. However, the
model they used require the so-called compaction pressure as an additional unknown
in the system which not only increases the dimension of the system, but also makes
the underlying operator non-coercive (see, [21–23]). Thus, approximating the solution
using the finite element method requires the use of mixed inf-sup stable elements or
additional stabilization terms. Here, we propose a formulation with a coercive non-
symmetric linear operator which allow the use of simple equal-order elements.

2 Governing equations

Let Ω ⊂ R
d , d ∈ {2, 3}, be a Lipschitz-domain. The model we consider here is

a two-phase flow consisting of melt and a deformable matrix. The melt fraction ϕ

defines averaged quantities X̄ out of solid (matrix) Xs and fluid X f quantities (the
subscripts f and s stand for fluid and solid, respectively):

X̄ = (1 − ϕ)Xs + ϕX f . (1)

The governing equations for a two-phase flow were given by McKenzie in [12]. They
include the equations for conservation of mass, momentum, and energy. The mass
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Equal-order finite elements for mantle-melt transport 275

Table 1 Physical quantities and associated symbols

Variable Symbol Unit

Solid velocity us m/year

Fluid velocity u f m/year

Fluid pressure p f Pa

Compaction pressure pc Pa

Shear viscosity of the solid η Pa · year
Bulk viscosity of the solid ξ Pa · year
Darcy coefficient KD Pa

Gravitational force g m2/year

Fluid density � f kg · m−3

Solid density �s kg · m−3

Mean density �̄ kg · m−3

Mean compressibility α kg · m−3Pa−1

Mass force f Pa · kg · m2/year

Melt production rate Γ kg/(m3year)

conservation for fluid and solid are described by the two equations

∂(� f ϕ)

∂t
+ ∇ · (� f ϕu f ) = Γ , (2)

∂(�s (1 − ϕ))

∂t
+ ∇ · (�s (1 − ϕ)us) = −Γ . (3)

Where, � f and �s are the fluid- and solid densities, u f and us the fluid- and solid
velocities, respectively, t the time, and Γ the melt production rate following a volume
element of matrix. The conservation of momentum of the melt is given by

ϕ(u f − us) = −KD (∇ p f − � f g), (4)

with the constant KD = kϕ/η f , where kϕ is the permeability and η f is the melt
viscosity, p f the pressure within the melt, g the gravity acceleration vector. For the
case of vanishing solid velocity, us = 0, Eq. (4) reduces to the well known Darcy’s
law. Further quantities and associated symbols used in this paper are given in Table 1.

The conservation of momentum of the matrix is given by

− ∇ · Tus + ∇ p f = �̄g, (5)

where T is the strain tensor given by

Tu := η(∇u + ∇uT ) + (ξ − 2
3η)(∇ · u)I , (6)
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276 M. Braack et al.

with the shear viscosity of the solid η, the bulk viscosity of the solid ξ , and the identity
matrix I .

2.1 Simplified equations at steady densities

In the case that the densities do not vary with time i.e. ∂� f ,s/∂t = 0, Eqs. (2) and (3)
reduce to:

∂ϕ

∂t
+ ∇ · (ϕu f ) = Γ

� f
− ϕ

� f
u f · ∇� f (7)

−∂ϕ

∂t
+ ∇ · ((1 − ϕ)us) = − Γ

�s
− 1 − ϕ

�s
us · ∇�s . (8)

Adding Eqs. (7) and (8) we obtain

∇ · [
ϕu f + (1 − ϕ)us

] = Γ

(
1

� f
− 1

�s

)
− ϕ

� f
u f · ∇� f − 1 − ϕ

�s
us · ∇�s .

Now, we can eliminate the fluid velocity u f , using Darcy’s law (4):

∇ · us − ∇ · (KD ∇ p f ) + KDg·∇� f

= Γ

(
1

� f
− 1

�s

)
+

(
− ϕ

� f
us + KD

(
1

� f
∇ p f − g

))
· ∇� f ,

−1 − ϕ

�s
us · ∇�s − � f ∇ · (KDg). (9)

Several terms in Eq. (9) contain gradients of the solid and fluid density, respectively. As
proposed in [23], the logaritmic derivatives ∇(ln � f ,s) = �−1

f ,s∇� f ,s can be assumed
to be closely related to the gravitational forces:

1

�s
∇�s = ∇(ln �s) ≈ ∂�s

∂ ps
g and

1

� f
∇� f = ∇(ln � f ) ≈ ∂� f

∂ p f
g.

Assuming that the isothermal compressibilities, κs := �−1
s

∂�s
∂ ps

and κ f := �−1
f

∂� f
∂ p f

,
are constant and

rearranging terms leads to the following reformulation (approximation) of (9):

∇ · us − ∇ · (KD ∇ p f ) − KDκ f � f g · ∇ p f + (
ϕ� f κ f + (1 − ϕ)�sκs

)
(us · g) = f ,

with given forcing

f := Γ

(
1

� f
− 1

�s

)
− 2KDκ f �

2
f |g|2 − � f ∇ · (KDg).

123



Equal-order finite elements for mantle-melt transport 277

Thus, the two-phase PDE system reduces to the original two-phase PDE system given
by McKenzie [12]:

−∇ · Tus + ∇ p f = �̄g (10)

∇ · us − ∇ · (KD ∇ p f ) + βg · ∇ p f + αus · g = f (11)

with α, the weighted average of the flux of compressibility of solid and fluid densities
with respect to the corresponding pressures, and transport-scaling parameter β given
by

α := �κ = ϕ� f κ f + (1 − ϕ)�sκs, (12)

β := −KDκ f � f . (13)

2.2 Time dependent melt fraction

Although we previously assumed that the flow field is in temporal equilibrium, this is
not necessarily the case for the melt fraction ϕ. The corresponding equation is given
by

�s
∂ϕ

∂t
+ ∇ · (�s(ϕ − 1)us) = Γ . (14)

Assuming �s > 0 a.e. in Ω , this equation can also be written in the form

∂ϕ

∂t
+ ∇ · ((ϕ − 1)us) + (ϕ − 1)κs�

2
sus · g = Γ

�s
. (15)

2.3 Boundary conditions

The system of Eqs. (10), (11) and (15) has to be supplemented with suitable boundary
conditions. We impose Dirichlet conditions for us and the lithostatic pressure gradient
for p f :

us = u0 on ∂Ω, (16)

∇ p f · n = �sg · n on ∂Ω. (17)

The boundary condition for ϕ are of Dirichlet type

ϕ = ϕ0 on ∂Ω−,

on the inflow part of the boundary ∂Ω− := {x ∈ ∂Ω : us · n < 0}.
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2.4 Compaction pressure

In order to solve the PDE system (10), (11) numerically several authors treat it as a sys-
tem of three-field saddle point problems [21,23], and [22] by introducing a secondary
pressure pc, called compaction pressure, defined as

pc = −ξ∇ · us . (18)

Then, Eq. (10) reduces to the form

− ∇ · (T̃us) + ∇(p f + pc) = �̄g. (19)

Where, the reduced strain tensor T̃us is given by

T̃us := η(∇us + ∇uTs ) − 2

3
η(∇ · us)I. (20)

The resulting system (11), (18) and (19) now has three unknowns us , p f , and pc. The
corresponding system is of saddle point structure, so that its finite element discretiza-
tion is not possible without considering inf-sup stable elements or special stabilization
techniques, for instance the pressure stabilized Petrov-Galerkin method (PSPG) or the
local projection pressure stabilization (LPS). We refer to [24,26,29], and [25] for
details. In this work we will follow a simpler approach by dealing with the original
equations. So, the compaction pressure pc will not be a primary variable. In case this
quantity is needed for special purposes, it can be recovered from us by solving the
discrete system corresponding to (18), as we shall explain below.

3 Weak formulation and discretization for constant melt fraction

Let us first consider the case that themelt fraction ϕ is given and constant in time. Then
the density � becomes a given constant and we only have two unknown variables p f

and us , determined by a linear stationary system of equations, i.e. without any time
dependency. Moreover, let us assume for ease of presentation that we have homoge-
neous Dirichlet data for the velocities, u0 = 0. The extension to non-homogeneous
Dirichlet data is straight forward.

3.1 Weak formulation

The associated function spaces are

X := V × Q, V := H1
0 (Ω)d , Q := H1(Ω) ∩ L2

0(Ω).

As bilinear form A : X × X → R we introduce

A(u, p; v, q) := (Tu,∇v) − (p,∇ · v)
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Equal-order finite elements for mantle-melt transport 279

+(∇ · u, q) + (KD∇ p,∇q) + (βg · ∇ p, q) + (αu · g, q).

The right hand side is given by

F[�̄](v, q) := (�̄g, v) + ( f , q) +
∫

∂Ω

KD�sg · nq ds. (21)

In order to have this bilinear form A and the right hand side F[�̄] to be well-defined, it
is sufficient to make certain regularity assumptions on the involved coefficients. This
will be discussed below.

We seek us ∈ V and p f ∈ Q s.t.

A(us, p f ; v, q) = F[�̄](v, q) ∀(v, q) ∈ X. (22)

Assumption 1 We assume the following regularities for the coefficients

�s, KD, g ∈ C(Ω̄),

� f ∈ W 1,3(Ω) ∩ L∞(Ω),

κ f , κs, ∈ L∞(Ω),

ϕ ∈ L3/2(Ω),

Γ ∈ H−1(Ω),

and the partial densities are bounded from below as

�s, � f ≥ ε > 0 a.e. in Ω.

The regularity assumptions for �s, � f , κs and κ f are sufficient to ensure that α

determined by (12) has the regularity α ∈ L3/2(Ω). This can be used to show the
well-posedness of the term (αu · g, q) in the bilinear form A:

|(αu · g, q)| = ||g||L∞||αuq||L1(Ω)

≤ ||g||L∞(Ω)||u||L6(Ω)d ||α||L3/2(Ω)d ||g||L6(Ω)d

≤ ||g||L∞(Ω)||u||H1(Ω)d ||α||L3/2(Ω)d ||q||H1(Ω). (23)

Here we used the Sobolev embedding H1(Ω) ↪→ L6(Ω), for d = 2, 3.

Lemma 1 Under the regularity assumption (Assumption 1) the linear form F[�̄] is a
dual form of X, i.e. F[�̄] ∈ X′.

Proof Let us now check the individual term of F[�̄] in view of appropriate definition.
The boundary integral is well-defined due to the assumed continuity of KD, g, ρs and
the trace inequality:

∣∣∣∣

∫

∂Ω

KD�sg · nq ds
∣∣∣∣ ≤ C ||q||H1(Ω),
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with a constant C = C(Ω, KD, �s, g). The term (�̄g, v) is bounded as

|(�̄g, v)| ≤ ||g||L∞(Ω)||�̄||H−1(Ω)||v||H1(Ω).

The regularity �̄ ∈ H−1(Ω) is obtained by Eq. (1) and ϕ ∈ L3/2 ⊂ H−1(Ω) and
�s, � f ∈ L∞(Ω). It remains to show an upper bound for the dual pairing of forcing
f ∈ H−1(Ω) and q ∈ H1(Ω):

〈 f , q〉 ≤ (
c2||Γ ||H−1(Ω) + c3

) ||q||H1(Ω) + c4|� f q|H1(Ω) + c5||q||L2(∂Ω),

with c2 = c2(ε), c3 = c3(KD, κ f , g, � f ), c4 = c4(KD, g) and c5 = c5(KD, g, � f ).
By the trace inequality we can bound ||q||L2(∂Ω) by the H1-norm of q. The Hölder
inequality and Sobolev embedding H1(Ω) ↪→ L6(Ω) yields

|� f q|H1(Ω) ≤ ||∇� f q||L2(Ω) + ||� f ∇q||L2(Ω)

≤ ||∇� f ||L3(Ω)||q||L6(Ω) + ||� f ||L∞(Ω)||∇q||L2(Ω)

≤ c6||q||H1(Ω)

with c6 = c6(� f ) due to the assumption � f ∈ W 1,3(Ω). In summary we obtain
|| f ||H−1(Ω) ≤ C , and hence F[�̄] ∈ X′. ��
Remark 1 Even a stronger assumption ϕ ∈ L∞(Ω) is not a severe restriction, because,
from the physical point of view, 0 ≤ ϕ ≤ 1 is reasonable. The lower bound for � f

and �s are necessary for ensuring that the right hand side f is properly defined.

3.2 Existence and uniqueness of solutions

Throughout this section we presuppose that Assumption 1 is valid. In order to prove
the continuity and the coercivity of the bilinear form A(u, p; v, q), and the continuity
of the right hand side linear form, we equip the product space X with the norm:

|||(u, p)||| :=
(
||η1/2∇u||2 + ||(2(ξ + 1

3η))1/2∇ · u||2 + ||K 1/2
D ∇ p||2

)1/2
. (24)

Here and in what follows we use the notation || · || for the L2-norm over Ω .

Lemma 2 [Continuity] The bilinear form A(u, p; v, q) is continuous with respect to
the triple norm ||| · |||.
Proof The assumed regularity of �s, � f and ϕ ensures α ∈ L3/2(Ω). Hence, we can
use (23) to bound the reaction term. Further, we have β ∈ L∞(Ω) so that a term-by-
term estimate, use of the Poincaré inequality leads to

A(u, p; v, q) ≤ C1|||(u, p)||||||(v, q)|||

with the constant C1 = C1(Ω, KD, β, η, g, �s, � f , ϕ, κ f , κs). ��
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Equal-order finite elements for mantle-melt transport 281

In order to show the coercivity of this bilinear form,we first show the non-negativity
of the strain tensor when it is tested diagonally:

Lemma 3 For constant η it holds

(Tu,∇u) = ||η1/2∇u||2 + ||(ξ + 1
3η)1/2∇ · u||2 ∀u ∈ V.

Proof Because of I : ∇u = ∇ · u we obtain

(Tu,∇u) = ||η1/2∇u||2 + (η∇uT ,∇u) + ((ξ − 2
3η)(∇ · u)I ,∇u)

= ||η1/2∇u||2 +
∑

i, j

(η∂ jui , ∂iu j ) + ||(ξ − 2
3η)1/2∇ · u||2.

where ∂ jui = ∂ui
∂x j

for i, j = 1, . . . , d.

a. Let us first assume, that u ∈ (H1
0 (Ω) ∩ C2(Ω))d . Due to this regularity of u the

terms in the sum above can be integrated by parts:

∑

i, j

(∂ jui , ∂iu j ) = −
∑

i, j

(∂i∂ jui ,u j ) = −
∑

i, j

(∂ j∂iui ,u j )

=
∑

i, j

(∂iui , ∂ ju j ) =
⎛

⎝
∑

i

∂iui ,
∑

j

∂ ju j

⎞

⎠

= ||∇ · u||2.

Using this in the equation derived above, yields the assertion.
b. For less regular u, the same equation is obtained by a density argument: We take

the limit of a smooth limiting sequence (un)n∈N ⊂ (H1
0 (Ω) ∩ C2(Ω))d , un → u

in V0:

∑

i, j

(∂ jui , ∂iu j ) = lim
n→∞

∑

i, j

(∂ j (un)i , ∂i (un) j )

= lim
n→∞ ||∇ · un||2 = ||∇ · u||2.

��
Lemma 4 (Coercivity) We assume that

||g||L∞(Ω)d ||�κ||L3/2(Ω) ≤ c (25)

with a certain constant c = c(η, KD). Then the bilinear form A is continuous and
X-coercive; in particular

A(u, p;u, p) ≥ 1

2
|||(u, p)||| ∀(u, p) ∈ X.
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Proof The assertion follows by diagonal testing, use of the previous Lemma, and the
fact that the convective term vanishes when tested diagonally i.e. (g ·∇ p, p) = 0. The
only critical (not necessarily positive) term is the zero order reaction term (αu · g, p).
However, due to the assumption on α, this term can be bounded by (23) and Young’s
inequality as follows

|(αu · g, p)| ≤ ||α||L3/2(Ω)||g||L∞(Ω)||u||H1(Ω)||p||H1(Ω)

≤ 1

2
C(η, KD)||α||L3/2(Ω)||g||L∞(Ω)

(
||η1/2u||2H1(Ω)d

+ ||K 1/2
D p||2H1(Ω)

)

≤ 1

2
(||η1/2∇u||2 + ||K 1/2

D ∇ p||2).

This leads to the desired lower bound for A(u, p;u, p). ��
Remark 2 The constant c in (25) depends on η and KD . In the special case of constant
η and KD this constant is just c = √

ηKD/cΩ , where cΩ is the Poincaré constant.

Theorem 1 With the same assumptions as in the previous Lemma, Eq. (22) has an
unique solution (us, p f ) ∈ X and

||η1/2∇us ||2 + ||(ξ + 1
3η)1/2∇ · us || + ||K 1/2

D ∇ p f ||2
≤ ||�̄g||2H−1(Ω)d

+ || f ||2H−1(Ω)
+ ||KD�sg · n||2L2(∂Ω)

.

Proof Taking into account that the quantities �̄ and f are functions of ϕ and Γ ,
respectively,we see that the H−1-normsof �̄ and f arewell-defined.Now, the assertion
is an immediate consequence of the previous Lemma and the theoremof Lax-Milgram.

��

3.3 Equal-order finite elements

The coercivity of the problemallows us to use several standard equal order elements for
the discrete velocity uh and the discrete pressure ph . Let Th be a shape regular partition
of Ω into d-dimensional simplices, quadrilaterals or hexahedra [30]. The diameter of
a cell K ∈ Th will be denoted by hK and the mesh parameter h = max{hK |K ∈ Th}
represents the maximum diameter of all cells. Let Sh ⊂ H1(Ω) be a finite element
space of continuous, piecewise polynomial functions defined over Th , with degree of
interpolation order r ≥ 1. We consider triangulations Th of shape regular elements,
so that an interpolation operator ih : H1(Ω) → Sh exists (Scott-Zhang interpolation
[31]) with the following properties for all 1 ≤ l ≤ r + 1, all K ∈ Th , and all
u ∈ Hl(ωK ):

‖u − ihu‖K � hlK |u|Hl (ωK ) , (26)

‖∇(u − ihu)‖K � hl−1
K |u|Hl (ωK ) . (27)

Here, ωK denotes a union of cells in the neighbourhood of K , and the expression
a � b means a ≤ cb with the constant c independent of the mesh parameter h.
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Equal-order finite elements for mantle-melt transport 283

Possible choices on shape regular meshes are Pr or Qr elements, or finite element
spaces containing these spaces, e.g. locally enriched spaces. Here, we consider equal-
order finite element spaces for velocity and pressure:

Vh := (Sh)d ∩ V, Qh := Sh ∩ Q, and Xh := Vh × Qh .

Now, the linear system to be solved reads as follows: Find (uh, ph) ∈ Xh such that

A(uh, ph; v, q) = F[�̄](v, q), ∀(v, q) ∈ Xh . (28)

Themain advantage of the equal-order discretization of the problem is that the degrees
of freedom of all variables can be assigned to the same geometrical identities, e.g. to
vertices. Therefore, the discrete systems can be designed in a block-wise manner, so
that an efficient block preconditioner or block smoother for multigrid solvers can be
utilized.

3.4 A priori error estimate

Theorem 2 We make the same assumptions as in Theorem 1. The discrete solution of
Eq. (28) (uh, ph) ∈ Xh is unique. If (us, p f ) ∈ Hl(Ω)d+1with 1 ≤ l ≤ r + 1 we
have the following discretization error estimate

|||(us − uh, p f − ph)||| ≤ Chl−1
(
|us |Hl (Ω) + ∣∣p f

∣∣
Hl (Ω)

)
.

Proof Due to coercivity (Lemma 4) we can apply Cea’s lemma, see e.g. [30]:

|||(us − uh, p f − ph)||| ≤ C |||(us − ihu, p f − ih p f )|||,

with arbitrary interpolation ih : Hl(Ω)d → Vh and ih : Hl(Ω) → Qh . For l = 1 we
choose the Scott-Zhang interpolant, and for l ≥ 2 we take the nodal interpolant. This
leads e.g. to

||K 1/2
D ∇(p − ih p)|| ≤ chl−1||p||Hl (Ω)

with a constant c depending only on KD and Ω . The other parts in the norm ||| · ||| are
obtained analogously. ��

3.5 Post-processing of the compaction pressure

Working with equal-order elements on simplices, i.e. with Pr elements, the divergence
of the discrete velocity,∇·uh , is piece-wise polynomial of order r−1 but discontinuous
across element faces/edges. Hence, for constant (or cell-wise constant) bulk viscosity,
the discrete compaction pressure phc := −ξ∇ · uh is of the same type. Therefore, the
evaluation of this quantity inside the cells is straight forward. The situation is different
for its evaluation on vertices or edges/faces due to the discontinuity. If the discrete
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compaction pressure is required on the vertices, denoted by phc , a common strategy is
to define it by the L2-projection onto Qh ,

phc ∈ Qh : (phc , q) = (−ξ∇ · uh, q) ∀q ∈ Qh . (29)

Lemma 5 Under the same assumptions as in Theorem 1, (us, p f ) ∈ Hl(Ω)d+1 and
pc ∈ Hl−1(Ω) with 1 ≤ l ≤ r + 1 we have

||pc − phc || ≤ Chl−1 (|us |Hl (Ω) + |p f |Hl (Ω) + |pc|Hl−1(Ω)

)
.

Proof Let p̃hc ∈ Qh be the solution of the problem

( p̃hc , q) = (−ξ∇ · us, q) ∀q ∈ Qh .

Then we have by Cea’s Lemma and standard interpolation results

||pc − p̃hc || ≤ C inf
qh∈Qh

||pc − qh || ≤ Chl−1|pc|Hl−1(Ω).

By stability of the discrete equations and Theorem 2, we have

||phc − p̃hc || ≤ ||ξ∇ · (us − uh)|| ≤ Chl−1(|us |Hl (Ω) + |p f |Hl (Ω)),

with a constant C depending on ξ and η. With the triangle inequality we arrive at the
desired estimate. ��

For more regular compaction pressure, pc ∈ Hl(Ω), we see that the obtained
accuracy for the compaction pressure is of one order less (with respect to the mesh
size h) than the optimal interpolation error. However, there are well known methods
to increase the accuracy by special gradient recovery techniques as an alternative to
solving Eq. (29). We refer to the classical work of Zienciewicz and Zhu [32].

4 Variational formulation and discretization for variable melt
fraction rate

In this section we propose a second order explicit Runge-Kutta scheme to solve the
hyperbolic PDE for the melt fraction ϕ. However, we start with the first order forward
Euler method, because it will be an intermediate step in the higher-order time stepping
scheme.

4.1 First-order forward Euler method

We first discretize the hyperbolic Eq. (15) for ϕ in time by using a forward Euler with
time step k := tn − tn−1 > 0. The semi-discrete equation for ϕn ≈ ϕ(tn) reads

ϕn = ϕn−1 + k
(
�−1
s Γn−1 + ∇ · ((1 − ϕn−1)un−1)

)
.
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Taking this equation in variational form and applying Qr elements results in the
discrete system for ϕh

n ∈ Qh :

(ϕh
n , ψ) = (ϕh

n−1, ψ) + kRn−1(ϕ
h
n−1,u

h
n−1;ψ) ∀ψ ∈ Qh, (30)

with

Rm(ϕ,u;ψ) := (�−1
s Γm, ψ) − ((1 − ϕ)u,∇ψ) +

∫

∂Ω

(ϕ − 1)u · nψ ds.

Solving Eq. (30) requires basically inversion of the mass matrix. Afterwards, the mean
density can be updated:

�̄n := �̄(ϕh
n ) = (1 − ϕh

n )�s + ϕh
n� f . (31)

Finally, the equation for (uhn, p
h
n ) ∈ Xh is solved:

A(uhn , p
h
n ; v, q) = F[�̄n](v, q), ∀(v, q) ∈ Xh, (32)

with the right hand side Fn[�̄n] as given in Eq. (21). The entire algorithm for variable
melt fraction rate looks now as follows:

Algorithm (forward Euler)

1. Initialize uh0, p
h
0 and ϕh

0 , set n := 0 and tn := 0.
2. Increase n → n + 1 and set tn := tn−1 + k.
3. Make one forward Euler step (30) to determine ϕh

n .
4. Update mean density �̄n by (31).
5. Solve the linear problem (32) to determine phn and uhn .
6. If tn ≤ T goto 2.

Note that we have a time step restriction (CFL condition) of the form k ≤ h for
stability issues. An alternative without such a time step restriction would be the usage
of an implicit time stepping scheme for ϕh

n . However, in this case, the corresponding
equation includes uhn . On the other hand, the quantities α(tn) in (12) and �̄(tn) include
ϕh
n , so that the equations forϕ

h
n and (28) becomemutually coupled. Solving this system

ismuchmore numerically expensive than the semi-explicit algorithm presented above.

4.2 Second-order forward Heunmethod

In order to obtain a second order method, me apply a second-order explicit Runge-
Kutta method for ϕ, for instance the Heunmethod. This time stepping scheme consists
of the forward Euler as a predictor step:

(ϕh∗,n, ψ) = (ϕh
n−1, ψ) + kRn−1(ϕ

h
n−1,u

h
n−1;ψ) ∀ψ ∈ Qh, (33)
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leading to a predictor mean density �̄∗,n = �̄(ϕh∗,n), and a predictor velocity and
pressure, uh∗,n and ph∗,n respectively, given as solution of

A(uh∗,n, p
h∗,n; v, q) = F[�̄∗,n](v, q), ∀(v, q) ∈ Xh . (34)

Afterwards, the new melt fraction is obtained by solving

(ϕh
n , ψ) = 1

2

(
ϕh
n−1 + ϕh∗,n, ψ

)
+ k

2
Rn(ϕ

h∗,n,u
h∗,n;ψ), (35)

followed by the new mean density �̄n = �̄(ϕh
n ), and new velocity and pressure by

solving (32).
The numerical cost of the Heun method is just a factor of two compared to the

forwardEuler, but leads to a substantial increase in accuracy. Thiswill be demonstrated
in the numerical examples below. The corresponding algorithm looks as follows:

Algorithm (Heun method)

1. Initialize uh0, p
h
0 and ϕh

0 , set n := 0 and tn := 0.
2. Increase n → n + 1 and set tn := tn−1 + k.
3. Make one forward Euler step (33) to determine ϕh∗,n .
4. Update mean density �̄∗,n (similar to (31)).
5. Solve the linear problem (34) to determine ph∗,n and uh∗,n .
6. Update melt fraction ϕh

n by inversion of mass matrix, (35).
7, Get new mean density �̄n according to (31).
8. Update solid velocity and fluid pressure by solving (32).
9. If tn ≤ T goto 2.

5 Numerical example

In this section we test the methodology for two 2D examples, a stationary problem
and a time-dependent problem. Both cases are designed in such a way that the exact
solution is known.

5.1 Stationary example

To validate the analysis and the error estimates of the proposed scheme, we choose as
an example the two-dimensional problem given in [23] with a known exact solution:

us(z) =
(

1

10
ez,− 3

40
ez

)T

and p f (z) = p0 − z − 27

200
ez .
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The problem is solved on the unit square Ω := (0, 1)2 in the xz− plane. The Darcy
coefficient KD and the melt fraction ϕ depend only on the variable z :

KD(z) = 149

45
+ 1

30
ez, ϕ(z) = 1 − 0.3ez .

The shear and bulk viscosities η and ξ , respectively, are given by

η(x) = 1

2
e2x ,

ξ(x, z) = e−z + 2

3
e2x + 1.

The resulting compaction pressure according to (18) is

pc(x, z) = 3

40

(
1 + 2

3
e2x+z + ez

)
.

We further set� f (z) := e−z, �s(z) := 1.2� f (z), gravitationg(z) := (0,−ez)T , and
Γ (z) := 27

1000e
z . For the isothermal compressibilities we choose constant values κ f =

1 and κs = 5/6. Hence, α(z) = e−z andβ(z) = −KDκ f � f = − 149
45 e

−z − 1
30 . The

boundary data is given by the exact solutions, i.e. for the velocity u0 = us |∂Ω , and
for the pressure f2 = −∂ne−z |∂Ω . Now we can obtain the forcing term by basic
calculations

f = Γ

(
1

� f
− 1

�s

)
− 2KDκ f �

2
f |g|2 − � f ∇ · (KDg) = 9

2000
e2z − 149

45
,

�̄g =
(
0,−4

5
− 3

50
ez

)T

.

In Fig. 1 we display the discretization errors obtained for Q1 (left figure) and Q2
(right figure) approximations. In the Q1 result the L2 errors of p and u are of order
O(h2). The error in the gradient (i.e. in the H1-semi norm of p and u is of order O(h).
For the Q2 approximation the convergence is enhanced, where the L2 errors in p and
u are O(h3). The errors |u − uh |H1(Ω) and |p − ph |H1(Ω) have order O(h2). This
corresponds exactly to the a priori estimate in Theorem 2.

Moreover, we are interested in the error behavior of the post-processed compaction
pressure pc. In Fig. 2 we plot the corresponding discretization errors for Q1 and Q2
elements. We obtain for Q1-elements an error ||pc − phc || = O(h3/2), and for Q2-
elements an error ||pc− phc || = O(h2). In comparison with the theoretical expectation,
these results corresponds exactlywith the theory for Q2, and showa super-convergence
behaviour for Q1.

In order to get an idea about the error distribution, in Fig. 3 we depict the dis-
cretization errors on a sequence of meshes for Q1-elements. The errors are reduced
uniformly under mesh refinement.

123



288 M. Braack et al.

Fig. 1 Discretization error obtained with Q1 (left) and Q2 approximation (right)

Fig. 2 Discretization error of the
compaction pressure, ||pc − phc ||
obtained with Q1 and Q2
approximation

Fig. 3 Discretization errors in example 5.1: |u − uh | with Q1 approximation (top left), with Q2 approxi-
mation (top right), p − ph (lower left) and pc − phc (lower right) with Q1 on a sequence of meshes. The
colors and elevations are scaled individually for each picture
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5.2 Time-dependent example

We extend the example in the previous section to the time-dependent case. The exact
solution now reads:

us(z, t) = ez+t
(

1

10
,− 3

40

)T

,

p f (z, t) = p0 − z − 27

200
ez + (1 − et )(−0.2z + 0.135ez),

ϕ(z, t) = et (1 − 0.3ez).

The coefficients η, ξ and KD remain independent of time and, hence, identical to
their values in the stationary case (previous subsection). The quantities Γ , f and f2
are adapted in such a way that the solution given above solves the set of equations.
Obviously, the solution is designed in such a way that we recover for t = 0 the same
solution as in the stationary example: us(z, t) = us(z, 0)et , p f (z, t) = p f (z, 0) +
q(z, t)withq(z, t) = (1−et )(−0.2z+0.135ez) andϕ(z, t) = ϕ(z, 0)et . The averaged
density becomes

�̄(z, t) = ϕ(z, t)� f (z) + (1 − ϕ(z, t))�s(z)

= et �̄(z, 0) + (1 − et )�s(z).

It is straightforward to verify that (10) and (11) are satisfied. The compaction pressure
then becomes

pc(x, z, t) = −ξ(x, z)∇ · u(z, t) = 3

40
et

(
1 + 2

3
e2x+z + ez

)
,

and finally the pressure forcing term results to

f (z, t) = et
(
149

225
+ 9

2000
e2z

)
− 298

75
.

The initial forcing at t = 0, i.e. f (z, 0), is identical to f (z) of the stationary example.

5.2.1 Forward Euler

In order to validate the temporal error we first have a look at the error in melt fraction
in different norms, see Fig. 4. In the L2- and the L∞-norm we observe first order
convergence with respect to the time step, ||ϕ − ϕh

k ||L2(Ω) ∼ ||ϕ − ϕh
k ||L∞(Ω) ∼ k.

The H1-seminorm also begins to reduce with first order, but stagnates for smaller
time steps. This is not unexpected, since Eq. (15) does not enforce H1-regularity nor
H1-stability.

For the pressure and velocity variables the spatial error is much larger than the
temporal error. The reason for this is probably that the time step does not enter directly
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Fig. 4 Discretization error of melt fraction (left) and pressure and velocity (right) obtained with forward
Euler (Sect. 5.2.1)

into Eq. (22), but the temporal discretization enters only implicitly by themean density
�̄ which itself depends on the time dependent melt fraction ϕ. However, in order to
visualize the temporal impact we plot the temporal error only by considering the
quantities ph − phn and u

h −uhn at t = 0.1, where ph and uh are pressure and velocity,
respectively, discretized in space but with the correct mean density �̄(tn), i.e.

A(uh, ph; v, q) = F[�̄(tn)](v, q) ∀(v, q) ∈ Xh .

In Fig. 4 (right figure) we observe first oder convergence of the error in the L2-norms,
||ph − phn || ∼ k and ||uh −uhn || ∼ k for fixed spatial mesh size h. The compaction pres-
sure, obtained by post-processing, also convergeswith first order: ||(pc)h−(pc)hn || ∼ k.

5.2.2 Heunmethod

For the Heun method on a fixed spatial mesh we obtain second order convergence for
the melt fraction ||ϕh

k − ϕ||L2(Ω) ∼ k2 in L2-, H1- and L∞-norm (Fig. 5 left) until the
(fixed) spatial error dominates and leads to stagnation of the total error. The reason
that this stagnation is not observed with the forward Euler method is that with Heun,
the error is a factor 100 smaller than with Euler (with k = 4 · 10−3). This stagnation
appears earlier on in the H1-norm. For solid velocity, fluid pressure and compaction
pressure we obtain second order convergence as well (Fig. 5 right). Here, no stagnation
appears which is due to the fact that we (once more) only depict the temporal error,
e.g. ||uh − uhn ||L2(Ω), so that spatial effects are excluded.

5.3 Example in 3D

As third example we choose a configuration without known analytical solution in three
spatial dimensions. The computational domain isΩ := (−1, 1)×(−1, 1)×(0, 1). The
setting is stationary with the following choice of melt fraction and Darcy coefficient,
respectively:

γ (x, y, z) = e−20x2 y2z,
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Fig. 5 Discretization error of melt fraction (left) and of the pressure and velocity (right) for the time-
dependent case with the Heun method in the L2-norm (Sect. 5.2.2)

Fig. 6 Pressure p (left) and compaction pressure pc in the 3D-configuration (Sect. 5.3)

ϕ(x, y, z) = 1 − x2y2z,

KD(x, y, z) = (1.01 − x2y2z)−1.

Shear and bulk viscosities are simply η = ξ = 1. Gravitation has only a vertical
component, g = −10e3. The remaining coefficients are chosen as �s = 20, � f = 10,
κ f = 0.05, κs = κ f /6. The velocity data for the boundary conditions is given by
u0 = 0. The two pressures are shown in Fig. 6.

6 Summary

We propose a variational formulation for modeling mantle-melt transport with a coer-
cive bilinear form for solid velocity us and fluid pressure p f . The compaction pressure
pc is determined by a post-processing step if needed. We obtain existence and unique-
ness of solutions, and we derived an a priori error estimate for equal-order finite
elements. For the time-dependent case, we propose a splitting method which consists
of an hyperbolic equation for the melt fraction ϕ and an elliptic problem for solid
velocity and fluid pressure. The time-discretization for the melt fraction is carried out
by explicit schemes (forward Euler or Heun method), so that the equation for velocity
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and pressure decouples from the equation for the melt fraction, i.e. only information of
previous time steps of us and p f enters into the equation for ϕ. In numerical examples
with known exact solutions we demonstrate that the expected convergence rates with
respect to the spatial mesh size h and with respect to the time step k are obtained.
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