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Abstract
Globalization concepts for Newton-type iteration schemes are widely used when
solving nonlinear problems numerically. Most of these schemes are based on a predic-
tor/corrector step sizemethodologywith the aim of steering an initial guess to a zero of
f without switching between different attractors. In doing so, one is typically able to
reduce the chaotic behavior of the classical Newton-type iteration scheme. In this note
we propose a globalization methodology for general Newton-type iteration concepts
which changes into a simplified Newton iteration as soon as the transformed residual
of the underlying function is small enough. Based on Banach’s fixed-point theorem,
we show that there exists a neighborhood around a suitable iterate xn such that we
can steer the iterates—without any adaptive step size control but using a simplified
Newton-type iteration within this neighborhood—arbitrarily close to an exact zero of
f . We further exemplify the theoretical result within a global Newton-type iteration
procedure and discuss further an algorithmic realization. Our proposed scheme will
be demonstrated on a low-dimensional example thereby emphasizing the advantage
of this new solution procedure.

Keywords Global Newton methods · Simplified Newton method · A posteriori
analysis · Newton path

Mathematics Subject Classification 37N30 · 46N40 · 58C15 · 65H10 · 49M15

1 Introduction

For the time being, let U ⊂ R
n be open and f : U → R

n be of class C1(U ;Rn). In
this note we are interested in finding the zeros x ∈ U of f , i.e., we aim to solve the
equation
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x ∈ U : f (x) = 0. (1)

In general—apart from trivial toy problems—the solutions x∞ can only be com-
puted numerically. Here, we focus on the following approach: For x ∈ U we consider
the matrix-valued map x �→ M(x) ∈ R

n×n and define F(x) := −M(x)−1 f (x). Sup-
posing that M(x) is invertible on a suitable subset of U , we now concentrate on the
initial value problem

{
ẋ(t) = F(x(t)), t ≥ 0,

x(0) = x0.
(2)

This initial value problem tackles the problem of finding the zeros of f from a
dynamical system approach. In fact, ifM(x) is given by the Jacobian of f we recover
the well known continuous Newton scheme formally satisfying f (x(t)) = f (x0)e−t .
For an excellent survey of the continuous Newton scheme see, e.g., [8,14–16]. Indeed,
supposing that a solution x(t) exists for all time t ≥ 0, we can try to follow the
trajectory of x(t) numerically in order to end up with an approximate root for f . For
an initial guess x0 ∈ U the simplest routine for solving (2) numerically is given by
the forward Euler method:

xn+1 = xn − tnM(xn)
−1 f (xn), tn ∈ (0, 1], n ≥ 0. (3)

For example, if we choose M(x) := Id, the above iteration scheme is termed
Piccard-Iteration. If J f (x) signifies the Jacobian of f at x ∈ U , then forM(x) = J f (x)
we observe a damped Newton-method. Specifically, for tn ≡ 1 andM(x) = J f (x), the
iteration (3) results in the well known standard Newton method. In addition, another
well established scheme is given by settingM(x) := J f (x0), which is also called sim-
plified Newton method. The last choice simply freezes the information of the Jacobian
throughout the whole iteration procedure. This typically reduces the computational
effort in each iteration step. On the other hand, the number of iterations increases in
general and the domain of convergence is reduced by this method. However, on a local
level, i.e., when the initial guess x0 is supposed to be ‘sufficiently’ close to a zero of
f , it is reasonable to expect that the simplified Newton method safely leads to a zero
which is located next to the initial guess x0. Indeed, if the update M(xn)−1 f (xn) is
small enough, we will see in Sect. 2 that there exists a unique zero for f locally that
can be obtained by the following simplified Newton-type iteration scheme:

u j+1 = u j − M(xn)
−1 f (u j ), un = xn, j ≥ n. (4)

This observation is especially interestingwhen the computation of thematrixM(xn)
is computationally expensive—as for instancewhenwe solve extremly large scale non-
linear problems arising from the discretization of PDE’s. Furthermore, the proposed
result in this work asserts local uniqueness of the solution. Thus, one can think of
steering an initial guess x0 ∈ U assumed to be far away of a zero for f , ‘sufficiently’
close to the root which is located next to x0. Having hit the domain of local uniqueness
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of the underlying zero we then switch from the adaptive iteration (3) to the simplified
iteration scheme given in (4) without using any adaptive step-size control.

Notation

In this note we signify by (·, ·) the standard Euclidean product of Rn . For any x
its norm is given by ‖x‖ := √

(x, x). For a matrix M ∈ R
n×n we further use the

operator norm ‖M‖ := sup‖x‖=1 ‖Mx‖. By BR(x) we denote the closed ball of radius
R centered at x ∈ R

n . Finally, whenever the function f is differentiable, the derivative
at a point x ∈ U is written as J f (x), thereby referring to the Jacobian of f at x .

Outline

This note is organized as follows: InSect. 2we state andprove a convergence result for a
general class of simplified Newton-type iterations schemes as given in (4). Therefore
we firstly discuss the assumptions that have to hold true in order to establish the
proposed convergence result. In particular, we embed the local convergence result
into a global—and therefore adaptive—Newton-type iteration scheme as given in (3).
On that account, in Sect. 3 we finally present and discuss our adaptive strategy on a
low dimensional example employing the advantage of the proposed iteration scheme.
In Sect. 4 we summarize and comment our findings.

2 A convergence result

As a preparation towards the proposed main result we firstly address the assumptions
that have to hold. In addition, we comment on a possible extension of the proposed
result to a general Banach space framework.

2.1 Assumptions

Suppose we are given an initial value x0 ∈ U and suppose we can compute

x j+1 = x j − t jM(x j )
−1 f (x j ), t j ∈ (0, 1], j ≥ 0. (5)

Here, t j signifies some adaptively chosen step size (see, e.g., [1,3,18,19] for some
highly efficient step size methodologies). Again, we notice that forM(x) = J f (x) and
t j ≡ 1, the iteration (5) is simply the standard Newton method.

Let U be an open and convex subset of Rn and assume further that there exists an
iterate xn ∈ U such that there holds the following assumptions:

A1. Let ω be a positive constant. For any v ∈ U and for any z ∈ {t xn + (1− t)v|t ∈
[0, 1]}we assume that there holds the following affine covariant type Lipschitz-
condition on J f :

123



324 M. Amrein

∥∥∥M(xn)
−1(J f (xn) − J f (z))(xn − v)

∥∥∥ ≤ ω(1 − t) ‖xn − v‖2 . (6)

A2. Wefurther needM(xn)−1 to be a sufficiently accurate approximate of the inverse
of the Jacobian J f (xn) which we here quantify by the following assumption

∥∥∥Id − M(xn)
−1J f (xn)

∥∥∥ ≤ κ < 1.

A3. For αn := ∥∥M(xn)−1 f (xn)
∥∥ we need to assume that

ωαn ≤ (1 − κ)2

2
. (7)

A4. For

R := 1 − κ

ω
+

√
(1 − κ)2

ω2 − 2αn

ω
(8)

there holds BR(xn) ⊂ U .

Assumption A1 is called affine covariant type Lipschitz condition because in case
ofM(xn) = J f (xn) the Lipschitz constant ω is an affine invariant quantity. Indeed, for
A ∈ Gl(n) and F(x) := A f (x) there holds

JF(xn)−1(JF(z) − JF(xn))(v − xn) = J f (xn)−1(J f (z) − J f (xn))(v − xn).

For further details concerning affine invariance principles within the framework
of Newton-type iterations schemes we refer to the excellent monograph [8] and the
proposed adaptive schemes therein.

Supposing thatM(xn)−1 is bounded, then condition (7) inA3 also holds true when-
ever the residual ‖ f (xn)‖ is ‘sufficiently’ small in the sense that

ωαn ≤ ω

∥∥∥M(xn)
−1

∥∥∥ ‖ f (xn)‖ ≤ (1 − κ)2

2
. (9)

Thus, the proposed result implies that whenever the norm of the residual ‖ f (xn)‖
is small enough, there exists a zero on a local level. This is of particular interest
when solving nonlinear differential equations numerically within the context of a
fully adaptive iteration scheme. More precisely, let X denote a Banach space—in
most cases X = H1

0 (�)—and X ′ its dual respectively. Then the weak formulation of
a nonlinear differential equation reads as follows:

Find x ∈ X such that there holds

〈 f (x), v〉X ′×X = 0 ∀v ∈ X , i.e. f (x) = 0 in X ′, (10)

with 〈·, ·〉X ′×X signifying the duality pairing in X ′ × X .
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Solving (10) within the context of an adaptive solution procedure over some finite
dimensional space Xh ⊂ X—here h typically signifies the mesh-size parameter in
the finite element method—one then can try to derive computational quantities ηh(xh)
and ηL(xh) such that there holds:

‖ f (xh)‖X ′ ≤ ηh(xh) + ηL(xh). (11)

Here, the quantity ηL(xh) signifies an error estimate which measures the linearization
errorwhereas ηh(xh) represents the discretization error (see, e.g., [2,4–7,9–13]). Using
(9) and supposing that the quantities ηh(xh) and ηL(xh) are small enough we obtain

ω

∥∥∥M(xn)
−1

∥∥∥L(X ′,X)
(ηh(xh) + ηL(xh)) ≤ (1 − κ)2

2
,

i.e., the a posteriori existence of the solution is guaranteed. Indeed, the a posteriori
existence in numerical computations has been addressed in detail by [17]—especially
in the context of solving semilinear problems. However, although we discuss and
present our adaptive scheme in view of dealing with systems of nonlinear equations
overRn , it is noteworthy that the established convergence result also holds true within
a general Banach space setting. Indeed, our convergence result can be used to real-
ize a specialization of the recently established adaptive iterative linearized Galerkin
methodology (ILG) discussed in [12,13].

Theorem 1 Suppose that f ∈ C1(U ;Rn). Further assume that there holds the
assumptions A1&A2&A3 and A4.

Then the map

U � v �→ g(v) := v − M(xn)
−1 f (v). (12)

satisfies

g(BR(xn)) ⊂ BR(xn).

Proof First of all we rewrite the function g as follows

g(v) = xn − M(xn)
−1 f (xn) −

(
(xn − v) − M(xn)

−1( f (xn) − f (v))
)

.

Let v ∈ BR(xn). For t ∈ [0, 1]we define the line segment z(t) := t xn + (1− t)v ⊂
BR(xn) and use the integral form of the mean value theorem

(xn − v) − M(xn)
−1( f (xn) − f (v)) = (xn − v) −

∫ 1

0
M(xn)

−1 d

dt
f (z(t))dt

=
∫ 1

0
(Id − M(xn)

−1J f (z(t)))(xn − v)dt

=
∫ 1

0
M(xn)

−1(M(xn) − J f (z(t)))(xn − v)dt
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=
∫ 1

0
(Id − M(xn)

−1J f (xn))(xn − v)dt

+
∫ 1

0
M(xn)

−1(J f (xn) − J f (z(t)))(xn − v)dt

from where we obtain by A1&A2

∥∥∥(xn − v) − M(xn)
−1( f (xn) − f (v))

∥∥∥ ≤
(

κ + ω
1

2
‖xn − v‖

)
‖xn − v‖ . (13)

Thus there holds

‖g(v) − xn‖ ≤ αn +
(

κ + ω
1

2
‖v − xn‖

)
‖v − xn‖ ≤ αn +

(
κ + ω

1

2
R

)
R = R.

Employing A3, this last equality holds true if

R = 1 − κ

ω
±

√
(1 − κ)2

ω2 − 2αn

ω
. (14)

��
Let us go back to (14) in the proof. We see that the map g also satisfies

g (Br (xn)) ⊂ Br (xn) (15)

with r = 1−κ
ω

−
√

(1−κ)2

ω2 − αn
ω
.

Next we give an existence result addressing the zeros u ∈ U of f .

Corollary 2 Assumptions and notations as in the preceding Theorem 1. Then, there
exists a zero u ∈ BR(xn) of f .

Proof From the proof of Theorem 1 we have that g(BR(xn)) ⊂ BR(xn). Employing
Brouwer’s fixed point theorem we deduce the existence of a fixed point u ∈ BR(xn)
of g which is the asserted zero of f . ��

In view of the iteration procedure (4) it would be preferable if we can guarantee
its convergence within the ball BR(xn) ⊂ U . Indeed, if g from (12) is a contrac-
tion in BR(xn) we can conclude the existence of a unique fixed point of g which
can be obtained by iterating (4). In doing so we need to strengthen the assumptions
A1&A2&A3 and A4 as follows:

B1. Letω� be a positive constant. For any x, v ∈ U and for any z ∈ {t x+(1− t)v|t ∈
[0, 1]} we assume that there holds the following affine covariant type Lipschitz-
condition on J f :∥∥∥M(xn)

−1(J f (x) − J f (z))(x − v)

∥∥∥ ≤ ω�(1 − t) ‖x − v‖2 . (16)
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B2. For any x ∈ U there holds:

∥∥∥Id − M(xn)
−1J f (x)

∥∥∥ ≤ κ� < 1. (17)

B3. For αn = ∥∥M(xn)−1 f (xn)
∥∥ > 0 we need to assume that

ω�αn ≤ (1 − κ�)2

2
. (18)

B4. For

R� := 1 − κ�

ω�
+

√
(1 − κ�)2

ω�2
− 2αn

ω�
(19)

there holds BR� (xn) ⊂ U .

Note that for x = xn we have ω = ω� and κ = κ�. Now we are ready to prove the
following result:

Theorem 3 Suppose that f ∈ C1(U ;Rn). Further assume that there holds the
assumption B1&B2&B3&B4. Then the map from (12) satisfies firtsly

g(BR�(xn)) ⊂ BR� (xn)

and is a contraction on BR� (xn).

Proof The first assertion follows from the proof of Theorem 1 and choosing x = xn .
Thus we are left to show that g is a contraction. Notice that

g(x) − g(y) = (x − y) − M(xn)
−1( f (x) − f (y))

=
∫ 1

0
(Id − M(xn)

−1J f (z(t)))(x − y)dt

=
∫ 1

0
(Id − M(xn)

−1J f (x))(x − y)dt

+
∫ 1

0
M(xn)

−1(J f (x) − J f (z(t)))(x − y)dt .

Thus, for x, y ∈ BR� (xn) there holds:

‖g(x) − g(y)‖ =
∥∥∥(x − y) − M(xn)

−1( f (x) − f (y))
∥∥∥

≤
(

κ� + ω� 1

2
‖x − y‖

)
‖x − y‖ .
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Since κ� + ω� 1
2 ‖x − y‖ ≤ κ� + ω�

2 R� and R� <
2(1−κ�)

ω� , there holds

κ� + ω� 1

2
‖x − y‖ < 1,

i.e., we conclude that g is a contraction. ��
Corollary 4 Assumptions and notations as in the preceding Theorem 3. Then, for any
initial value xn ∈ U the simplified Newton-like iterates (4) remain in BR� (xn) and
converge to a unique zero u∞ ∈ BR� (xn) of f .

Proof From the proof of Theorem 1 we have that for j ≥ n the iterates u j+1 = g(u j )

remain in BR� (xn). Furthermorewe have also shown that g is a contraction on BR� (xn).
Thus, by Banach’s fixed-point theorem we deduce that lim j→∞ g(u j ) = u∞ exists,
which is the unique zero of f in BR� (xn). ��

From a computational point of view we can try to switch from the Newton-like
iteration scheme (5) to a simplified Newton-like scheme

u j+1 = u j − M(xn)
−1 f (u j ), j ≥ n (20)

as soon as there holds αnω
� ≤ (1−κ�)2

2 . Therefore we need to control the Lipschitz
constant ω�. In doing so, we replace the computational unavailable constant ω� by
a quantity ω̂ that we can easily compute during the iteration procedure. Henceforth,
suppose we have computed xn+1, xn . In view of (6), it is reasonable to switch to the
iteration (20) whenever there holds

αnω̂ = αn

∥∥M(xn)−1(J f (xn+1) − J f (xn))(xn+1 − xn)
∥∥

‖xn+1 − xn‖2
≤ (1 − κ�)2

2
<

1

2
.

In addition, for M(xn) = J f (xn) and x ∈ BR� (xn) we observe∥∥∥Id − J f (xn)−1J f (x)
∥∥∥ ≈

∥∥∥Id − J f (xn)−1J f (xn)
∥∥∥ = 0,

i.e. κ = 0.

3 Numerical experiments

3.1 Adaptive strategy

We now propose a procedure that realizes an adaptive strategy based on the previous
observations. The individual computational steps are summarized in Algorithm 1.

Let us briefly comment on the proposed adaptive procedure given in Algorithm 1:

Remark 1 In steps 3&18 we predict a step size t such that t = 1 whenever the iterates
are ‘close enough’ to the zero x∞. Thus, the proposed procedure allows full steps
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Fig. 1 The adaptively computed sequence xk switching to the simplified Newton-type scheme within the
ball BR(xn) which finally leads to the zero x∞. Moreover, we depict two different trajectories x(t) and
x̃(t) respectively—each of them leading to a different zero

whenever the iterates are ‘sufficiently’ close to x∞. The computation of t ∈ (0, 1] typ-
ically relies on a computational upper boundwith respect to the distance ‖x(tn) − xn‖.
There exists different suggested approaches towards an effective computation of the
step size t (see, e.g., [1,3,4,8,12,18,19]). Here we use the adaptive step size control
given in [1]. This adaptive choice of the step size t consists mainly of two parts:

A prediction for the step size t and a correction of the step size whenever
‖xn − x(tn)‖ > τ . Here, x(t) signifies the exact trajectory leading to the zero x∞
and xn is the numerical solution. Thus, the input τ is a parameter that determines
how close the iterates xn tracks the exact trajectory x(t) leading to a zero of f (see
also Fig. 1). For τ = ∞ there is no restriction on xn , i.e. Algorithm 1 reproduces the
classical Newton scheme—apart from the simplified Newton scheme given in step 13.
Furthermore, the adaptive scheme from [1] needs a lower bound tlower for the step size
tn in (3). Indeed, if tn degenerates to 0, the iterative scheme is not well defined in the
sense that it must be classified as not convergent. However, τ is an error tolerance used
in the proposed adaptive computation of the step size t and determines the distance
between the numerically computed iterates and the exact trajectory.
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Algorithm 1 Adaptive simplified-Newton-like method:
1: Input:

• initial value x0 ∈ U ,
• error tolerance ε > 0 respectively.

2: δ0 ← −M(x0)
−1 f (x0) � compute a first correction

3: t ← min (1, t) � compute an initial step size based on an adaptive procedure; see, e.g., [1,18,19]
4: xs ← x0
5: for k = 1, 2, . . . do
6: if ‖δ0‖ ≤ ε then
7: return x∞ ← x0 � return the solution
8: else
9: t ← t � compute a step size based on an adaptive procedure; see, e.g., [1,18,19]
10: x0 ← x0 + tδ0 � perform a step

11: ω̂ ←
∥∥∥M(xs )−1(J f (x0)−J f (xs ))(x0−xs )

∥∥∥
‖x0−xs‖2 � compute the Lipschitz constant

12: if ‖δ0‖ ω̂ ≤ 1
2 then � start the simplified Newton-like scheme

13: Compute x∞ based on the simplified iteration scheme (4)
14: return x∞ � return the solution
15: break the iteration
16: end if
17: δ0 ← −M(x0)

−1 f (x0) � update the direction
18: t ← min (1, t) � predict the step size
19: xs ← x0
20: end if
21: end for

Remark 2 Before we can switch to the simplified Newton-type iteration scheme in step
12, we need to compute the proposed estimate ω̂ for the Lipschitz constant in step
11. Evidently, this will roughly increase the complexity of Algorithm 1 by a constant
factor of 2—before we switch to the simplified scheme, where we can reduce the
computational effort by keepingM(x0) fixed for the rest of the iteration procedure—.

Example 1 In this example we choose M(x) = J f (x). Let us consider the function

f : C → C, z �→ f (z) := z6 − 1.

Here, we identify f in its real form in R
2, i.e., we separate the real and imaginary

parts. The six zeros are given by

Z f = {
(1, 0),

(
1/2,

√
3/2

)
,
(−1/2,

√
3/2

)
, (−1, 0),

(−1/2,−√
3/2

)
,
(
1/2,−√

3/2
)} ⊂ R

2.

Note that J f is singular at (0, 0). Thus if we apply the classical Newtonmethodwith
F(x) = −J f (x)−1 f (x) in (3), the iterates close to (0, 0) cause large updates in the itera-
tion procedure.More precisely, the application of F(x) = −J f (x)−1 f (x) is a potential
source for chaos near (0, 0). Before we discuss our numerical experiment, let us first
consider the vector fields generated by the continuous problem (2). In Fig. 2, we depict
the direction fields corresponding to F(x) = f (x) (left) and F(x) = −J f (x)−1 f (x)
(right). We clearly see that some elements of Z f are repulsive for F(x) = f (x). More-
over, some elements of Z f show a curl. If we now consider F(x) = −J f (x)−1 f (x) the
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Fig. 2 Example 1: the direction fields corresponding to f (z) = z6 − 1 (left) and to the transformed F(z) =
−J f (z)−1 · f (z) (right)

situation is completely different: All zeros are obviously attractive. In this example,
we further observe that the vector direction field is divided into six different sectors,
each containing exactly one element of Z f .

Next we visualize the domains of attraction of four different Newton-type iteration
schemes. More precisely, we test the following four iteration procedures:

1. The proposed procedure given in Algorithm 1, i.e., adaptive step size control—with
τ = 0.01 —and switching to the simplified Newton scheme which we abbreviate
by AS.

2. The proposed procedure given in Algorithm 1, i.e., adaptive step size control—
with τ = 0.01 —but without switching to the simplified Newton scheme which
we abbreviate by ANS.

3. The proposed procedure given inAlgorithm1,without step size control, i.e. τ = ∞,
and without switching to the simplified Newton scheme which we abbreviate by
NANS. This is simply the classical Newton iteration scheme.

4. The proposed procedure given in Algorithm 1, without step size control—i.e. τ =
∞—but switching to the simplified Newton scheme which we abbreviate byNAS.

In doing so, we compute the zeros of f by sampling initial values on a 500 × 500
grid in the domain [−3, 3]2 (equally spaced). In Fig. 3, we show the fractal generated
by the traditional Newton method NANS (left) as well as the corresponding plot for
the combination of the classical Newton method and the simplified Newton method
NAS (right). It is noteworthy that the chaotic behavior caused by the singularities of J f
of the iteration procedure NAS is comparable to NANS.

In Fig. 4 we depict the basins of attraction for the adaptive procedure as proposed in
Algorithm 1 AS (left) and the iteration procedure ANS. The chaotic behavior caused
by the singularities of J f is clearly tamed—by both adaptive schemes AS and ANS.

Let us finally consider some performance data given in Table 1. An initial value
x0 ∈ [−3, 3]2 is called convergent if it is in fact convergent and additionally approaches
the ‘correct’ zero, i.e., the zero that is located in the same exact attractor as the initial
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Fig. 3 The basins of attraction for Example 1 by the Newton method. On the left for the classical Newton
scheme NANS and on the right using the proposed simplified Newton iteration scheme NAS. Different
colors distinguish the six basins of attraction associated with the six solutions (each of them is marked by
a small circle). (Color figure online)

Table 1 Performance for
Examples 1

AS ANS NANS NAS

Convergent 99.98% 99.98% 80.4% 80.4%

Complexity 2.25 2.7 1 1.03

Here we clearly see the advantage of the proposed adaptive procedure
based on the simplified Newton-type scheme AS. This is due to fixed
derivative M(xn) = J f (xn) as soon as αnω ≤ 1/2. Furthermore, we
see that almost all tested initial guesses are converging to the correct
zero

guess x0. Table 1 nicely demonstrates that—in contrast to the non adaptive schemes
NANS andNAS—the number of convergent iterations for the adaptive proceduresAS
andANS is close to 100%. The second line in Table 1 shows the computational time—
by sampling the computational time for all tested initial guesses x0 ∈ [−3, 3]2—with
respect to the classical Newton iteration scheme NANS, i.e., we depict the quantity

Computational time of the considered iteration scheme

Computational time of NANS
.

In view of this quantity, the proposed iteration scheme AS is the clear winner
compared to ANS as can be seen from line 2 in Table 1.

4 Conclusions

In this work, we have proved a convergence result for general simplified Newton-type
iteration schemes under quite reasonable assumptions. In particular, we have shown
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Fig. 4 The basins of attraction for Example 1 by the Newton method. On the left with step size control
(i.e., t ∈ (0, 1]) and the proposed scheme based on Algorithm 1AS. On the right again with step size control
(i.e., t ∈ (0, 1]) but without the simplified scheme, i.e., the derivative J f was updated in each iteration step
ANS. Six different colors distinguish the six basins of attraction associated with the six solutions (each of
them is marked by a small circle). (Color figure online)

that whenever the correction
∥∥M(xn)−1 f (xn)

∥∥ is small, then there locally exists a
unique zero for the underlying map f . Since the proof of the proposed result relies on
Banach’s fixed-point theorem, the theoretical result is constructive in the sense that it
can be used for the numerical computation of the locally unique fixed point and there-
fore of the zero to be considered. Moreover, we have combined the convergence result
with an adaptive root finding procedure thereby firstly taming the chaotic behavior
of classical Newton-type iteration schemes and secondly reducing the computational
effort due to the constant map x �→ M(xn) ∈ R

n×n—without reducing the domain of
convergence. We have tested our method on a low dimensional problem. Moreover,
our experiment demonstrates empirically that the proposed scheme is indeed capa-
ble to tame the chaotic behavior of the iteration compared with the classical Newton
scheme, i.e., without applying any step size control. In particular, our test example
illustrate that the domains of convergence can—typically—be considerably enlarged
in the sense that almost all initial guesses x0 are convergent to the ‘correct’ zeros, i.e.,
the zero which is located in the same attractor as the initial guess x0.
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