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Abstract
Although novel coronavirus pneumonia (COVID-19) was widely spread in mainland
China in early 2020, it was soon controlled. To study the impact of government inter-
ventions on the spread of disease during epidemics, a differential equation system is
established to simulate the process of virus propagation in this paper. We first analyze
its basic properties, basic reproduction number R0 and existence of equilibria. Thenwe
prove that the disease-free equilibrium (DFE) is Globally Asymptotically Stable when
R0 is less than 1. Through the analysis of the daily epidemic data from January 10,
2020 to March 11, 2020, combined with the implementation of the national epidemic
policy, we divide the whole process into three stages: the first stage (natural state), the
second stage (isolation state), the third stage (isolation, detection and treatment). By
using the weighted nonlinear least square method to fit the data of three stages, the
parameters are obtained, and three basic reproduction numbers are calculated, which
are: R01 = 2.6735, R02 = 0.85077, R03 = 0.18249. Sensitivity analysis of thresh-
old parameters and corresponding graphical results were also performed to examine
the relative importance of various model parameters to the spread and prevalence of
COVID-19. Finally, we simulate the trend of three stages and verify the theory of
Global Asymptotic Stability of DFE. The conclusion of this paper proves theoreti-
cally that the Chinese government’s epidemic prevention measures are effective in the
fight against the spread of COVID-19. This study can not only provide a reference for
research methods to simulate COVID-19 transmission in other countries or regions,
but also provide recommendations on COVID-19 prevention measures for them.
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1 Introduction

In 2020, the all world is facing a battle against a new type of viral pneumonia. The
novel coronavirus pneumonia was named "COVID-19" (Corona Virus Disease 2019)
by the director general of World Health Organization (WHO) Tedros on February 11,
2020 [1,2]. Meanwhile, International Committee on Taxonomy of Viruses declared
that the novel coronavirus was named "SARS-CoV-2" (Severe Acute Respiratory
Syndrome Coronavirus 2), and it was identified as a sister virus of SARS coronavirus.
The main transmission route of COVID-19 is respiratory droplets transmission and
contact transmission. It is very infectious, but the death rate is not high. As the outbreak
continues to worsen, on 28 February 2020, the WHO raised the regional and global
risk levels to the highest level, "very high", in its daily COVID-19 situation report. As
of 11 March 2020, COVID-19 has spread to 115 countries, with 119,239 confirmed
cases and 4,287 deaths. On the same day, the director general of the WHO, Tedros,
announced that based on the assessment, WHO believes that the current outbreak of
COVID-19 can be called a global pandemic [3].

In early January 2020, a new cases of viral pneumonia were reported in Wuhan
[4]. With a large number of people moving during the Spring Festival, the number
of infected cases increased rapidly. After finding the evidence of human-to-human
transmission, the Chinese government issued a blockade of Wuhan on January 23,
2020, in order to control the number of infected people. All the citizens actively
cooperated with home quarantine, which greatly reduced the flow of people and the
spread of the virus. Although a prolonged urban blockade would cause great damage
to the economy, the Chinese government immediately implemented the measures of
"trapping and killing the virus" in a responsible attitude towards the people and the
world. By mid-march, the number of new confirmed cases nationwide had dropped to
single digits. The spread of the virus in China has been basically contained.

Many domestic and foreign epidemiologists have done a lot of modeling and pre-
diction on the spread of COVID-19 in China during the outbreak [5–12,29]. Such
as: Using data from reported confirmed cases before 22 January 2020, Tang et al.
[5] estimated that the basic reproduction number could be as high as 6.47 based on
likelihood analysis and model analysis. Yan et al. [6] proposed a mathematical model
of COVID-19 with time delay based on the cumulative confirmed number and cured
cases published by the National Health Commission. The time delay is introduced
to describe the incubation period of the virus. Khan and Atangana [7] established a
fractional mathematical model to simulate the spread of COVID-19, estimated the
parameters through the confirmed cases of 21 January to 28 January, and analyzed the
sensitivity of the basic reproduction number. Due to the implementation of a series of
strong intervention policies issued by the state, Tang et al. [8] used the new data as of
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January 29 to re-estimate the parameters of the model, and calculated that the basic
reproduction number was less than 1.

With the continuous spread of COVID-19 around the world, many scholars estab-
lished a series of COVID-19 models to simulate its spread according to different
situations and considering different influencing factors [39–47]. Aba et al. [39] devel-
oped a fractional mathematical model for the dynamics of COVID-19 by taking into
account quarantine, isolation, and environmental viral load factors. Then, by fitting
the data of daily infections in Pakistan from March 1, 2020 to June 30, 2020, the
estimated value of the parameter was obtained. Gupta et al. [40] used a SEIR-QDPA
model to simulate COVID-19 transmission in India from March 30, 2020 to June 7,
2020. The best exit time of the blocking strategy is analyzed through experiments.
Hezam et al. [41] presented a new mathematical model of cotransmission of COVID-
19 and cholera, and then fitted the data of coinfection outbreaks in Yemen between 1
January 2020 and 30 May 2020. The study took into account the preventive measures
taken to contain the outbreak: social distance, lockdown, number of tests, etc. Wick-
ramaarachchi and Perera [42] used a traditional SEIR model to simulate the spread
of COVID-19 in Sri Lanka from 10 March 2020 to 31 May 2020. By assuming that
the number of cases of infection presents an exponential curve, the parameters of the
obtained data are estimated and the results are analyzed.

It is an important part of infectious disease dynamics to study the dynamic properties
of the model. Through the qualitative and quantitative analysis of the model, the
development process of the disease is analyzed, the epidemic law is revealed, the
change trend is predicted, and the causes and key points of the disease epidemic are
analyzed [13–24, 33–35]. For example, Khan et al. [13] established a mathematical
model to simulate the spread of Pine Wilt Disease, studied its stability, and compared
the control results under different strategies. Li et al. [14] proposed a nonlinear SIQS
infectious disease model based on complex networks, and studied the stability of the
model by using complex network theory and Lyapunov functionmethod. Bonyah et al.
[15] used the Atangana-Beleanu derivative in the sense of Liouville-Caputo to study
the model of human African trypanosomiasis, and analyzed the basic properties and
stable states in the sense of fractional derivative. Huo et al. [16] considered a new
SEIS infectious disease model with media influence, obtained the basic reproduction
number through the analysis of the characteristic equation, and studied its stability
and the occurrence of Hopf bifurcation. There are also some important articles, please
refer to the references.

The basic reproduction number R0 is a very important concept in epidemiology, and
is undoubtedly “one of the most important and valuable ideas brought by mathemati-
cal thinking to the epidemiological theory” [25]. Inspired by the above literatures, in
order to demonstrate the impact of Chinese government interventions on COVID-19
transmission, we divide the entire transmission process into three stages according to
specific interventions. By fitting daily data published by the National Health Com-
mission, the basic reproduction number for the three stages was obtained. The effect
of the intervention was analyzed by comparing the values of the basic reproduction
number in three different stages.

The structure of this paper is as follows: the establishment of the model and its
basic properties are given in Sect. 2; the basic reproduction number and equilibria are

123



2644 Y. Guo, T. Li

obtained in Sect. 3; the stability of the equilibrium are proved in Sect. 4; data analysis
and numerical simulation are shown in Sect. 5; some findings of this paper are given
in last Section.

2 Themodel formulation

2.1 System description

Our research target is the infection of COVID-19 in China, so the target population
we selected is all population in China, denoted as N (t). We take the healthy people as
S(t). We define people who have close contact with symptomatic and asymptomatic
infections as exposed people E(t). They are subject to self-isolation observation.

From the appearance of similar symptoms of COVID-19 to the isolation treatment
after diagnosis in the hospital, this is a real process that can not be ignored, because
there is still the spread of disease in this process. We define the population in this
process as: probable infected population, denoted as I (t). Because asymptomatic
infection andmild infection have a lot in common, sowe put them into I1 compartment.
The mild and asymptomatic probable infected individuals are referred to as I1(t);
severe probable cases are identified as I2(t). As COVID-19 is a self-limited disease,
some people with strong resistance in I1(t) can recover and produce antibodies by
relying on their own immunity without entering the hospital for treatment.

Because the COVID-19 is highly contagious, the mild and severe cases are isolated
and treated separately to avoid cross-infection among people. Asymptomatic infection
once diagnosed in the hospital, will be isolated for treatment. So we generalize this
kind of patients to T1(t). Therefore, we divide the confirmed treated patients in the
hospital into mild or asymptomatic treatment compartment T1(t) and severe treatment
compartment T2(t). People who experienced COVID-19 infection and recovered are
referred to as R(t).

Thus, the total population is given by:

N (t) = S(t) + E(t) + I1(t) + I2(t) + T1(t) + T2(t) + R(t). (1)

The population flow among those compartments is shown in Fig. 1 (Table 1).
The transfer diagram leads to the following system of ordinary differential equa-

tions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S′ = � − μS − S α1 I1+α2 I2
N ,

E ′ = S α1 I1+α2 I2
N − (v1 + v2 + μ)E,

I ′
1 = v1E − (w1 + w2 + w5 + μ)I1,

I ′
2 = v2E − (w3 + w4 + μ)I2,

T ′
1 = w1 I1 + w3 I2 + ξT2 − (η1 + η2 + μ)T1,

T ′
2 = w2 I1 + w4 I2 + η1T1 − (ξ + μ + d)T2,

R′ = w5 I1 + η2T1 − μR.

(2)
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Fig. 1 Transfer diagram of model

2.2 Positivity

In practical sense, the initial total number of the model must be positive, and the
population of each warehouse is negative at any time. So it is necessary to prove that
the solutions of the system (2) with positive initial conditions remain positive for all
t > 0. System (2) can be put into the matrix form

X ′ = G(X), (3)

where X = (S, E, I1, I2, T1, T2, R)T ∈ R+
7 and G(X) is given by

G(X) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

G1(X)

G2(X)

G3(X)

G4(X)

G5(X)

G6(X)

G7(X)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

� − μS − S α1 I1+α2 I2
N

S α1 I1+α2 I2
N − (v1 + v2 + μ)E

v1E − (w1 + w2 + w5 + μ)I1
v2E − (w3 + w4 + μ)I2

w1 I1 + w3 I2 + ξT2 − (η1 + η2 + μ)T1
w2 I1 + w4 I2 + η1T1 − (ξ + μ + d)T2

w5 I1 + η2T1 − μR

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4)

We can obtain

dS

dt

∣
∣
∣
∣[S=0,E≥0,I1≥0,I2≥0,T1≥0,T2≥0,R≥0]

= � > 0,

dE

dt

∣
∣
∣
∣[S>0,E=0,I1≥0,I2≥0,T1≥0,T2≥0,R≥0]

= S
α1 I1 + α2 I2

N
≥ 0,
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Table 1 Description of related parameters in COVID-19 model (2)

Variables and parameters Description

Variables

S(t) The number of health human at time t

E(t) The number of close contacts at time t

I1(t) The number of asymptomatic and mild symptomatic probable cases with
imaging features of pneumonia

I2(t) The number of severe symptomatic probable cases with imaging features of
pneumonia

T1(t) The number of asymptomatic and mild symptomatic patients treated

T2(t) The number of severe symptomatic patients treated

R(t) The number of people recovered

Parameters

� The recruitment number of susceptible humans

μ The natural death rate

α1 The effective contact rate of I1
α2 The effective contact rate of I2
v1 The rate of disease progression from exposed compartment E to mild infected

compartment I1
v2 The rate of disease progression from exposed compartment E to severe

infected compartment I2
w1 The progression rate from mild infected compartment I1 to mild treatment

compartment T1(t)

w2 The progression rate from mild infected compartment I1 to severe treatment
compartment T2(t)

w3 The progression rate from severe infected compartment I2 to mild treatment
compartment T1(t)

w4 The progression rate from severe infected compartment I2 to severe treatment
compartment T2(t)

w5 The proportion of self recovery without hospital treatment

η1 The progression rate from mild treatment compartment T1 to severe treatment
compartment T2(t)

η2 The progression rate from severe treatment compartment T2(t) to mild
treatment compartment T1

ξ The proportion of patients recovered from hospital treatment

d The proportion of deaths from COVID-19

d I1
dt

∣
∣
∣
∣[S>0,E≥0,I1=0,I2≥0,T1≥0,T2≥0,R≥0]

= v1E ≥ 0,

d I2
dt

∣
∣
∣
∣[S>0,E≥0,I1≥0,I2=0,T1≥0,T2≥0,R≥0]

= v2E ≥ 0,

dT1
dt

∣
∣
∣
∣[S>0,E≥0,I1≥0,I2≥0,T1=0,T2≥0,R≥0]

= w1 I1 + w3 I2 + ξT2 ≥ 0,
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dT2
dt

∣
∣
∣
∣[S>0,E≥0,I1≥0,I2≥0,T1≥0,T2=0,R≥0]

= w2 I1 + w4 I2 + η1T1 ≥ 0,

dR

dt

∣
∣
∣
∣[S>0,E≥0,I1≥0,I2≥0,T1≥0,T2≥0,R=0]

= w5 I1 + η2T1 ≥ 0.

Since these rates are non-negative at the boundary of non-negative cone R+
7 , the

direction of the vector field is inward from the boundary plane. Therefore, starting
from the non-negative point, the trajectories of all solutions remain in the positive
region. It is worth noting that some scholars have different solutions to this problem.
For more information on this issue, please refer to references [36,37].

2.3 Boundedness

Because of

dN

dt
= �7

i=1Gi (x) = � − μN − dT2 ≤ � − μN ,

which yields that

lim sup
t→∞

N (t) ≤ �

μ
.

Therefore, we get the biologically feasible region

� =
{
(S, E, I1, I2, T1, T2, R) ∈ R7+ : S + E + I1 + I2 + T1 + T2 + R ≤ �

μ

}
, (5)

and it is a positive invariant set of system (2).

3 The basic reproduction number and existence of endemic
equilibrium

3.1 The basic reproduction number

The model has a Disease-Free Equilibrium D0 given by

D0 =
(�

μ
, 0, 0, 0, 0, 0, 0

)
. (6)

In the following, the basic reproduction number of system (2) will be obtained by the
next generation matrix method. Let x = (E, I1, I2, T1, T2, R, S)T, then system (2)
can be written as

dx

dt
= F (x) − V (x), (7)
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where

F (x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S α1 I1+α2 I2
N

v1E
v2E
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, V (x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(v1 + v2 + μ)E
(w1 + w2 + w5 + μ)I1

(w3 + w4 + μ)I2
−w1 I1 − w3 I2 − ξT2 + (η1 + η2 + μ)T1
−w2 I1 − w4 I2 − η1T1 + (ξ + μ + d)T2

−w5 I1 − η2T1 + μR
μS − � + S α1 I1+α2 I2

N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

The Jacobian matrices of F (x) and V (x) at the Disease-Free Equilibrium D0 are

DF (D0) =
(
F5×5 0
0 0

)

, DV (D0) =
(
V5×5 0
J1 J2

)

.

where

F5×5 =

⎛

⎜
⎜
⎜
⎜
⎝

0 α1 α2 0 0
v1 0 0 0 0
v2 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

V5×5 =

⎛

⎜
⎜
⎜
⎜
⎝

v1 + v2 + μ 0 0 0 0
0 w1 + w2 + w5 + μ 0 0 0
0 0 w3 + w4 + μ 0 0
0 −w1 −w3 η1 + η2 + μ −ξ

0 −w2 −w4 −η1 ξ + μ + d

⎞

⎟
⎟
⎟
⎟
⎠

,

J1 =
(
0 −w5 0 −η2 0
0 α1 α2 0 0

)

, J2 =
(

μ 0
0 μ

)

.

The basic reproduction number, denoted by R0, is given by

R0 = ρ(FV−1) =
√

1

v1 + v2 + μ

( α1v1

w1 + w2 + w5 + μ
+ α2v2

w3 + w4 + μ

)

�
√
R1, (8)

where ρ(A) denotes the spectral radius of a matrix A.
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3.2 Existence of endemic equilibrium

The Endemic Equilibrium D∗ = (S∗, E∗, I ∗
1 , I ∗

2 , T ∗
1 , T ∗

2 , R∗) of system (2) is deter-
mined by equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

� − μS − S α1 I1+α2 I2
N = 0,

S α1 I1+α2 I2
N − k1E = 0,

v1E − k2 I1 = 0,
v2E − k3 I2 = 0,
w1 I1 + w3 I2 + ξT2 − k4T1 = 0,
w2 I1 + w4 I2 + η1T1 − k5T2 = 0,
w5T1 + η2T2 − μR = 0.

(9)

where k1 = v1+v2+μ, k2 = w1+w2+w5+μ, k3 = w3+w4+μ, k4 = η1+η2+μ

and k5 = ξ + μ + d.
From the first, third and forth equations of the system (9), we get

S = �

μ + (α1v1
Nk2

+ α2v2
Nk3

)E
,

I1 = v1

k2
E,

I2 = v2

k3
E .

By adding the first two equations of (9), we have

� − μS = k1E .

Hence,

� − μ
�

μ + (α1v1
Nk2

+ α2v2
Nk3

)E
= k1E .

That is

k1
μN

(α1v1

k2
+ α2v2

k3

)
E2 +

[
k1

(
1 − �

μN
R1

)]
E = 0.

Because N ≤ �
μ
and R1 > 1, [k1(1 − �

μN R1)] < 0. From above we know that

E = 1

k1

(
� − μN

R1

)
. (10)
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From the last three equations of (9) we can obtain

T1 = v1k3(k5w1 + ξw2) + v2k2(k5w3 + ξw4)

k2k3(k4k5 − ξη1)
E,

T2 = v1k3(η1w1 + k4w2) + v2k2(η1w3 + k4w4)

k2k3(k4k5 − ξη1)
E � K E,

R = v1k3[w5(k5w1 + ξw2) + η2(η1w1 + k4w2)] + v2k2[w5(k5w3 + ξw4) + η2(η1w3 + k4w4)]
μk2k3(k4k5 − ξη1)

E .

(11)

By adding all equations of (9), we have � − μN − dT2 = 0. Combining Eqs. (10)
and (11),

(Kd

k1
− R1

)
μN = R1�

(Kd

k1
− 1

)
,

where

Kd

k1
= v1k3(η1w1 + k4w2) + v2k2(η1w3 + k4w4)

k1k2k3(k4k5 − ξη1)
d.

Since

d(v1k3(η1w1 + k4w2) + v2k2(η1w3 + k4w4))

< d(v1k3(k4w1 + k4w2) + v2k2(k4w3 + k4w4))

< d(v1k3k4k2 + v2k2k4k3)

< dk1k2k3k4
< dk1k2k3k4 + ξk1k2k3(k4 − η1)

< k1k2k3k4k5 − k1k2k3ξη1.

Thus, 0 < Kd/k1 < 1, we can get that the value of N is unique and positive as
R1 > 1. So there is a unique positive Endemic Equilibrium D∗ when R0 > 1.

Theorem 1 In the system (2), there is always a Disease-Free Equilibrium D0 =
(�

μ
, 0, 0, 0, 0, 0, 0). When R0 > 1, the system (2) has a unique Endemic Equilib-

rium D∗ = (S∗, E∗, I ∗
1 , I ∗

2 , T ∗
1 , T ∗

2 , R∗).
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4 Stability analysis of disease-free equilibrium

We denote a vector x = (E, I1, I2, T1, T2, R, S)T and

f (x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S α1 I1+α2 I2
N − (v1 + v2 + μ)E

v1E − (w1 + w2 + w5 + μ)I1
v2E − (w3 + w4 + μ)I2

w1 I1 + w3 I2 + ξT2 − (η1 + η2 + μ)T1
w2 I1 + w4 I2 + η1T1 − (ξ + μ + d)T2

w5 I1 + η2T1 − μR
� − μS − S α1 I1+α2 I2

N

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (12)

So the Jacobian matrix of f (x) about vector x is as the following:

J = ∂ f (x)

∂x

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−k1 α1
S
N α2

S
N 0 0 0 α1 I1+α2 I2

N
v1 −k2 0 0 0 0 0
v2 0 −k3 0 0 0 0
0 w1 w3 −k4 0 0 0
0 w2 w4 0 −k5 0 0
0 0 0 η ξ −μ 0
0 −α1

S
N −α2

S
N 0 0 0 −α1 I1+α2 I2

N − μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

where k1 = v1+v2+μ, k2 = w1+w2+w5+μ, k3 = w3+w4+μ, k4 = η1+η2+μ

and k5 = ξ + μ + d.

Theorem 2 For the system (2), the Disease-Free Equilibrium D0 is Locally Asymp-
totically Stable (LAS) if R0 < 1.

Proof Since

J (D0) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−k1 α1 α2 0 0 0 0
v1 −k2 0 0 0 0 0
v2 0 −k3 0 0 0 0
0 w1 w3 −k4 ξ 0 0
0 w2 w4 η1 −k5 0 0
0 w5 0 η2 0 −μ 0
0 −α1 −α2 0 0 0 −μ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

We assume that λ1, λ2, λ3 are eigenvalues of M1, λ4, λ5 are eigenvalues of M2 and
λ6 = λ7 = −μ, where

M1 =
⎛

⎝
−k1 α1 α2
v1 −k2 0
v2 0 −k3

⎞

⎠ , M2 =
(−k4 ξ

η1 −k5

)

.
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The characteristic equation of characteristic matrix of M1 is

λ3 + b1λ
2 + b2λ + b3 = 0,

where

b1 = k1 + k2 + k3,

b2 = k2k3 + k1k2 + k1k3 − α2v2 − α1v1,

b3 = k1k2k3 − α2v2k2 − α1v1k3.

Due to 0 < R0 < 1, we have b1 > 0, b3 > 0, α1v1 < k1k2 and α2v2 < k1k3.

b1b2 − b3

= (k1 + k2 + k3)(k2k3 + k1k2 + k1k3 − α2v2 − α1v1) − (k1k2k3 − α2v2k2 − α1v1k3)

= k1(k1k2 + k1k3 − α2v2 − α1v1) + (k2 + k3)(k2k3 + k1k2 + k1k3 − α2v2 − α1v1)

+ (k2α2v2 + k3α1v1)

> 0.

Using Routh–Hurwitz criteria, the real part of all characteristic roots of M1 are nega-
tive. The characteristic equation of characteristic matrix of M2 is

λ2 + (η1 + η2 + 2μ + ξ + d)λ + η1(μ + d) + (η2 + μ)(ξ + μ + d) = 0.

Because all coefficients of the equation are greater than 0, the real part of all char-
acteristic roots of M2 are negative. So the point D0 is LAS. The proof is completed.
	

Theorem 3 For the system (2), the Disease-Free Equilibrium D0 is Globally Asymp-
totically Stable (GAS) if R0 < 1.

Proof Consider the subsystem of (2) as follows:

E ′(t) = S
α1 I1 + α2 I2

N
− k1E,

I ′
1(t) = v1E − k2 I1,

I ′
2(t) = v2E − k3 I2,

T ′
1(t) = w1 I1 + w3 I2 + ξT2 − k4T1,

T ′
2(t) = w2 I1 + w4 I2 + η1T1 − k5T2.

For S ≤ N (all t>0),

⎛

⎜
⎜
⎜
⎜
⎝

E ′
I ′
1
I ′
2
T ′
1

T ′
2

⎞

⎟
⎟
⎟
⎟
⎠

≤

⎛

⎜
⎜
⎜
⎜
⎝

α1 I1 + α2 I2 − k1E
v1E − k2 I1
v2E − k3 I2

w1 I1 + w3 I2 + ξT2 − k4T1
w2 I1 + w4 I2 + η1T1 − k5T2

⎞

⎟
⎟
⎟
⎟
⎠
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= (F − V )

⎛

⎜
⎜
⎜
⎜
⎝

E
I1
I2
T1
T2

⎞

⎟
⎟
⎟
⎟
⎠

.

Since the eigenvalues of the matrix F − V all have negative real parts, then system
(2) is stable when R0 < 1. So (E, I1, I2, T1, T2) → (0, 0, 0, 0, 0) as t → ∞. By the
comparison theorem, it follows that (E, I1, I2, T1, T2) → (0, 0, 0, 0, 0) and S → �

μ
as t → ∞. So D0 is Globally Asymptotically Stable for R0 < 1. 	

Remark 1 Formore information on the global stability results, please refer to reference
[37,38].

Remark 2 It is worth mentioning that the unique Endemic Equilibrium D∗ is unstable
from the literature [30] and the trend prediction analysis part of the first stage in
numerical simulation. If we set that the death rate d due to COVID-19 as 0, then
we can prove that the Endemic Equilibrium is GAS. However, it is obvious that this
assumption ismeaningless because it is seriously inconsistent with the actual situation.

5 Numerical simulation

In this chapter,we simulate the number of probable,mild, severe and recovered patients
reported by the National Health Commission in different stages, and estimate the
parameters by using the nonlinear weighted least square method to get the value of
the basic reproduction number, so as to explore the spread of disease in this stage and
the role of the government’s strong intervention policy.

5.1 Data collection

The data of COVID-19 inChina from January 10, 2020 toMarch 11, 2020 are collected
from the web of the National Health Commission, including number of the probable,
confirmed and recovered cases, see attachment 1 for more details. Figure 2a shows
the new confirmed cases per day, and Fig. 2b shows the cumulative confirmed cases
per day. It can be seen from Fig. 2 that the curves of the number of new cases and the
cumulative number of cases every day are relatively smooth, except for two abnormal
points: 1771 new confirmed cases and 4515 cumulative confirmed cases on January
27, 15,152 new cases and 59,804 cumulative confirmed cases on February 12.

The reason for the first abnormal point of statistical data is that at the beginning of
the outbreak of the COVID-19, people don’t know much about the virus, such as its
transmission route, transmission intensity, and whether there will be human to human
phenomenon. On January 26, almost all cities in China implemented measures of
isolation at home. Therefore, we will take the period from January 10 to January 26
as the first stage of disease transmission. In the first stage, the disease is transmitted
naturally without people’s awareness of protection. At the same time, there may be a
certain gap between the statistical data of this stage and the real infection situation.
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Fig. 2 The number of new confirmed cases and the cumulative confirmed cases per day in China from
January 10, 2020 to March 11, 2020: (a, b)

From January 27 to February 11, people consciously cut off all social activities,
greatly reducing the chance of virus transmission. As the incubation period of COVID-
19 is 14 days, with an average of 7 days, in Fig. 2a, we can see that there is still a
continuous increase in new cases every day for 8 consecutive days, and then the
decrease begins. Because the detection method of COVID-19 is still under study, there
are still many suspected cases not detected in this period of time.Until around February
11th, the detection reagent of the COVID-19 was produced on a large scale, and the
number of confirmed statistics had an abnormal surge. Therefore, we regard the spread
of the disease between January 27 and February 11 as the second stage. In this stage,
people have a strong sense of self-protection, and under the call of the government, they
actively isolate themselves at home. Due to the large-scale production of COVID-19
detection reagents, huoshenshan and leishenshan anti epidemic hospital and fangcang
hospitalwere built in this period of time. Therefore, during this period, the total number
of suspected and confirmed patients is very close to the total number of real infected
patients, and the data is relatively reliable.

The reason for the second abnormal point in the statistical data is that on Febru-
ary 12, the new coronavirus detection reagent was fully supplied, and the existing
suspected cases were tested and diagnosed in a wide range, so an explosive growth
abnormal point will appear in the new cases. From February 12 onwards, we can see
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from Fig. 2a that the number of new cases continues to decrease, indicating that the
spread of the virus is significantly reduced. All these show that the strong intervention
of the Chinese government has played a very effective role in curbing the spread of
the virus.

5.2 Parameter estimation

First of all, we estimate some parameters through the existing literature. In 2020, the
population statistics report pointed out that the average life expectancy of Chinese is
77 years old [26]. Therefore, we have μ = 1/(77 ∗ 365) per day. According to the
population statistics report, the total number of Chinese mainland is 1,400,050,000
[26], so� = 49,814.98 per day. We use the cumulative number of deaths reported per
day divided by the cumulative number of confirmed cases, and then take its mean value
as the estimation ofmortality d. The death rates of the three stages are: d1 = 0.028398,
d2 = 0.021824, d3 = 0.032834. According to the objective situation, the treatment
level in the third stage should be higher than that in the first and second stages, so
the mortality d3 should be less than d1 and d2. This inconsistency with reality may be
caused by incomplete data collection in the first and second stages.

In this estimationmethod, the data is fitted byminimizing the weighted error square
sum between the estimated values and the reported data. We take the data of prob-
able infection cases, mild confirmed cases, severe confirmed cases and cure cases
reported as the target of I1 + I2, T1, T2, R to fit. Let’s set the objective function in the
minimization process as follows.

J = W1

n∑

i=1

[(I1 + I2)ti − ( Ĩ )ti ]2 + W2

n∑

i=1

[(T1)ti − ˜(T1)ti ]2

+W3

n∑

i=1

[(T2)ti − ˜(T2)ti ]2

+W4

n∑

i=1

[(R)ti − ˜(R)ti ]2, (13)

where I1 + I2 is the estimated number of probable cases; T1, T2, R is the estimated
number of mild treatment, severe treatment and recovered cases; Ĩ , T̃1, T̃2, R̃ is the
reported number of probable, mild treatment, severe treatment and recovered cases;
Wi , (i = 1, 2, 3, 4) is the weight coefficient of the error square sum in each compart-
ment, and the value ofWi is the reciprocal of the sample point variance. The selection
of weight can effectively reduce the fitting deviation caused by the difference in the
order of magnitude of different warehouses’ data. There are also some introductions
about this method, please refer to [27,28]. To estimate the parameters of the model,
we need to minimize the following objective function.

{
min J
subject to system (2).

(14)
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Fig. 3 Model fitting for the reported number of probable cases, mild treatment cases, severe treatment cases
and recovered cases in the first stage (January 10, 2020 to January 26, 2020)

In the first stage, the fitting results of probable cases, mild treatment cases, severe
treatment cases and recovered cases are shown in Fig. 3a–d respectively. The results
of the fitted parameters are shown in Table 2.

In Fig. 3a–c, we can see a common feature: the simulated values are larger than
the reported values. This is consistent with the previous analysis. In the early stage of
disease outbreak, the lack of understanding of the disease led to incomplete statistical
data. Therefore, there are some differences between the fitted results and the reported
data. From the fitting results, the virus outbreak shows an exponential growth trend,
so its transmission speed is very fast. By substituting the fitting parameters into R0,
we get that the basic reproduction number of the COVID-19 in the first stage (natural
state) is R01 = 2.6735. This result is close to the simulation result 2.4829 in [7].

In the second stage, under the strict measures of the government, almost all cases
have been counted, so the sum of the probable cases and confirmed cases is very close
to the number of real infections, and the number of severe cases has been basically
treated in the hospital, so the data is reliable. The simulation results are shown in
Fig. 4.

In Fig. 4a–d, the number of probable, mild treatment, severe treatment, and severe
cases per day during the second stage is shown. At this stage, we can see that although
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Fig. 4 Model fitting for the reported number of probable cases, mild treatment cases, severe treatment cases
and recovered cases in the second stage (January 27, 2020 to February 11, 2020)

the number of confirmed cases has been increasing, the rate of increase has been gradu-
ally decreasing, indicating that the spread of the virus has been effectively suppressed.
We substituted the fitted parameters into R0 and obtained: R02 = 0.85077 < 1 for the
second stage (isolated state) transmission of the COVID-19. From a biological point
of view, when the basic reproduction number is less than 1, after a certain period of
time, the virus will eventually disappear. When people persist in isolation for a certain
period of time, blocking the spread of the virus, the disease will disappear.

Figure 5a–d shows the number of probable, mild treatment, severe treatment and
recovered cases per day during the third stage. In this stage, we can see that the
number of cases in any subgraph dropped sharply after a few days, which also indicates
that the combination of isolation, detection and treatment can quickly and effectively
inhibit the spread of the virus. The actual number of patients in the mild and severe
treatment compartments are lower than that in the simulation, indicating that the effect
of treatment is beyond expectation and satisfactory.

We substituted the fitted parameters into R0 and obtained that the basic reproduction
number of the COVID-19 in the third stage (isolation + detection + treatment state)
transmission R03 = 0.18249. It is far less than 1, so there is a sharp drop in the number
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Fig. 5 Model fitting for the reported number of probable cases, mild treatment cases, severe treatment cases
and recovered cases in the third stage (February 12, 2020 to March 11, 2020)

of people infected in the third stage, and it also shows that the anti-virus measures
implemented in China are very effective.

5.3 Sensitivity analysis

In order to further study the leading factors related to an intervention and having a
significant impact on the disease dynamics, we need to conduct sensitivity analysis
(SA) on the model. For this reason, we use the standard combination of Latin hyper-
cube sampling (LHS) and partial rank correlation coefficient (PRCC). PRCC can be
successfully used to measure the monotonic nonlinear relationship between the input
and output of the system. This is one of the most effective statistical techniques. For
more information about this method, please refer to [31,32].

In Figs. 6, 7 and 8, we depict the results of PRCC graphically in three different
stages. To generate the LHSmatrix, we assume that allmodel parameters are uniformly
distributed. The model was simulated for 1000 times in each stage. .

We can see that the parameters with high and positive PRCC values are as follows:
α2, w2 and ξ in Fig. 6, α2, v1 and v2 in Fig. 7, α2, v1 and ξ in Fig. 8. This means
that we can reduce the basic reproduction number R0 by reducing the values of these
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Table 2 Fitted or assumed values of parameters for system (2) (unit: day−1)

Parameters Stage 1 Stage 2 Stage 3 Source

� 49,814.98 49,814.98 49,814.98 Assumed

μ 1/(77 ∗ 365) 1/(77 ∗ 365) 1/(77 ∗ 365) [26]

α1 0.103652264165970 0.093447877510194 0.015732621270915 Fitted

α2 0.673804018259787 0.073271050672040 0.052370994899440 Fitted

v1 0.005466677784469 0.146368512043268 0.000126932635995 Fitted

v2 0.146785395488717 0.003270082168560 0.003631626073494 Fitted

w1 0.866167996386389 0.124560244196773 0.000145574031825 Fitted

w2 0.858826422041044 0.000100508226297 0.163487012708329 Fitted

w3 0.026843195666970 0.000503074786105 0.741960901438499 Fitted

w4 0.064005285176012 0.295893023728773 0.924183989377603 Fitted

w5 0.572206716292525 0.002506880303582 0.000008218253191 Fitted

η1 0.142046442650272 0.026922718755618 0.003119264595919 Fitted

η2 0.001059046324261 0.012200231351765 0.060211095648758 Fitted

ξ 0.991034934244199 0.005530790005271 0.090562306732993 Fitted

d 0.028398 0.021824 0.032834 Assumed

Fig. 6 PRCC values for the COVID-19 model (2) in the first stage

parameters. At the same time, we can found that the parameters with high and negative
PRCC values are as follows: w1, w3 and w5 in Fig. 6, w1, w2 and w5 in Fig. 7, w1, w3
and w5 in Fig. 8. This also means that in different stages, we can reduce the value of
R0 by increasing the value of these parameters. These results reflect the contribution
of different parameters to the system dynamics in each stage. We can use these data
to guide the daily epidemic prevention work.
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Fig. 7 PRCC values for the COVID-19 model (2) in the second stage

Fig. 8 PRCC values for the COVID-19 model (2) in the third stage

5.4 Prediction analysis

We continue to use the previously fitted parameters in the first stage for forward sim-
ulation and prediction, and the results are shown in Fig. 9. The blue line represent
the population changes of each warehouse under the natural propagation conditions.
Since the basic number of regenerations at this stage is R01 = 2.6735, the number of
confirmed cases will reach the peak after about 100 days. Under this assumption, the
number of confirmed cases remains at 1.1 billion, the number of mild cases treated at
980 million, and the number of severe cases at 141 million. This is really an unimag-
inable and unacceptable result.
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Fig. 9 Population change curve of probable, mild treatment and severe treatment cases in the first stage

The fitted parameter values of the second stage and the third stage are used to predict
the results, which are shown in Figs. 10 and 11. As you can see from the graph, they
all converge to DFE D0. Since their basic reproduction numbers are all less than 1,
they also tend to be in a stable state, which is consistent with the global stability of
DFE D0 in our previous theory.

As the prevention and control measures in the second stage are still based on
isolation, there are some differences between the second and third stage. In Figs. 10
and 11, we can see from the comparison results that the number of confirmed cases in
the third stage will decline faster. It indicates that the treatment scheme of combining
traditional Chinese and Western medicine in the hospital plays a very important role
in the recovery of patients. At the same time, it can also be used as a basis for other
countries to learn from the treatment scheme of combining traditional Chinese and
Western medicine in the fight against the epidemic.

6 Conclusion

In early 2020, the spread of COVID-19 in mainland China posed a serious threat to
people’s lives. The resolute measures taken by the Chinese government have brought
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Fig. 10 Population change curve of probable, mild treatment and severe treatment cases in the second stage

the spread of the disease under rapid and effective control. In this study, a novel
mathematical model of COVID-19 was established to simulate the spread of COVID-
19 in China.

In the analysis of the dynamic properties of the model, the basic properties (posi-
tivity and boundedness) of the solution of the model are firstly proved, and then the
existence of all equilibria of the model are obtained. The basic reproduction number
R0 of the model is obtained by the classical method of next generation matrix. Finally,
the stability of all equilibria are analyzed.

In the numerical simulation, we first divided the entire COVID-19 transmission
process into three stages, based on data from the National Health Commission website
and strong national interventions. Then, the nonlinearweighted least square estimation
method is used to fit the data of multiple warehouses, and the parameter estimation
values of each stage are obtained, and the basic reproduction numbers of three different
stages are calculated. Then the global sensitivity analysis of the threshold parameters
at each stage were carried out to obtain the parameters that had a greater influence on
the disease transmission. Finally, through the trend analysis of each stage, we got their
change trend. Based on the basic reproduction numbers and trend changes in the three
stages, we can see that the intervention has played a very important role in inhibiting
the transmission of COVID-19.
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Fig. 11 Population change curve of probable, mild treatment and severe treatment cases in the third stage

The differences between this paper and previous literatures lie in the following
points:

(i) Differences in data processing. Considering that government intervention mea-
sures will change people’s behavior, will greatly affect the spread rate of the disease,
and will also greatly change the values of various parameters. The numerical simu-
lation results prove our point of view. Therefore, we divided the whole process into
three stages for analysis and comparison according to specific measures, which is an
important difference between this paper and many COVID-19 papers.

(ii) Differences in COVID-19 model. Based on the traditional SEIR model, in this
paper we further considered that asymptomatic infected persons are also infectious,
and that mild and severe cases are treated separately in hospital.

(iii) Differences in data fitting methods. In this paper, in the process of data fitting,
in order to fully use the data, consider using the nonlinear weighted least square
estimation method to fit the data of multiple warehouses. This point is different from
many articles that only fit the cases of infected compartment. So the results we get are
relatively more reliable.

In the numerical simulation, we analyzed the global sensitivity analysis of the lower
threshold parameters at each stage, and obtained some parameters that have a greater
influence on the spread of the disease. Combined with the actual epidemic prevention
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and control measures, we can further study the problem of optimal control strategy in
different stages.

Vaccines for COVID-19 are currently available in many countries. Unfortunately,
there are many different variations in COVID-19 that make the vaccine not fully
effective against the virus. Therefore, it is also interesting to study the dynamics of
how COVID-19 spreads differently in the presence of an imperfect vaccine. We leave
the work for the future.
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