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Abstract

Let G = (VG, EG) be a simple connected graph with its vertex set VG and edge
set EG. The Mostar index Mo(G) was defined as Mo(G) =

∑
e=uv∈E(G)

|nu − nv|,

where nu (resp., nv) is the number of vertices whose distance to vertex u (resp.,
v) is smaller than the distance to vertex v (resp., u). In this study, we determine
the first three minimum Mostar indices of tree-like phenylenes and characterize all
the tree-like phenylenes attaining these values. At last, we give some numerical
examples and discussion.
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1 Introduction

Chemical indices are a class of numerical invariants that are closely related to the

structure of a chemical graph. Chemical indices can be used to predicte the structural

and physic-chemical properties of a chemical molecular. They are mainly used for the

quantitative characterisation of chemical structures and thus contribute to the study of

QSAR, QSTR and QSPR relationships of chemical structures. In recent years, chemical

indices have been found a wide range of applications in chemical science, medical science,
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complex networks, toxicology, etc. The combination of quantum chemistry and chemical

graph theory has also become a promising area in the study of QSAR and QSPR.

Our convention in this paper follows [4] for notations that we omit here. Phenylenes

are a class of chemical compounds in which the carbon atoms form 6-membered cycles

and 4-membered cycles. Each 4-membered cycle(=square) is adjacent to two disjoint

6-membered cycles(=hexagons), and no two hexagons are adjacent [25]. If there is a

hexagon of phenylene adjacent to three squares, we call it the tree-type phenylene (the

definition of tree-type phenylene is similar to tree-type hexagonal system, see [7]). Related

structures include extended sp-carbon nets and heterocyclic analogs. These molecules

have great theoretical and potential practical significance in finding new molecules with

(super) conductive properties [28].

Nowadays, phenylene is still a hot topic in many experimental and theoretical studies.

Some topological properties of phenylenes has been established such as (total π-electron)

energy [11], HOMO LUMO separation [13], cyclic conjugation [15], Kekulé structure count

[12], Wiener index [10], PI index [6, 14], Detour index [21] and Kirchhoff index [23,31].

Let Ph be the set of tree-like phenylenes with h hexagons and h − 1 squares. And

P =
⋃∞

h=1 Ph. Suppose P ∈ Ph, and R is a hexagon of P . Then R is called an i-

hexagon, if it has exactly i (0 ≤ i ≤ 3) adjacent squares in P . A 1-hexagon is called a

terminal hexagon of P . A 2-hexagon is called turn-hexagon of P if its two 2-vertices (the

vertices of degree 2) are adjacent in P . A 3-hexagon is called a full-hexagon of P . Let

Ph,i ⊆Ph (0 ≤ i ≤ bh−1
2
c) be the set of phenylenes with i full-hexagons. Each graph in

Ph,0 (or denoted by Ch ) is called a phenylene chain. A phenylene chain is called a linear

phenylene chain (denoted by Lh) if it contains no turn-hexagons. Let Ch,i ⊆ Ch be the set

of phenylene chains with i turn-hexagons.

A segment of a phenylene chain G ∈ Ch is a maximal linear sub-chain. Denote by S a

non-terminal segment of a phenylene chain G. We call S a non-zigzag segment (resp., a

zigzag segment) if it’s two neighboring segments lie on the same sides (resp., on different

sides) of the line through centers of all hexagons and squares on S.

Denote by CL(t1, t2, t3, · · · , tk, tk+1) the phenylene chain with h hexagons and exactly

k+1 segments S1, S2, · · · , Sk+1 of lengths t1+1, t2+2, t3+2, · · · , tk+2, tk+1+1, respectively,

where S1 and Sk+1 are the terminal segments, all Si (2 ≤ i ≤ k) are zagzig segments,

1 ≤ t1 ≤ tk+1, and
k+1∑
i=1

ti + k = h. Particularly, CL(j, n) ∈ Ch,1 is the graph including
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two vertex-disjoint linear phenylene chains Lj and Ln as subgraphs, where j ≤ n, and

h = j+n+1. CL(j, k, n) ∈ Ch,2 is the graph including three vertex-disjoint linear phenylene

chains Lj, Lk and Ln as subgraphs, where j ≤ n, the second segment is a zigzag segment

and h = j + k + n+ 2.

Denote by PL(j, k, n) ∈Ph,1 the graph including three vertex-disjoint linear phenylene

chains Lj, Lk and Ln as subgraphs, where j ≤ k ≤ n, and h = j + k + n+ 1.

Došlić et al. [9] introduced Mostar index [9] of a graph G, which is defined as

Mo(G) =
∑

e=uv∈E(G)

|nu − nv|.

Došlić et al. determined extremal values of Mostar index among trees and unicyclic

graphs, then gave a cut method for computing the Mostar index of benzenoid systems.

Similarly, the edge Mostar index [20] is defined as

Moe(G) =
∑

e=uv∈E(G)

|mu −mv|,

where mu (resp.,mv) is the number of edges whose distance to vertex u (resp., v) is smaller

than the distance to vertex v (resp., u). We can refer to [1–3,7–9,16–20,22,26,27,29,30]

for more details about (edge) Mostar index.

Mostar indices can be used to measure the peripherality of chemical graphs, so in

addition to chemical applications, Mostar indices have a wide range of applications in

complex networks. It can be used to describe structural properties of the network. Mostar

indices can also be used to extend quantum estimates and expand reactivity based on

electronic descriptors. In this study, our aim is to solve the extremal problem of tree-like

phenylenes with respect to Mostar indices. Using the methods of [7], we determine the

first three minimum values of the Mostar index of tree-like phenylenes with a fixed number

of hexagons and characterize all the tree-like phenylenes attaining these values.

2 Preliminaries

An orthogonal cut is a line segment that starts from the middle of a peripheral edge

of a phenylene, goes orthogonal to this edge and ends at the first next peripheral edge

that it intersects. Let P ∈ Ph. Denote by Ouv
P the set of edges that parallel with uv in

P , and |Ouv
P | = ouvP . Let OP be the set of all disjoint parallel classes in P . Note that Ouv

P

is an edge cut, denote by Gu
P (resp., Gv

P ) the connected components of P − Ouv
P contain
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u (resp., v). Denote by ruP (resp., rvP ) the number of hexagons in Gu
P (resp., Gv

P ). Note

that, for any P ∈Ph, |VP | = 6h and |EP | = 8h− 2.

Bearing in mind that PL(j, k, n) ∈ Ph,1 is the graph including three vertex-disjoint

linear phenyene chains Lj, Lk and Ln as subgraphs, where j ≤ k ≤ n, and h = j+k+n+1.

By the definition of Mo(G), we can calculate the value of Mo(PL(j, k, n)).

Lemma 2.1 Given a phenylene G = PL(j, k, n) ∈ Ph,1 with three branches Lj, Lk, Ln

(1 ≤ j ≤ k ≤ n) and h (h = j + k + n+ 1) hexagons, then

(1) If n ≤ bh
2
c, then Mo(G) = 24(2kj + 3nj + 4kn+ k + 2n).

(2) If n ≥ bh
2
c+1, then Mo(G) = 6(4j+3j2+8k+3k2+4n+3n2+14kj+6jn+10kn+1)

for even h; Mo(G) = 6(4j + 3j2 + 8k + 3k2 + 4n+ 3n2 + 14kj + 6jn+ 10kn) for odd h.

Proof. By using the cut method to PL(j, k, n), we have

Mo(G) =6{2(j + 1)(n− k) + 2(k + 1)(n− j) + 2(n+ 1)(k − j)

+ 4

j∑
i=1

(h+ 1− 2i) + 4
k∑

i=1

(h+ 1− 2i) + 4
n∑

i=1

|h+ 1− 2i|

+ 2

j∑
i=1

(h− 2i) + 2
k∑

i=1

(h− 2i) + 2
n∑

i=1

|h− 2i|}.

(1) If n ≤ bh
2
c, then

Mo(G) =6{2(j + 1)(n− k) + 2(k + 1)(n− j) + 2(n+ 1)(k − j)

+ 4

j∑
i=1

(h+ 1− 2i) + 4
k∑

i=1

(h+ 1− 2i) + 4
n∑

i=1

(h+ 1− 2i)

+ 2

j∑
i=1

(h− 2i) + 2
k∑

i=1

(h− 2i) + 2
n∑

i=1

(h− 2i)}

=24(2kj + 3nj + 4kn+ k + 2n).

(2) If n ≥ bh
2
c+ 1, and h is even, then

Mo(G) =6{2(j + 1)(n− k) + 2(k + 1)(n− j) + 2(n+ 1)(k − j)

+ 4

j∑
i=1

(h+ 1− 2i) + 4
k∑

i=1

(h+ 1− 2i) + 4

h
2∑

i=1

(h+ 1− 2i)− 4
n∑

i=h
2
+1

(h+ 1− 2i)

+ 2

j∑
i=1

(h− 2i) + 2
k∑

i=1

(h− 2i) + 2

h
2∑

i=1

(h− 2i)− 2
n∑

i=h
2
+1

(h− 2i)}

=6(4j + 3j2 + 8k + 3k2 + 4n+ 3n2 + 14kj + 6jn+ 10kn+ 1).
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If n ≥ bh
2
c+ 1, and h is odd, similarly, we have Mo(G) = 6(4j+ 3j2 + 8k+ 3k2 + 4n+

3n2 + 14kj + 6jn+ 10kn).

This completes the proof. �

3 The minimal tree-like phenylenes

Let G ∈ Ch and R1, Rh are two terminal hexagons of G. Denote by xi,1, xi,2, · · · , xi,6
the six clockwise successive vertices in Ri for i = 1, h, where dG(xi,j) = 2 for j = 1, 2, 3, 4.

Let eij = xi,jxi,j+1 for i = 1, h and j = 1, 2, · · · , 6 (let xi,7 := xi,1).

Suppose that P1, P2 ∈P and ui, vi be two adjacent 2-vertices (vertices with degree 2)

in Pi for i = 1, 2. Let P = P1(u1, v1)2P2(u2, v2) be the phenylene obtained from P1, P2

by connecting u1 with u2, and v1 with v2, respectively.

Figure 1: The tree-like phenylenes P1, P2 and P3 of Lemma 3.1.

For uv ∈ E(G), we denote nu
G (or nu) the number of vertices in G lying closer to vertex

u than to vertex v. Some symbols involved in the proof are described in Section 2.

Lemma 3.1 Let P ∈ Pn and Pi = P (s, t)2Lk(xk,i, xk,i+1) for i = 1, 2, 3, see Figure 1.

And k ≥ 2, n ≥ k − 1, then

(1) Mo(P2) ≤Mo(P1), with equality iff |rtP − rsP | ≥ k − 1 and min{rsP , rtP} = 0.

(2) Mo(P2) < Mo(P3).

Proof. Let Ost
P denote the set of edges that are parallel to edge st in P . Assume that

rsP ≤ rtP . Denote Ed = {ek1} ∪ {ek3} ∪ {ek4} ∪ {ek6} ∪ Ost
P ∪ O

ek2
Lk

. Denote φi(Ed) =∑
uv∈Ed

|nu
Pi
− nv

Pi
| (i = 1, 2, 3), we have Mo(Pi)−Mo(P2) = φi(Ed)− φ2(Ed) (i = 1, 3).

5



Note that n ≥ k − 1, then

φ1(Ed) = 6{2(n− k + 1) + 2kn+ (ostP + 2)|(rtP − rsP )− (k − 1)|};

φ2(Ed) = 6{4(n− k + 1) + (ostP + 2k)(rtP − rsP )};

φ3(Ed) = 6{2(n− k + 1) + 2kn+ (ostP + 2)[(rtP − rsP ) + (k − 1)]}.

Bearing in mind that k ≥ 2 and n = 1
2
ostP + rtP + rsP .

(1) If rtP − rsP ≥ k − 1, then φ1(Ed) − φ2(Ed) = 6(k − 1)(2n − ostP − 2(rtP − rsP )) =

24(k − 1)rsP ≥ 0, with equality iff rsP = 0.

If rtP − rsP < k − 1, then φ1(Ed)− φ2(Ed) = 12(ostP + 2)(k − 1− (rtP − rsP )) > 0.

(2) φ3(Ed)− φ2(Ed) = 6(k− 1)(2n+ 4 + ostP − 2(rtP − rsP )) = 12(k− 1)(ostP + 2rsP + 2) > 0.

This completes the proof. �

By Lemma 3.1, we have

Corollary 3.2 Let P ∈ Pn with s, t being two adjacent 2-vertices of its turn hexagon.

Denote by Ck a phenylene chain with k (≥ 1) hexagons, and u, v are two adjacent 2-vertices

of its one terminal hexagon. Then Mo(P (s, t)2Lk(xk,2, xk,3)) ≤Mo(P (s, t)2Ck(u, v)).

Let P ∈Pn+1, where n ≥ max{j, k}, j, k ≥ 1. t1, t, s, s1 are vertices in Figure 2, and

rsP ≤ rtP , h = j + k + n+ 1. Then we have

Figure 2: The tree-type phenylenes P1, P2 of Lemma 3.3.

Lemma 3.3 Let P1 = {P (t, t1)2Lk(yk,2, yk,3)}(s1, s)2Lj(xj,2, xj,3) and P2 = P (s, t)2Lk+j

(xk+j,2, xk+j,3), see Figure 2, then Mo(P2) < Mo(P1).

6



Proof. Denote Ed,i = (EPi
−EP )∪ER ∪Ost

P−R (i = 1, 2). Let φi(Ed,i) =
∑

uv∈Ed,i

|nu
Pi
− nv

Pi
|

(i = 1, 2), then Mo(P1)−Mo(P2) = φ1(Ed,1)− φ2(Ed,2).

Since n ≥ max{j, k}, then

φ1(Ed,1) =6{2(j + 1)(n− k) + 2(k + 1)(n− j) + ostP |rtP + k − (rsP + j)|

+ 4

j∑
i=1

(h+ 1− 2i) + 4
k∑

i=1

(h+ 1− 2i) + 2

j∑
i=1

(h− 2i) + 2
k∑

i=1

(h− 2i)}.

φ2(Ed,2) =6{(ostP + 2(j + k))(rtP − rsP ) + 4

j+k+1∑
i=1

|h+ 1− 2i|+ 2

j+k∑
i=1

|h− 2i|}.

Note that n = 1
2
ostP + rtP + rsP − 1, j, k ≥ 1 and ostP ≥ 2.

Case 1. rtP + k ≥ rsP + j.

Subcase 1.1. j + k + 1 ≤ bh
2
c.

φ1(Ed,1)− φ2(Ed,2) = 12(ostP k + 2(k + j)rsP + 4kj) > 0.

Subcase 1.2. j + k + 1 ≥ bh
2
c+ 1.

If h is even, then j + k ≥ n+ 1, and

φ1(Ed,1)− φ2(Ed,2) =6{2ostP k + 4(k + j)rsP − 3j2 − 3k2 − 3n2 + 2kj + 6jn+ 6kn− 4k

− 4j + 4n− 1}

=6{3k(n− k) + 3(j + 1)(n− j) + 2k(ostP + rsP − 2) + 2j(k + 2rsP − 1)

+ 3n(j + k − n− 1) + 4(n− 1) + 2krsP + j + 3} > 0.

If h is odd, then j + k ≥ n, and

φ1(Ed,1)− φ2(Ed,2) =6{2ostP k + 4(k + j)rsP − 3j2 − 3k2 − 3n2 + 2kj + 6jn+ 6kn− 4k

− 4j + 4n}

=6{3k(n− k) + 3(j + 1)(n− j) + 2k(ostP + rsP − 2) + 2j(k + 2rsP − 1)

+ 3n(j + k − n) + n+ 2krsP + j} > 0.

Case 2. rtP + k < rsP + j.

Note that n ≥ j ≥ k + 1 ≥ 2 and ostP ≥ 2.

Subcase 2.1. j + k + 1 ≤ bh
2
c.

φ1(Ed,1)− φ2(Ed,2) = 12{ostP (rsP + j − rtP ) + 2(k + j)rsP + 4kj} > 0.

Subcase 2.2. j + k + 1 ≥ bh
2
c+ 1.
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If h is even, then j + k ≥ n+ 1, and

φ1(Ed,1)− φ2(Ed,2) =6{2ostP (rsP + j − rtP ) + 4(k + j)rsP − 3j2 − 3k2 − 3n2 + 2kj + 6jn

+ 6kn− 4k − 4j + 4n− 1}

=6{3k(n− k) + 3(j + 1)(n− j) + 3n(j + k − n− 1) + 2ostP (rsP + j

− rtP − k − 1) + 2k(j − 2) + 2(ostP − 2) + (n− j) + 4(k + j)rsP

+ 2ostP k + 3n+ 3} > 0.

If h is odd, then j + k ≥ n, and

φ1(Ed,1)− φ2(Ed,2) =6{2ostP (rsP + j − rtP ) + 4(k + j)rsP − 3j2 − 3k2 − 3n2 + 2kj + 6jn

+ 6kn− 4k − 4j + 4n}

=6{3k(n− k) + 3(j + 1)(n− j) + 3n(j + k − n) + 2ostP (rsP + j

− rtP − k − 1) + 2k(j − 2) + 2(ostP − 2) + (n− j) + 4(k + j)rsP

+ 2ostP k + 4} > 0.

Thus, Mo(P2) < Mo(P1). This completes the proof. �

By Lemma 3.1, we can directly obtain the smallest Mostar index among Ch.

Lemma 3.4 [5] Let G ∈ Ch, then Mo(G) ≥Mo(Lh) = 72bh
2
cdh

2
e − 24bh

2
c, with equality

iff G ∼= Lh.

By Corollary 3.2, Lemma 3.3 and Lemma 3.4, we can obtain the smallest Mostar index

among Ph. The proof of Theorem 3.5 follows from the same arguments as the proof of

Theorem 1.3 of [7], thus we omit the proof.

Theorem 3.5 Let G ∈ Ph, then Mo(G) ≥ Mo(Lh) = 72bh
2
cdh

2
e − 24bh

2
c, with equality

iff G ∼= Lh.

4 The second minimal tree-like phenylenes

Bearing in mind that CL(j, n) ∈ Ch,1 is the graph including two vertex-disjoint linear

phenylene chains Lj and Ln as subgraphs, where j ≤ n, and h = j+n+1. CL(j, k, n) ∈ Ch,2
is the graph including three vertex-disjoint linear phenylene chains Lj, Lk and Ln as

8



subgraphs, where j ≤ n, the second segment is a zigzag segment and h = j + k + n + 2.

In the following, we give some useful results for our proofs of main theorem.

Using the cut method to CL(j, h− j−1) and Lh, and comparing the change of Mostar

index among CL(j, h− j − 1) and Lh, we also have

Lemma 4.1 [5] Let G = CL(j, h − j − 1), 1 ≤ j ≤ bh−1
2
c, be the phenylene chain

with h hexagons, then Mo(CL(1, h − 2) < Mo(CL(2, h − 3) < Mo(CL(3, h − 4) < · · · <

Mo(CL(bh−1
2
c, dh−1

2
e).

Figure 3: The phenylenes CL(1, h− 2), CL(1, h− 4, 1) of Lemma 4.2.

By Lemma 3.1, Lemma 4.1 and Lemma 3.4, we can also obtain the second minimum

Mostar index among phenylene chains Ch.

Lemma 4.2 [5] If G ∈ Ch and G 6∼= Lh, then Mo(G) ≥Mo(CL(1, h−2)) = Mo(CL(1, h−

4, 1)) = 72bh
2
cdh

2
e− 24bh

2
c+ 24(h− 1) with equality iff G ∼= CL(1, h− 2) or G ∼= CL(1, h−

4, 1), see Figure 3.

Lemma 4.3 Given a phenylene PL(j, k, n) ∈ Ph,1 with three branches Lj, Lk, Ln (1 ≤

j ≤ k ≤ n) and h (h = j + k + n + 1) hexagons. Then Mo(PL(j, k, n)) > Mo(CL(1, j +

k + n− 1)) for n ≥ 2, and Mo(PL(1, 1, 1)) < Mo(CL(1, 2)) for n = 1.

Proof. Note that Mo(CL(1, j+k+n−1) = Mo(CL(1, h−2) = 72bh
2
cdh

2
e−24bh

2
c+24(h−1).

Then, by Lemma 2.1, we have

Case 1. n ≤ bh
2
c

9



Subcase 1.1. If h is even, then n ≤ j + k + 1, and we have

Mo(PL(j, k, n))−Mo(CL(1, j + k + n− 1))

= 6{−3j2 − 3k2 − 3n2 + 2kj + 6jn+ 10kn− 4k − 8j − 1}

= 6{3j(k − j) + 3k(n− k) + 3(n+ 1)(j + k + 1− n) + k(n− j) + 3(k + j)(n− 4) + 5k

+ j − 4}

= 6{3j(k − j) + 3k(n− k) + 3(n+ 1)(j + k + 1− n) + k(n− j) + 3(k + j)(n− 3) + 2k

− 2j − 4} > 0.

whenever n ≥ 4, or (j, k, n) ∈ {(1, 1, 3), (2, 2, 3), (1, 3, 3), (3, 3, 3)}, or (j, k, n) = (1, 2, 2),

whereas Mo(PL(1, 1, 1))−Mo(CL(1, 2)) = −24 < 0.

Subcase 1.2. If h is odd, then n ≤ j + k, and we have

Mo(PL(j, k, n))−Mo(CL(1, j + k + n− 1))

= 6{−3j2 − 3k2 − 3n2 + 2kj + 6jn+ 10kn− 4k − 8j}

= 6{3j(k − j) + 3k(n− k) + 3(n+ 1)(j + k − n) + k(n− j) + 3(k + j)(n− 4) + 3n

+ 5k + j}

= 6{3j(k − j) + 3k(n− k) + 3(n+ 1)(j + k − n) + k(n− j) + 3(k + j)(n− 3)

+ 2(k − j) + 3n} > 0.

whenever n ≥ 3, or (j, k, n) ∈ {(2, 2, 2), (1, 1, 2)}.

Case 2. n ≥ bh
2
c+ 1

Mo(PL(j, k, n))−Mo(CL(1, j + k + n− 1)) = 6{4(j + n)(k − 1) + 4kj} > 0.

The proof is completed �

By Lemma 3.3, Theorem 3.5, Lemma 4.2 and Lemma 4.3, we obtain the second min-

imum Mostar index of tree-like phenylenes Ph.

Theorem 4.4 Let G ∈Ph (h ≥ 4), and G � Lh, then

(1) If h ≥ 5, Mo(G) ≥Mo(CL(1, h−2)) = Mo(CL(1, h−4, 1)) = 72bh
2
cdh

2
e−24bh

2
c+

24(h− 1) with equality iff G ∼= CL(1, h− 2) or G ∼= CL(1, h− 4, 1).

(2) If h = 4, Mo(G) ≥Mo(PL(1, 1, 1)) = 288, with equality iff G ∼= PL(1, 1, 1).

5 The third minimal tree-like phenylenes

Bearing in mind CL(t1, t2, t3, · · · , tk, tk+1) is the phenylene chian with h hexagons and

exactly k+ 1 segments S1, S2, . . . , Sk+1 of lengths t1 + 1, t1 + 2, t3 + 2, . . . , tk + 2, tk+1 + 1,

10



respectively, where S1 and Sk+1 are the terminal segments, all Si (2 ≤ i ≤ k) are zagzig

segments, 1 ≤ t1 ≤ tk+1, and
k+1∑
i=1

ti+k = h. In the following, we give the following Lemma

5.1 and Lemma 5.2, which are important for our proofs of main theorem 5.3. At first, we

give the third minimum Mostar index among phenylene chains.

Figure 4: Seven phenylene chains of Lemma 5.1.

Let CL(j, k, n) ∈ Ch,2 with second segment is a zigzag segment. By Lemma 3.1, Lemma

4.1, we also have

Lemma 5.1 [5] If G ∈ Ch and G 6∼= {Lh, CL(1, h − 2), CL(1, h − 4, 1)}, then Mo(G) ≥

72bh
2
cdh

2
e−24bh

2
c+ 48(h−2) with equality iff G ∈ {CL(2, h−3), CL(1, 0, h−3), CL(1, h−

5, 2), CL(2, h− 6, 2), CL(1, 0, h− 5, 1), CL(1, 0, h− 6, 2), CL(1, 0, h− 6, 0, 1)}, see Figure 4.

Lemma 5.2 Given a phenylene G = PL(j, k, n) ∈ Ph,1 with three branches Lj, Lk, Ln

(1 ≤ j ≤ k ≤ n) and h (h = j + k + n+ 1) hexagons. Then

(1) If G /∈ {PL(1, 1, h− 3), PL(1, 2, 2), PL(2, 2, 2)}, then Mo(G) > Mo(CL(2, h− 3)).

(2) If G ∈ {PL(1, 1, h− 3), PL(2, 2, 2)}, then Mo(G) < Mo(CL(2, h− 3)).

(3) If G ∼= PL(1, 2, 2), then Mo(G) = Mo(CL(2, 3)).

Proof. Note that Mo(CL(2, j+k+n−2) = Mo(CL(2, h−3) = 72bh
2
cdh

2
e−24bh

2
c+48(h−2).

Then by Lemma 2.1, we have

Case 1. n ≤ bh
2
c

11



Subcase 1.1. If h is even, then n ≤ j + k + 1, and we have

Mo(PL(j, k, n))−Mo(CL(2, j + k + n− 2))

= 6{−3j2 − 3k2 − 3n2 + 2kj + 6jn+ 10kn− 8k − 12j − 4n+ 7}

= 6{3j(k − j) + 3k(n− k) + (3n+ 7)(j + k + 1− n) + k(n− j) + 3(k + j)(n− 6)

+ 3k − j}

= 6{3j(k − j) + 3k(n− k) + (3n+ 7)(j + k + 1− n) + k(n− j) + 3(k + j)(n− 5)− 4j}

= 6{3j(k − j) + 3k(n− k) + (3n+ 7)(j + k + 1− n) + k(n− j) + 3(k + j)(n− 4)− 7j

− 3k} > 0.

whenever n ≥ 6, or (j, k, n) ∈ {(5, 5, 5), (3, 5, 5), (1, 5, 5), (4, 4, 5), (2, 4, 5), (3, 3, 5), (1, 3, 5),

(2, 2, 5)}, or (j, k, n) ∈ {(3, 4, 4), (1, 4, 4), (2, 3, 4), (1, 2, 4)} , or (j, k, n) ∈ {(3, 3, 3), (1, 3, 3),

(2, 2, 3)}, whereas Mo(PL(1, 2, 2))−Mo(CL(2, 3)) = 0, Mo(PL(1, 1, 3))−Mo(CL(2, 3)) =

−24 < 0, Mo(PL(1, 1, 1))−Mo(CL(1, 2)) = −48 < 0.

Subcase 1.2. If h is odd, then n ≤ j + k, and we have

Mo(PL(j, k, n))−Mo(CL(2, j + k + n− 2))

= 6{−3j2 − 3k2 − 3n2 + 2kj + 6jn+ 10kn− 8k − 12j − 4n+ 8}

= 6{3j(k − j) + 3k(n− k) + (3n+ 4)(j + k − n) + k(n− j) + 3(k + j)(n− 5) + 3k − j

+ 8}

= 6{3j(k − j) + 3k(n− k) + (3n+ 4)(j + k − n) + k(n− j) + 3(k + j)(n− 4)− 4j + 8}

= 6{3j(k − j) + 3k(n− k) + (3n+ 4)(j + k − n) + k(n− j) + 3(k + j)(n− 3)− 7j − 3k

+ 8} > 0.

whenever n ≥ 5, or (j, k, n) ∈ {(4, 4, 4), (2, 4, 4), (3, 3, 4), (1, 3, 4), (2, 2, 4)}, or (j, k, n) ∈

{(2, 3, 3), (1, 2, 3)}, whereas Mo(PL(2, 2, 2))−Mo(CL(2, 4)) = −24 < 0, Mo(PL(1, 1, 2))−

Mo(CL(2, 2)) = −24 < 0.

Case 2. n ≥ bh
2
c+ 1

Mo(PL(j, k, n))−Mo(CL(2, j + k + n− 2)) = 6{4(j + n)(k − 2) + 4k(j − 1) + 8} > 0,

whenever k ≥ 2, whereas (j, k, n) = (1, 1, n) (n ≥ 4) withMo(PL(1, 1, n))−Mo(CL(2, n)) =

24(1− n) < 0.

Thus, we have (1) If G /∈ {PL(1, 1, h − 3), PL(1, 2, 2), PL(2, 2, 2)}, then Mo(G) >

Mo(CL(2, h−3)); (2) If G ∈ {PL(1, 1, h−3), PL(2, 2, 2)}, then Mo(G) < Mo(CL(2, h−3));

(3) If G ∼= PL(1, 2, 2), then Mo(G) = Mo(CL(2, 3)).

12



The proof is completed �

Comparing the Mostar indices of PL(1, 2, 2) with PL(1, 1, 3), PL(2, 2, 2) with PL(1, 1, 4).

By Lemma 2.1, we have Mo(PL(1, 1, 3))−Mo(PL(1, 2, 2)) = 24(30− 32) = −48 < 0, and

Mo(PL(1, 1, 4))−Mo(PL(2, 2, 2)) = 24(40−42) = −48 < 0. By Lemma 3.3, Theorem 3.5,

Theorem 4.4, Lemma 5.1 and Lemma 5.2, we obtain the third minimum Mostar index of

tree-like phenylenes .

Theorem 5.3 Let G ∈Ph, and G � {Lh, CL(1, h− 2), CL(1, h− 4, 1)}. Then Mo(G) ≥

Mo(PL(1, 1, h− 3)), with equality iff G ∼= PL(1, 1, h− 3).

6 More about (edge) Mostar indices

In this section, we investegate the correlation between boiling points (BP) of benzenoid

hydrocarbons and edge Mostar indices. The 21 benzenoid hydrocarbons were shown

in Figure 5. The experimental values of boiling points of benzenoid hydrocarbons of

Table 1 were taken from [24]. The experimental values of Mostar indices of 21 benzenoid

hydrocarbons of Table 1 were taken from [8]. With the data of Figure 1, scatter plots

between BP and edge Mostar indices were shown in Figures 6. We obtain that the

correlation coefficient (R) between boiling points and edge Mostar indices is about 0.9647,

and

BP = 0.9092×Moe(G) + 252.6.

From [8], we know that the correction coefficient (R) between boiling ponits of ben-

zenoid hydrocarbons and Wiener index is 0.9642, Mostar index is 0.9573, the first status

connectivity index is 0.9677, the second status connectivity index is 0.9165, the first ec-

centric connectivity index is 0.9315, the second eccentric connectivity index is 0.8263.

We compare the correction coefficient of edge Mostar index with other distance-based in-

dices, we find the edge Mostar index is also a good predictor. The boiling points and edge

Mostar indices are highly correlated since the correction coefficient (R) between boiling

ponits of benzenoid hydrocarbons and edge Mostar index is 0.9647. It is worth noting

that the regression model for the boilding point and edge Mostar index only applies to

benzenoid hydrocarbons. We do not know whether it applies to phenylenes, which needs

further study.
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Figure 5: 21 benzenoid hydrocarbons.

Table 1: Experimental values of BP and Moe(G), Mo(G) of 21 benzenoid hydrocarbons
No. BP (oC) Mo(G) Moe(G) No. BP (oC) Mo(G) Moe(G)
1 218 32 40 12 542 224 300
2 338 88 110 13 535 248 310
3 340 64 80 14 536 232 290
4 431 160 200 15 531 264 330
5 425 160 200 16 519 256 320
6 429 144 180 17 590 252 342
7 440 128 160 18 592 302 390
8 496 198 258 19 596 300 388
9 493 184 240 20 594 300 388
10 497 172 222 21 595 322 412
11 547 236 316

Figure 6: Scatter plot between BP of benzenoid hydrocarbons and Moe(G).
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7 Concluding Remarks

Among the research of quantum chemistry, computational chemistry and mathemati-

cal chemistry, the research of chemical indices is currently one of the more popular areas,

as these chemical indices have proven to have a wide range of applications in QSAR, QSPR

relationships for new drug discovery, molecular design, hazard estimation of compounds,

numerical coding of chemical structures, database search, prediction of bioactivity, pre-

diction of physicochemical properties of molecular materials. In this study, we determine

the first three minimum values of the Mostar index of tree-like phenylenes with a fixed

number of hexagons and characterize all the tree-like phenylenes attaining these values.

Quite unexpectedly, the minimum and second minimum tree-like phenylenes are all in the

phenylene chains, but the third minimum tree-like phenylenes are not in the phenylene

chains. The results could be of some interest to researchers working in chemical applica-

tions of graph theory.

References

[1] M. Arockiaraj, J. Clement, N. Tratnik. Mostar indices of carbon nanostructures

and circumscribed donut benzenoid systems, Int. J. Quantum. Chem. 119 (2019)

#e26043.

[2] M. Arockiaraj, J. Clement, N. Tratnik, S. Mushtaq, K. Balasubramanian. Weighted

Mostar indices as measures of molecular peripheral shapes with applications to

graphene, graphyne and graphdiyne nanoribbons, SAR QSAR Environ. Res. 31

(2020) 187–208.

[3] K. Balasubramanian, Topological peripheral shapes and distance-based characteriza-

tion of fullerenes C20-C720 : existence of isoperipheral fullerenes, Polycyclic Aromat.

Compd. doi: 10.1080/10406638.2020.1802303.

[4] F. R. K. Chung, Spectral Graph theory, American Mathematical Society, Providence,

RI, USA, 1997.

[5] H. Chen, H. Liu, Q. Xiao, J. Zhang, Extremal phenylene chains with respect to the

Mostar index, Discrete Math., Algor. Applicat. doi:10.1142/S1793830921500750.

15



[6] H. Deng, S. Chen, J. Zhang, The PI index of phenylenes, J. Math. Chem. 41 (2007)

63–69.

[7] K. Deng, S. Li, Extremal catacondensed benzenoids with respect to the Mostar index,

J. Math. Chem. 58 (2020) 1437–1465.

[8] K. Deng, S. Li, On the extremal values for the Mostar index of trees with given

degree sequence, Appl. Math. Comput. 390 (2021) #125598.
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