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Stochastic absolute value equations
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Abstract

We propose a new kind of stochastic absolute value equations involving abso-

lute values of variables. By utilizing an equivalence relation to stochastic bilinear

program, we investigate the expected value formulation for the proposed stochas-

tic absolute value equations. We also consider the expected residual minimization

formulation for the proposed stochastic absolute value equations. Under mild

assumptions, we give the existence conditions for the solution of the stochastic

absolute value equations. The solution of the stochastic absolute value equations

can be gotten by solving the discrete minimization problem. And we also propose

a smoothing gradient method to solve the discrete minimization problem. Finally,

the numerical results and some discussions are given.
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1. Introduction

Let (Ω,F , ρ) be a probability space, where Ω ⊆ Rn and ρ is a standard probability

measure, we propose a new kind of stochastic absolute value equations, which is to find

a vector x ∈ Rn such that

A(ω)x− |x| = b(ω), (1.1)

where A(ω) ∈ Rn×n and b(ω) ∈ Rn for ω ∈ Ω are random quantities on a probability

space (Ω,F , ρ), |x| is the componentwise absolute value of vector x ∈ Rn. We call

(1.1) the stochastic absolute value equations (SAVE). When A(ω) is a deterministic

matrix and b(ω) is a deterministic vector, then SAVE (1.1) reduces to the absolute

value equation (AVE) which is equivalent to the general linear complementarity problem

[1, 2, 3, 4]. The AVE was widely used in solving linear programs, bimatrix games and

fundamental problems of mathematical programming, one can see [2, 3, 4, 5]. In the past

few decades, the stochastic variational inequality problems [6, 7], the stochastic linear

complementarity problems [8, 9, 10, 11, 12], the stochastic nonlinear complementarity

problems [13, 14] and the stochastic tensor complementarity problems [15, 16, 17] were

also widely studied in solving many optimization problems with uncertainty. However,

no attention has been paid to SAVE (1.1) which contains the characteristics of AVE and

stochastic optimization problems.

As the AVE is an NP hard problem [2], it is also a hard work to solve SAVE (1.1).

Generally, for the stochastic optimization problems, there are two general approaches

to get the solution of the problems [8, 9, 10]. The first approach applies the expected

value (EV) method which formulates the problem as a deterministic problem by taking

the expect of the stochastic quantity, and the second approach is the expected residual

minimization (ERM) method, which is a natural extension of the least-squares method

of minimizing the residual. In this paper, the equivalent relation between SAVE (1.1)

and stochastic bilinear program is given. By using the EV formulation, we propose an

expected value formulation for SAVE (1.1). We also study the ERM formulation for

SAVE (1.1). We generate samples by the quasi-Monte Carlo methods and prove that

every accumulation point of the discrete approximation problem is the solution of the

expected residual minimization problem for SAVE (1.1).

The remainder of this paper is organized as follows. In Section 2, we show that SAVE

(1.1) is equivalent to a stochastic bilinear program, which is a stochastic optimization

problem with the formula as a stochastic generalized linear complementarity problem.
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Combined with an example, we give a discussion about the EV formulation. In Sec-

tion 3, we first establish the boundedness of the solution set of the expected residual

minimization problem, and then show that each accumulation point of the sequence

generated by the ERM formulation is a solution of the expected residual minimization

problem. In Section 4, we propose a smoothing gradient method for solving SAVE (1.1).

Some numerical experiments are also given to verify the theoretical results of the ERM

formulation. Finally, we complete our paper with some conclusions in Section 5.

2. Expected value formulation

We start by showing that SAVE (1.1) is equivalent to a stochastic bilinear program. By

the equivalence of the stochastic bilinear program and the stochastic generalized linear

complementarity problem, SAVE (1.1) can be reformulated as a stochastic generalized

linear complementarity problem. Then the expected value formulation will be used to

solve SAVE (1.1).

Theorem 2.1 SAVE (1.1) is equivalent to the stochastic bilinear program, i.e.,

0 = min
x∈Rn

{((A(ω)+I)x−b(ω))T ((A(ω)−I)x−b(ω)) | (A(ω)+I)x−b(ω) ≥ 0, (A(ω)−I)x−b(ω) ≥ 0}.

Proof. By SAVE (1.1), from |x| ≤ A(ω)x− b(ω), we have

(A(ω) + I)x− b(ω) ≥ 0, (A(ω)− I)x− b(ω) ≥ 0,

i.e., the above formulations are the equivalence of the constraints for the stochastic

bilinear program. So we have

|x| = A(ω)x− b(ω)

m

((A(ω)+I)x−b(ω))T ((A(ω)−I)x−b(ω)) = 0, (A(ω)+I)x−b(ω) ≥ 0, (A(ω)−I)x−b(ω) ≥ 0

We complete the proof.

Theorem 2.2 SAVE (1.1) is equivalent to the stochastic generalized linear complemen-

tarity problem, i.e.,

(A(ω) + I)x− b(ω) ≥ 0, (A(ω)− I)x− b(ω) ≥ 0,

((A(ω) + I)x− b(ω))T ((A(ω)− I)x− b(ω)) = 0.
(2.1)
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Proof. By the equivalence of the stochastic bilinear program and the stochastic

generalized linear complementarity problem, we get this theorem.

In the following of this paper, E[·] stands for the expectation of every elements of

matrix and vector. Ā denotes the expectation of A(ω) and b̄ denotes the expectation of

b(ω), i.e.,

Ā = E[A(ω)], b̄ = E[b(ω)].

Then, we get the expected value formulation of the stochastic generalized linear comple-

mentarity problem as

((Ā+ I)x− b̄)T ((Ā− I)x− b̄) = 0,

(Ā+ I)x− b̄ ≥ 0, (Ā− I)x− b̄ ≥ 0.
(2.2)

In general, the solution set of (2.1) is not equivalent to the solution set of (2.2) for all

ω ∈ Ω. So, in this section, we consider a kind of discrete probability space, which has

only finitely many elements, i.e., Ω = {ω1, ω2, · · · , ωm}. Now, (2.1) is equivalent to




G(x) ≥ 0, H(x) ≥ 0, G(x)TH(x) = 0,

(A(ωi) + I)x− b(ωi) ≥ 0,

(A(ωi)− I)x− b(ωi) ≥ 0,

(2.3)

where G(x) = (Ā+ I)x− b̄, H(x) = (Ā− I)x− b̄, i = 1, 2, · · · , m.

In the following of this section, we reformulate (2.3) as a nonlinear equations with

nonnegative constraints, i.e., the expected value formulation of SAVE (1.1). (2.2) is a

generalized linear complementarity problem, and it can be reformulated as a semismooth

equations by Fischer-Burmeister (FB) function. FB function is an NCP function [1],

which is defined as

φFB(a, b) =
√
a2 + b2 − a− b,

where a, b ∈ R. Then x is a solution of (2.3) if and only if

H̃(x, y) = 0, y ≥ 0, (2.4)

where

H̃(x, y) =




Φ(x)

(A(ω1) + I)x− b(ω1)− y1

(A(ω1)− I)x− b(ω1)− y2
...

(A(ωm) + I)x− b(ωm)− y2m−1

(A(ωm)− I)x− b(ωm)− y2m



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and

Φ(x) =



φFB((Ā + I)x− b̄)1, ((Ā− I)x− b̄)1

...

φFB((Ā+ I)x− b̄)n, ((Ā− I)x− b̄)n


 ,

with

y = (yT1 , y
T
2 , · · · , yT2m)T , yi ∈ Rn, i = 1, 2, · · · , 2m.

Now, we give a simple example to illustrate the transformation process.

Example 2.1 Consider SAVE (1.1), where

A(ω) =




10 + ω 1 2 0

1 11 + ω 3 1

0 2 12 + ω 1

1 7 0 13 + ω


, b(ω) =




12 + ω

15 + ω

14 + ω

20 + ω


,

Ω = {ω1, ω2} = {0, 2}, Pi = P(ωi ∈ Ω) = 1
2
.

We know that (1, 1, 1, 1)T is the solution of this example. Now, we use the EV formulation

to solve the above example. Firstly, we get

A =




11 1 2 0

1 12 3 1

0 2 13 1

1 7 0 14


, b =




13

16

15

21


.

Then by (2.4), we know that Example 2.1 can be transformed into the following con-

strained equations
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H̃(x, y) =




φFB(12x1 + x2 + 2x3 − 13, 10x1 + x2 + 2x3 − 13)

φFB(x1 + 13x2 + 3x3 + x4 − 16, x1 + 11x2 + 3x3 + x4 − 16)

φFB(2x2 + 14x3 + x4 − 15, 2x2 + 12x3 + x4 − 15)

φFB(x1 + 7x2 + 15x4 − 21, x1 + 7x2 + 13x4 − 21)

11x1 + x2 + 2x3 − 12− y1

x1 + 12x2 + 3x3 + x4 − 15− y2

2x2 + 13x3 + x4 − 14− y3

x1 + 7x2 + 14x4 − 20− y4

9x1 + x2 + 2x3 − 12− y5

x1 + 10x2 + 3x3 + x4 − 15− y6

2x2 + 11x3 + x4 − 14− y7

x1 + 7x2 + 12x4 − 20− y8

13x1 + x2 + 2x3 − 14− y9

x1 + 13x2 + 3x3 + x4 − 17− y10

2x2 + 15x3 + x4 − 16− y11

x1 + 7x2 + 16x4 − 22− y12

11x1 + x2 + 2x3 − 14− y13

x1 + 12x2 + 3x3 + x4 − 17− y14

2x2 + 13x3 + x4 − 16− y15

x1 + 7x2 + 14x4 − 22− y16




,

where yi ≥ 0, i = 1, 2, · · · , 16. The optimization solution of the above constrained equa-

tions is equivalence to the optimization solution of the following constrained optimization

problem

min
1

2
‖H̃(x, y)‖2

s.t. y ≥ 0.

We use fmincon function in Matlab Optimization Toolbox to solve the transformed con-

strained optimization problem. The numerical results are given in the following table,

where x0 denotes the initial point, x∗ denotes the optimum solution.

Table 2.1 Numerical results for Example 2.1
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x0 x∗ 1
2
‖ H̃ ‖2

(2.5127,-2.4490,0.0596,1.9908)T (1.000000,1.000000,1.000000,1.000000)T 2.5580×10−12

(-1.4834,3.3083,0.8526,0.4972)T (1.000002,1.000001,1.000002,1.000001)T 2.8157×10−9

(-3.3782,2.9428,-1.8878,0.2853)T (1.000000,1.000000,1.000000,1.000000)T 1.0359×10−10

(-3.9335,4.6190,-4.9537,2.7491)T (1.000000,1.000000,1.000000,1.000000)T 1.0346×10−10

(3.5303,1.2206,-1.4905,0.1325)T (1.000000,1.000000,1.000000,1.000000)T 1.0320×10−10

Remark From the numerical results of the above example, we know that the SAVE

(1.1) with finite discrete distribution can be solved by constrained optimization methods.

But the EV transformation is a more complicated form with nonsmooth complementarity

function and only solve SAVE (1.1) with finite discrete distribution. So, in the following

section, we consider the expected residual minimization formulation, which can avoid

transforming the SAVE into a complicated constrained optimization problem. And the

expected residual minimization formulation can also be used to solve SAVE (1.1) with

any distribution involving the finite discrete distribution.

3. Expected residual minimization formulation

To apply the expected residual minimization formulation to solve SAVE (1.1), we first

formulate the problem as the following optimization problem

min
x∈Rn

F (x), (3.1)

where F (x) = E[‖A(ω)x − |x| − b(ω)‖2] =
∫
Ω
‖A(ω)x − |x| − b(ω)‖2ρ(ω) dω. Discrete

the involved problem by the quasi-Monte Carlo method, then the solution of the original

problem can be approximated obtained by solving the discrete minimization problem.

To proceed, we give the following assumption.

Assumption 3.1 Let ρ : Ω → R+ be a continuous probability density function on prob-

ability space (Ω,F , P ). Suppose that

∫

Ω

(‖A(ω)‖+ 1)2ρ(ω) dω <∞,

∫

Ω

‖b(ω)‖2ρ(ω) dω <∞,

where A(ω) ∈ Rn×n, b(ω) ∈ Rn, ω ∈ Ω.
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For γ > 0, we denote the level set of function F by Ξ(γ), i.e.,

Ξ(γ) = {x | F (x) ≤ γ}.

Lemma 3.1 Suppose that there exists an ω̄ ∈ Ω, such that ρ(ω̄) > 0 and A(ω) 6=
diag(sign(x)). Then the level set Ξ(γ) is bounded.

Proof. By ρ is continuous, there exists ρ0 > 0 such that

ρ(ω) ≥ ρ0, for all ω ∈ B = D(ω̄, δ) ∩ Ω,

where D(ω̄, δ) is a closed sphere with center ω̄ and radius δ. We now consider a sequence

{xk} ∈ Rn. By the continuity of φ, then there exists ωk ∈ B, such that

‖φ(xk, ωk)‖ = min
ω∈B

‖φ(xk, ω)‖,

where φ(xk, ω) = A(ω)xk − |xk| − b(ω).

Denote λ =
∫
B
dω > 0. Then

F (xk) ≥
∫
B
‖φ(xk, ω)‖2ρ(ω) dω

≥ ‖φ(xk, ωk)‖2ρ̄
∫
B
dω

= λρ̄‖φ(xk, ωk)‖2.

Now, we only need to prove ‖φ(xk, ωk)‖ → +∞ as ‖xk‖ → +∞. Suppose ‖xk‖ → +∞
holds, we know that xik → +∞ or xik → −∞ for some i. So, we get

((A(ωk)−diag(sign(xk)))xk−b(ωk))i → +∞ or ((A(ωk)−diag(sign(xk)))xk−b(ωk))i → −∞

for some i, i.e., we get ‖φ(xk, ωk)‖ → +∞ holds for ‖xk‖ → +∞. Hence, the proof is

completed. �

In the following of this section, the quasi-Monte Carlo method for numerical inte-

gration is used as in [8, 18]. The transformation function ω = u(ν) is used to go from

an integral on Ω to the integral on the unit hypercube [0, 1]m. And the observations

{νi}, i = 1, · · · , N̄ are generated in this unit hypercube.

Then, we get

F (x) =
∫
Ω
‖φ(x, ω)‖2ρ(ω) dω

=
∫
Ω̄
‖φ(x, u(ν))‖2ρ(u(ν))u′(ν) dν

=
∫
Ω̄
‖φ(x, u(ν))‖2ρ̄(ν) dν,
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where ρ̄(ν) = ρ(u(ν))u′(ν), Ω̄ = [0, 1]m.

For each k, we denote

Fk(x) =
1

N̄k

∑

νi∈Ω̄k

‖φ(x, νi)‖2ρ(νi),

where φ(x, νi) = A(νi)x − |x| − b(νi), Ω̄k := {νi, i = 1, · · · , N̄k} is a set of observations

generated by a quasi-Monte Carlo method such that Ω̄k ⊆ Ω, N̄k → ∞ as k → ∞. In

the remainder of this section, to simplify the natation, we suppose Ω = [0, 1]m and let ω

denote ν.

Now, we consider

min
x∈Rn

Fk(x). (3.2)

Obviously, (3.2) is the approximation problem to (3.1).

Lemma 3.2 For any fixed x ∈ Rn, we get

lim
k→∞

Fk(x) = F (x).

Proof. From the definition of φ, we get

‖φ(x, ω)‖ = ‖A(ω)x− |x| − b(ω)‖
≤ ‖A(ω)x‖+ ‖x‖ + ‖b(ω)‖
≤ (‖A(ω)‖+ 1)‖x‖+ ‖b(ω)‖,

i.e.,

0 ≤ ‖φ(x, ω)‖2 ≤ 2[((‖A(ω)‖+ 1)‖x‖)2 + ‖b(ω)‖2].

By Assumption 3.1, we know that (‖A(ω)‖+1)2ρ(ω) is a nonnegative continuous function

and it is also bounded. Therefore, we get ‖φ(x, ·)‖2ρ(·) is integrable and 0 ≤ F (x) <∞.

By ‖φ(x, ·)‖2ρ(·) is continuous, we have

lim
k→∞

Fk(x) = F (x),

for x ∈ Rn. This completes the proof. �

Denote ϑ as the optimal solution set of (3.1), and ϑk as the optimal solution set of

(3.2). Now, we give the following theorem to show the relation of the expected residual

minimization problem (3.1) and the approximate expected residual minimization problem

(3.2).

9



Theorem 3.1 If ρ(ω̄) > 0 holds for ω̄ ∈ Ω, then ϑk is nonempty and bounded when k

is large enough. And every accumulation point of {xk} ⊆ ϑk is contained in the set ϑ.

Proof. We assume that xk → x̄, k → ∞. Let F (x) < γ, by the continuity of F , we

know that F (xk) ≤ γ for all large k, i.e., xk ∈ D̄(γ) for all large k. Now, we show that

|Fk(xk)− Fk(x)| → 0, when k → ∞.

For all x, y ∈ Rn, we get

‖φ(x, ω)− φ(y, ω)‖ = ‖A(ω)x− |x| − b(ω)− A(ω)y + |y|+ b(ω)‖
= ‖A(ω)x− A(ω)y + |y| − |x|‖
≤ ‖A(ω)‖‖x− y‖+ ‖x− y‖
= (‖A(ω)‖+ 1)‖x− y‖.

Denote L(ω) = ‖A(ω)‖+ 1, we also get

‖φ(x, ω)‖ ≤ (‖A(ω)‖+ 1)‖x‖+ ‖b(ω)‖
= (‖A(ω)‖+ 1)‖x‖+ ‖b(ω)‖.

By Lemma 3.1, D̄(γ) is closed and bounded, we have

|‖φ(x, ω)‖2 − ‖φ(y, ω)‖2| = |(‖φ(x, ω)‖+ ‖φ(y, ω)‖)(‖φ(x, ω)‖ − ‖φ(y, ω)‖)|
≤ ((‖A(ω)‖+ 1)‖x‖+ (‖A(ω)‖+ 1)‖y‖+ 2‖b(ω)‖)

(‖A(ω)‖+ 1)‖x− y‖
= (L(ω)‖x‖+ L(ω)‖y‖+ 2‖b(ω)‖)L(ω)‖x− y‖
≤ (2L(ω)C1 + 2‖b(ω)‖)L(ω)‖x− y‖,

where C1 = max{‖x‖|x ∈ D̄(γ)}, x, y ∈ D̄(γ). By

(2L(ω)C1 + 2‖b(ω)‖)L(ω) ≤ (L(ω)C1 + ‖b(ω)‖)2 + [L(ω)]2

= [L(ω)C1]
2 + ‖b(ω)‖2 + [L(ω)]2 + 2C1L(ω)‖b(ω)‖

≤ [L(ω)C1]
2 + ‖b(ω)‖2 + [L(ω)]2 + [C1L(ω)]

2 + ‖b(ω)‖2
= (2C2

1 + 1)[L(ω)]2 + 2‖b(ω)‖2,

we obtain

|Fk(xk)− Fk(x)| ≤ 1
N̄k

N̄k∑
i=1

|‖φ(xk, ωi)‖2 − ‖φ(x, ωi)‖2|ρ(ωi)

≤ 1
N̄k

N̄k∑
i=1

((2C2
1 + 1)[L(ωi)]

2 + 2‖b(ωi)‖2)ρ(ωi)‖xk − x‖

≤ ̥‖xk − x‖,
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where ̥ is a constant and for all large k satisfying

̥ ≥ 1

N̄k

N̄k∑

i=1

(((2C2
1 + 1)[L(ωi)]

2 + 2‖b(ωi)‖2)ρ(ωi)).

So, for k → ∞, we get

|Fk(xk)− Fk(x)| → 0.

From the above results and Lemma 3.2, we obtain

|Fk(xk)− F (x)| ≤ |Fk(xk)− Fk(x)|+ |Fk(x)− F (x)| → 0,

when k → ∞. By xk ∈ ϑk, we get

Fk(xk) ≤ Fk(x), for x ∈ Rn.

Therefore, we have

F (x) = lim
k→∞

Fk(xk) ≤ lim
k→∞

Fk(x) = F (x), x ∈ Rn.

We complete the proof. �

Now, we give two special kinds of SAVE (1.1), which can be solved without using

discrete approximation.

Case I. Let Ω = [α̃1, β̃1] × · · · × [α̃N , β̃N ] with α̃j < β̃j , j = 1, · · · , N , and ω̃j, j =

1, · · · , N are independent. When ρ satisfies Assumption 3.1 and ρj denotes the density

function for ω̃j, j = 1, · · · , N . We know that

F (x) =

n∑

i=1

Fi(x),

where

Fi(x) =
∫ β̃1

α̃1

· · ·
∫ β̃N

α̃N
[(A(ω̃)x− |x| − b(ω̃))i]

2ρ1(ω̃1) · · ·ρN(ω̃N) dω̃1 · · · dω̃N .

Case II. Let A(ω) ≡ A and b(ω) ≡ b̃+ Tω, where A ∈ Rn×n, b̃ ∈ Rn and T ∈ Rn×m

are given constants. For each i, the ith row of the matrix T has just one positive element

ti, and the density function ρ is defined by

ρ(ω) =

{
1, ω ∈ [0, 1]m

0, otherwise.
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In this case, we get F (x) =
n∑

i=1

Fi(x), where

Fi(x) =
∫ 1

0
· · ·
∫ 1

0
[(Ax− |x| − b(ω))i]

2ρ1(ω1)ρ2(ω2) · · ·ρm(ωm) dω1 dω2 · · · dωm

=
∫ 1

0
· · ·
∫ 1

0

∫ 1

0
[(Ax− |x| − b̃− tiωj)i]

2ρj(ωj) dωjρ1(ω1) · · ·ρj−1(ωj−1)

ρj+1(ωj+1) · · ·ρm(ωm) dω1 · · · dωj−1 dωj+1 · · · dωm

= [Ax− |x| − b̃]2i +
1
3
t2i − [Ax− |x| − b̃]iti.

4. A smoothing gradient method

In this section, we use the ERM formulation to transform SAVE (1.1) into an uncon-

strained optimization problem. For SAVE (1.1) contains nonsmooth term |x|, we con-

sider smoothing method to solve it. Smoothing gradient method is an effective smoothing

method to deal with this kind of problems [19, 20, 21], so we use the smoothing gradient

method to solve SAVE (1.1).

Firstly, we generate samples ωi, i = 1, 2, · · · , N , i.e.,

f(x) =
1

N

N∑

i=1

‖A(ωi)x− |x| − b(ωi)‖2ρ(ωi),

and we choose the smoothing function of |xi| as

ψ(xi, µ) =
√
x2i + µ, i = 1, 2, · · · , n,

where µ ≥ 0. Denote ψ(x, µ) = (
√
x21 + µ,

√
x22 + µ, · · · ,

√
x2n + µ)T . Then SAVE (1.1)

can be transformed into the following unconstrained optimization problem

min
x∈Rn

f̃(x, µ) =
1

N

N∑

i=1

‖A(ωi)x− ψ(x, µ)− b(ωi)‖2ρ(ωi). (4.1)

And the gradient of the objective function in (4.1) is

∇xf̃(x, µ) =
2

N

N∑

i=1

J(A(ωi)x− ψ(x, µ)− b(ωi))
T (A(ωi)x− ψ(x, µ)− b(ωi))ρ(ωi),

where J(A(ωi)x− ψ(x, µ)− b(ωi)) is the Jacobian of (A(ωi)x− ψ(x, µ)− b(ωi)).

Next, we give the smoothing gradient method for SAVE (1.1).
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Algorithm 1 Smoothing gradient method

Step 0 Given an initial point x0 ∈ Rn, µ0 ∈ R, σ, δ, ρ, γ̄ ∈ (0, 1), ǫ > 0, set k = 0.

Step 1 If ‖∇xf̃(xk, µk)‖ ≤ ε, stop. Otherwise, go to Step 2.

Step 2 Computing the search direction dk = −∇f̃(xk, µk).

Step 3 Determine αk = max
j

{ρj , j = 0, 1, 2, · · · } satisfying

f̃(xk+1, µk)− f̃(xk, µk) ≤ δαk∇xf̃(xk, µk)
T
dk. (4.2)

Set xk+1 = xk + αkdk.

Step 4 If ‖∇f̃(xk, µk)‖ ≥ γ̄µk, then set µk+1 = µk; Otherwise choose µk+1 = σµk.

Step 5 Let k = k + 1 and return to Step 1.

It is easy to find that f̃(·, µ) ≥ 0 for any constant µ ≥ 0 and ∀x ∈ Rn, ∇xf̃(·, µ) is
uniformly continuous on the level set L(x0, µ) = {x ∈ Rn|f̃(x, µ) ≤ f̃(x0, µ)}. Next, we
give the global convergence of the proposed smoothing gradient method.

Lemma 4.1 Given a constant µ ≥ 0. Let {xk} be the sequence generated by Algorithm

1, then

lim
k→∞

‖∇xf̃(xk, µ)‖ = 0.

Proof. We proof this lemma by contradiction. Set lim
k→∞

xk = x∗. Suppose that

∇xf̃(x
∗, µ) 6= 0. From the continuity of f̃(xk, µ) and ∇xf̃(xk, µ), we have

lim
k→∞

f̃(xk, µ) = f̃(x∗, µ),

lim
k→∞

f̃(xk, µ)− lim
k→∞

f̃(xk+1, µ) = 0.

By (4.2), let αk = ρjk , where jk is the smallest non-negative integer satisfying the

inequality (4.2). Combining with sk = ρjkdk, we have

lim
k→∞

(−δ∇xf̃(xk, µ)
T sk) = 0,

so,

lim
k→∞

∇xf̃(xk, µ)
Tsk = 0.

From lim
k→∞

∇xf̃(xk, µ) 6= 0, and then lim
k→∞

‖sk‖ = 0. Due to jk is the smallest non-negative

integer satisfying the inequality (4.2), set ρjk−1 = ρjk

ρ
, then

f̃(xk + ρjk−1dk, µ)− f̃(xk, µ) > δρjk−1∇xf̃(xk, µ)
Tdk.

13



By ρjk−1dk =
ρjkdk

ρ
= sk

ρ
, we get

f̃(xk +
sk

ρ
, µ)− f̃(xk, µ) > δ∇xf̃(xk, µ)

T sk

ρ
. (4.3)

Let pk =
sk

‖sk‖
, then sk

ρ
= ‖sk‖

ρ
pk, from lim

k→∞
‖sk‖ = 0, we know that

lim
k→∞

αk
′ = lim

k→∞

‖sk‖
ρ

= 0.

(4.3) can be rewritten as

f̃(xk + αk
′pk, µ)− f̃(xk, µ)

αk
′

> δ∇xf̃(xk, µ)
Tpk. (4.4)

Due to ‖pk‖ = 1, the sequence {‖pk‖} is bounded. So there exists a convergence sub-

sequence, let lim
k→∞

‖pk‖ = p∗, and then we get p∗ = 1. Taking the limit of both sides of

(4.4), we have

−∇xf̃(x
∗, µ)Tp∗ ≥ δ∇xf̃(x

∗, µ)Tp∗.

Since δ ∈ (0, 1), we obtain

∇xf̃(x
∗, µ)Tp∗ ≥ 0. (4.5)

In addition, pk =
sk

‖sk‖
= dk

‖dk‖
, thus

−∇xf̃(xk, µ)
Tpk = −∇xf̃(xk, µ)

T (
dk

‖dk‖
)

= ‖∇xf̃(xk, µ)‖cosθk
≥ ‖∇xf̃(xk, µ)‖sinβ, (4.6)

where θk is the angle between dk and −∇xf̃(xk, µ), β ∈ (0, π
2
). Taking the limit of both

sides of the inequation (4.6), we have

−∇xf̃(x
∗, µ)Tp∗ ≥ ‖∇xf̃(x

∗, µ)‖sinβ > 0,

which contradicts with (4.5). So we have lim
k→∞

∇xf̃(xk, µ) = 0. The proof is completed.

Theorem 4.1 Let {µk} and {xk} be the sequence generated by Algorithm 1. Then

lim
k→∞

‖∇xf̃(xk+1, µk)‖ = 0.

14



Proof. Define K = {k|µk+1 = σµk}. Suppose K is a finite set, then there exists an

integer k̂ such that for all k > k̂,

‖∇xf̃(xk, µk−1)‖ ≥ γ̄µk, (4.7)

set µk = µ
k̂
= µ, we get

min
x∈Rn

f̃(x, µ).

From Lemma 4.1, we have

lim
k→∞

‖∇xf̃(xk, µ)‖ = 0,

which contradicts with (4.7). So K is an infinite set, i.e., lim
k→∞

µk = 0. Set K =

{k0, k1, · · · }, for k0 < k1 < · · · , then

lim
k→∞

‖∇xf̃(xki+1, µki)‖ ≤ γ̄ lim
i→∞

µki = 0.

The proof is completed.

In the following of this section, we verify the effectiveness of Algorithm 1 via the

following given examples. The parameters used in Algorithm 1 are chosen as ρ = 0.5,

σ = 0.5, δ = 0.5, µ0 = 0.01, γ̄ = 0.5. We terminate our algorithm if k ≥ 10000

or ‖∇xf̃(xk, µk)‖ < 1.0e − 5 satisfied. We implement all numerical test in MATLAB

R2019b and run the codes on a PC with 1.80GHz CPU.

Example 4.1 Consider SAVE (1.1), where

A(ω) =

(
2 + ω 1

5 1 + ω

)
, b(ω) =

(
4 + ω

5 + 3ω

)
.

We generate samples ωi, i = 1, 2, · · · , N , which obey the uniform distribution of [0, 1].

The numerical results of Example 4.1 are shown in Table 4.1 and Figure 4.1, where N

denotes the number of ωi, x0, x∗ and f(x∗) denote the initial point, the optimum solution

and the optimum value, respectively.
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Table 4.1 Numerical results of Example 4.1

N x0 x∗ f(x∗)

10 (0.9415,1.7138)T (1.0000,3.0000)T 1.2332e-09

50 (1.5088,0.6925)T (1.0000,3.0000)T 1.2342e-09

100 (1.6206,1.1140)T (1.0000,3.0000)T 1.2553e-09

200 (1.6822,0.7090)T (1.0000,3.0000)T 1.2360e-09

500 (1.3098,1.7802)T (1.0000,3.0000)T 1.2104e-09
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Figure 4.1: Numerical results of Example 4.1

Example 4.2 Consider SAVE (1.1), where

A(ω) =




2 + ω 1 0 0

2 1 + ω 0 0

0 0 2 + ω 1

0 2 0 1 + ω


, b(ω) =




2 + ω

2 + ω

2 + ω

2 + ω


.

We generate samples ωi, i = 1, 2, · · · , N , which obey the uniform distribution of [0, 1].

The detailed numerical results are shown in Table 4.2 and Figure 4.2, where N denotes

the number of ωi, x0, x∗ and f(x∗) denote the initial point, the optimum solution and

the optimum value, respectively.
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Table 4.2 Numerical results of Example 4.2

N x0 x∗ f(x∗)

10 (1.3027,1.4874,0.6039,0.1792)T (1.0000,1.0000,1.0000,1.0000)T 5.7084e-09

50 (1.0894,1.9952,1.0220,1.7470)T (1.0000,1.0000,1.0000,1.0000)T 5.7252e-09

100 (0.9878,1.7254,0.4858,1.6685)T (1.0000,1.0000,1.0000,1.0000)T 5.8684e-09

200 (0.2891,0.7410,1.2448,1.9951)T (1.0000,1.0000,1.0000,1.0000)T 5.7938e-09

500 (1.6171,1.9691,1.7718,0.4277)T (1.0000,1.0000,1.0000,1.0000)T 5.7870e-09
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Figure 4.2: Numerical results of Example 4.2

Example 4.3 Consider SAVE (1.1), where

A(ω) =




5 + ω 0 0 0 0 2 1 0 0 3
1
2 2 + ω 0 1

2 1 0 1 0 6 0

0 1
4 7 + ω 3

4 0 2 0 0 1
2

1
2

1 1 2 2 + ω 1
2 0 3

2 2 0 1

0 0 2
5

1
4 6 + ω 2 0 1 7

20 1

2 1
2 4 0 0 1 + ω 1

2 2 1 0

0 5 0 2
3 0 2

3 3 + ω 1
4 1 5

12

2 1 1 1 1 1
2 0 4 + ω 1

2 0
1
7

5
7 0 0 1 0 1

7 0 9 + ω 0

3 0 2 1 5
2 0 1

2
1
4

1
4 1 + ω




,

and
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b(ω) = (10 + ω, 10 + ω, · · · , 10 + ω)T ∈ R10.

We generate samples ωi, i = 1, 2, · · · , N , which obey the uniform distribution of [0, 1].

The initial points are randomly generated. The detailed numerical results are shown in

Table 4.3 and Figure 4.3, where N denotes the number of ωi, x∗ and f(x∗) denote the

optimum solution and the optimum value respectively.

Table 4.3 Numerical results of Example 4.3

N x∗ f(x∗)

10 (1.0858,1.0705,· · · ,1.0122)T 0.0063

50 (1.0882,1.0776,· · · ,1.0097)T 0.0072

100 (1.0893,1.0727,· · · ,0.9988)T 0.0086

200 (1.0890,1.0725,· · · ,0.9998)T 0.0084

500 (1.0892,1.0737,· · · ,1.0001)T 0.0084
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Figure 4.3: Numerical results of Example 4.3

Example 4.4 Consider SAVE (1.1), where

A(ω) =




2 + ω 1

1 2 + ω 1

1 2 + ω 1
. . .

. . .
. . .

1 2 + ω 1

1 2 + ω




n×n

,
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and

b(ω) = (2 + ω, 3 + ω, 3 + ω, · · · , 3 + ω, 2 + ω)T ∈ Rn.

We generate samples ωi, i = 1, 2, · · · , N , which obey the uniform distribution of

[0, 1]. The initial points are randomly generated. The detailed numerical results are

shown in Table 4.4, Table 4.5, Figure 4.4 and Figure 4.5, where n denotes the dimension,

N denotes the number of ωi, x∗ and f(x∗) denote the optimum solution and the optimum

value respectively.

Table 4.4 Numerical results of Example 4.4 (n=100)

N x∗ f(x∗)

10 (1.0000,1.0000,· · · ,1.0000)T100×1 1.4082e-07

50 (1.0000,1.0000,· · · ,1.0000)T100×1 1.4026e-07

100 (1.0000,1.0000,· · · ,1.0000)T100×1 1.3966e-07

200 (1.0000,1.0000,· · · ,1.0000)T100×1 1.4032e-07

500 (1.0000,1.0000,· · · ,1.0000)T100×1 1.4027e-07
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Figure 4.4: Numerical results of Example 4.4 (n=100)
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Table 4.5 Numerical results of Example 4.4 (n=500)

N x∗ f(z∗)

10 (1.0000,1.0000,· · · ,1.0000)T500×1 7.0087e-07

50 (1.0000,1.0000,· · · ,1.0000)T500×1 6.9867e-07

100 (1.0000,1.0000,· · · ,1.0000)T500×1 6.9962e-07

200 (1.0000,1.0000,· · · ,1.0000)T500×1 6.9930e-07

500 (1.0000,1.0000,· · · ,1.0000)T500×1 6.9897e-07
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Figure 4.5: Numerical results of Example 4.4 (n=500)

From the above numerical results, we can see that SAVE (1.1) can be solved by simple

unconstrained optimization method. And the ERM formulation can avoid transforming

SAVE (1.1) into a complicated constrained optimization problem.

5. Conclusions

In this paper, we propose a new kind of absolute value equation problem with random

quantities, which is called stochastic absolute value equations. The properties of the pro-

posed stochastic absolute value equations are studied. The expected value formulation

and expected residual minimization formulation for solving the proposed stochastic ab-

solute value equations are also given. Absolute value equations is widely used in studying

engineering problems, economics and management problems. It is very meaningful to

study this kind of stochastic absolute value equations, which is a more extensive problem
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than the absolute value equations.
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