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Abstract
In this paper, we analyze the dynamics of a new proposed stochastic non-autonomous
SVIR model, with an emphasis on multiple stages of vaccination, due to the vaccine
ineffectiveness. The parameters of the model are allowed to depend on time, to incor-
porate the seasonal variation. Furthermore, the vaccinated population is divided into
three subpopulations, each one representing a different stage. For the proposed model,
we prove the mathematical and biological well-posedness. That is, the existence of a
unique global almost surely positive solution.Moreover, we establish conditions under
which the disease vanishes or persists. Furthermore, based on stochastic stability the-
ory and by constructing a suitable new Lyapunov function, we provide a condition
under which the model admits a non-trivial periodic solution. The established theo-
retical results along with the performed numerical simulations exhibit the effect of
the different stages of vaccination along with the stochastic Gaussian noise on the
dynamics of the studied population.
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1 Introduction

Throughout history, researchers from different disciplines have developed scientific
knowledge that played a major role in the advancement of Epidemiology. In the
mathematical framework, the contribution of mathematicians consists of develop-
ing adequate models, based on a good understanding of the modeled disease, which
allows to describe the evolution of the latter within the studied population, predict the
worst outcome by performing virtual numerical simulations and even propose control
strategies that can help reduce the severity of the situation, especially when it comes
to disease outbreaks. Kermack–McKendrick theory [1] has been a cornerstone to the
mathematical modeling of epidemics. The basic idea is to divide the studied popula-
tion into so called compartments, based on the number of clinical states induced by the
modeled disease. Then, to incorporate the transition of individuals from one clinical
state to another, to each compartment, a set of parameters describing all the possible
transitions are considered. Once the epidemic model is derived, it takes the form of a
dynamical system, which then can be interpreted from two points of view. The first
one is the deterministic point of view, which assumes that the output of the system
is a time-dependent function that is entirely determined by the initial conditions and
the input parameters, while the second is the stochastic point of view, which assumes
that the same initial conditions and input parameters can lead to different outputs due
to the random effect present in the environment. Consequently, the output, in this
case, takes the form of a stochastic process. In the deterministic framework, numerous
pioneering results in term of the dynamical and numerical analysis of epidemic and
ecological models have been established by many authors [2–12], while several other
works were done in the aim of extending the deterministic results to the stochastic case
[13–20]. In further work, non-autonomous stochastic models have gained the atten-
tion of several researchers, due to their ability to incorporate the seasonal variation of
diseases [21–23]. We briefly outline some of the existing literature in this sense for the
stochastic case. For instance, in [24], Qi et al. analyzed an SEIS model and were able
to prove that it admits a non-trivial periodic solution. Additionally, conditions under
which the model admits an ergodic stationary distribution were obtained. The same
results were proved by Shangguan et al. [25] for an SEIR model and by Liu et al. [26]
for an SIR model. In [27], Lin et al. considered an SIR model and were able to derive
a threshold characterizing the persistence and extinction of the disease. Furthermore,
in the case of persistence, they proved the existence of a non-trivial periodic solution.
However, to the best of the authors’ knowledge, the extension of these types of results
to SVIR-type models, incorporating vaccination, has not yet been done.

When it comes to stochastic epidemic models incorporating the ineffectiveness of
vaccination, most of the current research works neglect the dynamics of the vaccinated
population, andmake use of time delays to take into consideration the duration elapsed
before the effectiveness of the vaccine wears off. In this context, we mention for
instance the results presented in [28, 29]. Another limitation of the aforementioned
works is assuming that the immunity canbegained solely after one stageof vaccination.
These assumptions can be considered in order to simplify the formulation of themodel.
However, for some new emerging diseases such as COVID-19 and its variants, not
taking these characteristics into account in the formulation of the model can reduce the
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Dynamical analysis of a stochastic non-autonomous SVIR 2179

amount of information acquired from the numerical simulation. Tohighlight the crucial
role of the multiple stages of vaccination in the acquisition of immunity, we refer the
reader to the recent studies presented in [30, 31]. Hence, the main contributions of our
work is to address the previous limitations by providing a different approach, allowing
to incorporate the multiple stages of vaccination as well as the ineffectiveness of the
first stages. More precisely, we propose a new non-autonomous stochastic model
extending the standard SVIR model [2], on one hand by considering time-varying
parameters, incorporating the seasonal variation, and on the other, by dividing the
vaccinated population V into three sub-populations V1, V2 and V3, such that V1 and
V2 stand for the vaccinated sub-population of individuals in the first and second stages
of vaccination, respectively, and are not supposed to develop immunity against the
disease. Consequently, they become infected. While V3 stands for the vaccinated sub-
population of individualswho complete the third stage of vaccination and are supposed
to develop immunity against the disease, for a large period of time.

The model in question is expressed by the following system of coupled nonlinear
stochastic differential equations.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t) = (�(t) − βS(t)S(t)I (t) − μ(t)S(t) − κ1(t)S(t)) dt − σ1(t)S(t)I (t)dB1(t),
dV1(t) = (−βV1(t)V1(t)I (t) + κ1(t)S(t) − μ(t)V1(t) − κ2(t)V1(t)

)
dt

− σ2(t)V1(t)I (t)dB2(t),
dV2(t) = (−βV2 (t)V2(t)I (t) + κ2(t)V1(t) − μ(t)V2(t) − κ3(t)V2(t)

)
dt

− σ3(t)V2(t)I (t)dB3(t),

dV3(t) = (κ3(t)V2(t) − μ(t)V3(t) − γV3(t)V3(t)
)
dt,

d I (t) = (βS(t)S(t) + βV1(t)V1(t) + βV2 (t)V2(t) − γ (t) − μ(t)
)
I (t)dt

+ σ1(t)S(t)I (t)dB1(t) + σ2(t)V1(t)I (t)dB2(t) + σ3(t)V2(t)I (t)dB3(t),

dR(t) = (γ (t)I (t) − μ(t)R(t) + γV3(t)V3(t)
)
dt,

(1)
equipped with the following initial conditions

S(0) := S0 ≥ 0, V1(0) := V10 ≥ 0, V2(0) := V20 ≥ 0,

V3(0) := V30 ≥ 0, I (0) := I0 ≥ 0 and R(0) := R0 ≥ 0,

where (B1(t))t≥0, (B2(t))t≥0 and (B3(t))t≥0 are mutually independent Brownian
motions defined on a probabilistic space (�,F, {Ft }t≥0,P) with a filtration {Ft }t≥0
which is increasing, right-continuous and such that F0 contains the null sets, while
σ1(t), σ2(t) and σ3(t) denote the time-dependent intensities of the environmental
Gaussian noise present in the disease transmission rates (Fig. 1, 1).

In order to unify the notations, we set

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

u(t)
�= (S(t), V1(t), V2(t), V3(t), I (t), R(t))�,

u0
�= (S0, V10, V20, V30, I0, R0)

�,

dB(t)
�= (dB1(t), dB2(t), dB3(t), dB4(t), dB5(t), dB6(t))

�,

θ(t)
�= (�(t), βS(t), μ(t), κ1(t), κ2(t), κ3(t), βV1 (t), βV2 (t), γ (t), γV3 (t))

�,

f (t, u(t))
�= ( f1(t, u(t)), f2(t, u(t)), f3(t, u(t)), f4(t, u(t)), f5(t, u(t)), f6(t, u(t)))�,
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2180 M. Mehdaoui et al.

Table 1 Signification of the model parameters

Parameter Biological signification

�(t) Natural birth rate at time t

μ(t) Natural death rate at time t

βS(t) Rate in which a susceptible individual at time t becomes infected

βVi (t) Rate in which an individual at time t

and in the i th stage of vaccination (i ∈ {1, 2}) becomes infected

γ (t) Natural recovery rate at time t

γV3 (t) Rate in which an individual at time t and in the third stage

of vaccination possesses immunity

κi (t) Rate in which a susceptible individual at time t

reaches the i th stage of vaccination (i ∈ {1, 2, 3})

Fig. 1 Flow diagram of the
model (1) in the deterministic
case

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(t, u(t)) := �(t) − βS(t)S(t)I (t) − μ(t)S(t) − κ1(t)S(t),

f2(t, u(t)) := −βV1 (t)V1(t)I (t) + κ1(t)S(t) − μ(t)V1(t) − κ2(t)V1(t),

f3(t, u(t)) := −βV2 (t)V2(t)I (t) + κ2(t)V1(t) − μ(t)V2(t) − κ3(t)V2(t),

f4(t, u(t)) := κ3(t)V2(t) − μ(t)V3(t) − γV3 (t)V3(t),

f5(t, u(t)) := βS(t)S(t)I (t) + βV1 (t)V1(t)I (t) + βV2 (t)V2(t)I (t) − γ (t)I (t) − μ(t)I (t),

f6(t, u(t)) := γ (t)I (t) − μ(t)R(t) + γV3 (t)V3(t),

and

g(t, u(t)) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−σ1(t)S(t)I (t) 0 0 0 0 0
0 −σ2(t)V1(t)I (t) 0 0 0 0
0 0 −σ3(t)V2(t)I (t) 0 0 0
0 0 0 0 0 0

σ1(t)S(t)I (t) σ2(t)V1(t)I (t) σ3(t)V2(t)I (t) 0 0 0
0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Dynamical analysis of a stochastic non-autonomous SVIR 2181

Then, the model (1) can be rewritten in the following abstract compact form

{
du(t) = f (t, u(t))dt + g(t, u(t))dB(t),

u(0) = u0 ≥ 0.
(2)

When no confusion occurs, the value of a given function h at time t ∈ (0, T ) will
occasionally be denoted h and we shall omit the explicit notation.

Given a function V ∈ C1,2(R+ ×R
6,R). The differential operator associated with

(2) is defined as follows

LV (t, u) = ∂V (t, u)

∂t
+ ∇uV (t, u). f (t, u) + 1

2
tr
(
g�(t, u)Hessu(V (t, u))g(t, u)

)
,

where∇u :=
(

∂
∂u1

, · · · , ∂
∂u6

)
, tr denotes the trace operator,� stands for the trans-

pose operation, while Hessu is the Hessian matrix with respect to u.
Itô’s formula [32] states that

dV (t, u) = LV (t, u)dt + ∇u f (t, u(t)).g(t, u(t))dB(t).

We now announce some definitions and notations that will be used throughout the
paper.

• For T > 0, denote by C([0, T ]) the Banach space of real-valued continuous
functions defined on [0, T ]. Given f ∈ C([0, T ]), we define

f := sup
t∈[0,T ]

| f (t)| and f := inf
t∈[0,T ]| f (t)|.

• For an integrable function f : (0, T ) → R, we set

〈 f 〉t := 1

t

∫ t

0
f (s)ds ∀t ∈ (0, T ).

• Given a, b ∈ R, we set a ∨ b
�= sup{a, b} and a ∧ b

�= inf{a, b}.
• Consider the following open bounded set

U :=
{

u ∈ (0,+∞)6,

6∑

i=1

ui <
�

μ

}

.

Hereafter, T is a strictly positive real number and it is assumed that

θi , σ j ∈ C([0, T ]) and θi , θi , σ j , σ j > 0, ∀(i, j) ∈ {1, · · · , 10} × {1, 2, 3}.

The rest of this paper is organized as follows: In Sect. 2, we study the mathemat-
ical and biological well-posedness of the model (1). We devote Sect. 3 to establish
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2182 M. Mehdaoui et al.

conditions under which the infected population becomes extinct or persistent in the
mean. While in Sect. 4, we provide a condition under which the model (1) admits a
non-trivial periodic solution. Additionally, in order to support the theoretical results,
in Sect. 5, we present the outcome of the performed numerical simulations. Finally,
we leave Sect. 6 to state some conclusions and future works.

2 Mathematical and biological well-posedness

We begin this section by stating a remark, which will be useful overall throughout the
paper.

Remark 1 It can be seen that the set I :=
{

u ∈ R
6+,

6∑

i=1

ui ≤ �

μ

}

, is positively

invariant for the stochastic system (1). Indeed, define the total population at time

t ∈ (0, T ) by N (t) :=
6∑

i=1

ui (t). Direct application of the comparison principle

yields

N (t) ≤ N (0) exp(−μt) + �

μ

(
1 − exp(−μt)

)
.

Then if u0 ∈ I, it follows that u(t) ∈ I ∀t ∈ (0, T ). Additionally,

lim
t→+∞N (t) ≤ �

μ
almost surely.

Theorem 1 For every initial condition u0 ∈ I, the stochastic system (2) admits a
unique global, almost surely positive solution.

Proof Since the coefficients of the stochastic system (2) satisfy the local Lipschitz
condition, by the standard theory of stochastic differential equations [32], there exists
a unique local solution u defined up to a maximal time of existence that we denote
Tmax . In order to prove that the local solution is a global one that remains almost surely

positive, let ñ ∈ N
∗ be sufficiently large such that u0 ∈

[
1

ñ
,
�

μ

)6

. Then, for n ≥ ñ

define the following stopping time

τn := inf
t∈[0,Tmax )

{

∃i0 ∈ {1, · · · , 6} ui0(t) ≤ 1

n

}

,

with the usual convention inf ∅ = +∞, where ∅ denotes the empty set. It is clear
that the sequence (τn)n≥ñ is increasing and τn ≤ Tmax . Hence, there exists τ l such
that lim

n→+∞τn = τ l ≤ Tmax . Thus, it suffices to prove that τ l = +∞. We argue by

123



Dynamical analysis of a stochastic non-autonomous SVIR 2183

contradiction and suppose that there exist ε ∈ (0, 1), T > 0 and n0 ≥ ñ such that

∀n ≥ n0, P(τn ≤ T ) ≥ ε.

Now, consider the following function F : U −→ R
+ defined by F(u) :=

−
6∑

i=1

ln

(
μui

�

)

. By Itô’s formula, it holds that

dF =
{

−
[
1

S
(� − βS S I − μS − κ1S)

]

−
[
1

V1

(−βV1V1 I + κ1S − μV1 − κ2V1
)
]

−
[
1

V2

(−βV2V2 I + κ2V1 − μV2 − κ3V2
)
]

−
[
1

V3

(
κ3V2 − μV3 − γV3V3

)
]

−
[
1

I

(
βS S I + βV1V1 I + βV2V2 I − γ I − μI

)
]

−
[
1

R

(
γ I − μR + γV3V3

)
]

+
[
1

2

(
σ 2
1 + σ 2

2 + σ 2
3

)
I 2 + 1

2

(
σ 2
1 S

2 + σ 2
2 V

2
1 + σ 2

3 V
2
2

)
]}

dt

+ σ1(I − S)dB1 + σ2(I − V1)dB2 + σ3(I − V2)dB3.

Thereby, by using Remark 1, it follows that

dF ≤ Cdt + σ1(I − S)dB1 + σ2(I − V1)dB2 + σ3(I − V2)dB3, (3)

where

C := �

μ

(
βS + βV1 + βV2

)+ 6μ + κ1 + κ2 + κ3 + γ + γV3 + �
2

μ2

(
σ1

2 ∨ σ2
2 ∨ σ3

2
)

.

By integrating both sides of inequality (3) from 0 to T ∧ τn and evaluating the
expectation, we obtain

E(F(u(T ∧ τn))) ≤ F(u(0)) + CT .

On the other hand, by definition of τn, there exists i0 ∈ {1, · · · , 6} such

that ui0(τn) ≤ 1

n
. Consequently, − ln

(
μui0(τn)

�

)

≥ − ln

(
μ

�n

)

. Therefore,

F(u(τn)) ≥ − ln

(
μ

�n

)

. Hence, due to the positiveness of F , it holds that

− ln

(
μ

�n

)

≤ E(F(u(τn)1τn≤T )) ≤ E(F(u(T ∧ τn))) ≤ F(u(0)) + CT . (4)

where 1 stands for the indicator function.
Letting n → +∞ in inequality (4) leads to the contradiction +∞ ≤ F(u(0)) +

CT < +∞. Thus, Tmax = +∞ and the solution is global and remains almost surely
positive.

��
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3 Analysis of the disease extinction and persistence

In this section, we are interested in establishing conditions under which the disease
vanishes or persists. To this end, we define the following parameters

Rs
1(t) := �

μ

βS(t) + βV1 (t) + βV2 (t)

μ(t) + γ (t)
− �

2

μ2(μ(t) + γ (t))

(
1

2
σ 2
1 (t) + 1

2
σ 2
2 (t) + 1

2
σ 2
3 (t)

)

,

∀t ∈ (0, T ), and

Rs
2 :=

� βS (μ + κ2) (μ + κ3) + � κ1 βV1 (μ + κ3) + � κ1 κ2 βV2

(μ + κ1) (μ + κ2) (μ + κ3)

(

μ + γ + 1

2

�
2

μ2

(
σ1

2 + σ2
2 + σ3

2)
) .

Theorem 2 Let u be the solution of the system (2) with the initial value u0 ∈ I. If one
of the following conditions

1. lim sup
t→+∞

(t) < 0, where (t) :=
〈

β2
S

σ 2
1

〉

t

+
〈

β2
V1

σ 2
2

〉

t

+
〈

β2
V2

σ 2
3

〉

t

− 2 (〈μ〉t + 〈γ 〉t ) ,

2. 〈Rs
1〉T < 1, and ∀t ∈ (0, T ),

μ

�
βS(t) > σ 2

1 (t),
μ

�
βV1(t) > σ 2

2 (t),
μ

�
βV2(t) >

σ 2
3 (t),

is satisfied, then the infected population goes to extinction. That is, lim sup
t→+∞

I (t) =
0 almost surely.

Proof By using Itô’s formula, it holds that

d(ln(I )) =
{

βS S + βV1V1 + βV2V2 − μ − γ − 1

2
σ 2
1 S

2 − 1

2
σ 2
2 V

2
1 − 1

2
σ 2
3 V

2
2

}

dt

+ σ1SdB1 + σ2V1dB2 + σ3V2dB3

=
{

−
(

βS√
2σ1

− σ1S√
2

)2

−
(

βV1√
2σ2

− σ2V1√
2

)2

−
(

βV2√
2σ3

− σ3V2√
2

)2

+ β2
S

2σ 2
1

+ β2
V1

2σ 2
2

+ β2
V2

2σ 2
3

− μ − γ

}

dt + σ1SdB1 + σ2V1dB2 + σ3V2dB3

≤
{

β2
S

2σ 2
1

+ β2
V1

2σ 2
2

+ β2
V2

2σ 2
3

− μ − γ

}

dt + σ1SdB1 + σ2V1dB2 + σ3V2dB3.

(5)
Dividing inequality (5) by t > 0, then integrating from 0 to t yields

ln(I (t))

t
≤ ln(I (0))

t
+ 1

2

〈
β2
S

σ 2
1

〉

t

+ 1

2

〈
β2
V1

σ 2
2

〉

t

+ 1

2

〈
β2
V2

σ 2
3

〉

t

− 〈μ〉t − 〈γ 〉t + 1

t
M1(t),

(6)
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where M1(t) is a local continuous martingale satisfying M1(0) = 0, and is defined
by

M1(t) :=
∫ t

0
σ1(s)S(s)dB1(s) + σ2(s)V1(s)dB2(s) + σ3(s)V2(s)dB3(s).

By evaluating the supremum limit on both sides of inequality (6) and by the law of

large numbers for local martingales [32], we have lim
t→+∞

M1(t)

t
= 0, almost surely.

Consequently, we obtain

lim sup
t→+∞

ln(I (t))

t
≤ lim sup

t→+∞

[
1

2

(〈
β2
S

σ 2
1

〉

t

+
〈

β2
V1

σ 2
2

〉

t

+
〈

β2
V2

σ 2
3

〉

t

)

− 〈μ〉t − 〈γ 〉t
]

.

Hence, if condition (1) is satisfied. Then lim sup
t→+∞

I (t) = 0 almost surely. Now, we

suppose that
μ

�
βS(t) > σ 2

1 (t),
μ

�
βV1(t) > σ 2

2 (t) and
μ

�
βV2(t) > σ 2

3 (t), ∀t ∈
(0, T ). By using Itô’s formula and taking Remark 1 into account, we obtain

d(ln(I )) =
{

βS S − 1

2
σ 2
1 S

2 + βV1V1 − 1

2
σ 2
2 V

2
1 + βV2V2 − 1

2
σ 2
3 V

2
2 − μ − γ

}

dt

+ σ1SdB1 + σ2V1dB2 + σ3V2dB3

≤
{

βS
�

μ
− 1

2
σ 2
1

�
2

μ2 + βV1
�

μ
− 1

2
σ 2
2

�
2

μ2 + βV2
�

μ
− 1

2
σ 2
3

�
2

μ2 − μ − γ

}

dt

+ σ1SdB1 + σ2V1dB2 + σ3V2dB3

=
{

(μ + γ )

(
�

μ

βS + βV1 + βV2

μ + γ
− �

2

μ2(μ + γ )

(
1

2
σ 2
1 + 1

2
σ 2
2 + 1

2
σ 2
3

)

− 1

)}

dt

+ σ1SdB1 + σ2V1dB2 + σ3V2dB3.

(7)
By dividing inequality (7) by t > 0 and integrating from 0 to t , we acquire that

ln(I (t))

t
≤ ln(I (0))

t
+ (〈μ〉t + 〈γ 〉t )

(〈Rs
1〉t − 1

)+ 1

t
M1(t). (8)

By applying the supremum limit on both sides of inequality (8), it follows that

lim sup
t→+∞

ln(I (t))

t
≤ (〈Rs

1〉T − 1
)
lim sup
t→+∞

(〈μ〉t + 〈γ 〉t ) .

Hence, if 〈Rs
1〉T < 1, it follows that lim sup

t→+∞
I (t) = 0 almost surely. ��

We now proceed to derive the condition under which the infected population
becomes persistent in the mean. Namely, under a suitable condition, we prove that:
∃α > 0, lim inf

t→+∞〈I 〉t ≥ α almost surely.
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2186 M. Mehdaoui et al.

Theorem 3 Let u be the solution of the system (2) with the initial value u0 ∈ I.Under
the following condition

Rs
2 > 1, (9)

the infected population is persistent in the mean. More precisely, lim inf
t→+∞〈I 〉t ≥ λ

λ0
almost surely, where

λ :=
(

μ + γ + 1

2
σ1

2�
2

μ2 + 1

2
σ2

2�
2

μ2 + 1

2
σ3

2�
2

μ2

)
(Rs

2 − 1
)
,

λ0 :=
α3

(
βSβS �α2 + βV1βV1 �α1 + � βS κ1 βV1

)

μα1α2α3

+
α1

(
βV2βV2�α2 + �κ2βV1βV2

)
+ � βSκ1 κ2 βV2

μα1α2α3
,

α1 := (μ + κ1) , α2 := (μ + κ2) and α3 := (μ + κ3) .

Proof By using Itô’s formula, it holds that

d(ln(I )) =
{

βS S + βV1V1 + βV2V2 − μ − γ − 1

2
σ 2
1 S

2 − 1

2
σ 2
2 V

2
1 − 1

2
σ 2
3 V

2
2

}

dt

+ σ1SdB1 + σ2V1dB2 + σ3V2dB3

≥
{

βS S + βV1V1 + βV2V2 − μ − γ − 1

2
σ1

2 �
2

μ2
− 1

2
σ2

2 �
2

μ2 − 1

2
σ3

2 �
2

μ2

}

dt

+ σ1SdB1 + σ2V1dB2 + σ3V2dB3.

(10)
An integration of inequality (10) from 0 to t and a divison by t > 0 lead to

ln(I (t)) − ln(I (0))

t
≥ βS〈S〉t + βV1〈V1〉t + βV2 〈V2〉t − μ − γ − 1

2
σ1

2 �
2

μ2 − 1

2
σ2

2 �
2

μ2

− 1

2
σ3

2 �
2

μ2 + M1(t)

t
,

(11)
where M1(t) is the local continuous martingale defined in the proof of Theorem 2.
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Now, by taking Remark 1 into account, an integration of the first three equations
of the stochastic system (1) from 0 to t and a division by t > 0 yield

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈S〉t ≥ 1

μ + κ1

(

−βS
�

μ
〈I 〉t + � − S(t) − S(0)

t
+ M2(t)

t

)

,

〈V1〉t ≥ 1

μ + κ2

(

−βV1
�

μ
〈I 〉t + κ1

μ + κ1

(

� − βS
�

μ
〈I 〉t − S(t) − S(0)

t
+ M2(t)

t

)

−V1(t) − V1(0)

t
+ M3(t)

t

)

,

〈V2〉t ≥ 1

μ + κ3

(

−βV2
�

μ
〈I 〉t + κ2

μ + κ2

(

−βV1
�

μ
〈I 〉t + κ1

μ + κ1

×
(

� − βS
�

μ
〈I 〉t − S(t) − S(0)

t
+ M2(t)

t

)

− V1(t) − V1(0)

t
+ M3(t)

t

)

−V2(t) − V2(0)

t
+ M4(t)

t

)

,

(12)

where M2(t), M3(t) and M4(t) are continuous local martingales, satisfying

M2(0) = M3(0) = M4(0) = 0, and are definedbyM2(t) :=
∫ t

0
−σ1(s)S(s)I (s) dB1(s),

M3(t) :=
∫ t

0
−σ2(s)V1(s)I (s) dB2(s), and M4(t) :=

∫ t

0
−σ3(s)V2(s)I (s) dB3(s).

By injecting the inequalities of (12) into the inequality (11) and rearranging the terms,
we obtain

ln(I (t)) − ln(I (0))

t
≥
(

μ + γ + 1

2
σ1

2�
2

μ2 + 1

2
σ2

2�
2

μ2 + 1

2
σ3

2�
2

μ2

)
(Rs

2 − 1
)

+ M1(t)

t
+
(

βS

μ + κ1
+ κ1 βV1

(μ + κ1) (μ + κ2)
+ κ1 κ2 βV2

(μ + κ1) (μ + κ2) (μ + κ3)

)

× M2(t)

t
+
(

βV1

(μ + κ2)
+ κ2 βV2

(μ + κ2) (μ + κ3)

)
M3(t)

t
+ βV2

(μ + κ3)

M4(t)

t

−
(

� βS βS

μ (μ + κ1)
+ � βV1 βV1

μ (μ + κ2)
+ κ1 βV1 βS �

μ (μ + κ1) (μ + κ2)
+ κ2 βV2 βV1 �

μ (μ + κ2) (μ + κ3)

+ � βV2 βV2

μ (μ + κ3)
+ κ1 κ2 βV2 βS �

μ (μ + κ1) (μ + κ2) (μ + κ3)

)

〈I 〉t −
(

βS

μ + κ1

+ κ1 βV1

(μ + κ1) (μ + κ2)
+ κ1 κ2 βV2

(μ + κ1) (μ + κ2) (μ + κ3)

)(
S(t) − S(0)

t

)

−
(

βV1

μ + κ2

)

+ κ2 βV2

(μ + κ2) (μ + κ3)

)(
V1(t) − V1(0)

t

)

− βV2

(μ + κ3)

×
(
V2(t) − V2(0)

t

)

.
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Consequently

ln(I (t))

t
≥ λ − λ0〈I 〉t + H(t)

t
almost surely, ∀t ≥ 0, (13)

where λ and λ0 are as defined in Theorem 3, and

H(t) := M1(t) +
(

βS

μ + κ1
+ κ1 βV1

(μ + κ1) (μ + κ2)
+ κ1 κ2 βV2

(μ + κ1) (μ + κ2) (μ + κ3)

)

M2(t)

+
(

βV1

(μ + κ2)
+ κ2 βV2

(μ + κ2) (μ + κ3)

)

M3(t) + βV2

(μ + κ3)
M4(t) −

(
βS

μ + κ1

+ κ1 βV1

(μ + κ1) (μ + κ2)
+ κ1 κ2 βV2

(μ + κ1) (μ + κ2) (μ + κ3)

)

(S(t) − S(0)) −
(

βV1

μ + κ2

+ κ2 βV2

(μ + κ2) (μ + κ3)

)

(V1(t) − V1(0)) − βV2

(μ + κ3)
(V2(t) − V2(0)) + ln(I (0)).

By the law of large numbers for local martingales and by taking Remark 1 into

account, it follows that lim
t→+∞

H(t)

t
= 0, almost surely. The result follows by letting

t −→ +∞ in (13). ��
Remark 2 We emphasize that in the case of non-autonomous epidemic models with
Gaussian noise in the disease transmission, the characterization of the disease extinc-
tion and persistence in terms of one stochastic threshold has not been done, due to
major difficulties caused by the considered type of noise as well as the time varying
parameters, prohibiting to define a unified stochastic threshold. Such a characterization
can be obtained for the autonomous case (see e.g. [19]).

On the other hand, for the model (1), considered in this paper, the characteriza-
tion of the disease extinction and persistence is given independently, in terms of the
two stochastic parameters Rs

1 and Rs
2. However, for the autonomous counterpart of

the model, that is, when the model parameters don’t depend on time, following the
approach used in Theorem 3, it can be proved that when Rs

2 < 1, the infected pop-
ulation goes to extinction. Consequently, Rs

2 can be seen as a stochastic threshold
characterizing the disease persistence and extinction, in the stochastic case. Further-
more, in the absence of Gaussain noise, Rs

2 coincides with the basic reproduction
number corresponding to the deterministic counterpart of the model.

4 Existence of a non-trivial periodic solution

In this section, we investigate the condition under which the system (2) admits a non-
trivial periodic solution. From the biological point of view, the existence of such a
solutionmeans that the susceptible, vaccinated, infected and recovered populations are
persistent.Meaning that their corresponding densities remain strictly positive through-
out time. Hence, for diseases with seasonal characteristics, by analyzing the existence
of such solutions, one can obtain additional conditions under which, the disease per-
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sists within the studied population. In order to achieve the main result of this section,
we recall the definition of a periodic stochastic process.

Definition 1 (See [33]) A stochastic process (η(t))t∈R is said to be periodic with
period ν if for every finite sequence of numbers t1, t2, . . . , tn, the joint distribution of
random variables η (t1 + h) , η (t2 + h) , · · · , η (tn + h) , is independent of h, where
h := kν (k = ±1,±2, · · · ).
Lemma 1 (See [33]) Let (X(t))t≥t0 be an l-dimensional stochastic process, consider
the following system dX(t) = b(t, X(t))dt + σ(t, X(t))dB(t), such that the corre-
sponding coefficients are ν-periodic in t and satisfy the local Lipschitz condition with
respect to X. If there exists a function V ∈ C1,2((0,+∞) × R

l ,R) such that

1. V is ν-periodic with respect to t ∈ (0,+∞).
2. inf|x |>R

V (t, x) −→ +∞ as R −→ +∞ ∀t ∈ (0,+∞).

3. LV (t, x) ≤ −1 outside some compact set.

Then, there exists a solution of the above system, which is a ν-periodic Markov
process.

Theorem 4 Suppose that (θi )
10
i=1 and (σ )3i=1 are periodic functions and denote by

ν > 0 their corresponding period. Moreover, let u be the solution of the system (2)
with the initial value u0 ∈ I. Define the following parameters

R1 :=
(
〈(�βS)

1
2 〉ν
)2

(

〈μ + γ 〉ν + 1

2

(〈σ 2
1 + σ 2

2 + σ 2
3 〉ν
) �

2

μ2

)(

〈μ + κ1〉ν + 1

2
〈σ 2

1 〉ν �
2

μ2

) ,

R2 :=

(

〈(�κ1βV1

) 1
3 〉ν
)3

(

〈μ + γ 〉ν + 1

2

(〈σ 2
1 + σ 2

2 + σ 2
3 〉ν
) �

2

μ2

)(

〈μ + κ2〉ν + 1

2
〈σ 2

2 〉ν �
2

μ2

)

× 1
(

〈μ + κ1〉ν + 1

2
〈σ 2

1 〉ν �
2

μ2

) ,

and

R3 :=

(

〈(�κ1κ2βV2

) 1
4 〉ν
)4

(

〈μ + γ 〉ν + 1

2

(〈σ 2
1 + σ 2

2 + σ 2
3 〉ν
) �

2

μ2

)(

〈μ + κ3〉ν + 1

2
〈σ 2

3 〉ν �
2

μ2

)

× 1
(

〈μ + κ2〉ν + 1

2
〈σ 2

2 〉ν �
2

μ2

) .
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Set R := R1 + R2 + R3. If the following condition

R > 1, (14)

is satisfied, then the stochastic system (2) admits a ν-periodic solution.

Proof We consider the following function V : (0,+∞) ×U −→ R defined by

V(t, u) := M

(

− (b1 + b2 + b3) ln

(
μ

�
S

)

− (b4 + b5) ln

(
μ

�
V1

)

− b6 ln

(
μ

�
V2

)

− ln

(
μ

�
I

)

+ ω(t)

)

+ S + V1 + V2 + V3 + I + R − ln

(
μ

�
S

)

− ln

(
μ

�
V1

)

− ln

(
μ

�
V2

)

− ln

(
μ

�
V3

)

− ln

(
μ

�
R

)

,

such that

b1 :=

(

〈(�βS)
1
2 〉ν
)2

(

〈μ + κ1〉ν + 1

2
〈σ 2

1 〉ν �
2

μ2

)2 ,

b2 :=

(

〈(�κ1βV1

) 1
3 〉ν
)3

(

〈μ + κ2〉ν + 1

2
〈σ 2

2 〉ν �
2

μ2

)(

〈μ + κ1〉ν + 1

2
〈σ 2

1 〉ν �
2

μ2

)2 ,

b3 :=

(

〈(�κ1κ2βV2

) 1
4 〉ν
)4

(

〈μ + κ3〉ν + 1

2
〈σ 2

3 〉ν �
2

μ2

)(

〈μ + κ2〉ν + 1

2
〈σ 2

2 〉ν �
2

μ2

)(

〈μ + κ1〉ν + 1

2
〈σ 2

1 〉ν �
2

μ2

)2 ,

b4 :=

(

〈(�κ1βV1

) 1
3 〉ν
)3

(

〈μ + κ2〉ν + 1

2
〈σ 2

2 〉ν �
2

μ2

)2 (

〈μ + κ1〉ν + 1

2
〈σ 2

1 〉ν �
2

μ2

) ,

b5 :=

(

〈(�κ1κ2βV2

) 1
4 〉ν
)4

(

〈μ + κ3〉ν + 1

2
〈σ 2

3 〉ν �
2

μ2

)(

〈μ + κ2〉ν + 1

2
〈σ 2

2 〉ν �
2

μ2

)2 (

〈μ + κ1〉ν + 1

2
〈σ 2

1 〉ν �
2

μ2

) ,

and

b6 :=

(

〈(�κ1κ2βV2

) 1
4 〉ν
)4

(

〈μ + κ3〉ν + 1

2
〈σ 2

3 〉ν �
2

μ2

)2 (

〈μ + κ2〉ν + 1

2
〈σ 2

2 〉ν �
2

μ2

)(

〈μ + κ1〉ν + 1

2
〈σ 2

1 〉ν �
2

μ2

) ,
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while M ∈ R
∗+ and ω : (0, T ) −→ R is a periodic function, which will both be

chosen thereafter accordingly. For simplicity, set

V1(u) := − (b1 + b2 + b3) ln

(
μ

�
S

)

− (b4 + b5) ln

(
μ

�
V1

)

− b6 ln

(
μ

�
V2

)

− ln

(
μ

�
I

)

.

By applying Itô’s formula and rearranging the terms, we obtain

L(V1(u)) = −b1
�

S
− βS S + b1

(

μ + κ1 + 1

2
σ 2
1 I

2
)

− b2
�

S
− βV1V1 − b4κ1

S

V1

+ b2

(

μ + κ1 + 1

2
σ 2
1 I

2
)

+ b4

(

μ + κ2 + 1

2
σ 2
2 I

2
)

− b3
�

S
− b5κ1

S

V1
− b6κ2

V1
V2

− βV2V2

+ b3

(

μ + κ1 + 1

2
σ1 I

2
)

+ b5

(

μ + κ2 + 1

2
σ 2
2 I

2
)

+ b6

(

μ + κ3 + 1

2
σ 2
3 I

2
)

+ ((b1 + b2 + b3) βS + (b4 + b5) βV1 + b6βV2

)
I + μ + γ + 1

2

(
σ 2
1 S

2 + σ 2
2 V

2
1 + σ 2

3 V
2
2

)
.

Owing to the inequality of arithmetic and geometric means, we acquire that

L(V1(u)) ≤ −2 (�βSb1)
1
2 + b1

(

μ + κ1 + 1

2
σ 2
1

�
2

μ2

)

− 3
(
�κ1βV1b2b4

) 1
3

+ b2

(

μ + κ1 + 1

2
σ 2
1

�
2

μ2

)

+ b4

(

μ + κ2 + 1

2
σ 2
2

�
2

μ2

)

− 4
(
�κ1κ2βV2b3b5b6

) 1
4

+ b3

(

μ + κ1 + 1

2
σ 2
1

�
2

μ2

)

+ b6

(

μ + κ3 + 1

2
σ 2
3

�
2

μ2

)

+ b5

(

μ + κ2 + 1

2
σ 2
2 I

2
)

+ ((b1 + b2 + b3) βS + (b4 + b5) βV1 + b6βV2

)
I + μ + γ + 1

2

�
2

μ2

(
σ 2
1 + σ 2

2 + σ 2
3

)
.

For t ∈ (0, T ), set

ζ(t) := −2 (�(t)βS(t)b1)
1
2 + b1

(

μ(t) + κ1(t) + 1

2
σ 2
1 (t)

�
2

μ2

)

− 3
(
�(t)κ1(t)βV1(t)b2b4

) 1
3

+ b2

(

μ(t) + κ1(t) + 1

2
σ 2
1 (t)

�
2

μ2

)

+ b4

(

μ(t) + κ2(t) + 1

2
σ 2
2 (t)

�
2

μ2

)

+ b5

(

μ(t) + κ2(t) + 1

2
σ 2
2 (t)

�
2

μ2

)

− 4
(
�(t)κ1(t)κ2(t)βV2(t)b3b5b6

) 1
4

+ b3

(

μ(t) + κ1(t) + 1

2
σ 2
1 (t)

�
2

μ2

)

+ b6

(

μ(t) + κ3(t) + 1

2
σ 2
3 (t)

�
2

μ2

)

+ μ(t) + γ (t) + 1

2

�
2

μ2

(
σ 2
1 (t) + σ 2

2 (t) + σ 2
3 (t)

)
,
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and

ξ := (b1 + b2 + b3) βS + (b4 + b5) βV1 + b6βV2 ,

so that

L(V1(u(t))) ≤ ζ(t) + ξ I .

Let ω satisfy

{
ω′(t) = 〈ζ 〉ν − ζ(t),

ω(0) = 0.

Then, clearly the ν-periodicity of ζ implies that of ω. Indeed, taking into account
that

ω(ν) = ν〈ζ 〉ν −
∫ ν

0
ζ(s)ds = ν

(

〈ζ 〉ν − 1

ν

∫ ν

0
ζ(s)ds

)

= ν(〈ζ 〉ν − 〈ζ 〉ν) = 0,

we obtain

ω(t + ν) = ω(ν) +
∫ t+ν

ν

〈ζ 〉ν − ζ(s)ds =
∫ t

0
〈ζ 〉ν − ζ(u + ν)du

=
∫ t

0
〈ζ 〉ν − ζ(u)du = ω(t).

Thus

L(V1(u) + ω(t)) ≤ 〈ζ 〉ν + ξ I .

Since

−2〈(�βSb1)
1
2 〉ν = −

2
(
〈(�βS)

1
2 〉ν
)2

(

〈μ + κ1〉ν + 1

2
〈σ 2

1 〉ν �
2

μ2

) ,

−3〈(�κ1βV1b2b4
) 1
3 〉ν = −

3

(

〈(�κ1βV1

) 1
3 〉ν
)3

(

〈μ〉ν + 1

2
〈σ 2

2 〉ν �
2

μ2

)(

〈μ + κ1〉ν + 1

2
〈σ 2

1 〉ν �
2

μ2

) ,
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and
− 4〈(�κ1κ2βV2b3b5b6

) 1
4 〉ν

= −
4

(

〈(�κ1κ2βV2

) 1
4 〉ν
)4

(

〈μ + κ3〉ν + 1

2
〈σ 2

3 〉ν �
2

μ2

)(

〈μ + κ2〉ν + 1

2
〈σ 2

2 〉ν �
2

μ2

)

× 1
(

〈μ + κ1〉ν + 1

2
〈σ 2

1 〉ν �
2

μ2

) ,

it follows that

L(V1(u) + ω(t)) ≤ −
(

〈μ〉ν + 〈γ 〉ν + 1

2

�

μ

(
〈σ 2

1 + σ 2
2 + σ 2

3 〉ν
)
)

(R − 1) + ξ I .

On the other hand, by Itô’s formula, one can obtain

L
(

− ln

(
μ

�
S

))

≤ −�

S
+ βS I + μ + κ1 + 1

2
σ1

2�
2

μ2 ,

L
(

− ln

(
μ

�
V1

))

≤ βV1 I − κ1
S

V1
+ μ + κ2 + 1

2
σ2

2�
2

μ2 ,

L
(

− ln

(
μ

�
V2

))

≤ βV2 I − κ2
V1
V2

+ μ + κ3 + 1

2
σ3

2�
2

μ2 ,

L
(

− ln

(
μ

�
V3

))

≤ −κ3
V2
V3

+ μ + γV3,

L
(

− ln

(
μ

�
R

))

≤ μ − γV3
V3
R

,

andL (S + V1 + V2 + V3 + I + R) ≤ �−μ (S + V1 + V2 + V3 + I + R) .Thereby,

L(V(t, u)) ≤ M

(

−
(

〈μ〉ν + 〈γ 〉ν + 1

2

�

μ

(
σ 2
1 + σ 2

2 + σ 2
3

)
)

(R − 1) + ξ I

)

+ � − μ (S + V1 + V2 + V3 + I + R) − �

S
+ (βS + βV1 + βV2

)
I + κ1

+ κ2 + κ3 − κ1
S

V1
− κ2

V1
V2

− κ3
V2
V3

+ 5μ + γV3 − γV3
V3
R

+ 1

2

�
2

μ2

(
σ1

2 + σ2
2 + σ3

2
)

.
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Now, consider the following compact set

K :=
{

u ∈ U , εi ≤ ui ≤ 1

εi
∀i ∈ {1, · · · , 6}

}

,

such that ε1, · · · , ε6 > 0 will be chosen later.
Let u ∈ U \ K . To verify that L(V(t, .)) ≤ −1 in U \ K , it suffices to investigate

the following distinguished seven cases

Case 1 : u ∈ {u ∈ U , I < ε5} .

Case 2 : u ∈ {u ∈ U , I ≥ ε5, S < ε1} .

Case 3 : u ∈ {u ∈ U , I ≥ ε5, S ≥ ε1, V1 < ε2} .

Case 4 : u ∈ {u ∈ U , I ≥ ε5, S ≥ ε1, V1 ≥ ε2, V2 < ε3} .

Case 5 : u ∈ {u ∈ U , I ≥ ε5, S ≥ ε1, V1 ≥ ε2, V2 ≥ ε3, V3 < ε4} .

Case 6 : u ∈ {u ∈ U , I ≥ ε5, S ≥ ε1, V1 ≥ ε2, V2 ≥ ε3, V3 ≥ ε4 R < ε6} .

Case 7 : u ∈
{

u ∈ U , ∃ j ∈ {1, · · · , 6}, u j >
1

ε j

}

.

For case 1, we obtain

L(V(t, u)) ≤ M

(

−
(

〈μ〉ν + 〈γ 〉ν + 1

2

�

μ
〈σ 2

1 + σ 2
2 + σ 2

3 〉ν
)

(R − 1) + ξε5

)

+ � + (βS + βV1 + βV2

)
ε5 + κ1 + κ2 + κ3

+ 5μ + γV3 + 1

2

�
2

μ2

(
σ1

2 + σ2
2 + σ3

2
)

.

For case 2, we obtain

L(V(t, u)) ≤ M

(

−
(

〈μ〉ν + 〈γ 〉ν + 1

2

�

μ
〈σ 2

1 + σ 2
2 + σ 2

3 〉ν
)

(R − 1) + ξ
�

μ

)

+ � − �

ε1
+ (βS + βV1 + βV2

) �

μ
+ κ1 + κ2 + κ3 + 5μ + γV3

+ 1

2

�
2

μ2

(
σ1

2 + σ2
2 + σ3

2
)

.

For case 3, we obtain

L(V(t, u)) ≤ M

(

−
(

〈μ〉ν + 〈γ 〉ν + 1

2

�

μ
〈σ 2

1 + σ 2
2 + σ 2

3 〉ν
)

(R − 1) + ξ
�

μ

)

+ � + (βS + βV1 + βV2

) �

μ
+ κ1 + κ2 + κ3 − κ1

ε1

ε2
+ 5μ + γV3

+ 1

2

�
2

μ2

(
σ1

2 + σ2
2 + σ3

2
)

.
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For case 4, we obtain

L(V(t, u)) ≤ M

(

−
(

〈μ〉ν + 〈γ 〉ν + 1

2

�

μ
〈σ 2

1 + σ 2
2 + σ 2

3 〉ν
)

(R − 1) + ξ
�

μ

)

+ � + (βS + βV1 + βV2

) �

μ
+ κ1 + κ2 + κ3 − κ2

ε2

ε3
+ 5μ + γV3

+ 1

2

�
2

μ2

(
σ1

2 + σ2
2 + σ3

2
)

.

For case 5, we obtain

L(V(t, u)) ≤ M

(

−
(

〈μ〉ν + 〈γ 〉ν + 1

2

�

μ
〈σ 2

1 + σ 2
2 + σ 2

3 〉ν
)

(R − 1) + ξ
�

μ

)

+ � + (βS + βV1 + βV2

) �

μ
+ κ1 + κ2 + κ3 − κ3

ε3

ε4
+ 5μ + γV3

+ 1

2

�
2

μ2

(
σ1

2 + σ2
2 + σ3

2
)

.

For case 6, we obtain

L(V(t, u)) ≤ M

(

−
(

〈μ〉ν + 〈γ 〉ν + 1

2

�

μ
〈σ 2

1 + σ 2
2 + σ 2

3 〉ν
)

(R − 1) + ξ
�

μ

)

+ � + (βS + βV1 + βV2

) �

μ
+ κ1 + κ2 + κ3 − γV3

ε4

ε6
+ 5μ + γV3

+ 1

2

�
2

μ2

(
σ1

2 + σ2
2 + σ3

2
)

.

For case 7, we obtain

L(V(t, u)) ≤ M

(

−
(

〈μ〉ν + 〈γ 〉ν + 1

2

�

μ
〈σ 2

1 + σ 2
2 + σ 2

3 〉ν
)

(R − 1) + ξ
�

μ

)

+ � + (βS + βV1 + βV2

) �

μ
+ κ1 + κ2 + κ3 − μ

1

ε j
+ 5μ + γV3

+ 1

2

�
2

μ2

(
σ1

2 + σ2
2 + σ3

2
)

.
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Now, set

M ≥
2 + � + (βS + βV1 + βV2

) �

μ
+ κ1 + κ2 + κ3 + 5μ + γV3 + 1

2

�
2

μ2

(
σ1

2 + σ2
2 + σ3

2
)

(

〈μ〉ν + 〈γ 〉ν + 1

2

�

μ
〈σ 2

1 + σ 2
2 + σ 2

3 〉ν
)

(R − 1)

.

Then, for case 1 and j = 5 in case 7, choose

ε5 := min

{

1,
1

Mξ + βS + βV1 + βV2

,
μ2

�Mξ

}

.

For case 2, case 3, case 4, case 5, case 6 and j �= 5 in case 7, choose

ε1 = min

{

1,
μ �

Mξ�
,

μ κ1

Mξ�
,

κ2 μ

M�ξ
,

κ3 μ

M�ξ
,
γV3 μ

M�ξ
,

μ2

λMξ
,

(
μ2

λMξ

) 1
2

,

(
μ2

λMξ

) 1
3

,

(
μ2

λMξ

) 1
4

,

(
μ2

λMξ

) 1
5

⎫
⎬

⎭
,

ε2 = ε21 , ε3 = ε31 , ε4 = ε41 and ε6 = ε51 .

Consequently,L(V(t, .)) ≤ −1 in U\K .On theother hand, since inf|u|>R
V(t, u) −→

+∞ as R −→ +∞ ∀t ∈ (0,+∞), and taking into consideration the ν-periodicity
of V with respect to t, the assumptions of Lemma 1 are verified. Conclusively, the
stochastic system (2) admits a ν-periodic solution. ��

Remark 3 For the deterministic autonomous counterpart of the model (1), that is
σ1(t) = σ2(t) = σ3(t) = 0 and θ(t) = θ ∈ (0,+∞)10 ∀t ∈ (0, T ). One can
use the Next Generation Method [34] to compute the basic reproduction numberR0,

which yields that R0 = �βS (μ + κ2) (μ + κ3) + �κ1βV1 (μ + κ3) + �κ1κ2βV2

(μ + κ1) (μ + κ2) (μ + κ3) (μ + γ )
.

Hence, the value of R0 coincides with that of Rs
2 and R stated in Sects. 3 and 4,

respectively.

5 Numerical simulations

We consider the time horizon (0, 200) and we choose the following initial condition
u0 = (0.8, 0.1, 0.01, 0.04, 0.03, 0.02) . We simulate the model (1) numerically by
relying onMatlab software [35] to develop a script implementing the Milstein method
presented in [36], which was chosen due to its accuracy. The resulting numerical
scheme of the model (1) is the same one presented in [37, 38] and hence is omitted
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Fig. 2 Verification of the first disease extinction condition

Fig. 3 Paths of S, V1, V2, V3, I and R when the first condition of the disease extinction holds
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Fig. 4 Verification of the second disease extinction condition

Fig. 5 Paths of S, V1, V2, V3, I and R when the second condition of the disease extinction holds
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Fig. 6 Paths of S, V1, V2, V3, I and R when the condition of the disease persistence in the mean holds

Fig. 7 Persistence in the mean of the infected population
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Fig. 8 Probability density functions of S, V1, V2, V3, I and R at time t = 200 when the condition of the
disease persistence in the mean holds

here for brevity. To support all the established theoretical results, five cases are numer-
ically simulated. In the first and second cases, the parameters are chosen such that the
conditions (1) and (2) stated in Theorem 2 are verified, respectively. In the third case,
the parameters are chosen such that the condition (9) of Theorem 3 is verified. While
the fourth and fifth cases correspond to choices of parameters in which the condition
(14) of Theorem 4 is verified in both deterministic and stochastic non autonomous
cases. For the first case, Fig. 2 shows that the condition (1) of Theorem 2 is satisfied.
For the second case, by using Simpson’s method, we have 〈Rs

1〉200 ≈ 0.7812 < 1
(Fig. 3). Moreover, from Fig. 4, it can be deduced that the condition (2) of Theo-
rem 2 is satisfied. The numerical outcomes are shown in Figs. 3 and 5 and exhibit
in both cases that the disease goes to extinction. For the third case, by calculation,
we have Rs

2 = 1.2192 > 1, thereby, the condition (4) of Theorem 3 holds (Fig. 6).
Consequently, lim inf

t→+∞〈I 〉t ≥ 0.0029, which is illustrated by Fig. 7. Figures6 and 8

show the obtained solution. For the fourth case, by using Simpson’s method, we have
R ≈ 1.4697 > 1. Similarly, for the fifth case, we have R ≈ 1.3340 > 1. Conse-
quently, the condition (14) of Theorem 4 is verified. Figures9 and 10 illustrate the
deterministic and stochastic periodicity of the obtained solution (Fig. 11).

The assigned values to the parameters in each case are as follows
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Fig. 9 Paths of S, V1, V2, V3, I and R in the deterministic non-autonomous case and under the condition
R > 1

Case 1 : ∀t ∈ [0, 200],
�(t) = 0.3 + 0.02 sin(t), βS(t) = 0.2 + 0.06 sin(t), βV1 (t) = 0.1 + 0.02 sin(t),

βV2 (t) = 0.1 + 0.05 sin(t), γ (t) = 0.3 + 0.001 sin(t), γV3 (t) = 0.2 + 0.001 sin(t),

κ1(t) = 0.1 + 0.02 sin(t), κ2(t) = 0.1 + 0.02 sin(t), κ3(t) = 0.2 + 0.02 sin(t),

μ(t) = 0.3 + 0.02 sin(t).

Case 2 : ∀t ∈ [0, 200]
σ1(t) = 0.3 + 0.1 sin(t), σ2(t) = 0.2 + 0.1 sin(t), σ3(t) = 0.1 + 0.05 sin(t),

�(t) = 0.3 + 0.02 sin(t), βS(t) = 0.2 + 0.1 sin(t), βV1 (t) = 0.2 + 0.05 sin(t),

βV2 (t) = 0.3 + 0.02 sin(t), γ (t) = 0.3 + 0.001 sin(t), γV3 (t) = 0.2 + 0.001 sin(t),

κ1(t) = 0.3 + 0.02 sin(t), κ2(t) = 0.2 + 0.02 sin(t), κ3(t) = 0.3 + 0.02 sin(t),

μ(t) = 0.3 + 0.02 sin(t).

Case 3 : ∀t ∈ [0, 200]
σ1(t) = 0.1 + 0.01 sin(t), σ2(t) = 0.05 + 0.01 sin(t), σ3(t) = 0.04 + 0.01 sin(t),

�(t) = 0.1 + 0.02 sin(t), βS(t) = 0.6 + 0.3 sin(t), βV1 (t) = 0.7 + 0.2 sin(t),

βV2 (t) = 0.8 + 0.4 sin(t), γ (t) = 0.01 + 0.001 sin(t), γV3 (t) = 0.2 + 0.001 sin(t),

κ1(t) = 0.03 + 0.01 sin(t), κ2(t) = 0.02 + 0.01 sin(t), κ3(t) = 0.05 + 0.02 sin(t),

μ(t) = 0.1 + 0.02 sin(t).
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Fig. 10 Paths of S, V1, V2, V3, I and R in the stochastic non-autonomous case and under the condition
R > 1

Case 4 : ∀t ∈ [0, 200]
σ1(t) = 0, σ2(t) = 0, σ3(t) = 0,

�(t) = 0.1 + 0.02 sin(t), βS(t) = 0.3 + 0.2 sin(t), βV1 (t) = 0.4 + 0.2 sin(t),

βV2 (t) = 0.3 + 0.2 sin(t), γ (t) = 0.01 + 0.001 sin(t), γV3 (t) = 0.01 + 0.001 sin(t),

κ1(t) = 0.3 + 0.02 sin(t), κ2(t) = 0.2 + 0.02 sin(t), κ3(t) = 0.3 + 0.02 sin(t),

μ(t) = 0.1 + 0.02 sin(t).

Case 5 : ∀t ∈ [0, 200]
σ1(t) = 0.06 + 0.02 sin(t), σ2(t) = 0.03 + 0.02 sin(t), σ3(t) = 0.05 + 0.02 sin(t),

�(t) = 0.1 + 0.02 sin(t), βS(t) = 0.3 + 0.2 sin(t), βV1 (t) = 0.4 + 0.2 sin(t),

βV2 (t) = 0.3 + 0.2 sin(t), γ (t) = 0.01 + 0.001 sin(t), γV3 (t) = 0.01 + 0.001 sin(t),

κ1(t) = 0.3 + 0.02 sin(t), κ2(t) = 0.2 + 0.02 sin(t), κ3(t) = 0.3 + 0.02 sin(t),

μ(t) = 0.1 + 0.02 sin(t).

6 Conclusions and future work

The appearance of new emerging diseases requires the enhancement of existing epi-
demic models, in order to have a more pertinent interpretation of reality [39–43]. In
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Fig. 11 Probability density functions of S, V1, V2, V3, I and R at time t = 200 in the stochastic non-
autonomous case and under the condition R > 1

this context, inspired by the characteristics of new emerging diseases such as COVID-
19, in this paper, we have conducted a dynamical study of a new-proposed stochastic
SVIR model, in the aim of studying the effect of the multiple stages of vaccination,
required to gain immunity, along with the environmental noise on the dynamics of the
studied population. Our results are briefly outlined as follows.

• For a large values of the Gaussian noise intensities, the infected population goes to
extinction if lim sup

t→+∞
(t) < 0. For sufficiently small values of the Gaussian noise

intensities, a sufficient condition guaranteeing that the infected population goes to

extinction is 〈Rs
1〉T < 1, and ∀t ∈ (0, T ),

μ

�
βS(t) > σ 2

1 (t),
μ

�
βV1(t) > σ 2

2 (t),

and
μ

�
βV2(t) > σ 2

3 (t).

• Under the condition Rs
2 > 1, the infected population becomes persistent in the

mean.
• For diseases with seasonal patterns, under the condition R > 1, the susceptible,
infected, vaccinated and recovered subpopulations become persistent.

It is worth mentioning that while our primal focus in this work resided in the
dynamical analysis, this paper brings about other interesting questions that need to be
investigated. Case in point, we can think of dealing with the identification problem for
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COVID-19 inMorocco, due to the availability of the data [44], which will permit us to
identify the stochastic thresholds characterizing the disease extinction and persistence
and then test the effectiveness of the vaccination strategy adopted by the authorities.
On the other hand, the model (1) can be further generalized. For instance, taking into
account that a certain amount of time is necessary between each stage of vaccination
as well as the mean time in which the effectiveness of each stage wears off, we can add
delay variables to the model and analyze the changes induced in the dynamics. Finally,
by taking into account that the population may suffer from sudden environmental
shocks. Precisely, ones exhibited by socio-cultural changes such as anti-vaccination
movements, adding Lévy jumps to the model can increase its pertinence. All these
questions will be the subjects of future work.
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