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Abstract
The transmission dynamics of COVID-19 is investigated through the prism of the
Atangana-Baleanu fractional model with acquired immunity. Harmonic incidence
mean-type aims to drive exposed and infected populations towards extinction in a
finite time frame. The reproduction number is calculated based on the next-generation
matrix. A disease-free equilibrium point can be achieved globally using the Castillo-
Chavez approach.Using the additive compoundmatrix approach, the global stability of
endemic equilibrium can be demonstrated. Utilizing Pontryagin’smaximumprinciple,
we introduce three control variables to obtain the optimal control strategies. Laplace
transform allows simulating the fractional-order derivatives analytically. Analysis of
the graphical results led to a better understanding of the transmission dynamics.

Keywords COVID-19 · Reproduction number · Immunity · Harmonic incidence
mean-type

Mathematics Subject Classification 34A08 · 34D23 · 49K15

1 Introduction

The global SARS-CoV-2 pandemic caused substantial death tolls, along with sig-
nificant economic and personal damage. Despite the widespread transmission of the
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disease and the existence of asymptomatic carriers, the development of new variants
has had an extreme impact on the health of the worldwide population [16]. Several
factors contribute to the spread of the virus, including variations, diminishing antibody
levels, and its inability to be taken down. COVID-19 vaccines have proven very effec-
tive in preventing this outbreak from progressing [11]. In the long run, an effective
COVID-19 vaccine will stimulate a strong, durable, adaptive immune response, and
this vaccine-driven immunity is referred to as adaptive immunity [17]. Innate immu-
nity is another type of immunity that develops upon pathogen exposure. In response to
an infection, the immune system attempts to destroy the infectious pathogen, leaving
traces and allowing the system to produce antibodies sufficient to protect the body
[15]. The immune system can develop by vaccination and prior infection, but neither
is efficient [5].

Numerous mathematical models are being used to determine the probability of the
spread of infectious diseases [6]. The dynamic systemwith fractional-order derivatives
provides a means to describe the genetic properties and effectiveness of the memory
involved in various biological systems [13]. Models based on fractional-order are
better at capturing infectious diseases dynamics than other models. Fractional order
differential equation models provide a deeper insight into the study of the disease [14].
The harmonic incidence allows extinguishing the infected and exposed population
rapidly. The harmonic mean is less prone to errors than geometric and arithmetic
means. Over time, the harmonic incidence rate suggests that infected cases are likely
to become extinct. It may be easier to achieve more quickly than other incidence rates
[2].

After the spread of the COVID-19, a few fraction models have emerged to model
the dynamics. In [23], the authors proposed the Atangana-Baleanu fraction model
in Caputo sense, the existence and uniqueness of the model is investigated using
Picard-Lindel method and numerical simulations are performed. In [27], a gener-
alized fractional-order SEIR model is proposed. In particular, the fractional model
under consideration has a good predictive ability for the next two weeks of epidemics.
Numerical simulations of COVID-19 fractional-order modeling have been conducted
in [28], forWuhan (China). Simulating the Caputo-Fabrizio fractional-order derivative
has been carried out using the Adams-Bashforth numerical scheme.

In [9], IsaAbdillahi et.al., have examined the dynamics of COVID-19 variants using
Caputo-Fabrizio fractional derivatives. The authors have demonstrated that the vari-
ant with the largest reproduction number will dominate the other variant. Padmapriya
et.al., have developed amodel using Caputo fractional derivative to predict the dynam-
ics of COVID-19 and the study is used to check the applications of the fractional
derivative in uncertainty conditions [20]. The presentwork extends themodel proposed
in [18] to study the dynamics of COVID-19 with harmonic incidence mean-type. This
research work aims to propose a fractional model with a harmonic incidence mean
rate to reduce the exposed and infected population. To drive the exposed and infected
population to extinction, the incidence rate is incorporated into the transmission. To
the best of our knowledge, the harmonic incidence mean rate has not been considered
for two transmission rates while formulating fractional models.

This paper is organized as follows, the model analysis that includes reproduction
number and equilibrium points in Sect. 2. In Sect. 3, the model stability is determined
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using Castilla Chavez approach. In Sect. 4, according to Pontryagin’s maximum prin-
ciple, we analyze the optimal control by incorporating control variables. By utilizing
the Laplace transforms, the numerical simulation is examined for the fractional-order
model, the results are presented in Sect. 5.

2 Model analysis

Caputo and Riemann-Lioville fractional operators are the most well-known fractional
operators. When these operators are employed to study the structure of models, they
may prevent better findings due to their singularity quality. To overcome these draw-
backs, Caputo and Fabrizio created a non-singular fractional operator known as the
Caputo-Fabrizio derivative, which has an exponential kernal function. Atangana and
Baleanu recently proposed another form of the non-singular derivative that makes
use of the non-singular kernel function called Atangana-Baleanu fractional derivative
(AB) [1]. As one of themost recent and generalized fractional operators, theAtangana-
Baleanu derivative has a non-local and non-singular kernel. In other words, kernels
determine convergence; if kernels are singular, convergence will not be achieved. As
a result, the AB kernel describes complexity in a easy and comprehensive manner.
In this section, the AB fractional derivative model in Caputo sense for COVID-19
transmission dynamics with acquired immunity by both past COVID-19 infection and
vaccination is proposed. The preliminary results of the Atangana-Baleanu fractional
derivatives [21] are considered to develop the model. The model is divided into 5
compartments susceptible Sc(t), exposed Ec(t), infected Ic(t), treatment Tc(t) and
recovered Rc(t) classes. Here we introduce the harmonic mean type incidence rate for
two transmission terms between the susceptible and exposed, infected classes.

ABC Dα
t Sc(t) = R + V − β1

[
2 Sc(t)Ec(t)

Sc(t) + Ec(t)

]
− β2

[
2 Sc(t)Ic(t)

Sc(t) + Ic(t)

]
− μSc(t)

+ρRc(t),

ABC Dα
t Ec(t) = β1

[
2 Sc(t)Ec(t)

Sc(t) + Ec(t)

]
+ β2

[
2 Sc(t)Ic(t)

Sc(t) + Ic(t)

]
− (σ + κ + μ)Ec(t),

ABC Dα
t Ic(t) = (σ + κ)Ec(t) − (η + d + μ)Ic(t),

ABC Dα
t Tc(t) = ηIc(t) − (γ + μ)Tc(t),

ABC Dα
t Rc(t) = γ Tc(t) − (μ + ρ)Rc(t). (1)

with initial conditions Sc(0) = Sc0 , Ec(0) = Ec0 , Ic(0) = Ic0 , Tc(0) =
Tc0 , Rc(0) = Rc0 , where R is the recruitment rate of susceptible people, V is the
recruitment rate of vaccinated people, β1 is the transmission rate of infection trans-
ferred from exposed individuals to susceptible humans, β2 is the transmission rate
of infection transferred from infected persons to susceptible persons, σ is the rate
of susceptible individuals got exposed to infection, η is the rate of individuals get-
ting treatment after knowing symptoms, μ is the natural death rate, γ is the recovery
rate, d is the disease-induced death rate, ρ is the rate of people who are recovered
from COVID-19 gets susceptible to infection with acquired immunity, κ is the rate of
infection development in the exposed population with acquired immunity, (κ < σ).
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2.1 Reproduction number

The infected functional equations are considered of (1) to obtain the reproduction num-
ber. The Jacobian matrix of infected equations are decomposed as F and V matrices
and the spectral radius of the FV−1 is

R0 = 2(σ + κ)[β1(γ + μ) + β2η]
(σ + κ + μ)(η + d + μ)(γ + μ)

.

2.2 Equilibrium points

The disease-free equilibrium point (DFE) E0 = {
Sc0 , Ec0 , Ic0 , Tc0 , Rc0

} ={
R+V

μ
, 0, 0, 0, 0

}
and the endemic equilibriumpoint (EEP) E∗ = {

Sc∗, Ec
∗, Ic∗, Tc∗,

Rc
∗}, where

Sc
∗ = 1

μ

{[
ργ η

(γ + μ)(μ + ρ)
− (σ + κ + μ)(η + d + μ)

(σ + κ)

]
Ic

∗ + R + V

}
,

Ec
∗ = (η + d + μ)Ic∗

(σ + κ)
,

Tc
∗ = ηIc∗

γ + μ
,

Rc
∗ = γ ηIc∗

(γ + μ)(μ + ρ)
.

3 Stability analysis

In this section, we establish the global stability of DFE, E0 and EEP, E∗.

3.1 Global stability of equilibrium points

The Castillo-Chavez approach [25] aims to achieve the global stability of the DFE
point.

Theorem 3.1 The DFE E0 of the model (1) is locally asymptotically stable when
R0 < 1 and unstable otherwise.

Proof We have to prove the following conditions to show that the global stability of
the disease-free equilibrium using Castillo Chavez method.

• If dχ1
dt = G(χ1, 0), then χ0

1 is globally asymptotically stable.
• H(χ1, χ2) = Bχ2 − H̄(χ1, χ2), where H̄(χ1, χ2) ≥ 0 for (χ1, χ2) ∈ 


Let χ1 = (Sc, Rc), χ2 = (Ec, Ic, Tc) and define E0 = (χ0
1 , 0) where χ0

1 = R+V
μ

.
By the model (1),
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dχ1

dt
=

[
R + V − β1

(
2Sc(t)Ec(t)
Sc(t)+Ec(t)

)
− β2

(
2Sc(t)Ic(t)
Sc(t)+Ic(t)

)
− μSc(t) + ρRc(t)

γ Tc(t) − (μ + ρ)Rc(t),

]

with Sc = Sc0 , Rc = Rc0 and G(χ1, 0) = 0, we have

G(χ1, 0) = (R + V − μSc), (2)

From (2), we have χ1 → χ0
1 as t → ∞. The first condition has been proved. Now,

Bχ2 − H̄(χ1, χ2)

=
⎡
⎣2β1 − (σ + κ + μ) 2β2 0

σ + κ −(η + d + μ) 0
0 η −(γ + μ)

⎤
⎦ −

⎡
⎢⎣
2β1Ec − 2β1Sc Ec

Sc+Ec
+ 2β2 Ic − 2β2Sc Ic

Sc+Ic
0
0

⎤
⎥⎦ ,

so that
(
2β1Ec(Sc+Ec)−2β1ScEc

Sc+Ec

)
= 2β1E2

c
Sc+Ec

≥ 0 and
(
2β2 Ic(Sc+Ic)−2β2Sc Ic

Sc+Ic

)
=

2β2 I 2c
Sc+Ic

≥ 0

Thus, H̄(χ1, χ2) is positive definite andB is anM-matrix.Hence both the conditions
of Castillo-Chavez have been proved. ��
Theorem 3.2 The equilibrium point E∗ of the model (1) is globally asymptotically
stable when R0 > 1 and unstable otherwise.

Proof The Jacobian matrix of the sub-system is

⎡
⎢⎢⎢⎢⎣

2β1Sc
∗Ec∗

(Sc∗+Ec∗)2
− 2β1Ec

∗
Sc∗+Ec∗ + 2β2Sc

∗ Ic∗
(Sc∗+Ic∗)2

− 2β2 Ic
∗

Sc∗+Ic∗ − μ
2β1Sc

∗Ec∗
(Sc∗+Ec∗)2

− 2β1Sc
∗

Sc∗+Ec∗
2β1Ec

∗
Sc∗+Ec∗ − 2β1Sc

∗Ec∗
(Sc∗+Ec∗)2

+ 2β2 Ic
∗

Sc∗+Ic∗ − 2β2Sc
∗ Ic∗

(Sc∗+Ic∗)2
2β1Sc

∗
Sc∗+Ec∗ − 2β1Sc

∗Ec∗
(Sc∗+Ec∗)2

− σ − κ − μ

0 σ + κ

0 0

2β2Sc
∗ Ic∗

(Sc∗+Ic∗)2
− 2β2Sc

∗
Sc∗+Ic∗ 0

2β2Sc
∗

Sc∗+Ic∗ − 2β2Sc
∗ Ic∗

(Sc∗+Ic∗)2
0

− η − d − μ 0
η −γ − μ

⎤
⎥⎥⎥⎥⎦ ,

(3)

J |3| =

⎡
⎢⎢⎢⎢⎢⎣

A11 0 0 0

η A22
2β2Sc

∗
Sc∗+Ic∗ − 2β2Sc

∗ Ic∗
(Sc∗+Ic∗)2

2β2Sc
∗

Sc∗+Ic∗ − 2β2Sc
∗ Ic∗

(Sc∗+Ic∗)2

0 σ + κ A33 − 2β1Sc
∗

Sc∗+Ec∗ + 2β1Sc
∗Ec∗

(Sc∗+Ec∗)2

0 0 2β1Ec
∗

Sc∗+Ec∗ − 2β1Sc
∗Ec∗

(Sc∗+Ec∗)2
+ 2β2 Ic

∗
Sc∗+Ic∗ − 2β2Sc

∗ Ic∗
(Sc∗+Ic∗)2

A44

⎤
⎥⎥⎥⎥⎥⎦

,

where,

A11 = −
(

2β1Ec∗
Sc∗ + Ec∗

+ 2β2 Ic∗
Sc∗ Ic∗

− 2β2Sc∗ Ic∗
(Sc∗ + Ic∗)2

− 2β1Sc∗
Sc∗ + Ec∗

+ σ + κ + η + d + 3μ

)
,
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A22 = −
(

2β1Ec∗
Sc∗ + Ec∗

+ 2β2 Ic∗
Sc∗ + Ic∗

− 2β2Sc∗ Ic∗
(Sc∗ + Ic∗)2

− 2β1Sc∗
Sc∗ + Ec∗

+ σ + κ + γ + 3μ

)
,

A33 = −
(

2β1Ec∗
Sc∗ + Ec∗

− 2β1Sc∗Ec∗
(Sc∗ + Ec∗)2

+ 2β2 Ic∗
Sc∗ + Ic∗

− 2β2Sc∗ Ic∗
(Sc∗ + Ic∗)2

+ η + d + γ + 3μ

)
,

A44 = −
(

2β1Sc∗Ec∗
(Sc∗ + Ec∗)2

− 2β1Sc∗
Sc∗ + Ec∗

+ σ + κ + η + d + γ + 3μ

)
,

The function P(χ) = P(Sc, Ec, Ic, Tc) = diag(Sc, Ec, Ic, Tc) and we have,

P−1(χ) = diag

{
1

Sc
,
1

Ec
,
1

Ic
,
1

Tc

}
,

By direct calculation, we have

B = Pf P
−1 + P J |3|P−1,

P J |3|P−1 =

⎡
⎢⎢⎣
m11 0 0 0
m21 m22 m23 m24
0 m32 m33 m34
0 0 m43 m44

⎤
⎥⎥⎦ ,

where

m11 = Ṡc
Sc

−
(

2β1Ec∗
Sc∗ + Ec∗

+ 2β2 Ic∗
Sc∗ + Ic∗

− 2β1Sc∗
Sc∗ + Ec∗

− 2β2Sc∗ Ic∗
(Sc∗ + Ic∗)2

+ σ + κ + η + d + 3μ

)
,

m21 = Ec
Sc

η,

m22 = Ėc
Ec

−
(

2β1Ec∗
Sc∗ + Ec∗

+ 2β2 Ic∗
Sc∗ + Ic∗

− 2β2Sc∗ Ic∗
(Sc∗ + Ic∗)2

− 2β1Sc∗
Sc∗ + Ec∗

+ σ + κ + γ + 3μ

)
,

m23 = Ec
Ic

(
2β2Sc∗
Sc∗ + Ic∗

− 2β2Sc∗ Ic∗
(Sc∗ + Ic∗)2

)
,

m24 = Ec
Tc

(
2β2Sc∗
Sc∗ + Ic∗

− 2β2Sc∗ Ic∗
(Sc∗ + Ic∗)2

)
,

m32 = Ic
Ec

(σ + κ),

m33 = İc
Ic

−
(

2β1Ec∗
Sc∗ + Ec∗

+ 2β2 Ic∗
Sc∗ + Ic∗

− 2β1Sc∗Ec∗
(Sc∗ + Ec∗)2

− 2β2Sc∗ Ic∗
(Sc∗ + Ic∗)2

+ η + d + γ + 3μ

)
,

m34 = Ic
Tc

(
2β1Sc∗Ec∗

(Sc∗ + Ec∗)2
− 2β1Sc∗

Sc∗ + Ec∗
)

,

m43 = Tc
Ic

(
2β1Ec∗

Sc∗ + Ec∗
− 2β1Sc∗Ec∗

(Sc∗ + Ec∗)2
+ 2β2 Ic∗

Sc∗ + Ic∗
− 2β2Sc∗ Ic∗

(Sc∗ + Ic∗)2

)
,

m44 = Ṫc
Tc

−
(

2β1Sc∗Ec∗
(Sc∗ + Ec∗)2

− 2β1Sc∗
Sc∗ + Ec∗

+ σ + κ + η + d + γ + 3μ

)
.

We define the Lozinski measure μ(B) where μ(B) = hi , i = 1, 2, 3, 4 [12]. By
taking the limit t → ∞ the integration of μ(B) takes the following form,
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lim
t→∞ sup

1

t

∫ t

0
h1(t)dt ≤ −(σ + κ + η + d + 3μ),

lim
t→∞ sup

1

t

∫ t

0
h2(t)dt ≤ −(σ + κ + γ + 3μ),

lim
t→∞ sup

1

t

∫ t

0
h3(t)dt ≤ −(η + d + γ + 3μ),

lim
t→∞ sup

1

t

∫ t

0
h4(t)dt ≤ −(σ + κ + η + d + γ + 3μ). (4)

The combining equation of (4) is,

q̄ = lim
t→∞ supsup

1

t

∫ t

0
μ(B)dt < 0. (5)

From (5), the considered subsystem is globally asymptotically stable around the
equilibrium point (Sc∗, Ec

∗, Ic∗, Tc∗). The remaining system of the model (1) is Rc.
When Rc → Rc

∗ as t → ∞. Hence, the proof. ��

4 Optimal control

The control strategy for our model relies on the optimal control theory. Our study
derives the necessary conditions based on Pontryagin’s maximum principle [7] to
identify the possible optimal control of the proposed epidemic model. As a result, the
model (1) is reformulated using control interventions as

ABC Dα
t Sc(t) = R + V − β1(1 − u1)

[
2 Sc(t)Ec(t)

Sc(t) + Ec(t)

]
− β2(1 − u1)

[
2 Sc(t)Ic(t)

Sc(t) + Ic(t)

]

− μSc(t) + ρRc(t) − u2Sc(t),

ABC Dα
t Ec(t) = β1(1 − u1)

[
2 Sc(t)Ec(t)

Sc(t) + Ec(t)

]
+ β2(1 − u1)

[
2 Sc(t)Ic(t)

Sc(t) + Ic(t)

]

− (σ + κ + μ)Ec(t),

ABC Dα
t Ic(t) = (σ + κ)Ec(t) − (η + d + μ + u3)Ic(t),

ABC Dα
t Tc(t) = (η + u3)Ic(t) − (γ + μ)Tc(t),

ABC Dα
t Rc(t) = γ Tc(t) − (μ + ρ)Rc(t). (6)

with Sc(0) ≥ 0, Ec(0) ≥ 0, Ic(0) ≥ 0, Tc(0) ≥ 0, Rc(0) ≥ 0, where u1 is the
media control like awareness campaigns like TV ads and sticker campaigns, u2 is the
vaccination control like encouraging the public to get fully vaccinated, u3 is the IPC
priorities control, a practice of preventing the spread of infections by identifying them
quickly, isolating them immediately, and ensuring their safe management. The control
objective functional associated with the model is

J [u1, u2, u3] =
∫ T

0

[
b1Ec(t) + b2 Ic(t) + b3Tc(t) + c1u

2
1(t)

2
+ c2u

2
2(t)

2
+ c3u

2
3(t)

2

]
dt, (7)
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where ci is used to balance the control factors and bi is the positive weights. Let us
define the Hamiltonian condition to derive the optimality conditions by considering
(6) and (7),

H̄ = L[Ec, Ic, Tc, u1, u2, u3] + λ1Sc(t) + λ2Ec(t) + λ3 Ic(t) + λ4Tc(t) + λ5Rc(t). (8)

where λ1, λ2, λ3, λ4, λ5 are the adjoint variables. Accordingly, the optimal control
u∗(t) = (u1∗, u2∗, u3∗) of the model, that minimizes the objective functional (7) is
characterized by

u1
∗(t) = max

[
min

(
1

c1

{
(λ2 − λ1)

2β1ScEc

Sc + Ec
+ (λ2 − λ1)

2β2Sc Ic
Sc + Ic

}
, 0

)
, 1

]
,

u2
∗(t) = max

[
min

(
1

c2
{λ1Sc} , 0

)
, 1

]
,

u3
∗(t) = max

[
min

(
1

c3
{(λ3 − λ4)Ic} , 0

)
, 1

]
. (9)

The optimality systemof themodel (6) and the fractional derivative adjoint equation
with the characterization of the optimal control (9) represents the analytical solution
of the optimal control.

5 Numerical simulation

Consider the model,

ABC
0 Dα

t Sc(t) = G1(t, Sc(t)),
ABC
0 Dα

t Ec(t) = G2(t, Ec(t)),
ABC
0 Dα

t Ic(t) = G3(t, Ic(t)),
ABC
0 Dα

t Tc(t) = G4(t, Tc(t)),
ABC
0 Dα

t Rc(t) = G5(t, Rc(t)). (10)

After some manipulation, the series solution is given by Sc = ∑∞
n=0 Scn , Ec =∑∞

n=0 Ecn , Ic = ∑∞
n=0 Icn , Tc = ∑∞

n=0 Tcn , Rc = ∑∞
n=0 Rcn . The recursive formula

using the initial conditions are given by,

Scn+1(t) = Scn(0) + L−1

[(
sα(1 − α) + α

sα(F(α))

)
L

{
R + V − β1

[
2ScEc
Sc + Ec

]
− β2

[
2Sc Ic
Sc + Ic

]
− μSc + ρRc

}]
,

Ecn+1(t) = Ecn(0) + L−1

[(
sα(1 − α) + α

sα(F(α))

)
L

{
β1

[
2ScEc
Sc + Ec

]
+ β2

[
2Sc Ic
Sc + Ic

]
− (σ + κ + μ)Ec

}]
,

Icn+1(t) = Icn(0) + L−1
[(

sα(1 − α) + α

sα(F(α))

)
L {(σ + κ)Ec − (η + d + μ)Ic}

]
,
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Table 1 Parameter lists and their
values

Parameter Values Source

R 0.5 Assumed

V 0.0001 Assumed

β1 0.9567 [29]

β2 0.3567 [8]

ρ 0.01 [3]

σ 0.21 [10]

κ 0.007 [19]

η 0.07 [22]

d 0.018 [4]

μ 0.062 [26]

γ 0.9833 [24]

Tcn+1(t) = Tcn(0) + L−1
[(

sα(1 − α) + α

sα(F(α))

)
L {ηIc − (γ + μ)Tc}

]
,

Rcn+1(t) = Rcn(0) + L−1
[(

sα(1 − α) + α

sα(F(α))

)
L {γ Tc − (μ + ρ)Rc}

]
.

where Sc0(t) = Sc(0), Ec0(t) = Ec(0), Ic0(t) = Ic(0), Tc0(t) = Tc(0), Rc0(t) =
Rc(0). Therefore, Sc(t) = limn→∞ Scn (t), Ec(t) = limn→∞ Ecn (t), Ic(t) =
limn→∞ Icn (t), Tc(t) = limn→∞ Tcn (t), Rc(t) = limn→∞ Rcn (t). The graphs are
depicted using the parameter values in Table 1.

The fractional model is simulated for different set of parameters using Matlab.
Parameter values were taken from Table 1. All parameters are given in daily units. Fig-
ure1, 2, 3, 4, 5 illustrates the dynamic behavior of the susceptible, exposed, infected,
treatment, and recovered population for different fractional orders. The main control
interventions that are considered in the model are vaccination, the media, and IPC
priority controls. These control variables help to decrease the exposed population.

According to Fig. 6, the graph shows that the variation in the susceptible population
is sustained in the presence of control, however in the absence of control the number of
susceptible population decreases. This finding shows that the control interventions are
preventing the disease’s transmission and has the ability to maintain the susceptible
population.

Figure 7 illustrates that the application of control is efficient in reducing the exposed
population, but in the absence of control, the number exposed population increases
over time. In Fig. 8, infected individuals decline as control measures are implemented,
while they rise when no control measures exist. The infected population is reduced by
detecting them fast, isolating them immediately, and guaranteeing their safe manage-
ment with proper treatment. It can also help to avoid further exposure.

In Fig. 9, one can see that the treatment population increases when controls are
applied because of the IPC priority control. By isolating the infected population, the
control variable encourages them to seek treatment. In Fig. 10, the graph shows that
the recovered population increases to the control interventions. The positive rise is
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Fig. 1 Graphical reprsentation of susceptible population corresponding to different fractional order
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Fig. 2 Graphical reprsentation of exposed population corresponding to different fractional order
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Fig. 3 Graphical reprsentation of infected population corresponding to different fractional order
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Fig. 4 Graphical reprsentation of treatment population corresponding to different fractional order
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Fig. 5 Graphical reprsentation of recovered population corresponding to different fractional order
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Fig. 6 With and without control interventions in susceptible population
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Fig. 7 With and without control interventions in exposed population

0 2 4 6 8 10 12 14 16 18 20

Time (months)

0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

In
fe

ct
ed

 p
op

ul
at

io
n

Without control
with control

Fig. 8 With and without control interventions in infected population
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Fig. 9 With and without control interventions in treatment population
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Fig. 10 With and without control interventions in recovered population
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attributable to the high infection rates shown in Fig. 8, which resulted in an increase
in the recovery compartment.

6 Conclusion

In this paper, we propose a COVID-19 fractional model with acquired immunity. The
harmonic mean type incidence is introduced in the model to extinct the exposed and
infected cases over time.Using the next-generationmatrix, we determine the reproduc-
tion number. We studied the global stability of disease-free equilibrium points using
the Castillo-Chavez approach and the global stability system of endemic equilibrium
points using the third additive compound matrix approach. Pontryagin’s maximum
principle allows determining the best control strategies with three control variables:
media control, vaccination control, and IPC priority control. We simulate fractional-
order derivatives analytically using the Laplace transform and illustrate the results
graphically. The dynamic behavior of compartments based on fractional order are
presented.The combination of control variables impacts the reduction of the exposed
population and the rise in vulnerable and recovered cases resulting in an infection-free
community.
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