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Abstract

Motivated by the works of Wang and Liu [Linear Algebra Appl., 488 (2016) 235-248;

MR3419784] and Mosić [Results Math., 75(2) (2020) 1-21; MR4079761], we provide fur-

ther results on GD inverses and introduce two new classes for square matrices called

GD-star (generalized-Drazin-star) and GD-star-one (generalized-Drazin-star-one) using

a GD inverse of a matrix. We then exploit their various properties and characterize

them in terms of various generalized inverses. We establish a representation of a GD-star

matrix by using the core-nilpotent decomposition and Hartwig-Spindelböck decomposi-

tion. We also define a binary relation called GD-star order using this class of matrices.

Further, we obtain some analogous results for the class of star-GD matrices. Moreover,

the reverse-order law and forward-order law for GD inverse along with its monotonicity

criteria are obtained.
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1. Introduction and motivation

The literature for generalized inverses is quite large due to their huge applicability in

several fields. These inverses are applied to solve problems that appear in numerical

analysis, statistics, neural computing, chemical equations, coding theory, robotics, etc.

Interested readers are referred to [3], [6], [9], [25], [26], [28], [32], [34], and [37] for several

applications of generalized inverses of matrices.

Throughout this article, we denote Cm×n to represent the set of all m × n complex

matrices. For a given A ∈ Cm×n, the notions A∗, R(A), N(A), and PA denote the

conjugate transpose of A, the range space of A, the null space of A, and the orthogonal

projection onto the range space of A, respectively. For every A ∈ Cm×n, the unique

matrix X ∈ Cn×m that satisfies the following four matrix equations:

(1)AXA = A, (2)XAX = X, (3)(AX)∗ = AX, and (4)(XA)∗ = XA

is called the Moore-Penrose inverse [35] of A. It is denoted as A†. The Moore-Penrose

inverse is applicable in finding the least-squares solution of minimum norm of an in-

consistent linear system [6]. The set of all matrices X ∈ Cn×m which satisfies any of

the combinations of the above four matrix equations is denoted as A{i, j, k, l}, where

i, j, k, l ∈ {1, 2, 3, 4}. For example, A{1} denotes the set of all solutions X of matrix

equation (1). Such an X which satisfies equation (1) is called first inverse or inner inverse

of A, and is denoted by A− or A(1). Similarly, A{1, 3} denotes the set of all solutions

of the first and third matrix equations. We denote a member of A{1, 3} as A(1,3). For

A ∈ Cm×m, the smallest nonnegative integer for which rank(Ak) = rank(Ak+1) is called

the index of the matrix A, and we denote it by ind(A). Let A ∈ Cm×m, the unique matrix

X ∈ Cm×m satisfying the equations XAX = X , XA = AX and Ak+1X = Ak is called the

Drazin inverse [6] of the matrix A. It is denoted as AD. Here, k denotes the index of the

matrix A. The Drazin inverse is used to find solutions of singular differential equations

[6]. If ind(A) = 1, then the unique X satisfying the same matrix equations is called the

group inverse. More precisely, for A ∈ Cm×m of index k = 1, there exists a unique matrix

X , called the group inverse of A that satisfies XAX = X , XA = AX and A2X = A. The

group inverse of a matrix A is denoted as A#. The group inverse helps to solve a statistic

problem involving Markov chains [6] (for example stationary probabilities, etc.). In 1978,

Campbell and Meyer [10] provided some modifications to the classic Drazin inverse by

introducing weak Drazin inverse. For an instance the author showed that if one has a

block triangular matrix it is easier to compute a weak Drazin than the Drazin inverse.

The next result is an application of a weak Drazin inverse.

Theorem 1.1. ([10]) If T is the transition matrix of an m-state ergodic chain and if
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A = I −T , then the rows of I −AWDA are all equal to the unique fixed probability vector

w∗ of T for any generalized Drazin inverse of A, where AWD denotes a weak Drazin

inverse of A.

Thereafter, several other generalized inverses have been introduced, namely, Bott-Duffin

inverse [6], the core inverse [3] and MPCEP inverse [34], etc.

We next recall the definition of a particular type of weak Drazin inverse called gener-

alized Drazin (or GD) inverse introduced by Wang and Liu [38] in 2016. For A ∈ Cm×m,

a matrix X ∈ Cm×m satisfying the following matrix equations

AXA = A, (6)XAk+1 = Ak and (7)Ak+1X = Ak

is called GD inverse of A, where ind(A) = k. It is denoted by X = AGD. Unlike the

Drazin inverse, a GD inverse of a matrix need not be unique. The set of all GD inverses

of a matrix A is denoted by A{GD}. In 2020, Hernández et al. [24] introduced a new

generalized inverse called GDMP inverse which is also not unique. The definition of a

GDMP inverse is stated next. Let A ∈ Cm×m and ind(A) = k. For each AGD ∈ A{GD},

a GDMP inverse of A, denoted by AGD†, is an m × m matrix AGD† = AGDAA†. The

symbol A{GD†} stands for the set of all GDMP inverses of A.

For two invertible matrices A and B, the inverse of the product (AB)−1 = B−1A−1

and (AB)−1 = A−1B−1 are known as reverse-order law and forward-order law, respec-

tively. For invertible matrices, the reverse-order law always holds, while the forward-order

law does not hold always. Further, these laws do not hold for generalized inverses in gen-

eral. In the theory of generalized inverses, one of the fundamental topic of interest is to

investigate reverse-order laws, forward-order laws, and additive properties, etc. Firstly,

in 1966, Greville [21] provided a few sufficient conditions so that the reverse-order law

holds in case of the Moore-Penrose inverse, i.e., (AB)† = B†A†. In the last few years,

several authors also discussed the same problem for different generalized inverses. For

instance, Xiong and Zheng [40], and Liu and Xiong [29] presented reverse-order laws and

forward-order laws, respectively, for {1,2,3}- and {1,2,4}-inverses. In 2016, Wang et al.

[39] provided a few results of the reverse-order law for the Drazin inverse. Deng [15] stud-

ied the reverse-order law for the group inverse on Hilbert space. In 2018, Castro-González

and Hartwig [11] provided some results on the forward-order law for the Moore-Penrose

inverse, i.e., (AB)† = A†B†. Very recently, Kumar et al. [27] presented certain sufficient

conditions for the reverse-order law and the forward-order law for GD inverse and GDMP

inverse. The reverse-order law has applications in the Karmarkar algorithm, and also used

to analyze Markov chains (see [30, 11]). For several applications of the forward-order law
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of generalized inverses in numerical linear algebra, one is referred to [1], [20] and [41].

Generalized inverses play an important role in the study of partial orders and pre-

orders of matrices. These orders are crucial in the study of shorted operators which have

their origin in the study of impedance matrices of n-port electrical networks (see [32]

for more details). The definition of partial order is recalled next. A binary relation x

(say) is called partial order if it is reflexive, anti-symmetric and transitive. The partial

order was initially proposed in ring theory [7]. In matrix setting, if a matrix A is below

B under partial order x, then it is denoted by A ≤x B. If a binary relation is reflexive

and transitive, then it called pre-order. In matrix setting, a pre-order coincides with

a partial order when the matrix is nilpotent. The partial order and pre-order theories

are also applied in fuzzy set theory, for example, characterising the class of continuous

t-norms [19]. For different applications of partial orders in many areas, such as statistics,

electrical networks, etc. one is referred to [4], [5], [32] and [37]. Below we recall some

of the significant matrix partial orders and pre-orders that have been introduced in the

literature.

(a) A ≤− B, i.e., AA− = BA− and A−A = A−B is called the minus partial order [17].

(b) A ≤# B, i.e., AA# = BA# and A#A = A#B is called the group partial order [31].

(c) A ≤∗ B, i.e., AA∗ = BA∗ and A∗A = A∗B is called the star partial order [16].

(d) A ≤D B, i.e., AAD = BAD and ADA = ADB is called the Drazin pre-order [32].

Recently, some new class of matrices have been introduced in the literature to solve

certain matrix equations and several partial orders have been defined. In this direction,

Mosić [33] introduced a new class of matrix called the Drazin-star matrix which is stated

next. Let A ∈ Cm×m of index k, the Drazin-star matrix is denoted as AD,∗, is an m×m

matrix AD,∗ = ADAA∗. Motivated by this work, we introduce two new classes of a matrix,

which is called generalized-Drazin-star (or GD-star) matrix and GD-star-one matrix. We

then investigate their properties. We show that the proposed classes of matrices serve as

a solution to certain matrix equations and to system of linear equations. Further, suffi-

cient conditions are obtained under which these classes of matrices coincide with some

well known generalized inverses and some well known class of matrices. Additionally, we

introduce a binary operation based on the proposed class of matrix and obtain some of

its characterizations.

The aim of this article is to propose two new classes of matrices and investigate their

properties. The article is organized as follows. Section 2 is divided into two subsections.

First we reconstruct the representation of a AGD of matrix A using the core-nilpotent
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decomposition and also some results on extension of a GD inverse (i.e., on GDMP inverse).

We then obtain spectral results for GD and GDMP inverses. The second subsection, i.e.,

Subsection 2.2 establishes the reverse and forward-order laws of a GD inverse. Section 3

is further divided into four subsections for better presentation. Subsection 3.1 proposes a

new class of matrices, we call it GD-star matrices. After that, we use the core nilpotent

decomposition and Hartwig-Spindelböck decomposition to find different representations

of a GD-star matrix. Using the results of Section 2, we obtained some results for GD-

star matrices. In Section 3.2, we introduce a binary operation called GD-star order,

and discuss its characterizations. Subsection 3.3 provides a few results on dual GD-star,

which are analogous to those established in Subsection 3.1. Finally, in Section 3.4, we

introduce another class of matrices known as GD ∗1 matrices and study its properties.

2. Some results on GD and GDMP inverses

This section is divided into two subsections. The first subsection discusses a representa-

tion of a GD inverse. We then present some spectral results on GD and GDMP inverses.

Along with that, we also establish monotonicity condition for GD inverses. In the second

subsection, we discuss the reverse and forward-order laws for GD inverses.

2.1. Further results on GD and GDMP inverses

Let A ∈ Cm×m. Then, it is well known that A can be expressed unitarily similar to an

block triangular matrix containing a nonsingular and a nilpotent component in the diag-

onal block. The nonsingular component is called core and therefore, this decomposition

is called as the core-nilpotent decomposition. The core-nilpotent decomposition of A is

given by

A = P

[
C S

O N

]
P ∗, (2.1)

where P is a unitary matrix and S is some matrix of suitable size. The core-nilpotent

decomposition is used to define the partial order (for example, minus, group and Drazin

order) of the matrices (see [32]). Now, we reconstruct the representation of a AGD of

matrix A using (2.1). The next result is in this direction.

Theorem 2.1. Let A ∈ Cm×m be in the form of (2.1) with ind(A) = k. Then,

AGD = P

[
C−1 C−(k+1)(T̂ ′ − T̂N−)

O N−

]
P ∗, (2.2)
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where P is a unitary matrix and T̂ ′ − T̂N− = −CkSN− +

k−1∑

j=0

CjSNk−j−1(I −NN−).

In next result, we demonstrate AGDAAD = AD.

Theorem 2.2. Let A ∈ Cm×m and ind(A) = k. Then, the system

XA = AX, XAX = X, and Ak+1X = Ak

has a solution of the form X = AGDAAD, i.e., AGDAAD = AD.

Proof. Suppose X = AGDAAD. Then, AX = AAGDAAD = AAD. Further,

XA = AGDAADA

= AGDAk+1(AD)k+1A

= Ak(AD)k+1A

= Ak+1(AD)k+1

= AAD.

So, AX = XA. Moreover,

XAX = AGDAADAAGDAAD

= AGDAADAAD

= AGDAAD

= X,

and

Ak+1X = Ak+1AGDAAD

= AkAAD

= Ak+1AD

= Ak.

Hence, X = AGDAAD is Drazin inverse of A. By the uniqueness of Drazin inverse, we

get X = AGDAAD = AD.

Similarly, ADAAGD is also the Drazin inverse. Hernández et al. [24] proved that a

GDMP inverse is a solution of the system XAX = X , AX = AA† and XAk = AGDAk.

Motivated by this result, we will show that a GDMP inverse is {1, 2, 3, 6}-inverse of A.
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Theorem 2.3. Let A ∈ C
m×m and ind(A) = k. Then, the system

(AX)∗ = AX, AXA = A, XAX = X, and XAk+1 = Ak

has a solution of the form X = AGDAA† (GDMP).

Proof. Set X = AGDAA†. Now, AX = AAGDAA† = AA†. So, (AX)∗ = AX . Further,

AXA = AAGDAA†A

= AA†A

= A,

XAX = AGDAA†AAGDAA†

= AGDAAGDAA†

= AGDAA†

= X,

and

XAk+1 = AGDAA†Ak+1

= AGDAAk

= AGDAk+1

= Ak.

Next result can be proved in similar steps as the above theorem.

Theorem 2.4. Let A ∈ Cm×m and ind(A) = k. Then, the system

(XA)∗ = XA, AXA = A, XAX = X, and Ak+1X = Ak

has a solution of the form X = A†AAGD (MPGD).

Remark 2.1. Since a GDMP inverse is also an {1, 3}-inverse, so AGD,†b give a least-

squares solution of system Ax = b. Similarly, the minimum norm solution of Ax = b is

given by x = A†,GDb, where A†,GD ∈ A{†, GD}.

A matrix A ∈ Cm×m is called EP (or range-Hermitian) if R(A) = R(A∗). The class

of EP matrices contain some special class of matrices including ‘Hermitian’, ‘normal’ and

‘nonsingular’ matrices, to name few. An EP matrix appear in the study of contraction
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[23], differential equation [13] and difference equation [12], etc. The following is an

important characterization of an EP matrix. A matrix A is EP if and only if it commutes

with its Moore-Penrose inverse, i.e., AA† = A†A. Further, the Moore-Penrose, the group

inverse and the Drazin inverse coincide for this class of matrices (see [6]). Suppose that

A =

[
1 0

0 0

]
with index k = 1. Since A is EP, so, A† = A# but there exist AGD =

[
1 0

0 a

]

such that AGD 6= A# for a 6= 0. Next, we establish the monotonicity for GD inverse, but

first we recall the following result given by Coll et al. [14].

Corollary 2.5. (Corollary 2.1, [14]) Let A,X ∈ Cm×m and ind(A) = k. Then, the

following conditions are equivalent:

(i) X ∈ A{GD}.

(ii) AXA = A and AkX = XAk.

(iii) AXA = A, XAk+1 = Ak, and Ak+1X = Ak.

Mitra et al. [32] restated the core-nilpotent decomposition of matrix A as follows:

A = P

[
C O

O N

]
P−1, (2.3)

where P is nonsingular matrix. Wang and Liu [38] provided the representation of GD

inverse of a matrix A given by (2.3) which is stated next. Let A ∈ Cm×m. Then, AGD is

a GD inverse of A if and only if

AGD = P

[
C−1 O

O N−

]
P−1. (2.4)

Next, we recall a well known result by Stewart [36], which establishes a bound of norm

of the matrix (Im + A)−1.

Theorem 2.6. ([36]) Let A ∈ Cm×m with ||A|| ≤ 1. Then, Im + A is nonsingular and

||(Im + A)−1|| ≤ (Im − ||A||)−1.

With the help of above theorem, we now give a perturbation result.

Theorem 2.7. Let A ∈ Cm×m and B = A + E ∈ Cm×m with ind(A) = k. If the

perturbation E satisfies AkE = E and ||AGDE|| < 1, then

(Im + AGDE)−1AGD ∈ B{1}.
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Proof. Assume that E = P

[
E1 E2

E3 E4

]
P−1 and rank(A) = r. From (2.3) and (2.4),

we have A = P

[
C O

O N

]
P−1 and AGD = P

[
C−1 O

O N−

]
P−1, respectively. Now, Ak =

P

[
Ck O

O Nk

]
P−1 = P

[
Ck O

O O

]
P−1. Then,

AkE = P

[
Ck O

O O

]
P−1P

[
E1 E2

E3 E4

]
P−1 = P

[
CkE1 CkE2

O O

]
P−1.

If AkE = E, then we have E3 = O and E4 = O. Further,

Im + AGDE = Im + P

[
C−1 O

O N−

]
P−1P

[
E1 E2

O O

]
P−1

= Im + P

[
C−1E1 C−1E2

O O

]
P−1

= P

[
Ir + C−1E1 C−1E2

O Im−r

]
P−1

= P

[
C−1(C + E1) C−1E2

O Im−r

]
P−1.

From Theorem 2.6, ||AGDE|| ≤ 1 implies that Im + AGDE is invertible. So,

(Im + AGDE)−1 = P

[
(C + E1)

−1C −(C + E1)
−1E2

O Im−r

]
P−1. Furthermore,

(Im + AGDE)−1AGD = P

[
(C + E1)

−1 −(C + E1)
−1E2N

−

O N−

]
P−1,

and B = A + E = P

[
C + E1 E2

O N

]
P−1. Now, we verify (Im + AGDE)−1AGD ∈ B{1}.
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Clearly,

B(Im + AGDE)−1AGDB = P

[
C + E1 E2

O N

]
P−1P

[
(C + E1)

−1 −(C + E1)
−1E2N

−

O N−

]

P−1P

[
C + E1 E2

O N

]
P−1

= P

[
C + E1 E2

O N

][
Ir (C + E1)

−1E2(Im−r −N−N)

O N−N

]
P−1

= P

[
C + E1 E2(Im−r −N−N) + E2N

−N

O NN−N

]
P−1

= P

[
C + E1 E2

O N

]
P−1 = B.

Hence, (Im + AGDE)−1AGD ∈ B{1}.

Remark 2.2. If in (2.4), we replace N− by N †, then B− becomes B†.

Theorem 2.8. ([8]) Let A ∈ Cm×m be a non-zero matrix and let AA∗ =

r∑

i=1

αiEi be the

spectral representation of AA∗, where {α1, α2, ..., αr} is the set of distinct eigenvalues of

AA∗ and Ei are the corresponding self-adjoint spectral projections. Then, we have

A† =

r∑

i=1, αi 6=0

1

αi

A∗Ei.

With the help of above theorem, we provide a spectrum result for GDMP inverse.

Theorem 2.9. Let A ∈ Cm×m be a non-zero matrix and let AA∗ =

r∑

i=1

αiEi be the

spectral representation of AA∗, where {α1, α2, ..., αr} is the set of distinct eigenvalues of

AA∗ and Ei are the corresponding self-adjoint spectral projections. Then, we have

AGD,† =

r∑

i=1

AGDEi = AGD.

2.2. Reverse and Forward-order laws

The reverse-order law and forward-order law are fundamental topics of generalized in-

verse. Kumar et al. [27] discussed the reverse-order law, forward-order law and additive

properties of a GD inverse. In this section, we provide some more results for the reverse

and forward-order laws of a GD inverse. We begin as a result of the reverse-order law of

a GD inverse.
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Theorem 2.10. Let A,B ∈ C
m×m be such that AB = BA and max{ind(A), ind(B)} =

k. If R(AGD) ⊆ R(B), then (AB)GD = BGDAGD.

Proof. The hypothesise R(AGD) ⊆ R(B) implies that AGD = BY , for some matrix Y .

Pre-multiplying by BBGD in AGD = BY , we get BBGDAGD = AGD. Set X = BGDAGD.

Now,

ABXAB = ABBGDAGDAB

= AAGDAB (since BBGDAGD = AGD)

= AB, (2.5)

and

X(AB)k+1 = BGDAGDAk+1Bk+1 (since AB = BA)

= BGDAkBk+1

= BGDBk+1Ak

= BkAk

= (AB)k. (2.6)

Similarly, (AB)k+1X = (AB)k. Hence, (AB)GD = BGDAGD.

Next result can be proved as similar step to the above theorem.

Theorem 2.11. Let A,B ∈ Cm×m be such that AB = BA and max{ind(A), ind(B)} =

k. If R(BGD) ⊆ R(A), then (AB)GD = AGDBGD.

Some sufficient conditions for the triple reverse-order law of a GD inverse is listed

below.

Theorem 2.12. Let A,B,C ∈ Cm×m be such that commute with each others and

max{ind(A), ind(B), ind(C)} = k. If one of the following holds:

(i) R(BGDB) ⊆ R(C) and AGDBC = BCAGD,

(ii) R(AGDA) ⊆ R(B) and CGDAB = ABCGD,

(iii) CGDAB = ABCGD and AGDAB = BAGDA,

(iv) AGDBC = BCAGD and CCGDB = BCCGD,

then (ABC)GD = CGDBGDAGD.

Proof. For the proof of this result, set X = CGDBGDAGD. We will prove X is a GD

inverse of ABC by using the definition of a GD inverse.
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(i) R(BGDB) ⊆ R(C) implies that BGDB = CY . Pre-multiplying by CCGD in BGDB =

CY , we get CCGDBGDB = BGDB. Now,

ABCXABC = ABCCGDBGDAGDABC

= ABCCGDBGDBCAGDA (since AGDBC = BCAGD)

= ABBGDBCAGDA

= ABCAGDA

= BCAAGDA

= BCA

= ABC,

X(ABC)k+1 = CGDBGDAGD(ABC)k+1

= CGDBGDAGDAk+1Bk+1Ck+1

= CGDBGDAkBk+1Ck+1

= CGDBGDBk+1Ck+1Ak

= CGDCk+1BkAk

= CkBkAk

= (ABC)k,

and

(ABC)k+1X = (ABC)k+1AGDBGDCGD

= Ak+1Bk+1Ck+1CGDBGDAGD

= Ak+1Bk+1CkBGDAGD

= CkAk+1Bk+1BGDAGD

= CkBkAk+1AGD

= CkBkAk

= (ABC)k. (2.7)

Hence, (ABC)GD = CGDBGDAGD.

(ii) X(ABC)k+1 = (ABC)k and (ABC)k+1X = (ABC)k both conditions proofs are

similar to part (i). R(AGDA) ⊆ R(B) implies that AGDA = BZ. Pre-multiplying by
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BBGD in AGDA = BZ, we get BBGDAGDA = AGDA.

ABCXABC = ABCCGDBGDAGDABC

= CCGDABBGDAGDABC (since CGDAB = ABCGD)

= CCGDAAGDABC

= CCGDABC

= CCGDCAB

= CAB

= ABC.

(iii) X(ABC)k+1 = (ABC)k and (ABC)k+1X = (ABC)k both conditions proofs are

similar to part (i). Further,

ABCXABC = ABCCGDBGDAGDABC

= CCGDABBGDAGDABC (since CGDAB = ABCGD)

= CCGDABBGDBAGDAC (since AGDAB = BAGDA)

= CCGDBAAGDABC

= CCGDABC

= CCGDCAB

= CAB

= ABC.

(iv) The proofs for X(ABC)k+1 = (ABC)k and (ABC)k+1X = (ABC)k are similar to

part (i). Furthermore,

ABCXABC = ABCCGDBGDAGDABC

= ABCCGDBGDBCAGDA (since AGDBC = BCAGD)

= ACCGDBBGDBCAGDA (since CCGDB = BCCGD)

= ACCGDCBAGDA

= ABCAGDA

= BCAAGDA

= BCA

= ABC.
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The proof of the triple forward-order law is similar as the proof of the triple reverse-

order law of a GD inverse which is stated below skipping the proof.

Theorem 2.13. Let A,B,C ∈ Cm×m be such that commute with each others and

max{ind(A), ind(B), ind(C)}=k. If one of the following holds:

(i) R(CGDC) ⊆ R(B) and AGDBC = BCAGD,

(ii) R(BGDB) ⊆ R(A) and CGDAB = ABCGD,

(iii) CGDAB = ABCGD and AGDAB = BAGDA,

(iv) AGDBC = BCAGD and CCGDB = BCCGD,

then (ABC)GD = AGDBGDCGD.

3. GD-star matrices and GD-star order

In this section, we discuss some of the main results of this article. In particular, we

first propose a new class of matrices and then investigate its various properties. We also

introduce a binary relation based on this class of matrix. In addition to these, we also

present a new class of matrices, we call it GD-star-one.

3.1. GD-star matrices

We start this section by defining a GD-star matrix.

Definition 3.1. Let A ∈ Cm×m and ind(A) = k. For each AGD ∈ A{GD}, a GD-star

matrix of A, denoted by AGD,∗, is an m×m matrix

AGD,∗ = AGDAA∗.

The above definition is motivated by the definition of Drazin-star matrix and GDMP

generalized inverse, and it may seem that the proposed class of matrices contained in the

class of these matrices. To disprove this, we present two examples. The first example

shows that GD-star matrix of a matrix is not unique. Also, this class is different from

the well known Drazin-star matrices. Similarly, the second example demonstrates that a

GDMP inverse is different from a GD-star matrix.

Example 3.1. For A =

[
0 1

0 0

]
with index k = 2. We have AGD =

[
a b

1 c

]
, where

a, b, c ∈ C. Further, AD = O, AGD,∗ =

[
a 0

1 0

]
, and AD,∗ = O. So, AGD 6= AD and

AGD,∗ 6= AD,∗.
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Example 3.2. Let A =

[
1 1

0 0

]
with index k = 1. Then, A† =

[
0.5 0

0.5 0

]
and AGD =

[
1 a

0 b

]
∈ A{GD}, where a + b = 1. Now, AGD† = AGDAA† =

[
1 0

0 0

]
and AGD,∗ =

AGDAA∗ =

[
2 0

0 0

]
, i.e., AGD† 6= AGD,∗. It is clear that the class of GD-star matrix is

different from the class of GDMP inverse.

Remark 3.1. Since AGDAA∗ = AGDA(AA†A)∗ = AGDAA†AA∗ = AGD,†AA∗, the Defi-

nition 3.1 remains unaffected if we replace a GD inverse by a GDMP inverse of A, i.e., if

we replace AGD by AGD,†. Similarly, one may observe that the definition of Drazin-star

matrix of A, i.e., AD,∗ remains unchanged if we replace AD by AD,†.

Now, we prove that a GD-star matrix is a solution of the matrix equations X(A†)∗X =

X, AkX = AkA∗, and X(A†)∗ = AGDA.

Theorem 3.1. Let A ∈ C
m×m. Then, for k ≥ 1, the system

X(A†)∗X = X, AkX = AkA∗, and X(A†)∗ = AGDA

has a solution of the form X ∈ A{GD, ∗}, where A{GD, ∗} is the set of all GD-star

matrices of A.

Proof. We will show that X ∈ A{GD, ∗} satisfies the given matrix equations. First we

see that

X(A†)∗X = AGDAA∗(A†)∗AGDAA∗

= AGDA(A†A)∗AGDAA∗

= AGDAA†AAGDAA∗

= AGDAAGDAA∗

= AGDAA∗

= X. (3.1)

When k ≥ 1,

AkX = AkAGDAA∗

= Ak−1AAGDAA∗

= Ak−1AA∗

= AkA∗, (3.2)
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and

X(A†)∗ = AGDAA∗(A†)∗

= AGDA(A†A)∗

= AGDAA†A

= AGDA. (3.3)

Thus, from (3.1), (3.2) and (3.3) it is clear that X ∈ A{GD, ∗} satisfies the given matrix

equations.

Next we state a few properties that a GD-star matrix of a matrix A possesses.

Lemma 3.2. Let A ∈ Cm×m, and ind(A) = k. If AGD ∈ A{GD}, then a GD-star matrix

X of the matrix A satisfies the following properties:

(i) AX(A†)∗ = A.

(ii) AkX = Ak+1AGDA∗ = AGDAk+1A∗.

(iii) A†AX = A∗.

(iv) AkX(A†)∗ = Ak.

(v) X(A†)∗AGD = AGDAAGD.

(vi) X(A†)∗Ak = Ak.

(vii) A†AX2 = A∗X.

(viii) A†AX2AA† = A∗X.

(ix) XAX = AGD(AA∗)2.

(x) XAA†X = X2.

(xi) (AX)∗ = AX.

(xii) (A†)∗X(A†)∗ = (A†)∗.

(xiii) (A†)∗X = AA†.

(xiv) (X(A†)∗)2 = X(A†)∗.

(xv) X ∈ (A†)∗{2, 3}.

Proof. (i) We have AX(A†)∗ = AAGDAA∗(A†)∗ = A(A†A)∗ = AA†A = A. So,

AX(A†)∗ = A.

(ii) Observe thatAkX = AkAGDAA∗ = AGDAk+1AGDAA∗ = AGDAkAA∗ = AGDAk+1A∗ =

AkA∗ = Ak+1AGDA∗. Hence, AkX = Ak+1AGDA∗ = AGDAk+1A∗.

(iii) Clearly, A†AX = A†AAGDAA∗ = A†AA∗ = A∗(A∗)†A∗ = A∗, i.e., A†AX = A∗.

(iv) From (ii), we have AkX = Ak+1AGDA∗, therefore, AkX(A†)∗ = Ak+1AGDA∗(A†)∗ =

Ak(A†A)∗ = Ak−1AA†A = Ak.
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(v) By Theorem 3.1, we have X(A†)∗ = AGDA, and thus X(A†)∗AGD = AGDAAGD.

(vi) Applying Theorem 3.1 again, we obtain X(A†)∗Ak = AGDAAk = AGDAk+1 = Ak,

i.e., X(A†)∗Ak = Ak.

(vii) This is obvious as A†AX2 = A†AAGDAA∗X = A†AA∗X = A∗X .

(viii) From (vii), we get A†AX2 = A∗X . Now, A†AX2AA† = A∗XAA† = A∗AGDAA∗(A∗)†A∗ =

A∗AGDAA∗. Hence, A†AX2AA† = A∗X .

(ix) Clearly, XAX = AGDAA∗AAGDAA∗ = AGDAA∗AA∗ = AGD(AA∗)2.

(x) We have XAA†X = AGDAA∗AA†X = AGDAA∗(A∗)†A∗X = AGDAA∗X = XX =

X2. Therefore, XAA†X = X2.

(xi) This is quite trivial as AX = AAGDAA∗ = AA∗, i.e., (AX)∗ = AX .

(xii) By Theorem 3.1, we have X(A†)∗ = AGDA. Since, (A†)∗X(A†)∗ = (A†)∗AGDA =

(A†AA†)∗AGDA = (A†)∗A†AAGDA = (A†)∗A†A = (A†)∗. Hence, (A†)∗X(A†)∗ =

(A†)∗.

(xiii) We have

(A†)∗X = (A†)∗AGDAA∗

= (A†AA†)∗AGDAA∗

= (A†)∗A†AAGDAA∗

= (A†)∗A†AA∗

= (A†)∗A∗(A∗)†A∗

= (A†)∗A∗

= AA†. (3.4)

(xiv) Clearly, (X(A†)∗)2 = X(A†)∗X(A†)∗ = AGDAA∗(A†)∗AGDAA∗(A†)∗ =

AGDAAGDAA∗(A†)∗ = AGDAA∗(A†)∗ = X(A†)∗.

(xv) It can be easily obtained from (3.4) and part (xiii) of Lemma 3.2.

Remark 3.2. From (xiii), we have (A†)∗X is an orthogonal projector onto R(A).

Under some conditions, a GD-star matrix coincides with some well known generalized

inverses. The same result is proved next.

Theorem 3.3. Let A ∈ Cm×m and ind(A) = k. For each AGD ∈ A{GD}, a GD-star

matrix X of the matrix A satisfies the following properties:

(i) If A∗ = A, then X ∈ A†{1, 2, 3}.
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(ii) If AGD = A#, then X = A#,∗.

(iii) If A is a partial isometry, then X = AGD,†, and thus AX = PR(A).

Proof. (i) Since, A†X = (A†)∗X = AA† by equation (3.4) and A∗ = A. We have

XA†X = AGDAA∗A†AGDAA∗

= AGDAAA†AGDAA

= AGDAAGDAA (A∗ = A implies AA† = A†A)

= AGDAA

= AGDAA∗

= X,

and

A†XA† = (A†)∗AGDAA∗(A†)∗ (since A∗ = A)

= (A†AA†)∗AGDA

= (A†)∗A†AAGDA

= (A†)∗A†A

= A†.

(ii) We have AGD = A#. So, k = 1. Then, AGD,∗ = AGDAA∗ = A#AA∗ = A#,∗.

(iii) Since A is a partial isometry, therefore, A∗ = A†. Thus, AGD,∗ = AGDAA∗ =

AGDAA† = AGD,†. Therefore, AAGD,∗ = AA† = PR(A).

Next we collect some properties of a GD-star matrix for the class of EP matrices.

Theorem 3.4. Let A ∈ Cm×m be an EP matrix. For each AGD ∈ A{GD}, a GD-star

matrix X of the matrix A satisfies the following properties:

(i) A†X = A†A∗.

(ii) AA†XAA† = A∗.

(iii) X = A∗.
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Proof. (i) We have

A†X = A†AGDAA∗

= A†AA†AGDAA∗

= A†A†AAGDAA∗

= A†A†AA∗

= A†AA†A∗

= A†A∗.

(ii) Again,

AA†XAA† = A†AAGDAA∗AA†

= A†AA∗(A∗)†A∗

= A†AA∗

= A∗(A∗)†A∗

= A∗.

(iii) We know ind(A) = 1 because A is an EP matrix, so, AAGD = AGDA by Corollary 2.5

(ii). Now, we have X = AGDAA∗ = AAGD(AA†A)∗ = AAGDA†AA∗ = AAGDAA†A∗ =

AA†A∗ = A∗. Therefore, if A is an EP matrix, then AGD,∗ = A∗.

Remark 3.3. 1. If A is an EP-Hermitian matrix, then AGD,∗ = A.

2. Since A is an EP matrix, so AA† = A†A. Again, using Corollary 2.5 (ii), we have

AGDA = AAGD. Therefore, AGD† = AGDAA† = AAGDA†AA† = AAGDAA†A† =

AA†A† = A†. Similarly, one can show that AD,∗ = A†. Hence, AGD† = A† = AD,∗

whenever A is EP.

Now, we establish a representation of a GD-star matrix.

Theorem 3.5. Let A ∈ Cm×m be in the form of (2.1) with ind(A) = k. If AGD ∈

A{GD}, then

AGD,∗ = P

[
C∗ + C−1SS∗ + C−(k+1)(T̂ ′ − T̂N−)NS∗ C−1SN∗ + C−(k+1)(T̂ ′ − T̂N−)NN∗

N−NS∗ N−NN∗

]
P ∗,

(3.5)

where P is a unitary matrix and T̂ ′ − T̂N− = −CkSN− +

k−1∑

j=0

CjSNk−j−1(I −NN−).
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If S = O in Theorem 3.5, then the above theorem reduces to the following corollary.

Corollary 3.6. Let A ∈ Cm×m. If P is a unitary matrix in (2.3), then

AGD,∗ = P

[
C∗ O

O N−NN∗

]
P ∗.

Proof. By the definition of a GD-star matrix, we have

AGD,∗ = AGDAA∗

= P

[
C−1 O

O N−

]
P ∗P

[
C O

O N

]
P ∗P

[
C∗ O

O N∗

]
P ∗

= P

[
C−1CC∗ O

O N−NN∗

]
P ∗

= P

[
C∗ O

O N−NN∗

]
P ∗.

Remark 3.4. Let A ∈ Cm×m be an EP matrix. Then,

A = P

[
C 0

0 0

]
P ∗,

where P is unitary. So,

AGD = P

[
C−1 O

O M

]
P ∗,

where M is an arbitrary matrix of suitable size, and

AGD,∗ = P

[
C∗ O

O O

]
P ∗.

The Hartwig-Spindelböck decomposition [22, 23] of any matrix A ∈ Cm×m of rank r is

given by

A = U

[∑
K

∑
L

O O

]
U∗, (3.6)

where U ∈ Cm×m is a unitary matrix and
∑

= diag(σ1Ir1, σ2Ir2, ..., σtIrt) is a diagonal

matrix of the nonzero singular values of A, σ1 > σ2 > ... > σt, r1 + r2 + ... + rt = r

K ∈ Cr×r and L ∈ Cr×n−r satisfy

KK∗ + LL∗ = Ir.
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The Hartwig-Spindelböck decomposition is useful to obtain characterizations of various

known classes of matrices. This decomposition is easily applicable while dealing with

generalized and hypergeneralized projectors. Additionally, this representation is also used

to investigate properties of singular periodic matrices. Hernández et al. [24] proposed

the canonical form of a GD inverse using the Hartwig-Spindelböck decomposition. The

same is recalled next.

Theorem 3.7. ([24]) Let A ∈ Cm×m be the form of (3.6) and ind(A) = k. Then, a GD

inverse of matrix A is AGD = U

[
X1 X2

X3 X4

]
U∗, where Xi satisfies the following conditions:

(a)
∑

KX1 +
∑

LX3 = Ir,

(b) X1(
∑

K)k = (
∑

K)k−1,

(c) X3(
∑

K)k−1 = O,

(d) (
∑

K)k+1X2 + (
∑

K)kX4 = (
∑

K)k−1
∑

L.

Now, we give a representation of a GD-star matrix by using the Hartwig-Spindelböck

decomposition.

Theorem 3.8. Let A ∈ Cm×m be of the form as in (3.6) with ind(A) = k. If AGD ∈

A{GD} is of the form as in Theorem 3.7, then

AGD,∗ = U

[
X1

∑∑∗
O

X3

∑∑∗
O

]
U∗.

Proof. By (3.6) and Theorem 3.7, we have an expression for a GD-star matrix that is

computed as

AGD,∗ = AGDAA∗ = U

[
X1 X2

X3 X4

]
U∗U

[∑
K

∑
L

O O

]
U∗U

[
(
∑

K)∗ O

(
∑

L)∗ O

]
U∗

= U

[
X1 X2

X3 X4

][∑
K(

∑
K)∗ +

∑
L(

∑
L)∗ O

O O

]
U∗

= U

[
X1 X2

X3 X4

][∑
KK∗

∑∗+
∑

LL∗
∑∗

O

O O

]
U∗

= U

[
X1 X2

X3 X4

][∑
(KK∗ + LL∗)

∑∗
O

O O

]
U∗

= U

[
X1 X2

X3 X4

][∑∑∗
O

O O

]
U∗

= U

[
X1

∑∑∗
O

X3

∑∑∗
O

]
U∗.
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Partial isometry matrix is an important class of matrix that plays an important role

in the study of contraction [18, 23]. If A is partial isometry, then we have the following

result.

Theorem 3.9. Let A ∈ Cm×m be a partial isometry. The following conditions are equiv-

alent:

(i) X(A†)∗X = X and AX = AA∗,

(ii) There exists AGD ∈ A{GD} such that X = AGDAA∗ + (Im −AGDA)AA∗,

(iii) X(A†)∗X = X and AX = AA†.

Proof. (i) ⇐⇒ (ii) Let AGD ∈ A{GD}. Now,

AX = A(AGDAA∗ + (Im − AGDA)AA∗)

= AAGDAA∗ + (A−AAGDA)AA∗

= AA∗. (3.7)

X(A†)∗X = X(A†AA†)∗X

= X(A†)∗A†AX

= X(A†)∗A†AA∗

= (AGDAA∗ + (Im − AGDA)AA∗)(A†)∗A∗

= AGDAA∗ + (Im − AGDA)AA∗

= X. (3.8)

(ii) ⇐⇒ (iii) The proof is analogous to the above part.

Remark 3.5. 1. If A is both EP and partial isometry, then AGD,∗ = A†.

2. If A is partial isometry, then a GD-star matrix is also an {1, 3}-inverse, so AGD,∗b

give a least-squares solution of system Ax = b.

We end this section with an application of a GD-star matrix.

Theorem 3.10. Let A ∈ Cm×m with ind(A) = k and b ∈ Cm. Then, the equation

Ax = AA∗b (3.9)

is consistent and its general solution is

x = AGD,∗b+ (Im − AGDA)z,

where z ∈ Cm×1 is arbitrary.
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Proof. Let x = AGDAA∗b. Then,

Ax = AAGDAA∗b

= AA∗b.

Hence, the system (3.9) is consistence. Now, Ax = AAGD,∗b+ A(Im − AGDA)z = AA∗b.

Also, if x is a solution of (3.9), then x = AGD,∗b+(Im−AGDA)x. So, the general solution

of the system (3.9) is given by x = AGD,∗b+ (Im − AGDA)z.

The proof of the spectral result for a GD-star matrix is similar as the proof of Theorem

2.9. So, we skip the proof.

Theorem 3.11. Let A ∈ Cm×m be a non-zero matrix and let AA∗ =

r∑

i=1

αiEi be the

spectral representation of AA∗, where {α1, α2, ..., αr} is the set of distinct eigenvalues of

AA∗ and Ei are the corresponding self-adjoint spectral projections. Then, we have

AGD,∗ =

r∑

i=1

αiA
GDEi.

Let us denote AGD,∗ ∈ A{GD}AA∗. We now obtain sufficient conditions so that

(AB)GD,∗ = BGD,∗AGD,∗.

Theorem 3.12. Let A,B ∈ Cm×m be such that AB = BA and max{ind(A), ind(B)} =

k. If R(AGD) ⊆ R(B) and AGDABB∗ = BB∗AGDA, then (AB)GD,∗ = BGD,∗AGD,∗.

Proof. From AGDABB∗ = BB∗AGDA and Theorem 2.10, we get

(AB)GD,∗ = (AB)GDAB(AB)∗

= BGDAGDABB∗A∗

= BGDBB∗AGDAA∗

= BGD,∗AGD,∗.

A few sufficient conditions for the forward-order law are provided below.

Theorem 3.13. Let A,B ∈ Cm×m be such that AB = BA and max{ind(A), ind(B)} =

k. If R(BGD) ⊆ R(A) and BGDBAA∗ = AA∗BGDB, then (AB)GD,∗ = AGD,∗BGD,∗.
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Proof. From BGDBAA∗ = AA∗BGDB and Theorem 2.11, we have

(AB)GD,∗ = (AB)GDAB(AB)∗

= AGDBGDBAB∗A∗

= AGDBGDBAA∗B∗

= AGDAA∗BGDBB∗

= AGD,∗BGD,∗.

Kumar et al. [27] provided the additive properties of a GD inverse.

Theorem 3.14. ([27]) Let A,B ∈ Cm×m with AB = BA = O andmax{ind(A), ind(B)} =

k. If AGDB = BAGD = O and BGDA = ABGD = O, then (A +B)GD = AGD +BGD.

With the help of previous result, we describe the additive properties for a GD-star

matrix.

Theorem 3.15. Let A,B ∈ Cm×m with AB = BA = BA∗ = O andmax{ind(A), ind(B)} =

k. If AGDB = BAGD = O and BGDA = ABGD = O, then (A+B)GD,∗ = AGD,∗ +BGD,∗.

Proof. Using the expression of a GD-star matrix.

(A+B)GD(A +B)(A+B)∗ = (AGD +BGD)(AA∗ + AB∗ +BA∗ +BB∗)

= AGDAA∗ + AGDAB∗ + AGDBA∗ + AGDBB∗ +BGDAA∗

+BGDAB∗ +BGDBA∗ +BGDBB∗

= AGD,∗ + AGDAB∗ +BGDBA∗ +BGD,∗

= AGD,∗ +BGD,∗.

Theorem 3.16. Let A,B ∈ C
m×m with max{ind(A), ind(B)} = k. If AGD,∗((A∗)† +

(B∗)†)BGD,∗ = AGD,∗ +BGD,∗, then

(i) AA∗BB† = AA∗.

(ii) AGDABGDB = BGDB.

Proof. (i) We have

AGD,∗((A∗)† + (B∗)†)BGD,∗ = AGD,∗ +BGD,∗. (3.10)

Pre-multiplying (3.10) by A, we get AAGD,∗((A∗)† + (B∗)†)BGD,∗ = AAGD,∗ +

ABGD,∗, i.e., AA∗((A∗)† + (B∗)†)BGD,∗ = AA∗ + ABGD,∗, i.e, AA∗(A∗)†BGD,∗ +

AA∗(B∗)†BGD,∗ = AA∗ +ABGD,∗, i.e., ABGD,∗ +AA∗(B∗)†B†BBGDBB∗ = AA∗ +

ABGD,∗, i.e., AA∗BB† = AA∗. Hence, AA∗BB† = AA∗.
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(ii) Now, post-multiplying (3.10) by (B∗)†, we obtain AGD,∗((A∗)†+(B∗)†)BGD,∗(B∗)† =

AGD,∗(B∗)† +BGD,∗(B∗)†, i.e., AGD,∗((A∗)† + (B∗)†)BGDB = AGD,∗(B∗)† +BGDB,

i.e., AGDABGDB+AGD,∗(B†)∗B†BBGDB = AGD,∗(B∗)†+BGDB. Using BBGDB =

B, we get AGDABGDB+AGD,∗(B†)∗B†B = AGD,∗(B∗)†+BGDB, i.e., AGDABGDB+

AGD,∗(B∗)† = AGD,∗(B∗)† +BGDB, i.e., AGDABGDB = BGDB.

3.2. GD-star order

This section presents a binary relation called a GD-star order and its properties. We will

start with the definition of a GD-star order.

Definition 3.2. Let A,B ∈ Cm×m. Then, A is said to be below B under a GD-star order

if there exists a GD-star inverse AGD,∗ of A such that

AGD,∗A = AGD,∗B, and AAGD,∗ = BAGD,∗.

It is denoted by A ≤∗
GD B.

Next, we describe a characterization of a GD-star order.

Theorem 3.17. Let A ∈ C
m×m be such that the matrix P is a unitary matrix in (2.3).

Then, A ≤∗
GD B if and only if

B = P

[
C∗ O

O B4

]
P ∗,

where B4N
−N = N and N∗B4 = N∗N .

Proof. Let B = P

[
B1 B2

B3 B4

]
P ∗. Suppose that A ≤∗

GD B. So,

AGD,∗A−AGD,∗B =

[
C∗C − C∗B1 −C∗B2

−N−NN∗B3 N−NN∗N −N−NN∗B4

]
= O

and

AAGD,∗ −BAGD,∗ =

[
CC∗ − B1C

∗ −B2N
−NN∗

−B3C
∗ NN−NN∗ − B4N

−NN∗

]
= O

From the above two equations, we get C = B1, B2 = O, B3 = O, N−NN∗N =

N−NN∗B4 and NN−NN∗ = B4N
−NN∗. Pre-multiplying by N †N in N−NN∗N =

N−NN∗B4, we haveN
∗N = N∗B4. Post-multiplying by (N †)∗ inNN−NN∗ = B4N

−NN∗,
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we get N = B4N
−N . Conversely, from the equality N∗B4 = N∗N , we obtain NGD,∗N =

NGD,∗B. Further, NGD ∈ N{1} and B4N
−N = N imply that B4N

GDN = N . Post-

multiplying by N∗, we get B4N
GDNN∗ = NNGDNN∗, i.e., B4N

GD,∗ = NNGD,∗. So,

N ≤∗
GD B4. Hence, A ≤∗

GD B.

We know that an {1, 4}-inverse of a matrix N is also an {1}-inverse of matrix N .

Remark 3.6. In equation (2.3), replace N− by N (1,4). Then, A ≤∗
GD B if and only if

B = P

[
C∗ O

O B4

]
P ∗,

where N ≤∗ B4.

Theorem 3.18. Let A,B,C ∈ Cm×m. Then,

(i) GD-star order is reflexive.

(ii) If A ≤∗
GD B and B ≤∗

GD A, then A = B, i.e., GD-star order is anti-symmetric.

(iii) If A ≤∗
GD B and B ≤∗

GD C, then AGD,∗A = AGD,∗CBGDB and AAGD,∗ = CBGDBAGD,∗.

Proof. (i) It is obvious.

(ii) From A ≤∗
GD B, we get AGD,∗A = AGD,∗B and AAGD,∗ = BAGD,∗. By the last

equality AAGD,∗ = BAGD,∗, we have AAGDAA∗ = BAGDAA∗, i.e., AA∗ = BAGDAA∗.

Post-multiplying by (A†)∗ in AA∗ = BAGDAA∗, we obtain A = BAGDA. Again, by the

same process B ≤∗
GD A implies B = ABGDB. Now, pre-multiplying AGD,∗A = AGD,∗B

by A, we obtain AA∗A = AA∗B implies A∗A = A∗B. Again, pre-multiplying A∗A = A∗B

by (A†)∗, we obtain A = AA†B. Using B = ABGDB, we have A = AA†ABGDB, i.e.,

A = ABGDB. So, A = B.

(iii) From A ≤∗
GD B and B ≤∗

GD C, we get AGD,∗A = AGD,∗B, AAGD,∗ = BAGD,∗,

BGD,∗B = BGD,∗C and BBGD,∗ = CBGD,∗. Now,

AGD,∗A = AGD,∗B

= AGD,∗BBGDB

= AGD,∗BBGDBB†B

= AGD,∗BBGDBB∗(B†)∗

= AGD,∗BBGD,∗(B†)∗

= AGD,∗CBGD,∗(B†)∗

= AGD,∗CBGDBB∗(B†)∗

= AGD,∗CBGDB.

Similarly, AAGD,∗ = CBGDBAGD,∗.
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Next result is an equivalence relation between a GD-star order and group partial

order.

Theorem 3.19. Let A,B ∈ C
m×m be such that ind(A) = 1 and AB = BA. Then, the

following are equivalent:

(i) A ≤∗
GD B,

(ii) AGDAA∗ = AGD,∗BA† and A = BAGDA,

(iii) AA∗ = AA∗BA† and Ak+1 = BAk,

(iv) A∗ = A∗BA† and A2 = BA,

(v) R(A∗) = R(A∗B) and A2 = BA.

Proof. (i)⇒(ii) A ≤∗
GD B implies that AGD,∗A = AGD,∗B, and AAGD,∗ = BAGD,∗. Post-

multiplying by A† in AGD,∗A = AGD,∗B, we obtain AGDAA∗ = AGD,∗BA†. Again,

post-multiplying AAGD,∗ = BAGD,∗ by (A†)∗, we get AAGDAA∗(A†)∗ = BAGDAA∗(A†)∗

implies that AA†A = BAGDAA†A, i.e., A = BAGDA.

(ii)⇒(iii) Pre-multiplying by A in AGDAA∗ = AGD,∗BA†, we get AA∗ = AA∗BA†. Post-

multiplying A = BAGDA by Ak, we obtain Ak+1 = BAk.

(iii)⇒(iv) Pre-multiplying AA∗ = AA∗BA† by A†, we have A∗ = A∗BA†. Post-multiply

Ak+1 = BAk by (A#)kA, we arrive A2 = BA.

(iv)⇒(v) R(A∗) = R(A∗BA†) ⊆ R(A∗B) ⊆ R(A∗), i.e., R(A∗) = R(A∗B).

(v)⇒(i) The index of A is 1. So, AGDA2 = A, and A2 = BA implies that AAGDA2 =

BAGDA2. Post-multiplying AAGDA2 = BAGDA2 by A#A∗, we get AAGDAA∗ = BAGDAA∗,

i.e., AAGD,∗ = BAGD,∗. We have AB = BA and A2 = BA. So, A2 = AB. Similarly, we

obtain AGD,∗A = AGD,∗B. Hence, A ≤∗
GD B.

For simplicity, if AD,†A = AD,†B and AAD,† = BAD,†, then we denote it A ≤†
D B.

Suppose A is below B under a GD-star order, then A and B satisfy some properties are

stated below.

Theorem 3.20. Let A,B ∈ Cm×m be such that ind(A) = k. If A is below B under a

GD-star order, then the following hold:

(i) A∗A = A∗B.

(ii) A = AA†B.

(iii) Ak+1 = BAk.

(iv) AAD = BAD.

(v) A ≤†
D B.
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(vi) AGD,†A = AGD,†B and BAGD,† = AAGD,†.

Proof. We have A is below B under a GD-star order, i.e.,

AGD,∗A = AGD,∗B, and AAGD,∗ = BAGD,∗.

(i) Pre-multiplying by A in AGD,∗A = AGD,∗B, we get AAGDAA∗A = AAGDAA∗B, i.e.,

AA∗A = AA∗B. Again, pre-multiplying by A† in AA∗A = AA∗B, we get A†AA∗A =

A†AA∗B, i.e., A∗(A∗)†A∗A = A∗(A∗)†A∗B, i.e., A∗A = A∗B.

(ii) It is easily obtained pre-multiplying (i) by (A†)∗, we get AA†A = AA†B, i.e.,

A = AA†B.

(iii) Post-multiplying by (A†)∗ inAAGD,∗ = BAGD,∗, we get AAGDAA∗(A†)∗ = BAGDAA∗(A†)∗,

i.e, A(A†A)∗ = BAGDA(A†A)∗, i.e., A = BAGDA. Again, post-multiplying by Ak in

A = BAGDA, we get Ak+1 = BAk.

(iv) Every square matrix is Drazin invertible. So, post-multiplying Ak+1 = BAk by

(AD)k+1, we get AAD = BAD.

(v) Post-multiplying by AA† in (iv), we get AAD,† = BAD,†. Pre-multiplying by A†A

in AGD,∗A = AGD,∗B, we get A∗A = A∗B. Again, pre-multiplying A∗A = A∗B by

ADAA†(A†)∗, we otain AD,†A = AD,†B. Hence, A ≤†
D B.

(vi) Pre-multiplying AGD,∗A = AGD,∗B by (A†)∗A, we have A∗A = A∗B. Again, pre-

multiplying by AGDAA†(A†)∗ in A∗A = A∗B, we obtain AGD,†A = AGD,†B. Post-

multiplying AAGD,∗ = BAGD,∗ by (A†)∗A†, we get AAGD,† = BAGD,†.

If A is below B under the minus partial order and ∗ partial order, then A is below B

under a GD-star order.

Theorem 3.21. Let A,B ∈ C
m×m be such that ind(A) = k. If A ≤− B and A ≤∗ B,

then A ≤∗
GD B.

Proof. The hypothesis A ≤− B implies that

AA− = BA−, (3.11)

and

A−A = A−B. (3.12)

We know that AGD ∈ A{1}. From (3.11) and AGD ∈ A{1}, we obtain AAGD,∗ =

AAGDAA∗ = BAGDAA∗ = BAGD,∗, i.e., AAGD,∗ = BAGD,∗. Similarly, from A ≤∗ B, we

get AGD,∗A = AGD,∗B. Hence, A ≤∗
GD B.
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Using similar step as in the above one can prove the next result.

Corollary 3.22. Let A,B ∈ Cm×m be such that ind(A) = k. If A ≤GD B and A ≤∗ B,

then A ≤∗
GD B.

From A ≤GD B, we have AGDA = AGDB and AAGD = BAGD. Pre-multiplying

AGDA = AGDB by (AD)k+1Ak+1, we obtain (AD)k+1Ak+1 = (AD)k+1AkB, i.e., ADA =

ADB. Similarly, post-multiplying AAGD = BAGD by Ak+1(AD)k+1, we get AAD = BAD.

Therefore, A ≤D B. We conclude this section with the following remark.

Remark 3.7. If A ≤GD B, then A ≤D B.

3.3. Dual GD-star or star-GD matrices

In this section, we discus about the dual of a GD-star matrix. The proofs of a dual

GD-star matrix are similar to the proof of a GD-star matrix. Owing the similarity, we

deal with a few important results of a dual GD-star matrix. We will start this section

with the definition of a dual GD-star matrix.

Definition 3.3. Let A ∈ Cm×m and ind(A) = k. Let AGD ∈ A{GD}, a dual GD-star

matrix of A, denoted by A∗,GD, be an m×m matrix

A∗,GD = A∗AAGD.

Theorem 3.23. Let A ∈ Cm×m. Then, the system

X(A†)∗X = X, XAk = A∗Ak, and (A†)∗X = AAGD

has a solution of the form X = A∗AAGD, for every nonnegative integer k.

Lemma 3.24. Let A ∈ Cm×m, and ind(A) = k. If AGD ∈ A{GD}, then a dual GD-star

matrix X of the matrix A satisfies the following properties:

(i) (A†)∗XA = A.

(ii) XAk = A∗Ak+1AGD = A∗AGDAk+1.

(iii) XAA† = A∗.

(iv) (A†)∗XAk = Ak.

(v) AGD(A†)∗X = AGDAAGD.

(vi) X(A†)∗Ak = Ak.

(vii) X2AA† = XA∗.

(viii) XAX = (A∗A)2AGD.
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(ix) XA†AX = X2.

(x) (XA)∗ = XA.

(xi) (A†)∗X(A†)∗ = (A†)∗.

(xii) X(A†)∗ = A†A.

Theorem 3.25. Let A ∈ Cm×m be the form of (2.1) and ind(A) = k. If AGD ∈ A{GD},

then

A∗,GD = P

[
C∗ C∗C−k(T̂ ′ − T̂N−) + C∗SN−

S∗ S∗C−k(T̂ ′ − T̂N−) +N∗NN−

]
P ∗, (3.13)

where P is a unitary matrix and T̂ ′ − T̂N− = −CkSN− +

k−1∑

j=0

CjSNk−j−1(I −NN−).

3.4. GD-star-one matrices

In this subsection, we define a new class of matrices called GD ∗1 and investigate a few

of its properties. First we define GD ∗1 matrices as follows.

Definition 3.4. Let A ∈ Cm×m and ind(A) = k. For AGD ∈ A{GD}, a GD ∗1 matrix

of A, denoted by AGD,∗1, is an m×m matrix

AGD,∗1 = AGDA∗A.

An example that shows a GD-star matrix is different from a GD ∗1 matrix. Obviously,

a GD ∗1 of a matrix A ∈ Cm×m is also not unique.

Example 3.3. From Example 3.2, AGD =

[
1 a

0 b

]
is a GD inverse of A =

[
1 1

0 0

]
. Now,

AGD,∗1 = AGDA∗A =

[
1 a

0 b

][
1 0

1 0

][
1 1

0 0

]
=

[
1 + a 1 + a

b b

]
, AGD,∗ = AGDAA∗ =

[
2 0

0 0

]
and A∗AAGD =

[
1 a+ b

1 a+ b

]
. It is clear A∗,GD 6= AGD,∗1 6= AGD,∗.

Some properties of a GD ∗1 inverse are given below.

Lemma 3.26. Let A ∈ Cm×m, and ind(A) = k. If AGD ∈ A{GD}, then a GD ∗1 inverse

X of the matrix A satisfies the following properties:

(i) Ak+1X = AkA∗A.

(ii) XA† = AGDA∗.

(iii) Ak+1XA† = AkA∗.
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(iv) If A is EP, then AXA† = A∗.

(v) XAGDA = X.

(vi) XY = AGDA∗, where Y ∈ A{GD, †}.

(vii) XZ = AGDA∗AGD, where Z ∈ A{†, GD}.

(viii) Ak+1XY = AkA∗ where Y ∈ A{GD, †}.

Proof. (i) Ak+1X = Ak+1AGDA∗A = AkA∗A.

(ii) XA† = AGDA∗AA† = AGDA∗(A∗)†A∗ = AGDA∗.

(iii) Ak+1XA† = Ak+1AGDA∗AA† = AkA∗(A∗)†A∗ = AkA∗.

(iv) We have AA† = A†A. Then, AXA† = AAGDA∗AA† = AAGDA†AA∗AA† = AAGDAA†A∗AA† =

AA†A∗ = A†AA∗ = A∗.

(v) It is obvious.

(vi) Let Y = AGDAA†. Then, XY = AGDA∗AAGDAA† = AGDA∗AA† = AGDA∗.

(vii) Similar to the above part.

(viii) From (vi), we obtain XY = AGDA∗. Now, Ak+1XY = Ak+1AGDA∗ = AkA∗.

We conclude this section with an open problem.

Problem: Let A ∈ Cm×m with ind(A) = k > 1. Then, consider the matrix equations

AXA = A

XAX = X

Ak+1X = XAk+1 = Ak.

Under what conditions a solution of the above matrix equation exist? How does the

solution look like?

4. Conclusions

The notion of a GD-star matrix and its representation for a square matrix has been

introduced. Some properties of GD-star order have been presented. Some sufficient

conditions are obtained so that the triple reverse and forward-order laws for GD and

GD-star generalized inverses hold. The discussed results are useful for computation of

absorption law and to solve a linear system. These theories can also be studied in a ring

with involution and in a tensor setting. One may also look for an integral representation

of GD inverse and GD-star matrix in future research work.
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