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Abstract
Our aim in the present paper is to derive the closed-form solutions for the two fourth-
order difference equations

xn+1 = xn−2xn−3

axn + bxn−3
, n ≥ 0,

and

xn+1 = xn−2xn−3

−axn + bxn−3
, n ≥ 0,

with positive arbitrary real parameters a, b and arbitrary real initial conditions, as
well as study the qualitative behaviors for each. For the first equation, we show that
every admissible solution converges to a period-3 solution when a + b = 1. For the
second equation, we show that every admissible solution converges to zero if b > 2
when b2 ≥ 4a. When b2 < 4a, we show the existence of periodic solutions under
certain conditions.We introduce the forbidden sets as well as provide some illustrative
examples for the above-mentioned equations.
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1 Introduction

The interest in the theory of difference equations is progressing rapidly. Research in
this theory is carried out with three different approaches: quantitative, qualitative and
numerical. Quantitative study is carried out by determining the analytical solutions of
the equation, qualitative study is carried out by examining the behavior of the solutions
of the equation, and numerical study is carried out by determining the approximate val-
ues of the solution of the equation by various methods. Therefore, the study discussed
in this article can be seen as both a qualitative and a quantitative investigations of the
difference equation theory. Therefore, it can be seen as a detailed study in this respect.
Now let’s give a detailed background and motivation for the difference equation we
discuss in this article;

Elabbasy et al. [17] solved some difference equations. One of these equations is

xn+1 = xn−2xn−1

xn + xn−2
, n ≥ 0,

with positive real initial values.
In [25], Stević derived a representation of the general solution to the difference equa-
tion

xn+1 = xn−2xn−1

ǎxn + b̌xn−2
, n ≥ 0,

with real-valued parameters and real initial values.
For more on difference equations, see [1]–[16], [18]–[24] and the references cited
therein.
Motivated by the above-mentioned equations, we shall study the long-term behavior
of all admissible solutions for the two fourth-order difference equations

xn+1 = xn−2xn−3

axn + bxn−3
, n ≥ 0, (1.1)

and

xn+1 = xn−2xn−3

−axn + bxn−3
, n ≥ 0, (1.2)

with positive real parameters a, b and real initial values, in terms of the closed-form
solution to both.
Consider the difference equation

xn+1 = g(xn, xn−1, ..., xn−k), n ≥ 0, (1.3)

The good set of Eq. (1.3) is the set of all initial points for which the corresponding
solution {xn}∞n=−k is well-defined or admissible.
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2 The difference Eq. (1.1)

Equation (1.1) can be written as

xn−2

xn+1
= a

xn
xn−3

+ b, n ≥ 0. (2.1)

If we set

xn−3

xn
= wn

wn−1
, with w−1 = 1, n ≥ 0, (2.2)

we get

wn+1 − bwn − awn−1 = 0

During this section, suppose that

Ln = λn+1+ − λn+1−√
b2 + 4a

, n ≥ −1,

where

λ± = b

2
±

√
b2 + 4a

2
.

By solving Equation (2.2), we get the solution form for Equation (1.1).

Theorem 2.1 Every admissible solution for Equation (1.1) is of the form

xn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−2
∏ n−1

3
j=0

x−3L3 j+ax0L3 j−1
x−3L3 j+1+ax0L3 j

, n = 1, 4, ...,

x−1
∏ n−2

3
j=0

x−3L3 j+1+ax0L3 j
x−3L3 j+2+ax0L3 j+1

, n = 2, 5, ...,

x0
∏ n

3−1
j=0

x−3L3 j+2+ax0L3 j+1
x−3L3 j+3+ax0L3 j+2

, n = 3, 6, ....

(2.3)

Proof We can write the solution formula (2.3) as

x3m+i = x−3+i

m∏

j=0

Mj,i , i = 1, 2, 3 and m ≥ 0,

where

Mj,i = x−3L3 j+i−1 + ax0L3 j+i−2

x−3L3 j+i + ax0L3 j+i−1
, i = 1, 2, 3 and j ≥ 0.

123



1422 F. H. Gümüş, R. Abo-Zeid

The proof is by induction on m. For m = 0,

x1 = x−2M0,1 = x−2
x−3L0 + ax0L−1

x−3L1 + ax0L0
= x−2x−3

ax0 + bx−3
,

x2 = x−1M0,2 = x−1
x−3b + ax0

x−3(b2 + a) + ax0b

= x−1

b + a x1
x−2

= x−1x−2

ax1 + bx−2
,

x3 = x0M0,3 = x0
x−3(b2 + a) + ax0b

x−3(b(b2 + 2a)) + ax0(b2 + a)

= x0
b(ax0 + bx−3) + ax−3

b2(ax0 + bx−3) + a(ax0 + bx−3) + abx−3

= x0
b + a x−3

ax0+bx−3

b2 + ab x−3
ax0+bx−3

+ a

= x0
b + a x1

x−2

b2 + a + ab x1
x−2

= x0
ax1 + bx−2

ax−2 + b(ax1 + bx−2)

= x0x−1

ax2 + bx−1
.

Suppose that for m ≥ 1, the solution form (2.3) is satisfied.
Then

x3m+1 = x3m−2x3m−3

ax3m + bx3m−3
= x−2

∏m−1
j=0 Mj,1x0

∏m−2
j=0 Mj,3

ax0
∏m−1

j=0 Mj,3 + bx0
∏m−2

j=0 Mj,3

= x−2
∏m−1

j=0 Mj,1

aMm−1,3 + b
.

But we have

aMm−1,3 + b = a
x−3L3m−1 + ax0L3m−2

x−3L3m + ax0L3m−1
+ b

= x−3(aL3m−1 + bL3m) + ax0(aL3m−2 + bL3m−1)

x−3L3m + ax0L3m−1

= x−3L3m+1 + ax0L3m

x−3L3m + ax0L3m−1
= 1

Mm,1
.

Then
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On the qualitative and quantitative analysis for two fourth... 1423

x3m+1 = x−2
∏m−1

j=0 Mj,1

aMm−1,3 + b
= x−2

m∏

j=0

Mj,1.

The proof for x3m+2 and x3m+3 is similar and is omitted.
The proof is completed. ��

The forbidden set for Equation (1.1) is

� =
∞⋃

n=0

{(x0, x−1, x−2, x−3) ∈ R
4 : x−3 = −ax0

Ln−1

Ln
}

∪
3⋃

t=0

{(x0, x−1, x−2, x−3) ∈ R
4 : x−t = 0}.

Theorem 2.2 Assume that {xn}∞n=−3 is an admissible solution to Equation (1.1). Then
we have the following:

(1) If a + b > 1, then the solution {xn}∞n=−3 converges to zero.
(2) If a + b = 1, then the solution {xn}∞n=−3 converges to a period-3 solution.
(3) If a + b < 1, then the solution {xn}∞n=−3 is unbounded.

Proof We have that

Mj,i = x−3L3 j + ax0L3 j−1

x−3L3 j+1 + ax0L3 j
→ 1

λ+
as j → ∞, i ∈ {1, 2, 3}.

(1) If a + b > 1, then for each i ∈ {1, 2, 3}

Mj,i → 1

λ+
< 1 as j → ∞.

Now suppose that 1 − 1
λ+ > ε > 0. Then for each i ∈ {1, 2, 3} there exists

ji ∈ N, Mj,i < 1
λ+ + ε for all j ≥ ji .

If we take j0 = max{ j1, j2, j3}, then

|x3m+i | < |x−3+i ||
j0−1∏

j=0

Mj,i |( 1

λ+
+ ε)m− j0+1

Therefore, |x3m+i | → 0 as m → ∞, i ∈ {1, 2, 3}.
(2) Suppose that a + b = 1, then for each i ∈ {1, 2, 3}

Mj,i → 1 as j → ∞.

Suppose that 1 > ε > 0. Then for each i ∈ {1, 2, 3} there exists j ′′i ∈ N,
Mj,i > 0 for all j ≥ j ′′i .
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1424 F. H. Gümüş, R. Abo-Zeid

If we take j ′′0 = max{ j ′′1 , j ′′2 , j ′′3 }, then

x3m+i = x−3+i

j ′′0 −1
∏

j=0

Mj,i

(

e
∑m

j= j ′′0
lnMj,i

)

.

Now, consider the series

ln
1

Mj,i
= ln

x−3L3 j+i + ax0L3 j+i−1

x−3L3 j+i−1 + ax0L3 j+i−2
.

But for each i ∈ {1, 2, 3}, we have

| lnMj+1,i

lnMj,i
| → −λ3− as j → ∞.

This implies that, the solution {xn}∞n=−3 converges to the period-3 solution

{..., μ1, μ2, μ3, μ1, μ2, μ3, ...},

where

μi = x−3+i

j ′′0 −1
∏

j=0

Mj,i

(

e
∑m

j= j ′′0
lnMj,i

)

, i ∈ {1, 2, 3}.

(3) If a + b < 1, then for each i ∈ {1, 2, 3}

Mj,i → 1

λ+
> 1 as j → ∞.

Now suppose that 1
λ+ − 1 > ε > 0. Then for each i ∈ {1, 2, 3} there exists

j ′i ∈ N, Mj,i > 1
λ+ − ε for all j ≥ j ′i .

If we take j ′0 = max{ j ′1, j ′2, j ′3}, then

|x3m+i | > |x−3+i ||
j ′0−1
∏

j=0

Mj,i |( 1

λ+
− ε)m− j ′0+1.

Therefore, for each i ∈ {1, 2, 3}, we have unbounded subsequences
{x3m+i }∞m=−1.

This completes the proof. ��
We end this section with two illustrative examples.
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On the qualitative and quantitative analysis for two fourth... 1425

Fig. 1 xn+1 = xn−2xn−3
0.4xn+xn−3

Example 1 Figure1. shows that, if a = 0.4, b = 1 (a + b = 1.4 > 1), then a solution
{xn}∞n=−3 of Equation (1.1) with x−3 = 0.2, x−2 = −1, x−1 = 1.5 and x0 = 0.3
converges to zero.

Example 2 Fig. 2. shows that, if a = 0.26, b = 0.74 (a + b = 1), then a solution
{xn}∞n=−3 of Equation (1.1) with x−3 = −1.2, x−2 = 3, x−1 = 2.5 and x0 = 2.3
converges to the period-3 solution

{..., 12.0080, 1.3885, 2.5984, 12.0080, 1.3885, 2.5984, ...}.

Example 3 Fig. 3. shows that, if a = 0.4, b = 1 (a + b = 0.5 < 1), then a solution
{xn}∞n=−3 of Equation (1.1) with x−3 = 1.2, x−2 = 1.6, x−1 = −1.5 and x0 = 1.1 is
unbounded.

3 The difference equation (1.2)

The difference equation (1.2) can be written as

xn−2

xn+1
= −a

xn
xn−3

+ b, n ≥ 0. (3.1)

As in Section (2), we can get

wn+1 − bwn + awn−1 = 0, n ≥ 0, (3.2)
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1426 F. H. Gümüş, R. Abo-Zeid

Fig. 2 xn+1 = xn−2xn−3
0.26xn+0.74xn−3

Fig. 3 xn+1 = xn−2xn−3
0.3xn+0.2xn−3

where

xn−3

xn
= wn

wn−1
, with w−1 = 1.
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If we set

xn−3

xn
= wn

wn−1
, with w−1 = 1, n ≥ 0, (3.3)

Case b2 > 4a
When b2 > 4a, Equation (3.2) provides us with eigenvalues

λ1,2 = b ± √
b2 − 4a

2
. (3.4)

Solving for wn , we can find the solution for Equation (1.2).
We give the following result without proof; its proof is similar to that of Theorem
(2.1).

Theorem 3.1 Every admissible solution for Equation (1.2) is of the form

xn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x−2
∏ n−1

3
j=0

x−3L ′
3 j+ax0L ′

3 j−1

x−3L ′
3 j+1+ax0L ′

3 j
, n = 1, 4, ...,

x−1
∏ n−2

3
j=0

x−3L ′
3 j+1+ax0L ′

3 j

x−3L ′
3 j+2+ax0L ′

3 j+1
, n = 2, 5, ...,

x0
∏ n

3−1
j=0

x−3L ′
3 j+2+ax0L ′

3 j+1

x−3L ′
3 j+3+ax0L ′

3 j+2
, n = 3, 6, ...,

(3.5)

where

L ′
n = λn+1

1 − λn+1
2√

b2 + 4a
, n ≥ −1.

When b2 > 4a, the forbidden set for Equation (1.2) is

�1 =
∞⋃

n=0

{(x0, x−1, x−2, x−3) ∈ R
4 : x−3 = ax0

L ′
n−1

L ′
n

}

∪
3⋃

i=0

{(x0, x−1, x−2, x−3) ∈ R
4 : x−i = 0}.

The following result is the main result when b2 > 4a.

Theorem 3.2 Assume that {xn}∞n=−3 is an admissible solution to Equation (1.2). Then
we have the following:

(1) If b > a + 1, then the solution {xn}∞n=−3 converges to zero.
(2) If b = a + 1, then we have the following:

(a) If b > 2, then the solution {xn}∞n=−3 converges to zero.
(b) If b < 2, then the solution {xn}∞n=−3 converges to a period-3 solution.

(3) If b < a + 1, then we have the following:
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1428 F. H. Gümüş, R. Abo-Zeid

(a) If b > 2, then the solution {xn}∞n=−3 converges to zero.
(b) If b < 2, then the solution {xn}∞n=−3 is unbounded.

Proof The solution formula (3.5) can be written as

x3m+t = x−3+t

m∏

j=0

M ′
j,t , t = 1, 2, 3 and m ≥ 0,

where

M ′
j,t = x−3L ′

3 j+t−1 + ax0L ′
3 j+t−2

x−3L ′
3 j+t + ax0L ′

3 j+t−1
, t = 1, 2, 3 and j ≥ 0.

The eigenvalues in (3.4) satisfy

λ2 <
b

2
< λ1 < b.

(1) Suppose that b > a + 1. Then for each t = 1, 2, 3 we get

M ′
j,t = x−3L ′

3 j+t−1 + ax0L ′
3 j+t−2

x−3L ′
3 j+t + ax0L ′

3 j+t−1
→ 1

λ1
< 1 as j → ∞.

The remainder is similar to that in Theorem 2.2(1).
(2) Suppose that b = a + 1.

(a) When b > 2, we get λ2 = 1 < λ1. This implies that for each t = 1, 2, 3

M ′
j,t = x−3L ′

3 j+t−1 + ax0L ′
3 j+t−2

x−3L ′
3 j+t + ax0L ′

3 j+t−1
→ 1

λ1
< 1 as j → ∞.

The remainder is similar to that in Theorem 2.2(1).
(b) When b < 2, we get λ1 = 1. This implies that for each t = 1, 2, 3

M ′
j,t = x−3L ′

3 j+t−1 + ax0L ′
3 j+t−2

x−3L ′
3 j+t + ax0L ′

3 j+t−1
→ 1

λ1
= 1 as j → ∞.

The remainder is similar to that in Theorem 2.2(2).

(3) Suppose that b < a + 1.

(a) When b > 2, we get λ2 > 1. This implies that for each t = 1, 2, 3

M ′
j,t = x−3L ′

3 j+t−1 + ax0L ′
3 j+t−2

x−3L ′
3 j+t + ax0L ′

3 j+t−1
→ 1

λ1
<

1

λ2
< 1 as j → ∞.

The remainder is similar to that in Theorem 2.2(1).
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Fig. 4 xn+1 = xn−2xn−3−0.6xn+1.56xn−3

(b) When b > 2, we get λ1 < 1. This implies that for each t = 1, 2, 3

M ′
j,t = x−3L ′

3 j+t−1 + ax0L ′
3 j+t−2

x−3L ′
3 j+t + ax0L ′

3 j+t−1
→ 1

λ1
> 1 as j → ∞.

The remainder is similar to that in Theorem 2.2(3).

��
Example 4 Fig. 4. shows that, if a = 0.6, b = 1.56 (b2 > 4a, b < a + 1 and
b < 2), then a solution {xn}∞n=−3 of Equation (1.2) with x−3 = −0.7, x−2 = −3.5,
x−1 = −1.5 and x0 = 2 is unbounded.

Example 5 Fig. 5. shows that, if a = 0.9, b = 1.9 (b2 > 4a, b = a + 1 and b < 2),
then a solution {xn}∞n=−3 of Equation (1.2) with x−3 = −1.5, x−2 = 1.1, x−1 = −2
and x0 = −0.8 converges to the period-3 solution

{...,−0.5471,−1.1794,−0.5246,−0.5471,−1.1794,−0.5246, ...}.

Example 6 Fig. 6. shows that, if a = 1, b = 2.1 (b2 > 4a, b > a + 1), then a solution
{xn}∞n=−3 of Equation (1.2) with x−3 = −1.2, x−2 = 2, x−1 = −3.3 and x0 = 0.7
converges to zero.

Example 7 Fig. 7. shows that, if a = 1.2, b = 2.2 (b2 > 4a, b = a + 1 and b > 2),
then a solution {xn}∞n=−3 of Equation (1.2) with x−3 = 4, x−2 = −2, x−1 = 3.3 and
x0 = −1.7 converges to zero.
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1430 F. H. Gümüş, R. Abo-Zeid

Fig. 5 xn+1 = xn−2xn−3−0.9xn+1.9xn−3

Example 8 Fig. 8. shows that, if a = 1.4, b = 2.38 (b2 > 4a, b < a + 1 and b > 2),
then a solution {xn}∞n=−3 of Equation (1.2) with x−3 = 3, x−2 = 1.5, x−1 = −4 and
x0 = −5 converges to zero.

Example 9 Fig. 9. shows that, if a = 0.08, b = 1.08 (b2 > 4a, b = a + 1 and b < 2),
then a solution {xn}∞n=−3 of Equation (1.2) with x−3 = 1, x−2 = −3, x−1 = 4 and
x0 = −2 converges to the period-3 solution

{...,−2.4191, 3.9390,−1.9976,−2.4191, 3.9390,−1.9976, ...}.

Case b2 = 4a
The characteristic equation associated with Equation (3.2) in this case is

λ1 = b

2
= λ2. (3.6)

Solving for wn , we get the form of the solution for Equation (1.2).

Theorem 3.3 Every admissible solution for Equation (1.2) is of the form

xn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−2(
2
b )

n+2
3

∏ n−1
3

j=0
2x−3(3 j+1)−bx0(3 j)

2x−3(3 j+2)−bx0(3 j+1) , n = 1, 4, ...,

x−1(
2
b )

n+1
3

∏ n−2
3

j=0
2x−3(3 j+2)−bx0(3 j+1)
2x−3(3 j+3)−bx0(3 j+2) , n = 2, 5, ...,

x0(
2
b )

n
3
∏ n

3−1
j=0

2x−3(3 j+3)−bx0(3 j+2)
2x−3(3 j+4)−bx0(3 j+3) , n = 3, 6, ....

(3.7)
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Fig. 6 xn+1 = xn−2xn−3−xn+2.1xn−3

Fig. 7 xn+1 = xn−2xn−3
1.2xn+2.2xn−3

We can write the solution form (3.7) as

x3m+t = x−3+t (
2

b
)m+1

m∏

j=0

N j,t , t = 1, 2, 3 and m ≥ 0,
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Fig. 8 xn+1 = xn−2xn−3−1.4xn+2.38xn−3

Fig. 9 xn+1 = xn−2xn−3−0.08xn+1.08xn−3

where

N j,t = 2x−3(3 j + t) − bx0(3 j + t − 1)

2x−3(3 j + t + 1) − bx0(3 j + t)
, t = 1, 2, 3 and j ≥ 0.
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When b2 = 4a, the forbidden set for Equation (1.2) is

�2 =
∞⋃

n=0

{(x0, x−1, x−2, x−3) ∈ R
4 : x−3 = b

x0
2

n

n + 1
}

∪
3⋃

i=0

{(x0, x−1, x−2, x−3) ∈ R
4 : x−i = 0}.

When b2 = 4a, the main result is the following:

Theorem 3.4 Assume that {xn}∞n=−3 is an admissible solution to Equation (1.2). The
following statements are true:

(1) If b > 2, then the solution {xn}∞n=−3 converges to zero.
(2) If b < 2, then the solution {xn}∞n=−3 is unbounded.
(3) If b = 2, then the solution {xn}∞n=−3 converges to zero.

Proof The proof of (1) and (2) is a direct consequence.
For (3), suppose that b = 2, then for each t ∈ {1, 2, 3}

N j,t → 1 as j → ∞.

Suppose that 1 > ε > 0. Then for each t ∈ {1, 2, 3} there exists jt ∈ N, such that
Mj,t > 0 for all j ≥ jt .
If we take j0 = max{ j1, j2, j3}, then

x3m+t = x−3+t

j0−1∏

j=0

N j,t

(
e
∑m

j= j0
ln N j,t

)
.

Now, consider the series

ln
1

N j,t
= ln

x−3(3 j + t + 1) − x0(3 j + t)

x−3(3 j + t) − x0(3 j + t − 1)
.

The divergence of the series
∑∞

j= j0 ln
1

N j,t
(for each t ∈ {1, 2, 3}) is obtained by

comparing it with the series
∑∞

j= j0
1

(3 j+t)(x−3−x0)+x0
.

Therefore, for each t ∈ {1, 2, 3} we get

x3m+t → 0 as j → ∞,

and the result follows. ��
Example 10 Fig. 10. shows that, if a = 0.25, b = 1 (b2− = a and b < 2), then a
solution {xn}∞n=−3 of Equation (1.2) with x−3 = 1.2, x−2 = 1.4, x−1 = −0.9 and
x0 = −2.4 is unbounded.
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Fig. 10 xn+1 = xn−2xn−3−0.25xn+xn−3

Fig. 11 xn+1 = xn−2xn−3−xn+2xn−3

Example 11 Fig. 11. shows that, if a = 1, b = 2 (b2 = 4a and b = 2), then a solution
{xn}∞n=−3 of Equation (1.2) with x−3 = 4.2, x−2 = −1.4, x−1 = 1.9 and x0 = −2.4
converges to zero.

Case b2 < 4a
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When b2 < 4a, Equation (3.2) provides us with eigenvalues

λ1 = b

2
+ i

√
4a − b2

2
and λ2 = b

2
− i

√
4a − b2

2
. (3.8)

Solving for wn , the solution of Equation (3.2) is

wn = a
n
2

sin β
(
x−3

x0
sin(n + 1)β − √

a sin nβ), n ≥ −1.

Using wn , we get the solution form for Equation (1.2).

Theorem 3.5 Every admissible solution for Equation (1.2) is of the form

xn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x−2
∏ n−1

3
j=0

1√
a

x−3 sin(3 j+1)β−√
ax0 sin 3 jβ

x−3 sin(3 j+2)β−√
ax0 sin(3 j+1)β

, n = 1, 4, ...,

x−1
∏ n−2

3
j=0

1√
a
x−3 sin(3 j+2)β−√

ax0 sin(3 j+1)β
x−3 sin(3 j+3)β−√

ax0 sin(3 j+2)β
, n = 2, 5, ...,

x0
∏ n

3−1
j=0

1√
a
x−3 sin(3 j+3)β−√

ax0 sin(3 j+2)β
x−3 sin(3 j+4)β−√

ax0 sin(3 j+3)β
, n = 3, 6, ....

(3.9)

where β = tan−1
√
4a−b2
b ∈]0, �

2 [.

When b2 < 4a, the forbidden set for Equation (1.2) is

�3 =
∞⋃

n=0

{(x0, x−1, x−2, x−3) ∈ R
4 : x−3 = √

ax0
sin nβ

sin(n + 1)β
}

∪
3⋃

i=0

{(x0, x−1, x−2, x−3) ∈ R
4 : x−i = 0}.

The solution form for Equation (1.2) tells us the following:
When a < 1, any admissible solution is unbounded.
When a > 1, any admissible solution to Equation (1.2) is converging to zero.
When a = 1, under certain conditions we have periodic solutions; that we shall show
in the following result:

Theorem 3.6 Assume that a = 1 and let β = p
q π (p and q are relatively positive

prime integers) such that 0 < p <
q
2 . Then every admissible solution {xn}∞n=−3 of

Equation (1.2) with

q−1∏

j=0

x−3 sin(3 j + t)β − √
ax0 sin(3 j + t − 1)β

x−3 sin(3 j + t + 1)β − √
ax0 sin(3 j + t)β

= −1, t = 1, 2, 3,

is a 6q-periodic.
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Proof When a = 1, we can write solution form (3.5) as

x3m+t = xt−3

m∏

j=0

S j,t , t = 1, 2, 3,

where

S j,t = x−3 sin(3 j + t)β − x0 sin(3 j + t − 1)β

x−3 sin(3 j + t + 1)β − x0 sin(3 j + t)β
.

For each t = 1, 2, 3, we can see that

S j+q,t = S j,t , j ≥ 0.

Then

x3(m+2q)+t = xt−3

m+2q∏

j=0

S j,t = xt−3(−1)(
2q−1∏

j=q

S j,t )(

m+2q∏

j=2q

S j,t )

= −xt−3(

q−1∏

j=0

S j+q,t )(

m∏

j=0

S j+2q,t ) = x3m+t , t = 1, 2, 3.

��
Example 12 Fig. 12. shows that, if a = 0.5, b = 1.2 (b2 < 4a and a < 1), then a
solution {xn}∞n=−3 of Equation (1.2) with x−3 = 2, x−2 = −2.5, x−1 = −1.5 and
x0 = 4.3 is unbounded.

Example 13 Fig. 13. shows that, if a = 1, b = √
2 (b2 < 4a and a = 1), then a

solution {xn}∞n=−3 of Equation (1.2) with x−3 = 1.8, x−2 = −2.5, x−1 = −1.2 and
x0 = 0.6 is periodic with prime period 24.
In this example, we have β = π

4 , p = 1, q = 4 and
∏3

j=0 S j,t = −1 for each
t = 1, 2, 3.
(This is an illustrative example for Theorem (3.6)).

Conclusions

In this work, the solution forms for the two difference equations

xn+1 = xn−2xn−3

±axn + bxn−3
, n ≥ 0,

where the parameters are positive real numbers and the initial values x−3, x−2, x−1,
x0 are arbitrary real numbers are obtained.
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Fig. 12 xn+1 = xn−2xn−3−0.5xn+1.2xn−3

Fig. 13 xn+1 = xn−2xn−3
−xn+√

2xn−3

We also studied the long-term behavior of the solutions for each equation.
For the equation

xn+1 = xn−2xn−3

axn + bxn−3
, n ≥ 0,

we showed that every admissible solution tends to a period-3 solution when a+b = 1.
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For the equation

xn+1 = xn−2xn−3

−axn + bxn−3
, n ≥ 0,

we obtained a result for the periodicity of its solutions when b2 < 4a and provide an
illustrative example for this case.
We conjecture that the obtained results can be satisfied for themore extended equation

xn+1 = xn−k+1xn−k

axn + bxn−k
, n ≥ 0,

with a positive integer k, real-valued parameters and initial values.
Future work: Deriving the solution and studying the global behavior of the solutions
of the difference equation

xn+1 = xn−2xn−3

anxn + bnxn−3
, n ≥ 0,

where {an}∞n=0 and {bn}∞n=0 are p-periodic sequences with p ≥ 2, and real initial
conditions will be considered in future work.
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