
Journal of Applied Mathematics and Computing (2024) 70:1499–1521
https://doi.org/10.1007/s12190-024-02015-5

ORIG INAL RESEARCH

Stochastic behavior of within-host progression in primary
dengue infection

Md Hamidul Islam1 ·M. A. Masud2,3 · Eunjung Kim2

Received: 20 November 2023 / Revised: 24 January 2024 / Accepted: 6 February 2024 /
Published online: 28 February 2024
© The Author(s) 2024

Abstract
Dengue is a mosquito-borne viral infection that triggers a series of intracellular events
in the host immune system, which may result in an invasion of the virus into the host
and cause illness with a spectrum of severity. Depending on the degree of the infection,
mild to severe clinical symptoms appear when the T-cell and B-cell-initiated immune
responses fail to eradicate the virus particles and subsequently become compromised.
Here, we propose a mathematically tractable simple model that exhibits important
biological features of dengue infection. Dynamical analysis of our model explores the
factors influencing viral persistence in the body over an extended period. To investi-
gate plausible variability in viral dynamics in different hosts, we perform stochastic
simulations of our model using Gillespie’s algorithm. Our simulation results recapit-
ulate the distribution of the intrinsic incubation period, daily viral load, and the day of
peak viremia. In addition, we observe that the invasion probability of the virus into the
host is correlated with the initial virus population injected by the mosquito. However,
considering the biting behavior of Aedes mosquitoes, a lower initial virus injection
could end up increasing the epidemic potential of the virus.
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1 Introduction

Dengue is one of the most prevalent vector-borne viral infections in tropical and
subtropical regions. The risk of dengue outbreaks has recently increased worldwide
[1] owing to climate change caused by global warming [2, 3]. The virus has four
serotypes: from dengue virus 1 (DENV1) to dengue virus 4 (DENV4). Generally,
infection by any of the four strains appears first as a febrile illness with headache,
muscle pain, and joint pain, which is characterized as a primary infection. During
the initiation of the primary infection, the viral particles invade the bloodstream and
start infecting monocytes, in addition to proliferating. When a human is infected with
DENV, the body’s innate and adaptive immune responses function together [4]. When
the immune system detects an increase in the number of infected cells, it activates
T-cells, which then activate B-cells. T-cells and B-cells combat the infected cells and
viral particles.

Both types of immune cells control the infection; however, their mechanisms of
action are different. T-cells produce a group of cytokines that suppress infection and
recognize and eliminate infected cells [5, 6]. By contrast, B-cells produce antibod-
ies that target and neutralize dengue virus particles [4]. In addition, B-cells produce
antibodies that remain preserved as memory and can be activated in an extremely
short period of time if exposed to the same virus a second time. Therefore, immune
memory reacts to a second exposure to the same virus more quickly and extensively.
However, if a heterologous strain of dengue virus infects, it causes more severe symp-
toms, including life-threatening shock, compared with the primary infection. This is
known as a secondary infection. Whether the two serotypes result in lifelong immu-
nity or whether subsequent infections may occur remains unclear [4, 7], the entire
immune mechanism is complex and remains poorly understood. Owing to the coex-
istence of several strains and the cross-immunity among them, developing a vaccine
and implementing it effectively is challenging. Furthermore, nomedication is available
for treating dengue fever; only medications to relieve the symptoms are available. To
overcome these limitations, the gaps in dengue pathophysiology must be elucidated.
Mathematical models can be used to better understand immune mechanisms and may
have significant utility in the development of therapeutic hypotheses.

Numerous mathematical modeling studies have been performed to investigate the
transmission dynamics of dengue from mosquitoes to humans and subsequently back
tohumansviamosquitoes [3, 8–11]. Severalmathematical studies have investigated the
in-host progression ofDENV [12–15]. However, these studiesmodeled infectionswith
multiple serotypes andprimarily investigated the role of antibodies, acquiredduring the
primary infection, in enhancing disease severity during the secondary infection. In [4],
the authors presented amathematicalmodel describing the adaptive immunity initiated
by T-cells in primary dengue infections. These results demonstrate that cytokine-
mediated viral clearance plays a critical role in viral dynamics. A couple of recent
studies developed stochastic models for both primary and secondary dengue infections
[16, 17]. In particular, Nguyen et al. [17] proposed a sophisticated stochastic model
for secondary dengue infections. The model captures detailed biology of the immune
mechanisms, and the results summarize the key characteristics of the immune response
that differ from primary to secondary dengue infection. Although the study offers
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helpful details about the latter phases of infection, the early dynamics before the
beginning of viremia are not sufficiently covered. For instance, the incubation period
before the beginning of viremia is not taken into account by the model. Additionally,
the invasion probability was not calculated in the study. This is crucial because not
every infected mosquito bite causes viremia, making it feasible that the virus may
not always be able to successfully invade a host. The study also lacks a thorough
dynamical characterization of the interaction between the viral particle and immune
cells.

The proposed model in this study is relatively simple and easy to conduct rigorous
mathematical analysis; further, it can capture all the essential features observed in
primary dengue infections. This study aimed to explore the following key questions.
What are the daily viral loads in the body during the primary infection? How soon does
the viral load start to increase; that is, and what is the incubation period of the virus?
What is the time of peak viremia? Does the establishment of viremia depend on the
initial viral load injected bymosquitoes? The answers to these questions should be very
useful in taking personal and clinical measures for dengue patients. This information
should also be useful in developing more sophisticated mathematical models of the
in-host transmission of dengue infection. However, the answers to these questions
are random as they may vary significantly from person to person. Viral dynamics is
expected to be highly dependent on the immune system and initial viral load. The
temperature may also have a significant influence on dynamics [18].

We first introduce a deterministic nonlinear ordinary differential equation (ODE)
model describing the in-host progression of primary DENV infection. Primarily, the
ODE model was analyzed to explore the factors influencing viral persistence in the
body for an extended period. Subsequently, stochastic simulations of the model were
performed using Gillespie’s direct simulation algorithm [19] and the results were
compared with those of the deterministic model. The stochastic model allows for
incorporating uncertainties in the conditions that vary from person to person. The
remainder of this paper is organized as follows. Section2 introduces the proposed
mathematical model and presents the mathematical analyses of the model. Section3
presents the results of the deterministic model, and Sect. 4 presents the stochastic
model and its results. Finally, Sect. 5 summarizes and discusses the results in the
context of biology.

2 Mathematical model

2.1 Model formulation

The host cells were classified into susceptible (S) and infected (I ) classes. The suscep-
tible cells become infected because of contactwith the free virus (V ), which ismodeled
as βSV . Susceptible cells are assumed to be produced by the body at a constant rate
� and die at a natural death rate μS . The infected cells die at a rate μI and release
mature virus particles, which aremodeled as pμI I . The virus particles naturally decay
at a rate μV . To neutralize infection, the immune system produces infection-specific
immune cells, comprising T-cells and B-cells. In this model, the two types of immune
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1502 M. Islam et al.

Fig. 1 Model schematic diagram. Schematic depiction of the flow of cells between the compartments. The
dashed red arrow indicates the contact of healthy cells with virus particles, the solid red arrows demonstrate
the infection of healthy cells and production of virus particles from dead infected cells, the dashed blue lines
demonstrate natural decay as well as activation of effector cells, and the solid blue lines demonstrate the
suppression of infection because of the anti-inflammatory effects of activated effector cells. (Color figure
online)

cells were not distinguished, although the operating mechanisms of the two cell types
are different. These cells were grouped as effector cells (E). Because this study is con-
cerned with primary dengue infection, the antibodies that remain preserved as immune
memory was not modeled. Rather, the activation of effector cells was modeled (E) at
a rate of λI , which controls the infection either by killing the infected cells at a rate
δ I E or neutralizing the virus particles at a rate γ V E . Figure1 summarizes the cellular
dynamics described above. Applying the law of mass of action, the aforementioned
cellular dynamics can be described by the following system of ordinary differential
equations

dS

dt
= � − βSV − μS S,

d I

dt
= βSV − μI I − δ I E,

dV

dt
= pμI I − μV V − γ V E,
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dE

dt
= λI − μE E, (1)

with the initial conditions S(0) ≥ 0, E(0) ≥ 0, V (0) ≥ 0, and I (0) ≥ 0.

2.2 Mathematical analysis

The system was studied in the following biologically feasible regions.

� =
{
(S, I , V , E) ∈ R4+|0 ≤ S ≤ S̄; 0 ≤ I ≤ Ī ; 0 ≤ V ≤ V̄ ; and 0 ≤ E ≤ Ē

}

because the concentration and number of cells were not negative. The parameters over
the bars represent their upper bounds. In addition, all parameters involved in the model
were assumed positive. The infection-free equilibrium of the system (1), E0 is given
by E0 = ( �

μS
, 0, 0, 0). Herein, this equilibrium was characterized as infection-free

because it contains neither viruses nor infected cells.

2.2.1 Virus reproductive number

Following the method and notations developed in [20], we obtain F =
(

βSV
0

)
and

V =
(

μI I + δ I E
−pμI I + μV V + γ V E

)
.

At E0 = ( �
μS

, 0, 0, 0), the Jacobian of F and V is reduced to F0 =
(
0 β�

μS

0 0

)
and

V0 =
(

μI 0
−pμI μV

)
, respectively.

The next-generation matrix K can be obtained using F0V
−1
0 , which is expressed

by K =
(

β�p
μSμV

β�
μSμV

0 0

)
.

The spectral radius of K provides the virus reproductive number χv = pβ�
μSμV

.
Notably, the viral reproductive number represents the average number of newly pro-
duced viral particles through infecting a susceptible cell in the lifetime of a single
virus particle right after invading the host blood.

χv = 1

μV
× �

μS
β × p

= average lifetime of a virus particle × per-capita rate of infecting susceptible cells ×
number of viral offspring released per dead infected cell .

Therefore, the expression for χv is well-defined.

123
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2.2.2 Equilibrium points and their stability criterion

Theorem 1 The infection-free equilibrium E0 is locally asymptotically stable forχv <

1.

Theorem 2 System (1) possesses a unique diseased equilibrium E1, which exists only
when χv > 1. Also, it is locally asymptotically stable when exists.

Theproofs theorems1 and2 are shown in details inAppendixAandB respectively. The
local stability of the infection-free equilibrium was analyzed using Jacobian analysis.
However, due to complexity in nature, the local stability of the diseased equilibrium
was analyzed using the Monte Carlo method [21, 22] (see Appendix B).

The global stability of the equilibrium points was also confirmed. Theorems and
proofs related to the global stability of the infection-free and diseased equilibrium
points can be found in Appendix C.

3 Deterministic simulations

Thus far, the model was analyzed to prove the positivity of the solution. Additionally,
χv and the equilibrium points were derived and their stability was tested. To further
understand the propagation of the viral load in the host, the system was numerically
solved with a known set of model parameters. The MATLAB routine ODE45 [24]
was used to solve the system (1) numerically. The parameter and initial values of
the variables used in the simulations are listed in Table 1. Figure 9 in Appendix D
shows that the virus cannot invade the host immune system and establish infection
a favorable outcome is obtained when the value of χv is less than one. By contrast,
viremia is established after 4–6 days of infection if the value of χv is greater than one,
which demonstrates the dynamics we discussed in the previous section. The figure
shows that the amount of virus increased slowly at the beginning for approximately 3
days. This period was defined as the incubation period because the symptoms are not
expected to appear with a low viral load. Following the incubation period, the viral
load suddenly increased to a maximum value with a peak viral load around day 7.5
since infection. Subsequently, the load decreases to zero around day 11 as the immune
system clears the infection.

3.1 Inefficient effector cells suppression

In the proposed model, the anti-inflammatory roles of both T and B-cells, as character-
ized by the parameters δ and γ , respectively, are expected to play a significant role in
disease dynamics. However, the sensitivity analysis, shown in Fig. 10, demonstrates
that the PRCC indices of the parameters associated with these biological processes
are extremely low. Essentially, the PRCC indices of these parameters indicate that
they have an extremely low impact on model outcomes. To investigate the reasons
for this, the maximum viral loads were calculated as a function of β and δ, as shown
in the left panel of Fig. 2. This figure shows that the maximum viral load is mainly
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1506 M. Islam et al.

Fig. 2 Weak anti-inflammatory effects. Maximum viral load (left) and the amount of time required for the
maximum viral load in the body (right) as functions of β and δ, respectively. Notably, β represents the
transmission rate, and δ represents the clearance rate of infected cells by the anti-inflammatory effect of
effector cells (T and B-cells)

dominated by the value of β. However, a large value of δ seems to have a negligible
impact on the maximum viral load. To investigate this further, the time required to
reach the maximum viral load (peak viremia time) was calculated as a function of β

and δ, as shown in the right panel of Fig. 2. This figure shows that the peak viremia
time is nearly independent of the value of δ when β is large. By contrast, when the
value of β is relatively small, a large value of δ appears to have a low impact on the
peak viremia time. These combinations of β and δ tend to produce unrealistic peak
viremia times when considering that the typical incubation period of DENV infection
is approximately 4–7 d, and then approximately 7 d of viral load with a maximum
load around the middle days [18]. Similar phenomena were observed corresponding to
combinations of β and γ as well as β and λ (figures omitted). These analyses suggest
that the anti-inflammatory properties of B and T cells are not highly effective at sup-
pressing infection when β is large, indicating that viral infectivity is the dominating
factor influencing the dynamics of infection.

4 Stochastic simulations

As mentioned in Sect. 1, the incubation period, size of viral loads, and peak time
are host-specific and may vary from person to person. Although the deterministic
model can produce the basic characteristics of the disease, it is unable to produce con-
sequences of host-to-host variability and another inherent biological stochasticity. In
addition, the ODEmodel assumes that the time evolution of the reacting cells and virus
particles is both deterministic and continuous. However, their time evolution cannot
be a continuous process, as their population levels can only vary by discrete integer
amounts. This drawback can be overcome by employing a stochastic formulation, in
which the reaction constants are seen as reaction probabilities per unit of time rather
than reaction rates. According to this method, the system’s temporal behavior is repre-
sented by a Markovian random walk in the four-dimensional space of the four species
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Stochastic behavior of within-host... 1507

population x = [S, I , V , E]. It is worth mentioning that, similar to the determinis-
tic method, the stochastic formulation regards the distribution of the cells and virus
particles as spatially homogeneous. The stochastic formulation of the deterministic
system (1) is briefly discussed below:

Following the work presented in [19], we begin by sub-diving the deterministic
model into the following reactions:

R1 :→ S; R2 : S → I ;
R3 : S → ∅; R4 : I → ∅;
R5 : I →; R6 :→ V ;
R7 : V → ∅; R8 : V →;
R9 :→ E; R10 : E → ∅.

Therefore, we have four reacting species x = [S, I , V , E] which participate in 10
unidirectional reactions Rμ (μ = 1, 2, . . . , 10). Here, the reaction Rμ is characterized
by stochastic reaction constant cμ as follows:

cμ δt ≡ average probability (first order in δt) that molecules relevant to
reactionRμwill react in the next time intervalδt

(2)

where cμ is specified by the corresponding reaction rate constants in the determin-
istic system (1). In order to fully characterize the reaction channels Rμ, besides cμ,
we require two more entities: the reaction functions for all channels (aμ), and the
state change vectors vμi (μ = 1, 2, . . . , 10; i = 1, 2, 3, 4). The reaction functions
corresponding to 10 reaction channels are:

a1 = 1; a2 = x1x3;
a3 = x1; a4 = x2;
a5 = x2x4; a6 = x2;
a7 = x3; a8 = x3x4;
a9 = x2; a10 = x4.

where each xi indicates the exact number of populations of the reacting species S, I , V
and E present at time t . The state change vectors vμi corresponding to these channels
constitute the following stoichiometry matrix F = [vμi ],

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
−1 1 0 0
−1 0 0 0
0 −1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 0
0 0 −1 0
0 0 0 1
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The functional form of aμ uniquely characterizes the corresponding reaction channel
Rμ and the state change vector vμi uniquely characterizes the production through this
reaction channel. Our aim is to calculate the species population vector x(t) taking the
influence of the reaction channels Rμ which are specified by its stochastic reaction rate
cμ, its reaction functions aμ and state change vector vμi into consideration (whereμ =
1, 2, . . . , 10). One possibleway to handle this task is to derive the time-evolution of the
probability function P(x, t |x0, 0), which serves as the key element of a differential-
difference equation called chemical master equation (CME). Here x0 indicates the
species population vector at time t = 0. In this single equation, time and the population
of four species will appear as independent variables, contrary to the deterministic
system,where four differential equations represent the time evolution of the population
of four species. The probability function P(x, t |x0, 0) represents the following:

P(x, t |x0, 0) ≡ probability that there will bex1 population of S,

x2population ofI , . . . , and x4 population of E at time t,
given that x(0) = x0.

The time-evolution of the probability function P(x, t |x0, 0) is dependent on how
the species population vector is updated from x(0) to x(t). Population vector can be
updated through two mutually exclusive events: there will be exactly one reaction
Rμ in time dt with probability cμaμ(x)dt + o(dt), and no reaction will occur in
time dt with probability 1 − ∑10

μ=1 cμaμ(x)dt + o(dt). The probability of having
more than one reaction at a time is o(dt) [19]. Therefore, the probability function
P(x, t + dt |x0, 0) can be written as

P(x, t + dt |x0, 0) = P(x, t |x0, 0) ×
⎛
⎝1 −

10∑
μ=1

cμaμ(x)dt + o(dt)

⎞
⎠

+
10∑

μ=1

(
P(x−vμ, t |x0, 0)×[cμaμ(x−vμ)dt+o(dt)]) +o(dt),

which on limit dt → 0 gives the following

∂

∂t
P(x, t |x0, 0) =

10∑
μ=1

[cμaμ(x − vμ)P(x − vμ, t |x0, 0)

− cμaμ(x)P(x, t |x0, 0)].
This is the master equation. The solution to this equation provides a comprehensive
understanding of the stochastic state of the system at any givenmoment t . For example,
it allows us to calculate the average number of the species population at t obtained
frommany repeated realizations. However, solving the CME is not possible except for
some fairly simple systems. An alternative approach for stochastic simulation is the
next reaction density function (NRDF) p(τ, μ|x, t) [19], which gives the conditional
probability that only an Rμ will occur in the infinitesimal time interval [t+τ, t+τ+dτ ]
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Stochastic behavior of within-host... 1509

for given species population x at time t . Here τ (0 ≤ 0 ≤ ∞) represents the time
taken for the next reaction to occur and μ (1, 2, . . . , 10) represents the index of the
next reaction. Let

h(x) =
10∑

μ=1

cμaμ(x) (3)

and assume that the time interval [t, t + τ + dτ ] be subdivided into N + 1 intervals,
provided N > 1. The first N subdivisions over the interval [t, t +τ ] have equal length
ε = τ/N , where no reaction occurs, and the last subdivision has length dτ , where
exactly one Rμ reaction occurs. Therefore, we have

p(τ, μ|x, t) = [1 − h(x)ε + o(ε)]N [cμaμ(x)dτ + o(dτ)],

which on limit dτ → 0 yields

p(τ, μ|x, t) = [1 − h(x)ε + o(ε)]Ncμaμ(x),

which on limit N → ∞ leads to

p(τ, μ|x, t) = h(x)e−h(x)τ cμaμ(x)

h(x)

The above expression shows that the NRDF p(τ, μ|x, t) is a function of two inde-
pendent random variables τ and μ, where τ has an exponential density function with

decay constant h(x), and μ has the integer density function
cμaμ(x)

h(x)
. With the assist

of two random numbers r1 and r2, generated using a unit-interval uniform random
number generator, τ can be defined as

τ = 1

h0
ln

(
1

r1

)
, (4)

and μ as the smallest integer for which

μ∑
μ=1

cμaμ(x) > r2h0, (5)

where h0 ≡ ∑10
μ=1 cμaμ(x). Having chosen the value of τ and μ, the population

vector from time t to t + τ can be update using x(t) + vμ. Repeated application of
this advancement procedure allows us to stochastically determine the population of
S, I , V , E at any time t > 0, starting from S(0), I (0), V (0), E(0) at time t = 0. The
simulation algorithm of the DSSA described above is outlined below:
Step 1: Initialize the four classes of population and their initial numbers
S(0), I(0), V(0), E(0);
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Step 2: Initialize the 10 reaction functions and their associated stochastic
reaction rate constants cμ;
Step 3: Initialize the current time t=0;
Step 4: Calculate the propensities cμaμ(x) for all 10 reactions;
Step 5: For each reaction, generate the reaction waiting time τ using
equation 4 and reaction index μ using equation 5;
Step 6: Update the population vector using x0 + vμ and set t ← t + τ ;
Step 7: Go to Step 4 and repeat the process until the final time is reached.

The initial populations S(0), I (0), V (0), E(0) and the parameter values used in the
simulation are summarized in Table 1.

4.1 Invasion probability and epidemic potential

According to the results of the deterministic model the virus invades and establishes
infection ifχv > 1.However, due to heterogeneity in host response, virus invasionmay
not be successful in establishing infection. In the case of a successful invasion, that the
virus enters the host and does not die out.We approximated the invasion probability by
the ratio of successful invasions to the total number of stochastic realizations. Further,
the invasion probability of the virus was calculated as a function of the initial virus
population (Fig. 3) as well as a function of the virus reproductive number, χv . The
initial values of the variables and parameters used in the stochastic simulations are
listed in Table 1. The invasion probability increased with an increase in the initial
virus population. However, the increase in invasion probability slowed as the number
of initial viral particles increased, thus suggesting that the virus may not successfully
invade, even with an exceedingly large number of initial viral particles. It is most
sensitive when the viral load is low, and an increase in the viral load does not ensure
a proportionate increase in the establishment of the infection in an individual.

Considering the feeding behavior of infected Aedes mosquitoes, this may have
crucial implications for the epidemic spread of the disease [25]. AsAedes is a domestic
mosquito and does not fly a considerably long distance to feed, it is more likely to feed
onmembers of the same family or individuals living in neighboring houses.As infected
mosquitoes are more eager to feed on [26] and have higher locomotor activity than
noninfected mosquitoes [27], an infected mosquito is likely to feed on several hosts
and injects a smaller initial viral load in each of them instead of having a complete
meal from one host and injecting a high amount of viral load. Although it reduces
the individual’s probability of developing the infection, it increases the probability of
transmission from amosquito to an individual. For instance, we consider two scenarios
of five people living nearby, scenario I: one infected mosquito feeds on one individual,
and 50 RNA per ml virus particles are injected, vs. scenario II: the infected mosquito
is disturbed during feeding and ends up biting all the people injecting 10 RNA per ml
to each of them. In scenario I, 16% (= 100 × 0.8/5) of the people will be infected,
and in Scenario II, 40% (= 0.4 × 5 × 100/5) of the people will be infected.

The invasion probability of the virus was also calculated as a function of the virus
reproductive number (Fig. 3). It shows that a successful mosquito bite may not result
in an infection even if χv > 1. It resembles prompt clearance of the virus by the
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Fig. 3 Invasion probability. Figures showing invasion probability as a function of the initial virus population
(left) and the invasion probability as a function of the virus reproductive number χv (right)

host immune response. Also, it could be representative of asymptomatic infections.
This figure shows that the invasion probability of the virus increases as the successful
number of viral offspring increases. However, it tends to saturate at some point due to
the inherent uncertainty introduced by the stochasticity of the dynamics.

4.2 Intrinsic incubation period

In the case of a successful invasion of the virus, dengue fever is likely to occur after an
intrinsic period of 4–10 days after the bite by a dengue-carrying mosquito [1]. During
this incubation period, the injected virus particles infect the healthy immune cells with
themotive of hacking the immune system. The virus particles start to multiply quickly,
and as a result, viremia is established due to the presence of a high level of the virus
in the bloodstream. The number of initially injected virus particles evolves slowly
during the incubation period. Then the body temperature starts to rise when their
numbers exceed a threshold, as their increased numbers come to the attention of the
immune system. However, mathematically, there is no specific measure to obtain this
inherent triggering time of the virus. In this section, we intend to quantify the intrinsic
incubation period using stochastic simulations of the dynamics. We monitored the
intrinsic incubation period from every stochastic realization as follows:

(i) In the case of a successful invasion, the time required for the initial viral load to
increase by 10% was recorded as the incubation period.

(ii) In the case of an unsuccessful invasion, no such time was recorded, as the initial
viral load was never increased by 10%.

The intrinsic incubation period estimated from all 20,000 independent stochastic real-
izations was then fitted to an exponential distribution using the maximum likelihood
method, which produces an estimate of 5.9 days with a 95% confidence interval [5.8,
6.0]. The estimate from our model is in good agreement with the existing literature as
shown in Fig. 4 [18].
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Fig. 4 Incubation period and peak viremia time. Incubation time of the virus (left) and peak viremia time
(right) since the day of infection. The solid curve in the left figure shows an approximate probability density
function (pdf) of an exponential distribution fitting the incubation periods obtained from 20,000 independent
realizations, whereas the solid curve in the right figure shows an approximation pdf of a normal distribution
fitting the peak viremia times obtained from the same number of realizations. The dashed curve in the left
figure is the pdf of the exponential distribution of the incubation period calculated in [18]

4.3 Daily viral load and peak viremia time

Further, we calculate the daily viral load and peak viremia time using stochastic simu-
lations. Figure 5 shows the daily viral loads from days 1–15 after infection. The results
shown in this figure align, to some extent, with the predictions of the deterministic
model. However, this graph provides better insights into the daily viral load patterns
compared with the graph shown in Fig. 9. Evidently, the medians shown in every box
of this figure are biased toward the lower quartile, thus suggesting lower daily viral
loads in primary dengue infection. Further observations can be made from the bar plot
showing the daily median of the viral load in this figure. It shows that the daily viral
loads stay close to those of the initially injected virus. Then suddenly, from around
day 6, the viral load starts rising sharply, reaching its maximum on day 8. The overall
course of the viral load lasts around 7 days. The incubation and febrile phages of a
typical dengue infection [1] are replicated in our results fairly closely.

5 Discussion and conclusion

This study presents mathematical models to investigate the in-host progression of pri-
mary DENV infections. Herein, we present a deterministic ODE model that describes
the dynamics of the disease. First, the ODE model was analyzed to explore the factors
influencing viral persistence in the body for an extended period. The deterministic
model revealed that viremia occurs when R0 > 1. In addition, the deterministic model
showed that the virus cleared within 11 or 12 days from the day of infection, which
is an important feature observed in primary dengue infection. Parameter sensitivity
analysis revealed that the anti-inflammatory effects of B and T-cells are inefficient in
suppressing infection when the transmission rate β is high. Further analysis revealed
that viral infectivity plays a dominant role in the dynamics of infection when β is high.
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Fig. 5 Daily viral load. Boxplot shows daily viral load since mosquito bites based on 20,000 independent
stochastic realizations. The central red mark in each rectangular box represents the median, with the bottom
and top boundaries of the boxes representing the 25th and 75th percentiles, respectively. (Color figure
online)

Next, to incorporate uncertainties in conditions thatmay vary fromperson to person,
a stochastic model was derived from the ODE model. The stochastic model is proven
to provide better insights into viral dynamics. The stochastic model provides a wide
range of results, including different sizes of viral loads and different times ofmaximum
infection occurring in the body. Using this model, the daily viral load patterns during
infection were calculated and found to be consistent with the pathophysiology of
primarydengue infection.The incubationof the viruswas calculated to be5.9 dayswith
a 95% confidence interval [5.8, 6]. This result is more in line with the existing study
and clinical data [18, 28] compared to the incubation period of four days conjectured,
but not directly calculated, in the study conducted by Nguyen et al. [17]. Additionally,
the peak viremia time, that is, the time of the maximum viral load in the body from the
day of infectionwas calculated. Themean peak viremiawas found to occur around day
10.1 since the day of infection, with a 95% confidence interval [10, 10.2], as reported
in [28].

The most significant feature of the stochastic model is that it exhibited a non-zero
probability of viral extinction in terms of different initial virus loads, even when the
virus reproductive number χv > 1, as opposed to the deterministic model. The viral
invasion probability was calculated as a function of the initial viral load, and the
invasion probability was found to increase with an increasing initial value of the viral
load, thus suggesting that the size of the initial viral load may have a significant impact
on disease dynamics. A successful invasion is likely, corresponding to a high initial
viral load. This result accords well with the experimental study conducted by Novelo
et al. [29], wherein the authors found that a threshold level of initial viral dose is
required to establish body-wide infections in mosquitoes.
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Feeding behavior in infected mosquitoes changes significantly [25]. Infected
mosquitoes aremore attracted to blood than uninfectedmosquitoes and bitemore often
to obtain sufficient blood [26]. The increased biting tendency of infected mosquitoes
influences the transmission of DENV to the host. The increased biting tendency is
because the locomotor activity of infected mosquitoes increases by up to 50% com-
pared to the uninfected ones [27], which allows them to stay alert while biting and
fly away even when the slightest threat is observed. Therefore, they require numerous
bites to obtain sufficient blood, and these unsuccessful or partially successful bites
often lead to a low initial viral load in the host, which decreases the probability of
establishing the disease in one individual, albeit increasing the epidemic potential of
the disease. In addition, invasion probability of the virus was also calculated as a func-
tion of the virus reproductive number. The invasion probability of the virus was found
to increase as the successful number of viral offspring increased, which, however,
was found to saturate at some point due to the inherent uncertainty introduced by the
stochasticity of the dynamics.

In summary, this study investigated several key questions associated with the pro-
gression of primary DENV infection, taking the stochasticity of the dynamics into
consideration. The results are expected to be useful in understanding the clinical diag-
nosis and conditions of dengue patients during infection and treatment. However, the
dynamics of secondary infections are relatively complex because of the enhanced
inflammatory responses triggered by the antibody acquired through the primary infec-
tion. The results and analysis provided herein are expected to lay the foundation for
understanding the improved model presenting in-host dynamics of secondary DENV
infections. Moreover, the estimated parameters can be used to simulate such a model.
Future studies in this direction could consider re-investigating the facts explored in
this study to better understand the reasons that secondary infection often leads to the
development of a critical dengue infection. In addition, stochastic simulations of such
models could be used to single out the role of enhanced inflammatory responses in
the development of critical dengue infection.
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A Proof of Theorem 1

Proof The model possesses an infection-free equilibrium, E0 = ( �
μS

, 0, 0, 0). Herein,
this equilibriumwas characterized as infection-free because the virus cannot spread in
the host. The local stability of the equilibrium points can be determined by calculating
the eigenvalues of the Jacobian in a steady state. At the infection-free equilibrium E0,
the Jacobian of system 1 adopts the following form.

JE0 =

⎛
⎜⎜⎜⎝

−μS 0 −β�
μS

0

0 −μI
β�
μS

0
0 pμI μV 0
0 λ 0 −μE

⎞
⎟⎟⎟⎠

Two of the eigenvalues are −μS and −μE . The remaining two terms can be obtained
by solving the characteristic polynomial

λ2 + λ(μI + μV ) + μIμV (1 − χv) = 0.

One of the roots of this polynomial is positive or has a positive real part when χv > 1.
By contrast, both roots will be negative or will have a negative real part when χv < 1.
Therefore, the infection-free equilibrium is locally asymptotically stablewhenχv < 1.


�

B Proof of Theorem 2

Proof The diseased equilibrium of the model is given by,

E1 =
(

�λ(γ E∗ + μV )

pβμIμE E∗ + λμS(γ E∗ + μV )
,
μE E∗

λ
,

pμIμE E∗

λ(μV + γ E∗)
, E∗

)
,

where E∗ is a positive solution to the quadratic equation of

AE∗2 + BE∗ + C = 0, (6)

where A = pβδμI
λμV μS

+ δγ
μEμV

, B = pβμIμE
λμV μS

+ δ
μE

+ γ
μV

and C = 1−χv . As mentioned
previously, the equilibrium in the first orthant is of interest. Equation6 shows that
system (1) has a unique diseased equilibrium that exists only when χv > 1. This is
demonstrated by plotting the quadratic function F(E) = AE∗2 + BE∗ + C against
E for different values of χv , as shown in Fig. 6. This figure shows that as the value of
χv approaches one, a unique diseased equilibrium emerges in the positive orthant.

Jacobian analysis is not feasible for the diseased equilibrium E1 because it is
extremely complicated to obtain an explicit expression for it. Therefore, we preferred
the Monte Carlo method [21, 22] to analyze the stability of equilibrium points by
repeatedly verifying the condition on χv and calculating the eigenvalues at the steady
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Fig. 6 Existence of diseased equilibrium. Graphical representation for the existence of the unique diseased
equilibrium corresponding to different values of χv in the range [0, 2]. The blue dashed lines correspond
to χv < 1, whereas the blue solid lines correspond to χv > 1. (Color figure online)

states E0 and E1. The sampling was done by means of the Latin hypercubic sampling
(LHS) [30] method under the uniform distribution of 10 parameters with 20% devi-
ation around their baseline values (as shown in Table 1). We repeated this sampling
technique 10,000 times to form a sampling pool S ∈ R10+ of 10,000 random choices of
parameter values within their given range, and with no correlation among them. The
dynamical system (1) was then solved to calculate the eigenvalues at the steady states
corresponding to every single sample that satisfied the condition onχv . The simulation
results are shown in Figs. 7 and 8. The upper row in Fig. 7 shows that the condition
χv < 1 always holds, and all eigenvalues of the Jacobian at E0 have a negative real
part, suggesting that E0 is locally asymptotically stable when χv < 1. The lower row
in this figure shows that E0 is unstable when χv > 1. Furthermore, Fig. 8 shows that
E1 is locally asymptotically stable when χv > 1. 
�

C Global stability of the equilibrium points

Theorem 3 The infection-free equilibrium E0 is globally asymptotically stable when
χv ≤ 1; otherwise, it becomes unstable.

Proof Using the Lyapunov candidate function

L(t) = (S − S0 ln S) + I + �β

μSμV
V ,

we obtain dL
dt ≤ μI (χv − 1)I . Therefore, the proof is complete. 
�

Lemma 1 System (1) exhibits forward bifurcation at χv = 1.
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Fig. 7 Local stability of E0. Local stability of E0 corresponding to the cases χv < 1 (upper row) and
χv > 1 (lower row). The left panel shows the choices of χv values, whereas the right panel shows the
eigenvalues of the Jacobean corresponding to these χv values
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Fig. 8 Local stability of E1. Local stability of E1 corresponding to the case χv > 1. The left panel shows
the choices of χv values, whereas the right panel shows the eigenvalues of the Jacobean corresponding to
these χv values

Proof The center manifold theorem was used to prove this theorem. Using μV as a
bifurcation parameter and following the method developed in [31], we obtain

a = −μIμE p

μ∗
V

(�μEμIμ
∗
V + λ2γ ) − pλδμE < 0,

and

b = λpμEμIμ
∗
V > 0,

where μ∗
V = �pβ

μS
. Therefore, the proof is complete. 
�

Theorem 4 Diseased equilibrium E1 is globally asymptotically stable when χv > 1.

Proof System 1 possesses only two equilibrium points, where the infection-free equi-
librium E0 has already been proven globally unstable when χv > 1 (see Theorem 4).
Hence, Lemma 1 indicates that E1 is the only stable equilibrium when χv > 1, sug-
gesting that E1 is globally asymptotically stable when it exists. 
�
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D Deterministic results and sensitivity analysis

The simplest way to analyze the sensitivity of the model to its parameters is to use
the expression of the virus reproductive number χv and use the following relation to
calculate the local sensitivity indices (Fig. 9)

γ χv
ρ = ∂χv

∂ρ
× ρ

χv

.

For example, γ χv
ρ = ±1 implies that ρ is a highly sensitive parameter. However, not

all parameters that have a significant influence on the model outcomes always appear
in the expression of χv . Therefore, global sensitivity is recommended to explore the
influence of model parameters on the model outcome. Herein, the partial rank correla-
tion coefficient (PRCC) method was used to conduct a global sensitivity analysis [32].
A PRCC graph is shown in Fig. 10. The transmission rate (β) and death rate of infected

Fig. 9 Viral load dynamics predicted by the deterministic model. Temporal evolution of viral load counts
for χv < 1 (left) and χv > 1 (right)

Fig. 10 Global sensitivity indices. The figure on the left shows PRCC indices of I + V corresponding to
respective parameters labeled in the horizontal axis, whereas the figure on the right shows PRCC indices of
χv corresponding to respective parameters labeled in the horizontal axis. The highest PRCC index implies
the greatest influence on the model outcomes
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cells (μI ) have the greatest impact on the sum of the number of infected cells and the
number of virus particles (I + V ). The transmission rate (β), death rate of susceptible
cells (μS), and death rate of virus particles (μV ) are important for determining the
reproductive number χv . The sensitivity indices of the parameters can also be used to
design the prevention and selection of control strategies [33].
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