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Abstract In contrast to the pioneers of multimodal inter­
action, e.g. Richard Bolt in the late seventies, today's re­
searchers can benefit from various existing hardware de­
vices and software toolkits. Although these development 
tools are avai lable, using them is still a great challenge, par­
ticularly in terms of their usability and their appropriateness 
to the actual design and research process. We present a three­
part approach to supporting interaction designers and re­
searchers in designing, developing, and evaluating novel in­
teraction modalities including multi modal interfaces. First, 
we present a software arc hitecture that enab les the unifica­
tion of a great variety of very heterogeneous device drivers 
and special-purpose toolkits in a common interaction library 
named "Squidy". Second, we introduce a visual design en­
vironment that minimizes the threshold for its usage (ease­
of-use) but scales well with increasing complexity (ceiling) 
by combining the concepts of semantic zooming with visual 
dataflow programming. Third, we not only support the inter­
active design and rapid prototyping of multi modal interfaces 
but also provide advanced development and debugging tech­
niques to improve technical and conceptual solutions. In ad­
dition, we offer a test platform for controlled comparative 
evaluation studies as well as standard logging and analy­
sis techniques for informing the subsequent design iteration. 
Squidy therefore supports the entire development lifecyc\e 
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1 Introduction 

With recent advances in computer vision, signal processing, 
and sensor technology today's researchers and interaction 
designers have great opportunities to go far beyond the tra­
ditional user interface concepts and input devices. More nat­
ural and expressive interaction techniques, such as tangible 
user interfaces, interactive surfaces, digital augmented pens, 
speech input, and gestural interaction are available and tech­
nologically ready to be incorporated into the multi modal in­
terface of the future (see some examples in Fig. I). However, 
the actual utilization of these techniques for the design and 
development of multimodal interfaces entai ls various critical 
challenges that interaction designers and researchers have to 
face. 

In contrast to the design of traditional graphical user 
interfaces, the development of multi modal interfaces in­
volves both software and hardware components [ J 2]. How­
ever, conventional development environments (e.g. MS Vi­
sual Studio/.Net, Adobe Flash, Eclipse IDE) fall short of 
supporting uncommon interaction modalities and appropri­
ate data processing (e.g. computer vision), not to mention 
the handling of multipoint and multi -user applications (e .g. 
for multi-touch interaction). As a consequence a broad va­
riety of very heterogeneous and specialized toolkits and 
frameworks have evolved over the last few years such as 

http://www.springer.com/computer/hci/journal/12193
http://nbn-resolving.de/urn:nbn:de:bsz:352-126413
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Fig. 1 Diverse input devices for si ngle-modality or multi modal in­
terfaces: (a) Physical game controller offer absolute pointing, motion 
sensing and gesture-recognition to the end-user. (b) Digital pens build 
upon users' pre-existing knowledge and thus offer a very natural mode 
of interaction e.g. for digital sketching and prototyping. (c) Multi -touch 

surfaces augmented with physical tokens reduce the gap between real ­
world and digital-world interaction. (d) Finger gestures provide a very 
expressive and direct mode of interaction. (e) Well -known devices such 
as an olllnipresent laser pointer provide fl ex ible input from any di stance 

Table 1 Interaction designers have to cope with very different environments for the same interaction modality, touch input 

Hardware platform Microsoft Surface 

Form factor Table 

Operating system Microsoft Windows 

Programming language C# 

Software framework Surface SDK 

Apple iPhone SDK ' , Microsoft Surface SDK2, GlovePlE3, 

Processing4, NUl Group Touchlib5. They provide support 

for spec ifi c interaction modali ties, but are mostly restricted 

to a dedicated hardware environment and entail further re­

quirements and dependencies. When using touch as input 

for instance, the interaction designer has to cope with dif­

ferent hardware platforms, operating systems, programming 

languages, and software frameworks (see Table I). When 

developing single-modality interfaces, thi s divers ity can be 

bypassed-at least in the short-run- by focusing on just 

one spec i fic device. But the combinati on of multiple de­
vices, e.g. for multi modal interaction involves further plat-

I Apple iPhone SDK, http://developer.apple.com/iphone/. 

2Microsoft Surface SDK, http://www.microsoft.comlsurface/. 

3GlovePIE, http://carl .kenner.googlepages.com/glovepie/. 

4Processing, http://processing.org/. 

5NUIGroup Touch lib, http://nuigroup.comltouchlib/. 

Custom-build table Apple iPhone HTC Hero 

Table Mobile Mobile 

Linux/Windows Mac OS X Android OS 

C++ Objective-C Java 

Touchlib iPhone SDK Android SDK 

forms, devices, and frameworks, resulting in an unmanage­
able technical and mental complexity. 

There are development environments that support at least 
some of the more uncommon input devices and modal­
ities (e.g. physical turntables, mixing desks, multi-touch 
surfaces and simple vision tracking). Two examples are 
Max/MSp6 and vvvv7 . Both are graphical development en­
vironments for music and video synthesis and are widely 
used by arti sts to implement interactive installations. Their 
popularity in the design and art community arises in par­
ticular from their graphical user interface concepts. Both 
are based on the concept or visual dataflow program ming 
and utilize a cable-patching metaphor to lower the imple­
mentation threshold [24] for interactive prototyping. Users 
arrange desired components spati ally and route the dataflow 
between the components by visually connecting pins instead 

6 Max/MSP, http://cycling74.comlproducts/maxmspjitter/. 

7 vvvv, http://vvvv.org/. 



of textual programming. However, the visual representation 
of each primitive variable, parameter, connection, and low­
level instruction (e.g. matrix multiplication) leads to com­
plex and scattered user interfaces, even for small projects. 
vvvv offers the possibility of encapsulating consecutive in­
structions in so-called "subpatches". This approach helps to 
reduce the size of the visual data fl ow graph, but the hi er­
archical organization introduces additional complexity. In 
contrast to the visual encapsulation in vvvv, the "external" 
mechanism of MaxiMSP supports the visual and technical 
encapsulation of certain functionality in an external object 
as a "black-box". This mechanism offers hi gh fl ex ibility and 
abstraction but requires low level programming in C. This 
results in a higher threshold and lower interactivity of the de­
sign and development process, since changes have to be tex­
tually written and compiled in an external development envi ­
ronment before the external object can be used in Max/MSP. 

Basically, Max/MSP and vvvv show interesting user in­
terface concepts but they are focused on real-time audio 
composing and 3D rendering and were not designed to 
support the development of multimodal interfaces in gen­
eral. For that, interaction des igners require not only a set 
of ready-to-use interaction techniques and input devices 
but also the possibility to physically develop and integrate 
new interaction modalities and hardware devices. Hardware 
toolkits such as Phidgets [ II], Smart-Its [ 10] or iStuff [ I] of­
fer a set of compatible microcontrollers, sensor devices and 
software frameworks enabling rapid prototyping of physi­
cal input and output devices. However, the technical com­
plexity of the software frameworks requires advanced pro­
gramming and signal processing knowledge, in particular 
when multiple devices are used in parallel. iStuff mobile [2] 
combines the hardware toolkit iStuff with a visual program­
ming environment based on Apple's Quartz Composer.8 

This was originally designed to support the visual develop­
ment of interactive multimedia and 3D rendering . It shares 
the cable-patching metaphor with the already discussed de­
velopment environments vvvv and Max/MSP. This combi­
nation of hardware toolkit and visual development environ­
ment facilitates fast iterations and rapid prototyping on mul ­
tiple levels. However, it is restricted to the domain of mo­
bile phone interaction and limited in its functionality and 
the type of input (e.g. no support for computer vision) . 

All of the aforementioned development environments 
and toolkits support diverse devices and modalities but they 
are not especially designed to support the design of multi­
modal interfaces . Here, multiple inputs have to be synchro­
nized (e.g. hand-gesture and speech), processed and com­
posed to a higher level command (e.g. moving an object). 
There are few frameworks that address these requirements. 

8 Apple Quartz Composer, hllp:lldeveloper.apple.com/graphicsimagingl 
quartzcomposer/. 
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ICARE [5] is a conceptual component model a nd a soft­
ware toolkit for the rapid development of multimodal inter­
faces. It provides two types of software components: the el­
ementary components, consisting of Device and Interaction 
Language componcnts used to develop a spccifi c modality, 
and the Composition components that combine t he diverse 
modalities . It was used for different use cases (e .g. design 
o r a multimodal Ili ght cockpit) but it became apparent that 
onl y a limited set of the defined components were really 
generic [27] and the toolkit was not easily extensible [22]. 

Based on the experiences gained with ICARE, the open 
source framework "OpenInterface" was developed by the 
Openlnterface Project9 that is dedicated to multi modal in­
teraction. The OpenInterface framework is composed of 
the OpenInterface Kernel, a component-based runtime plat­
form, and the OpenInterface Interaction Development Envi­
ronment (OIDE), a graphical development environment for 
the design of multi modal interfaces [27]. In order to inte­
grate an existing input device as component into the Open­
Interface Kernel the component interface has to be speci­
tied in an dedicated XML-based CTDL description language 
(Component Interface Description Language) . This specifi­
cation can be semi-automatically generated from the source 
code of the component by the OpenInterface platform. It 
also generates C++ code to encapsulate the external binary 
into a well defined programming interface [3]. Due to this 
explicit description of the interface the encapsulated com­
ponent can be used in the graphical development environ­
ment OIDE. This uses a cable-patching metaphor similar 
to Max/MSP, vvvv, and Quartz Composer in order to de­
tine the dataflow by combining the selected components vi­
sually. Lawson et al. [22] identified diverse shortcomings 
of the OpenInterface OIDE and the introduced application 
design process. A major issue is the limited focus and in­
fl ex ihle design of the components. The developers rather 
focus on the design of their individual component than on 
the app lication as a whole. This leads to an inflex ible de­
sign of the components and the application in general that 
hinders the reuse, extension and exchange of components 
as well as the entire application . Thi s inflex ibility also re­
stricts interaction designers in exploring diverse alternatives, 
which then impedes rapid prototyping and limits epistemic 
production [18] of concrete prototypes. In order to address 
the identi fied issues Lawson et al. introduced an all -in-one 
prototyping workbench for multi modal application develop­
ment [22]. It is a combination of the OpenInterface Kernel 
with an Eclipse Plugin as graphical editor that is named 
SKEMMI. The editor is also based on the cable-patching 
metaphor, but provides three levels of detail with respect to 
the di sp layed inrorm ati on. The low-detail "workllow" leve l 
reduces information and faci litates the initial sketching of 

90penlnterface Project, http://www.oi -project.org/. 
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the desired interaction techniques. Tn the "dataflow" level 
where all details for the routing of the dataflow are rep­
resented, the user selects, arranges and logically links the 
components without the need to route and connect every sin­
gle pin. In a third-level, the "component" level, only a spe­
cific component with its input and output pins is visualized 
and the user is able to tailor the component's interface (e.g. 
changing the port attributes and parameters) . SKEMMI pro­
vides also an alternative source code editor view that allows 
for changes of the component or its interface programmat­
ically. The three-layer approach helps to control the visual 
and functional complexity of the components, but there is no 
higher-level abstraction concept (e.g. hierarchical pipelines 
or semantic zooming). If the designed multi modal interface 
incorporates multiple devices and various signal processing 
components, the SKEMMI user interface gets increasingly 
crowded. The geometric zoom of the user interface is not a 
solution for the complexity issue since it just changes the 
size of the displayed information but not the information 
representation itself. 

To sum up, there are only very few frameworks that sup­
port the design of multi modal interfaces . However, they ei­
ther provide a limited range of interaction modalities or are 
hardly extensible regarding the platform, the components or 
the visual user interface. The OIDE or the SKEMMI graphi­
cal editors seem very promising, but the complexity issue is 
critical in real world projects. Moreover, all of the discussed 
development environments focus mainly on rapid prototyp­
ing and the early steps of iterative design. None of them 
provide tool-support for the empirical evaluation of the de­
signed interfaces (e.g. ISO 9241-9 tapping tasks and suit­
able data-logging) . All of the graphical development envi­
ronments utilize the cable-patching metaphor in a similar 
way in order to connect input and output pins . However, 
the dataflow programming could be more powerrul with­
out losing its simplicity. Furthermore, they still require a 
deep understanding of the underlying technology on behalf 
of the designers, since they have to understand and route 
each primitive variable/data item even when using "black­
box" modules. 

In the following, we present our Squidy Interaction Li­
brary, which contributes on different levels: 

- The software architecture: Squidy enables the uni fication 
of heterogeneous devices and components in a common 
library. The architecture is desi gned to provide great fl ex­
ibility, simple extension, high independency and fast par­
allel processing. 

- The visual development environment: Squidy enables the 
interactive design and configuration of multi modal inter­
faces for interaction designers and researchers. The user 
interface concept is designed to provide a low threshold 
(ease-of-Iearn) and high ceiling (high functionality) and 
scales well with increasing complexity. 

- Tool-support for the entire development lifecycle: Besides 
the vi sual design and configuration for rapid prototyping, 
Squidy also provides advanced development and evalua­
tion techniques for iterative design. 

After giving a short conceptual overview in the next section, 
we will discuss the software architecture in Sect. 2.1 and 
afterwards describe the user interface concept in detail in 
Sect. 2.2. In Sect. 3 we will show the appropriateness of 
our solution to the actual design and research process in the 
context of a variety of real world projects. 

2 Squidy interaction library 

We introduce the Squidy Interaction Lihrary, which unifi es 
a great variety of device toolkits and frameworks in a com­
mon library and provides an integrated user interface for vi­
sual dataflow management as well as device and data-fi lter 
configuration. Squidy thereby hides the complexity or the 
technical implementation from the user by providing a sim­
ple visual language and a collection of ready-to-use devices, 
filters and interaction techniques. This facilitates rapid pro­
totyping and fast iterations for the design and development. 
However, if more functionality and profound customizations 
are required, the visual user interface reveals more detailed 
information and advanced operations on demand by using 
the concept of semantic zooming. Thus, users are able to 
adjust the complexity of the visual user interface to their 
current needs and knowledge (ease of learning). 

The basic concept (see Sect. 2.2 for a more detailed di s­
cussion) that enables the visual ddinition or the datatlow 
between the input and output is based on a pipe-and-filter 
concept (see Fig. 2) . By using this concept Squidy provides 
a very simple, yet powerful visual language for designing 
the interaction logic. Users can select an input device of 
choice as source, e.g. a laser pointer, which is represented 
by an input node in the visual user interface. They con­
nect it successively with filter nodes for data processing, 
such as compensation for hand tremor or gesture recogni ­
tion and route the refin ed data to an output node as sink. Ba­
sically, the user defines the logic or an interaction technique 
by choosing the desired nodes from a collection (knowledge 
base) and connecting them in an appropriate order assisted 
by a heuristic-based node suggestion. The filter nodes are in­
dependent components that can transmit, change, or delete 
data objects, and also generate additional ones (e.g. if a ges­
ture is recognized). The source and sink are specific drivers 
that handle the input/output operations and map the individ­
ual data format of the devices to the generalized data types 
defin ed in Squidy (see Fig. 4). The pipe-and-filter concept 
provides also very technical advantages, since the encap­
sulation of functionality in independent "black-boxes" en­
sures inrormation hiding, modifiability and high reuse by 
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Fig.2 View of a simple pipeline in Squidy. The pipeline receives po­
sition, button and inertial data from a laser pointer, applies a Kalman 
filter. a filt er for change recognition and a filter for se lec tion improve­
ment and finally emulates a standard mnuse for interacting with con­
ventional applications . At the same time the data is sent via T UfO to 

Fig. 3 Input node in Squidy representing an in teractive laser pointer. 
In order to reduce visual complex ity the node-specific functions (ac­
tivelinactive, delete, dup licate, publish to knowledge base) and the un­
connected in and out ports are on ly shown if the pointer is within the 
node 

abstraction . The possibility for multiple input and output 
connections offers a high degree of fl exibility and the poten­
tial for massive parallel execution of concurrent nodes. In 
our implementation each node generates its own thread and 
processes its data independently as soon as it arrives . This 
effectively reduces the process ing delay that could have a 
negative effect on the interaction performance. 

The sink can be any output technique such as a vibrat­
ing motor for tactile stimulation or LEDs for visual feed­
back. Squidy also provides a mouse emulator as an output 
node to offer the possibility of controlling standard WIMP-

Krllllllcdgt! fl..".", 

nu'e noder. ... 

li stening applications. The pipeline-specific functions and breadcrumb 
nav igation are positioned on top. The zoomable knowledge base, with 
a se lection of recommended input devices. fi lters, and ou tput devices, 
is located at the bottom 

Fig. 4 Data type hierarchy in Squidy based on primitive virtual de­
vices [301. Any data processed in Squidy consists of single or com­
bined instances of these basic data types 

applications with unconventional input devices. Multipoint 
applications (e.g. for multi-touch surfaces or multi-user 
environments) and remote connections between mUltiple 
Squidy instances are supported by an input/output node that 
transmits the interaction data either as TUIO messages [ 17) 
or as basic OSC messages over the network. TUlO is a 
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widely used protocol for mUltipoint interaction based on the 
more general OpenSound Control protocol (OSC), which is 
a successor to the MIDI standard. By providing these stan­
dard interfaces for both input and output connections Squidy 
supports the majority of multi-touch applications that have 
recently become very popular in both research and industry. 
Above these basic network interfaces Squidy also supports 
and integrates more complex frameworks such as the Ap­
ple iPhone SDK, the Android SDK, the NUIGroup Touch­
lib, and the Microsoft Surface SDK. Users therefore bene­
fit from the particul ar functiona li ties and specifi c hardware 
of all these techniques . Inside Squidy, however, they are 
also ahl e to defin e, control , evaluate, and reuse interaction 
techniqucs indcpcndently from the hardware or the spec ifi e 
framework. This fl ex ibility results from the architecture uti­
lized and the generalized data types which will be explained 
in more detail in the fo llowing section. 

2. 1 Software architecture 

There are several frameworks and toolkits that provide 
ready-to-use components for input devices and signal proces­
sing. Instead of connecting the components to pipelines 
programmatically, most of these frameworks and toolkits 
offer a basic language for controlling the dataflow visu­
ally (for example Max/MSP, vvvv, OIDE or SKEMMI). 
Such a visual programming language reduces the tech­
nical threshold and complexity and aids users with lit­
tle or no programming ex perience. Also, the integration 
of new modalities requires a fine grasp of the underly­
ing technology and thus is still a highly demanding task. 
Although, extending a framework with new components 
is only offered by a few of today's common frameworks 
such as ICARE [4] or the open source framework Open­
Interface (www.oi-project.org). However, integrating new 
components into the frameworks requires either an addi­
tional programming effort or a dedicated defin ition of the 
interface by a specifi c mark-up language. Basically this 
means that a developer has to switch between different ap­
plications and programming languages while developing 
a new interaction technique, increasing the mental work­
load. 

2. 1.1 Generic data types 

In order to unify very heterogeneous dev ices, toolkits and 
frameworks, we generali zed the various kinds of input and 
output data to a hi erarchy of well-defi ned generic data types 
(see Fig. 4) based on the primitive virtual devices intro­
duced by Wallace [30] and adapted to the work of Bux­
ton [6] and Card et a!. [7]. Each generic data type consists 
of a typc-specific aggrcgation of atomic data typcs such as 
numbers, strings or Boolean values bundled by their seman­
tic dependency. Simply adding a single connection between 

two nodes in the visual user interface performs routing of 
dataflow based on these generi c data types. 

This is quite a different approach when compared to some 
of the aforementioned frameworks such as the ICARE [5] 
and vvvv. These frameworks use atomic data types defi ned 
in the particular programming language and assign them vi­
sually by connecting result values with function arguments 
in their specifi c user interfaces. In order to use the function­
al ity of a module in these frameworks, the user has to route 
each of these low-level data types. Each x-, y-, and z-value 
of a three-dimensional data type has to be routed separately, 
for example. This is a procedure that needs additional effort 
and can be error-prone, in particular when desig ning com­
plex interaction techniques. Furthermore, this approach re­
quires detailed knowledge about the functionality of each 
node and its arguments . Routing low-level data types there­
fore puts high cognitive load on the user and leads to visu­
ally scattered user interfaces, particularly as the number of 
connected nodes increases. 

Squidy, on the other hand, does not require the designer 
to visually defi ne every value and programming step man­
ually. The interaction data is grouped in semantically bun­
dled generic data types as mentioned before. Squidy there­
fore offers the abstraction and simplicity of a higher-level 
dataflow management and reduces the complex ity for the 
interaction designer without li miting the required function­
ality. 

2. 1.2 Squidy bridge 

In order to achieve hi gh extensibili ty and to simplify the in­
tegration of new devices and applications, we provide the 
Squidy Bridges as common interfaces that support widely 
used nctwork protoco ls and also offer a specific nativc API if 
high-performance data transmission is needed. For the pur­
pose of unifyi ng data produced by different hardware de­
vices or applications (especially relevant for incorporating 
multiple interaction modalities), the Squidy Bridges map the 
diverse data originating from heterogeneous sources into the 
generic data types. Thus, the internal data processing is har­
monized and completely separated from the diversity of the 
external world. These bridges are able to handle data trans­
formations in both directions (e.g. from Apple iPhone into 
the Squidy Core and from the Squidy Core to the applica­
tion running on the panoramic display and vice versa in or­
der to close the feedback loop e.g. activation of the vibrator 
on the iPhone as tactile feedback of the application's sta­
tus (see Fig. 5)). The interaction library already comes with 
an OSC Bridge and a Native Interface Bridge that can be 
used out-of-the-box. The OSC Bridge offers the possibil­
ity of directly connecting the various available devices and 
toolkits using thi s communication protocol. Since OSC is 
based on standard network protocols such as UDP or TCP, 
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Fig. 5 This fi gure: shows the: usage scenari o oj' an intcracti Vl: and 
multi modal environment to control an application running on a 3600 

panorama screen by using touch gestures and speech. The user inter­
acts with hi s fingers by touching the di splay of an Apple iPhone ( I). 
All recognized touches will be sent from an iPhone Client application 
(OSC reference implementation running on the iPhone) to the OSC 
Bridge of Squidy (2). The Squidy Core will process the incoming data 
appropriately and sent it via the "special purpose bridge" (3) to the 
3600 appl ication (4) to control a cursor object, which visually high­
lights the users current finger pos ition . If the user has selected an inter­
active element with such a touching gesture the application (5) sends 
a tactile feedback back to its connected bridge (6). The tactile feed­
back coming from the application will be forwarded through the OSC 

it is hi ghly flexibl e and widely applicable, in particul ar for 

mobile or ubiquitous computing. An OSC message consists 

of several arguments such as the class name of the generic 

data type, a unique identifi er and data-type-specifi c parame­

ters. For instance, a message for a two-dimensional position 

that may be sent from an Apple iPhone would contain the 

Position2D data type as first argument, [MEl number as sec­

ond argument, x- and y -value as third and fourth argument 
(Listing I) . 

The lIex ibility gained ('rom thi s network approach (e.g . 

hardware and software independence, high scalability by 

· : · . : ; . . e \ 
•••• 

Bridge (7) to the iPhone (8) where the vibration motor will be activated 
to inform the user that he is hovering above an interactive element. Af­
ter the user has realized the tactile feedback and thus the interactive 
element (9), he will use a spoken command to invoke an action on the 
selected object. Therefore, the spoken command will be recognized by 
the operating system's speech recognition and then will be sent to the 
"native interface bridge" (10). The appropriate spoken command will 
have been processed by the Squidy Core (II) and transformed into an 
action, which will be sent to the application to trigger object activa­
tion/manipulation (12) . This multimodal scenario can be implemented 
with Squidy using pluggable Squidy Bridges to receive data from dif­
ferent devices and a simple arrangement of nodes to process that in­
coming data 

distributed computing (see Fig. 15)) entails a certain de­

lay that can have a negative effect on user input perfor­

mance [23]. Thus, for those purposes when performance is 

more important than fl ex ibility, the Native Interface Bridge 

provides a straightforward Java and C/C++ API to map data 

from individual devices to the generic data types in Squidy 

programmatically. In contrast to the OSC Bridge, this tech­

nique increases throughput and reduces the delay to a mini­

mum. 

For devices that support neither the OSC protocol nor the 

Native Interface Bridge by default, Squidy provides client 
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Listing 1 OSC Message sent from an Apple iPhone contains four 
argunl.:nts (ring.:,. touch) 

1** 
* I . generic data type 
* 2. IMEI a s identifier 
* 3. x-pos ition 
* 4. y- P 0 sit ion 

*1 
String: de. ukn . hci. s quidy . co re. data. 

Position2D 
String: 49 015420 323751 8 
double: 0 .25 
double: 0.17 

reference implementations (e.g. Squidy Client for iPhone 
OS to and for Android OS II that can be deployed on these 
devices, minimizing the effort and threshold of device inte­
gration. However, if the hardware is not able to communi­
cate via existing bridges natively, or if deployment of pro­
prietary software is not desired or is not possible due to 
hardware restrictions, then users can add further bridges to 
allow communication, for instance through special-purpose 
protocol bridges such as the Virtual -Reality Peripheral Net­
work [29] . 

The support of multiple bridges as interfaces in combina­
tion with the device-independent generic data types enables 
a separation of the data sources and the signal processing in 
the Squidy Core. This offers a simple but flexible integra­
tion of new interaction techniques and modalities without 
touching existing core functionality. As with ICARE [4] or 
Openinterface (www.oi-project.org), interaction techniques 
designed with the user interface are completely decoupled 
from the individual hardware or the connected applications. 
Replacing devices (e.g. switching from the Apple iPhone to 
the Microsoft Surface) therefore does not affect the applied 
interaction techniques (e.g. "selection by dwelling") or the 
concrete application also connected to a Squidy Bridge. The 
independent-bridge approach in combination with the gen­
eralization of data types enables the integration of very het­
erogeneous devices and toolkits in Squidy. Interaction tech­
niques that have been defined once can be reused multiple 
times. Squidy thus reduces complexity by abstraction, offers 
hi gh fl exibility and enables rapid prototyping. 

2. 1.3 Squidy core 

All data resulting from (multimodal) user interaction is 
bridged from devices to the Squidy Core. The core processes 

IOSquidy Client for iPhone OS: http://itunes.apple.com/app/squidy­
clientlid329335928. 

II Squidy Client for Android OS: http://sourceforge. netlprojects/ 
squ idy-I i blfi it:s/Co l11 poncnts/Squ ldy-CI i.:nt- f or- A mlroi d-OS. 

Listing 2 Methods to insert new or changed data objects into the 
datallow 

1** 
* Publishes 1 . .. 11 data objects to enhance the 
* dataflow semantics . 

*1 
publi c void publish (IData ... dat a); 

1** 
* Publishes a data container that consists of 
* an array of data objects and a timestamp on 
* which the data container ha s been relea se d . 

*1 
public void publi s h (IDataContainer 

dataContainer) ; 

this data automatically and in parallel without any program­
ming effort or further customizations. Users can define a fil­
ter chain (processing chain) using visual dataflow program­
ming provided by the visual user interface of the Squidy In­
teraction Library. In order to process the interaction data, 
the Squidy Core provides a flexible API for manipulat­
ing (CRUD - Create/Read/Update/Delete) the dataflow. To 
inserl new or changed data objects into the dataflow, the 
publish-method (Listing 2) of the API can be called at the 
desired place in the pipeline. For instance, a gesture recog­
nizer thal has detected a pre-defined gesture will publish 
a new gesture object into the dataflow. These methods ac­
cept I . .. n instances of data objects or a data container that 
consists of an array of data objects as well as a release 
timestamp. The interface 'IData' ensures the compatibility 
of the published data objects with the generic data types de­
fined in Squidy and specifies common methods and enumer­
ations. 

Furthermore, the Squidy Interaction Library comes with 
diverse off-the-shelf filters for signal processing, data fu ­
sion , filtering and synchroni zation that provide the essential 
functionalities for developing multi modal interfaces. Com­
pared to OIDE [27] or SKEMMI [22], Squidy incorporates 
the facility to add new [-ilters (including properties, algo­
rithms, logic and descriptions) without the need for switch­
ing to a different development environment. Therefore, the 
source code is embedded and can be manipulated by users 
directly. Changes made to the source code will be compiled 
and integrah.:d on-the-lly and the ncw or changed functional ­
ity is thus instantly available to users. Each implementation 
of a filter owns a data queue and a processing thread with­
out any effort on the developer's part. The incoming data 
will be enqueued until the processing thread dequeues data 
to perform custom data processing automatically [5]. Thus, 
the interaction library runs in a multi-threaded environment 
that allows concurrent data processing by each fi Iter with­
out blocking the complete process chain (e.g. a filter that is 
currently waiting for a system resource does not block other 



Listing 3 The "preProcess" stub grants access to all data of a data 
container 

/ * * 
* Diverse collection of data accessible by 
* thi s method s tub before individual 
* processing . 

* / 
public IDat aCo nt a in er pr eProcess ( 

ID ataCo n taine r dataContainer); 

Listing 4 Processing single data objec ts of a specified type at a time 

/ * * 
* Processes data of p art i c ul ar ge n er i c data 
* type (DATA_TYPE i s a placeholder fo r 
* th ose gener i c data type s) 
* / 
public IData process(DATA_TYPE data); 

filters during that time). This system of se lf-contai ned fil­
ter components prevents side effects on the signal process­
ing and thus aids users to design consistent and reli able 
interaction techniques. Users can intercept a filter's inter­
nal process ing hy implementing si mple pre-defi ned method 
stubs similar to the concept of "Method Call Interception" . 
The rollowing method stubs re fl ect different points or en­
try that differ in the quantity and type of dequeued data 
provided. The processing thread determines in a certain se­
quence whether a stub is implemented and then invokes this 
stub using reflection. 

In the "preProcess" stub (Listing 3), the collections of 
data types grouped within a data container are passed to the 
method's implementation. This is an easy way to access all 
data at a glance or iterate through the data collection man­
ually, e.g. to search for interaction patterns consisting of a 
diverse set of data types concerning multimodal interaction. 
Whenever it is sufficient to process one particular data in­
stance at a time, the 'process' method stub is appropriate. 
The code fragment in Listing 4 is a generic representation 
of such a process method stub. 

In the case of the "process" stub (Listing 4), the Squidy 
Core iterates through the collection automatically. It there­
fore does not have to be done programmatically as in the 
"preProcess" stub. Here, DATA_TYPE is the placeholder 
for a generic data type (Sect. 2.1.1 ), offering a simple data­
type filter for the dataflow. The Squi dy Core on ly passes in­
stances of that generic type to that method implementation. 

Before the data collection is published to the nex t fi l­
ter of the processing chain or bridged back to any device 
or application, the data collection can be accessed through 
the "postProcess" stub (Listing 5). An example of using this 
post processing is the functionality to remove duplicate data 
from thc dataflow to reduce data-processing overhead. 
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Listing 5 All data objects of a data container are accessible through 
the "postProcess" stub after individual data process ing 

/ ** 
* Diverse col l ection of data accessib l e by 
* th i s method stub after individual 
* processing . 
*, 
public IDat aCo nt a in er postProcess ( 

ID ataCo nt a in er dataContainer); 

The Squidy Core uses the Java Reflection mechani sm to 
determine if a filter has implemented such a data intercep­
tion and passes inquired data to the implementation auto­
matically. Therefore, no additional effort is required for in­
terface declaration, generation and compilation such as is 
needed for the ClDL used by the Open Interface framework 
(www.oi-project. org).Thi s fl ex ibility of the Squidy Core to 
qui ckly integrate or modify filter techniques provides the ca­

pability often needed to rapidly and iteratively prototype in­
teractive and multi modal interfaces. 

Heterogeneous devices and toolkits can be easily tied 
to the Squidy Interaction Library using existing Squidy 
Bridges (OSC Bridge, Native Interface Bridge) or custom 
bridge implementations (e.g. to integrate devices or toolk­
its communicating via special protocols). The Squidy Core 
provides a multi-threaded environment to perform concur­

rent data processing and thus increases data throughput, 
minimizes lag and enhances user's experience while using 

multi modal interaction. A suitable API supports develop­
ers to quickly implement new filters or change ex ist ing fil­
ters without the need for recompilation or repackaging. The 
three-tier architecture covers usage by both interaction de­
signers and developers, assists them with appropriate tools 
and thus reduces mental activity to a minimum. 

Currently we run applications based on Microsoft .Net, 
Windows Presentation Foundation and Surface SDK, Adobe 

Flash and Flex, OpenGL for C++ or JOGL as well as 
standard Java technology. The Squidy Bridges combined 
with Squidy Client reference implementations provide var­

ious external and integrated drivers and toolkits. Currently, 
Squidy supports the NUIGroup Touchlib, the Apple iPhone 
SDK, the Android SDK and Microsoft Surface SDK for 
multi -touch interaction , the ART DTrack and the Natural­
Point OptiTrack for finger gestures [9] and body-tracking, 
the libGaze for mobile eye-tracking [1 4], the iPaper frame­
work for pen and paper-based interaction [28], the Microsoft 

Touchless SDK for mid-air object tracking, the Phidgets API 
for physical prototyping and self-developed components for 
laser pointer interaction [19], GPU-accelerated low-latency 
multi-touch tracking (SquidyVision), Nintendo Wii Remote 
and tangible user interface (TUI) interaction. 
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Fig. 6 The Squidy Knowledge 
Base is a searchable interface 
for access ing all implemented 
input device and filter nodes ( 
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2.2 User interface concept 

The Squidy user interface concept is based on the concept 
of zoom able user interfaces. It is aimed at providing differ­
ent levels of details and integrating different levels of ab­
straction so that frequent switching of applications can be 
avoided. In the following subsections we will provide more 
details about the different user interface concepts. 

2.2.1 Knowledge base 

Squidy provides a wide range of ready-to-use devices and 
filter nodes stored in an online knowledge base that is acces­
sible within the Squidy user interface. An assortment is di­
rectly offered at the bottom of the pipeline view (see Fig. 2). 
The selection and arrangement of the nodes are based on sta­
ti stics of previous usage and thus give a hint of suitable part­
ners for the currently focused device or filter. This dynamic 
suggestion may lead to a hi gher efficiency and also helps 
novice users to limit the otherwise overwhelming number of 
available nodes to a relevant subset. The user can directly 
drag a desired node from the selection (bottom) to the de­
sign space for the pipeline (centre) . If the desired node is 
not part of the suggested subset, the user has the possibility 
of access ing all nodes of the knowledge base by zooming 
into the corresponding view at the bottom. Therein, dynamic 
queries support the exploration (see Fig. 6). These are based 
both on automatically generated metadata about each node 
as well as user-generated tags. 

2.2.2 Semantic zooming 

In accordance with the assumption that navigation in infor­
mation spaces is best supported by tapping into our nat­
ural spatial and geographic ways of thinking [25], we use 

a zoomable user-interface concept to navigate inside the 
Squidy visual user interface. When zooming into a node, 
additional information and corresponding functionalities ap­
pear, depending on the screen space available (semantic 
zooming). Thus, the user is able to gradually define the level 
of detail (complexity) according to the current need for in­
formation and functionality. 

2.2.3 Interactive configuration & evaluation 

In contrast to the related work, the user does not have to 
leave the visual interface and switch to additional applica­
tions and programming environments in order to get ad­
ditional information, to change properties, or to generate, 
change or just access the source code of device drivers and 
filtcrs. In Squidy, zooming into a node reveals all pal'ame­
ters and enables the user to interactively adjust the values 
at run-time (see Fig. 7). The changes take place immedi­
ately without any need for a restart, providing a direct rela­
tionship between user interaction and application feedback 
and thereby maintaining causality, as Card et al. puts it [8]. 
This is especially bene fi cial for empirically testing a num­
ber of different parameters (e.g. adjusting the noise levels of 
a Kalman filter) because of the possibility of directly com­
paring these settings without introducing any (e.g. tempo­
ral) side e llects. This process or interactive contiguralion 
and evaluation is much needed during the design of mul­
timodal interaction, especially when using uncommon inter­
action techniques and user interfaces. Squidy therefore fa­
cilitates fas t development iterations. 

2.2.4 Details on demand 

Going beyond the access and manipulation of parameters, 
Squidy provides illustrated information about the function-



Fig. 7 View of a zoomed 
Ka lman tilter node with table o r 
parameters. Parameter changes 
are applied immediately. Spatial 
scrolling with overview window 
(right) and temporal scrolling of 
last changes (bOl/om) is 
provided visually. Via automatic 
zooming, the user can access 
further information about the 
node (Fig. 8) and the fi lter 
source code (Fig. 9) 

Fig.8 Information view of the 
Kalman filter node providing 
illustrated descriptions about its 
functiona lity 
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ality, usage and context of the node, and this information is 

directly embedded in the node. By zooming into the infor­
mation view marked by a white Hi" on a blue background 

(see Fig. 7), the information is shown without losing the 

context of the node. This information view (see Fig. 8) may 

contain code documentation (e.g. automatically generated 

by javadoc), user-generated content (e.g. from online re­

sources such as wikipedia .org or the Squidy-Wiki) or specif­

ically assembled documentation such as a product specifi ­

cation consisting of textual descriptions, images or videos. 

The interaction designer using Squidy does not need to open 

a web browser and has to search for online documentations 

in order to get the relevant information. Due to the seman-

tic zooming concept the user specifies her information need 
implicitly by navigating in the zoomable user interface and 
spatia ll y fi ltering the information space. 

2.2.5 Embedded code and on-the-fly compilation 

The user even has the abi lity to access the source code 
(see Fig. 9) of the node by semantic zooming. Thus, code 
changes can be made directly inside the design environ­
ment. Assistants such as syntax highlighting or code com­
pletion support the user even further. If the user zooms out, 
the code wil l be compiled and integrated on the fly, again 
without needing to restart the system. Users may also gen­
entte new input and output devices or fillers by adding an 
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empty node and augmenting it with applicable code. In or­
der to minimize the threshold for the first steps and to rc­
duce the writing effort, the empty node already contains all 
re levant method definitions for data handling and process­
ing. Therefore, only the desired algorithm has to be filled 
in the suitable method body of the node. By zooming out 
the new node is compiled and it is than immediately ready 
for usage. In order to share the new node with the commu­
nity the user can publish it into the knowledge base (see 
Publish-button in Figs. 3 and 2). The design rationale is not 
to replace the classical development environments such as 
Microsoft Visual Studio or Eclipse, but rather to integrate 
some of their function ality directly into Squidy. Thereby, we 
provide a uni fied environment that seamlessly integrates the 
most relevant tool s and functionalities for the visual design 
and interactive development of multi modal interfaces. 

2.2.6 Dataflow visualization- visual debugging 

The visual design of an interaction technique requires a 
proFound understanding of the data fl ow and the semanti cs 
of the designed pipeline. For instance, to detect and ana­
lyze interaction patterns such as gestures or multimodal in­
put, researchers or interaction designers should be able to 
qui ck ly get an overvi ew of the interaction data fl ow during a 
parti cul ar timc span . In compliancc with the pipe-and-fi lter 
metarhor, we integra te a data-flow visuali zation at the centre 
of each pipe (see Fig. 2). This simple yet powerful view (see 
Fig. 10) vi suali zes the clata flow through its corresponding 
pipe with respect to its temporal and spatial attributes . At a 
glance, users are able to inspect a massive amount of data, 
as well as data occurring in parallel, according to its spatial 
location and chronological order. 

Direct manipulation of the time span allows the user to 
adjust the range to their current need. The visual representa­
tion of data depends on the type that the data belongs to (e.g. 
representation of a position in 2D differs from the represen­
tation of a gesture being recognized-see Fig. 10). Thus, 
users benefit from the insight into the interaction data fl ow 
by getting a better understanding of the effect of different 
parameter settings . 

Every node in Squidy operates strictly within its own 
thread and therefore implies multi-threading and concur­
rent data processing without any additional effort. This al­
lows a higher bandwidth and enhances the data throughput. 
Nevertheless, users may produce errors while implementing 
nodes or use incorrect parameter settings. This can cause 
side effects (e.g. array index out of bounds) that in conse­
quence may lead to an inaccurate interaction technique or 
a local error (other nodes run in separate threads and are 
therefore unaffected) . Thus, the design environment sup­
plies each project, pipeline, node and pipe (in the follow­
ing we call these shapes) with a visual colour-coded outer­
glow effect (see Fig. 2) that represents the node's current 
status. Three distinct colours (green, red, grey) are uniquely 
mapped to a class of conditions. A green glowing shape in­
dicates a properly operating node implementation running 
underneath . Additionally, pipes possess a green illumination 
when interaction data is flowin g or has recently been flow­
ing through them. The red glow indicates that an error has 
occurred during execution of node implementation (e.g. un­
handled exception- NuIlPointerException) . Then, all con­
nected outgoing pipes to a defective pipeline or node are 
given the same error colour-coding status to enhance error 
detection and allow faster error correction. Shapes that are 
not set as activated (not running) and pipes that currently do 



Fig. 10 Datafl ow visuali zati on 
showing the values of all 
forwarded data objects of a pipe 
within a defined time span 
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not have interaction data fl owing through receive a grey illu­
mination. Thereby, without any need for interaction, the user 
can perceive the status of the data flow between the nodes of 
the pipeline. 

Occas ionally, researchers or interaction designers require 
the capability to preclude parts of interaction data from be­
ing propagated to nodes (e.g. disabling the buttons pressed 
on a laser pointer and instead using gestures to control an 
application). Thus, a pipe provides two opportunities to nar­
row the set of interaction data flowing through il. The first 
possibility for reducing the set of interaction data is before 
data is visuali zed by the dataflow visualization. This allows 
the user to visually debug designated types of data. The sec­
ond possibility is immediately after the data comes out of the 
datal"low visualization. The user can visually debug the data 
but nevertheless prevent it from being forwarded to nodes 
connected downstream. Users are able to zoom into the data­
type hierarchy view (see Fig. 4) and select (which means 
this data is forwarded) or deselect a data type by clicking 
on it. In Fig. 4 all data types are selected and therefore have 
a coloured background. A deselected data type would just 
have a coloured border. 

3 Squidy use cases 

Over the las t two years, we iteratively developed, used and 
enhanced Squidy during the course of applying it in sev­
eral diverse projects. The starting point was the need for an 
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infrastructure that faci litates the design and the evaluation 
of novel input devices and interaction techniques in multi­
modal and ubiquitous environments . 

The first input device that we implemented with S4uidy 
was an interactive laser pointer. This enabled a fl exible inter­
action with a large, high-resolution display such as the Pow­
erwall located at the University of Konstanz (221 inches, 
8.9 megapixels) from any point and distance [19]. A ma­
jor issue of this interaction technique was the pointing im­
precision introduced by the natural hand tremor of the user 
and the limited human hand-eye coordination [2 1] . Squidy 
improved the design and research process by providing the 
opportunity to interactively implement, change and empiri­
cally test diverse smoothing techniques without introducing 
side e lTccls. In an ileralive approach the datallow was vi­
suali zed, the filter log ic was adapted, the filter parameters 
were optimized, and the resulting interaction technique was 
finally evaluated hased on a Fitts ' Law Tapping Test (ISO 
9241 -9), which is also provided in Squidy as a ready-to-use 
component (see Fig. 12). Thus, Squidy supported the entire 
deve lopment lifecycle, resulting in a very efficielll and ef­
fective project progress . 

In a follow-up projcct we specifica ll y made lise of the 
separation of the three layers in Squidy since we could eas­
ily apply the laser pointer interaction to an artistic instal­
lation . This scenario utilized the laser pointer for interac­
tion but came with a very different display and visuali za­
tion technique. Surrounded by 360°-satellite images of the 
earth, visitors to the "Globorama" installation explored the 
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Fig. 11 Globorama installation on a 3600 panoramic screen . On the left : top view of the panorama screen with 8 m in diameter. On the right: 
Visitors exploring the Globorama installation with an interactive laser pointer 

Fig. 12 Laser Pointer Interaction in front of a large high-resolution 
display. Squidy facilitated the integration and evaluation of precision 
enhancing and smoothing techniques, allowing the precise selection of 
targets as small as 22 mm in diameter from a 3 m distance 12 11 

entire globe with the laser pointer and submerged at selected 
points in geo-referenced pano-ramic photographs or web­
cam images of the respective location (see Fig. II ). The visi­
tors were able to physically move inside the 3600 panoramic 
screen (8 m in diameter, 8192 x 928 px) while dynamically 
controlling zooming and panning and selecting interesting 
areas [20]. We also augmented the laser pointer with a vi­
brator for tactile feedback and multiple RGB-LEDs for vi­
sual feedback on the device. The tactile feedback was given 
whenever the visitor moved the cursor over an active el­
ement such as a geo-referenced photograph and the color 
LEDs visualized the current status of the system. The "Glob­
orama" installation was exhibited at the ZKM Center for Art 
and Media in Karlsruhe (2007) and at the ThyssenKrupp 
Ideenpark 2008 in Stuttgart. 

Squidy was also used to design functional prototypes for 
personal information management with interactive televi­
sion sets [15]. For this application domain, the Nintendo 
Wii , in its role as a standard input device for home enter­
tainment, was integrated into Squidy. Although the device, 
the application, and the di splay were completely different 
to the previous projects, the smoothing fi lters implemented 

for the laser pointer could be applied to the Wii and proved 

to be very beneficial , since both the Nintendo Wii and the 

laser pointer share an important similarity in being absolute 

pointing devices. Furthermore, the wiigee gesture recogni ­

tion toolkit [26] was integrated into Squidy to enable three­

dimensional gestures with the Nintendo Wii. Although the 

toolkit was originally designed for the Nintendo Wii, the 

laser pointer can be used interchangeably, since Squidy uni­

fi es the individual data types of the devices with the generic 

data types commonly defined in Squidy. 

In the context of Surface Computing, we conceptually 

and technically combined mUltiple touch-sensitive displays 

aiming to provide a more ubiquitous user experience based 

on the naturalness and directness of touch interaction [ 16]. 

In this scenario, we integrated mobile handhelds (Apple 

iPhone) as personal devices as well as shared multi-touch 

tables (Microsoft Surface) and large high-resolution walls 

(eyevis Cubes) for collaborative design and visual informa­

tion organization. In order to facilitate multimodal input and 

context-aware applications, we integrated speech recogni­

tion, mobile eye tracking [ 14] and freehand gestures [9]. 

To further close the gap between the digital and the phys­

ical world, we enhanced this environment with digital pens 

for interactive sketching and the possibility of interacting 

with physical tokens on the diverse multi-touch displays (see 

Fig. 14). All of these techniques were integrated in, and 

driven by, Squidy and installed in our interaction lab known 

as the Media Room (see Fig. 13). This physical infrastruc­

ture in combination with Squidy as the common software 

infrastructure gives an ideal design and development envi­

ronment for researchers and interaction designers develop­

ing the user interfaces of the future. 



4 Conclusion and future work 

"Creating interactive systems is not simply the activity of 
translating a pre-ex isting specifi cati on into code; there is sig­
nificant value in the epi stemic ex perience of exploring alter­
natives" (Hartmann et al. [13]). 

This statement is especially true for the design of mul ­
timodal interfaces, since there is no well established body 
of knowledge and no ready-to-use solution for multi modal 
interfaces the designer can take advantage of. Interaction 

Fig. 13 The Media Room is a lab environment which provides a va­
riety of input and output devices with di fferent modalities and form 
facto rs. Squidy serves as the basic technology to in tegrate these differ­
ent devices as well as to configure and evaluate them 
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designers need to physically explore and prototype new in­
teraction modalities and therefore require develo pment en­
vironments that especially support the interactivi ty and the 
dynamic of this creative development process. We presented 
the Squidy Interaction Library that supports the interactive 
design of multimodal user interfaces with a three-part con­
tribution . Firs t, it provides a software architecture that offers 
the fl ex ibility needed for rapid prototyping and the possi-

Fig. 14 Mul ti-touch surfaces augmented with physica l tokens used in 
the context of blended museum 
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\ Parallel Processing 

Fig. 15 T his cloud shows how Squidy contributes to the development 
lifecyc le of mul timodal interac tion techniques . Each phase in the life­
cycle, whether it is the design and prototyping, the implementation and 

testing, or the usability evaluation phase is surrounded by a variety of 
Squidy features that support the interaction designer or developer dur­
ing this activity 
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bili ty to integrate a vast variety of heterogeneous input de­
vi ces and signal process ing fillers. Second, lhe Squidy vi­
sual user interface introduces a new user interface concept 
th al combines visual dataflow programming with semantic 
zooming in order to reduce the visual and technical com­
plexity. This visual approach enables also a high degree of 
interactivity that is further supported by the fluid integrati on 
of code vi ews, filter mechanisms and visuali zati on too ls. 
Third, the Squidy Interaction Library does not only focus on 
the rapid prototyping, but also provides advanced develop­
ment techniques and tool-support for empirical evaluation 
of the developed interfaces. Figure 15 shows a high-level 
feature cloud of the Squidy Interaction Library with respect 
to the different development phases. The appropriateness of 
Squidy to the actual design and research process was prac­
tically shown by the presented use cases. Additionally, we 
will conduct qualitative usability tests in order to validate 
and inform the design of the Squidy user interface concept. 
Up to now, the Squidy Interaction Library has not provided 
multi-user support. This, and the integration of version con­
trolling, will be future work. 

The Squidy Interaction Library is free software and pub­
lished at hup:llhci.uni-konstanz.de/squidyl under the licence 
of the LGPL. 
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