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Abstract The aim of this paper is to help the communica-
tion of two people, one hearing impaired and one visually
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impaired by converting speech to fingerspelling and finger-
spelling to speech. Fingerspelling is a subset of sign lan-
guage, and uses finger signs to spell letters of the spoken or
written language. We aim to convert finger spelled words to
speech and vice versa. Different spoken languages and sign
languages such as English, Russian, Turkish and Czech are
considered.

Keywords Fingerspelling recognition · Speech
recognition · Fingerspelling synthesis · Speech synthesis

1 Introduction

The main objective of this paper is to design and imple-
ment a system that can translate fingerspelling to speech and
vice versa, by using recognition and synthesis techniques for
each modality. Such a system enables communication with
the hearing impaired when no other modality is available.

Fingerspelling is a representation of letters or numerals,
using only the hands. In most sign languages it has been
adopted to sign out-of-vocabulary words. In terms of auto-
matic recognition, fingerspelling has the advantage of us-
ing limited number of finger signs corresponding to the let-
ters/sounds in the alphabet. In this paper we present a system
incorporating several modules. The modules are:

– Fingerspelling recognition
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– Speech recognition
– Fingerspelling synthesis
– Speech synthesis

The resulting modules can then be used as a part of a sign
language to speech translation systems.

2 Literature survey

2.1 Fingerspelling recognition

The vision based fingerspelling recognition task involves
conversion of fingerspelling hand gestures in an image se-
quence to letters of a written alphabets. Like automatic sign
language recognition, fingerspelling recognition is still an
active and challenging research topic. As fingerspelling is a
subset of sign languages that makes use of hand gestures,
same recognition methodologies are used for both. There-
fore, we review techniques for both. It is composed of sev-
eral subtasks such as segmentation of hands, extraction of
features from segmented hand images and classification and
temporal modeling of hand features. For hand segmenta-
tion, no single method to our knowledge performs uncon-
strained segmentation of hand images from cluttered back-
grounds. Therefore studies in the literature make use of dif-
ferent cues and restrictions to perform hand segmentation.
Popular methods for hand segmentation include using skin
color cues [5], motion cues [37], shape cues [9] or depth
information [39].

Vision based fingerspelling recognition systems usually
use two different approaches to represent segmented hands.
One approach is to use appearance based descriptive fea-
tures to model human hands. In [58], an excellent survey on
shape based descriptors is presented. Common appearance
based features used in hand representation tasks include
Histograms of Oriented Gradients [37], Local Binary Pat-
terns [42], Elliptic Fourier Descriptors [35] or SURF [16].
Another approach to hand representation is the usage of gen-
erative 3D models to represent hands [39].

Sign gesture recognition is achieved through the classifi-
cation and temporal modeling of these extracted hand fea-
tures. In sign languages, there are two different kinds of
gestures—static and dynamic gestures. While it is possible
to recognize static gestures using just a single snapshot with
classifiers such as k-Nearest Neighbors or Gaussian Mixture
Models, dynamic gestures are recognized using either mo-
tion models or models that utilize temporal information such
as Hidden Markov Models [37].

2.2 Fingerspelling synthesis

The goal of an automatic sign language synthesizer is the
reproduction of human behavior during the signing. The

sign language synthesizer should express manual compo-
nents (position and shape of hands) as well as non-manual
components (facial expression, lip articulation, etc.) of the
performed signs. Sign language synthesis is implemented in
several steps. Firstly the source utterance has to be trans-
lated into the corresponding sequence of signs since sign
language has different grammar than the spoken one. Then
the relevant signs have to be concatenated to form a contin-
uous utterance.

The straightforward solution of sign language synthesis
is to record the video of a signing human. The video records
capture signed speech with very good quality and realism
but simple concatenation of these records is not possible.
Image based synthesis of facial movements or simple body
pose could be considered [15, 56]. On the other hand, we
can find virtual character (avatar) animations allowing low-
bandwidth communication, arbitrary 3D position and light-
ing or replacement of the animation model or the character
itself.

Sign language synthesis systems that use avatar anima-
tions are based on motion-capture (MoCap) or parametric
data, or combination of both. The systems adopt techniques
of MoCap often together with data gloves to obtain the
movement data of sign languages. ViSiCAST project [13]
was aimed at voice to English Sign Language translation
and SignCom project [11] aimed at French Sign Language
(LSF). The second type of systems generally rely on para-
metric models and scripts. These synthesis systems decode
input such as special designed XML documents, HamNoSys
or SignWriting notations to sequences of scripted anima-
tion commands: eSIGN [13], MUSSLAP [29] projects, the
ILSP [17] and EMBR [21] systems, and synthetic corpus of
American Sign Language (ASL) [49]. A system that sup-
ports the translation from Italian to Italian Sign Language
(LIS) and generates avatar animation by combined approach
is being designed [38].

2.3 Speech recognition

Human speech refers to the processes associated with the
production and perception of sounds used in spoken lan-
guage. Automatic speech recognition (ASR) is the process
of converting a speech signal to a sequence of words, by
means of an algorithm implemented as a software or hard-
ware module. Several kinds of speech are identified: spelled
speech (with pauses between letters or phonemes), isolated
speech (with pauses between words), continuous speech
(when a speaker does not make any pauses between words)
and spontaneous natural speech in an inter-human dialogue.
The most common classification of ASR by recognition vo-
cabulary (lexicon) is the following:

– small vocabulary (10–1000 words);
– medium vocabulary (up to 10 000 words);
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– large vocabulary (up to 100 000 words);
– very (or extra) large vocabulary (>100 000 words that

is adequate for ASR for inflective or agglutinative lan-
guages);

– unlimited vocabulary (attempts to model all existing and
potential words of the language).

Recent automatic speech recognizers exploit mathematical
techniques such as Hidden Markov Models (HMM) [61],
Artificial Neural Networks (ANN) [51], Dynamic Bayesian
Networks (DBN) [53], Dynamic Time Warping (DTW)
or dynamic programming [24], Support Vector Machines
(SVM) [52] or some hybrid models [18, 55]. The most pop-
ular ASR models apply speaker independent speech recog-
nition, though in some cases (for instance, personalized sys-
tems that have to recognize owner only) speaker dependent
systems are more adequate, as in the case of personalized
systems.

In the framework of the given project a multilingual
ASR system is constructed by applying the Hidden Markov
Model Toolkit (HTK version 3.4) [60]. Language models
based on statistical text analysis and finite-state grammars
are implemented for ASR of continuous phrases or mes-
sages [45].

2.4 Speech synthesis

Speech synthesis is the artificial production of human
speech. A speech synthesis (text-to-speech) system trans-
lates normal orthographic text into symbolic linguistic rep-
resentations like phonetic transcriptions, which are then
converted into speech. Synthesized speech can be created
by concatenating pieces of recorded speech that are stored
in a database [7], or by using a parametric model like
HMM [12, 20, 62]. Articulatory Synthesis, where a model
of the vocal tract is considered to generate the speech, is
another but less popular approach. Systems for speech con-
catenation differ in the size of the stored speech units; a
system that stores allophones or diphones provides accept-
able speech quality but the systems that are based on unit
selection methods provide a higher level of speech intelli-
gibility. The quality of a speech synthesizer is judged by
its similarity to human voice (naturalness) and by its ability
to be understood (intelligibility). Concatenation and HMM
synthesis are the state-of-the-art methods. They have been
developed in recent years i.e. faster unit selection [10], ex-
pressive speech synthesis [19] or application [40].

2.5 Properties of the considered languages

The Czech, English, Russian and Turkish languages are in-
cluded in the speech scope of the system and the Czech,
Turkish and Russian fingerspelling alphabets are included
in the visual scope.

Turkish is an agglutinative language with relatively free
word order. Due to their rich morphology Czech, Russian
and Turkish are challenging languages for ASR. The out-of-
vocabulary (OOV) rates for a fixed vocabulary size are sig-
nificantly higher in these languages. The higher OOV rates
lead to higher word error rates (WERs). Having a large num-
ber of words also contributes to high perplexity numbers,
an undesired situation since it increases the average number
of possibilities for each word in the model. Turkish, being
an agglutinative language with a highly productive inflec-
tional and derivational morphology is especially prone to
these problems.

Recently, large vocabulary continuous speech recogni-
tion (LVCSR) systems have become available for Turkish
broadcast news transcription [6]. An HTK based version of
this system is also available [8]. LVCSR systems for agglu-
tinative languages typically use sub-word units for language
modeling.

The Russian language belongs to the Slavonic branch of
the Indo-European group of languages, which are character-
ized by a tendency to combine (synthesize) a lexical mor-
pheme (or several lexical morphemes) and one or several
grammatical morphemes in one word-form. So, Russian is
a synthetic inflective language with a complex mechanism
of word-formation. For large vocabulary Russian ASR, it is
required to apply a recognition vocabulary in several orders
larger than for English or French ASR because of existence
of prefixes, suffixes and endings that essentially decreases
both accuracy and speed of recognition. Grammatical dic-
tionary of Russian contains above 150 thousand words and
due to word-formation rules it allows extracting all the dic-
tionary entries and obtaining over two million various word-
forms. For instance, verbs can generate up to two hundred
word-forms, which have to be taken into account in speech
recognition. Besides, most word-forms of the same word
differ in endings only, which are pronounced in continuous
speech not as clearly as the beginning parts of words. Mis-
recognition in endings results in misrecognition of the word
and the whole sentence because of word discordance. More-
over, word order in Russian sentences is not restricted by
hard grammatical constructions, like in English or German
that complicates creation of statistical language models or
essentially decreases their effectiveness. Statistical corpus-
based language models for Russian have perplexity and en-
tropy estimations three-four times higher with respect to En-
glish [57].

SAMPA phonetic alphabet for the Russian language in-
cludes 42 phonemes: 36 units for consonants and six for
vowels, so consonants ambiguity is rather high in Russian.
An automatic phonetic transcriber is required for the cre-
ation of the recognition vocabulary for Russian ASR. Rules
for transformation from orthographic text to phonemic rep-
resentation are not very complicated for Russian; however,
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Fig. 1 Turkish fingerspelling alphabet

Fig. 2 Russian fingerspelling alphabet

the main problem is to find the position of stress (accent)
in a word-form. There exist no common rules to determine
stress positions; moreover, compound words may have sev-
eral accents at once. Only knowledge-based approaches can
solve this challenge.

The three different fingerspelling alphabets included in
the system contain varying characteristics that make their
combined recognition a challenging problem. The Turk-
ish Fingerspelling Alphabet (TFA), seen in Fig. 1, contains
seven gestures performed by one hand and twenty two ges-
tures performed by two hands.

In contrast to the Turkish alphabet, all signs of the Rus-
sian fingerspelling alphabet (Fig. 2) are performed by one
(dominant) hand. The Czech sign alphabet in Fig. 3, con-
tains a one handed and a two handed sign for each letter.
Therefore, this combination of gestures creates a need to
handle the processing of different kinds of letters separately.

Fig. 3 Example form Czech fingerspelling alphabet

3 System overview

The system is implemented in a client-server architecture.
Individual modules are client applications which are com-
municating through the server. The system is operating close
to real time on an average PC. The tests were done on sev-
eral machines with average specifications similar to Intel(R)
Core(TM)2 Duo @ 2 GHz, 2 GB of operating memory. The
system takes visual hand gesture input from the camera or
the speech input from the microphone and converts it to syn-
thesized speech or fingerspelling. The input and output can
be selected among the supported languages for each mod-
ule. The translation between different languages is handled
via Google translate API. The system flowchart can be seen
in Fig. 4.

A screenshot of the usage of hand gesture and speech
modalities with the system can be seen in Fig. 5. A simple
game scenario that involves the usage of speech and finger-
spelling modalities is defined. The purpose of the game is
for a deaf person and blind person to play a simple child’s
game: City games are a natural case where finger spelling
needs to be used: While there are specific fingersigns for lo-
cal cities, there are no specific signs for foreign cities; and
therefore, their names need to be fingerspelled. We tried to
make this justification in the text. The goal of the game is
to give a name of a city using one of the input modalities.
Then the next player has to give a name of a city beginning
with the letter with which the last city ended. The game ends
when one of the players cannot think of a city. In that case
the other player wins. An example of a game scenario:

SP- Hi, I am Alexander, from Russia
FS- Hi, I am Alp, from Turkey
SP- Do you want to play city names game?
FS- Yes
SP- Ok, I start. London
FS- Naples
SP- St. Petersburg . . .
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Fig. 4 System flowchart

Fig. 5 Users communicating through system with each other using
fingerspelling and speech

3.1 Client-server architecture

Since the aim of this project is to help the communication
of two people, the use of a computer network is essential to
allow remote communication. As seen in Fig. 4, the whole
communication system has two input parts (one for each
user), the central server and two output parts (again, one for
each user). The central server, located outside of the user
computers, runs a stand-alone application, which communi-
cates with the applications located in the users computers
(one input and one output application for every user). Since
these applications connect to the server, we can call them
clients. The server has these features:

– handles multiple discussions (sessions), i.e. multiple user
pairs can discuss separately on the same server and re-
ceive text messages from input clients,

– stores recent messages,
– translates messages to another languages using Google

Translate API,
– sends messages to the output clients.

The message can be a single letter (e.g. received from
a fingerspelling recognition client), a single word or a sen-
tence (e.g. from a speech recognition client). The server au-
tomatically concatenates letters into words and words into
sentences. The server is implemented as a web server that
receives and delivers content using HTTP (Hypertext Trans-
fer Protocol) over the Internet. The server receives requests
from the clients and sends a response back.

For example, to retrieve messages by an output client:
http://[server_url]/dialogue?list=all&session=tom_and_
bob&format=json&tran_lang=cs_CZ lists all messages from
tom_and_bob session, translates all messages into cs_CZ
language and sends the response in JSON format.

Another example to send a new message by an input
client: http://[server_url]/dialogue?language=en_GB&user_
id=Tom&sentence=Hello+world&session=tom_and_bob.

This adds the new sentence “Hello world” in en_GB lan-
guage by user Tom into tom_and_bob session.

The advantage of this client-server architecture is the pos-
sibility to have multiplatform client applications created in
any programming language which supports HTTP commu-
nication.

4 Fingerspelling recognition

The automatic fingerspelling recognition system captures
hand gestures in continuous image sequences and converts
them to letters of written alphabets. Hand gestures of the
users are captured from the signing environment using a
single camera. The user is not required to wear any mark-
ers on his/her hands. The supported languages of the system
are Turkish fingerspelling, Russian fingerspelling and Czech
fingerspelling. Some additional signs such as delete and end
of word are defined as well to improve system usability.

http://[server_url]/dialogue?list=all&session=tom_and_bob&format=json&tran_lang=cs_CZ
http://[server_url]/dialogue?list=all&session=tom_and_bob&format=json&tran_lang=cs_CZ
http://[server_url]/dialogue?language=en_GB&user_id=Tom&sentence=Hello+world&session=tom_and_bob
http://[server_url]/dialogue?language=en_GB&user_id=Tom&sentence=Hello+world&session=tom_and_bob
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Fig. 6 Multilingual
fingerspelling database

4.1 Dataset collection

For training of our system and testing its accuracy, we
have collected a multilingual fingerspelling database from
five different users [27]. All five of these users performed
Turkish fingerspelling gestures and three of them performed
Czech and Russian sign alphabets. Samples from videos of
different users are shown in Fig. 6.

The videos are recorded by a mini-dv camera at 25 fps
at a resolution of 640 × 480. The signs are performed in
front of a black background using a constant camera dis-
tance and angle. The signers wear dark colored clothes with
long sleeves. Each letter is repeated five to eight times de-
pending on the complexity of the gesture, allowing us to dis-
card any mistakes on the users part. The total length of the
database for each signer changes between 30 to 45 minutes.
Due to different recording environments the lighting condi-
tions and camera calibration settings vary slightly from sub-
ject to subject.

4.2 Hand tracking and segmentation

The highly mobile and self occluding nature of the hands
makes tracking of hand gestures a challenging task. While

signing in a natural manner, hands often tend to interact
with each other, cross over the face and make movements
that are sudden and rapid. In order to handle many of the
exceptional cases without excessive computational burden,
we used a tracking algorithm based on the Continuously
Adaptive Meanshift (Camshift) method [4] to jointly track
the hands and face of a signer.

Our tracking method replaces the manual initiation of
Camshift by implementing a motion based skin color model
initialization module. The module requires the user to wave
his hands for a few seconds before commencing signing to
generate a person specific color histogram. The location of
the hand is localized by calculating image differences be-
tween consecutive frames. By using double differencing, the
location of the hand is obtained, which is used to train a
skin color model to track hands. This skin color model as-
sumes certain user and environment conditions and needs to
be reinitialized for each new user.

During tracking, we handle issues caused by simultane-
ous two hand tracking and tracking failures with a hierarchi-
cal hand re-detection module [14]. With this module, we can
robustly detect new foreground objects to track in our image.
Detection of new objects to track allows us to handle oc-
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cluding, merging, disappearing and reappearing hands, thus
allowing continuous tracking of the hands and the face. By
marking the merging and separation of tracking boxes, we
keep track of the number of hands in the search boxes. The
tracking is performed on a reduced resolution video of size
320 × 240 to boost system performance. The final system
performs between 8 to 10 fps.

A limitation of the skin color based hand recognition
method is that the subject should not allow any other skin
colored objects on the scene. He/she should wear long
sleeves and make as minimal interactions with his/her face
as possible. Although this seems like a limitation, this is
clearly a very minor limitation when similar systems are
considered: Such systems usually require studio set-up with
controlled illumination. Some systems require the user to
wear special gloves. Our system is adaptable; as it performs
adaptation to the illumination conditions and the skin color
at the start-up. As a result, the users need not wear special
markers or gloves.

4.3 Feature extraction

On the segmented hand images, we used the following shape
descriptors as features to mathematically represent the hand
images. We chose our appearance based features based on
their strengths on representing different properties of hand
shapes, such as shape, texture and external contours. In this
study, we used shape based features such as image moments,
texture representation based features such as Local Binary
Patterns and external contour based features such as Elliptic
Fourier Descriptors and Radial Distance function. Since fin-
gerspelling gestures limit the use of arm and body gestures,
we refrained from using any motion based features.

4.3.1 Local binary patterns

Local Binary Patterns (LBP) were introduced by Ojala [43]
for texture representation. LBP is used across various com-
puter vision fields (e.g. image synthesis, light normalization,
face detection, face/expression recognition). It has been suc-
cessfully used for hand detection in cluttered images [42].
We use LBP for hand shape description.

First an LBP image is computed. The algorithm moves a
defined patch along all the pixels in an image. The evaluated
pixel is in the center of the patch. Depending on the size
and shape of the patch the resulting LBP image changes. We
use a circular 8-neighborhood patch with radius one and two
pixels. The patches can be seen in Fig. 7. If the brightness
of a pixel in the center is greater or equal to the evaluated
pixel’s brightness we assign the binary label 1 to the proper
location in the patch. If the patch brightness is lower than the
evaluated brightness we assign the label 0 to it. In each patch
we evaluate eight locations (or combinations of locations)

Fig. 7 Examples of LBPs. We use LBP with radius of one (left) and
two (right). Numerical values represent the position of the patch in the
binary representation of the pattern

which yields an 8-bit number. This number is assigned to
the location of the evaluated pixel and the patch moves to the
next pixel. Next, we compute a histogram of the LBP image,
which we use as a feature vector. For normal LBPs there are
256 histogram bins, each bin for one pattern. In practice it
has been shown that all the patterns are not important for
recognition. Most of the information is in the patterns that
have two or fewer changes between 0 and 1 in its binary
representation. Such LBPs are called uniform [44]. There
exist 58 such patterns and all the other patterns are moved
to the 59th bin of the histogram. This means that for the
uniform LBPs that we use in our system, the feature vector
is of size 59.

We implemented both uniform and non-uniform LBP
both with the patch radius one and two. We used uniform
LBPs with patch radius size two to test our system.

4.3.2 Elliptic Fourier descriptors

Elliptic Fourier descriptors on shape signatures are widely
used for shape analysis and recognition [33, 35]. These de-
scriptors represent the shape of the object in the frequency
domain. The lower frequency descriptors contain informa-
tion about the general features of the shape, and the higher
frequency descriptors contain information about finer details
of the shape. Although the number of coefficients generated
from the transform is usually large, a subset of the coeffi-
cients is enough to capture the overall features of the shape.
For an n-harmonic elliptic Fourier descriptor representation
of a 2-D closed shape is given in Equation 1. In the equa-
tion, the center of the curve is (a0, c0). (ak, bk, ck, dk) for
k = 1 . . . n are elliptic Fourier coefficients of the curve up to
n Fourier harmonics. T is the perimeter of the closed curve.

[
x(t)

y(t)

]
=

[
a0

c0

]
+

N∑
k=1

[
ak cos( 2kπt

T
) + bk sin( 2kπt

T
)

ck cos( 2kπt
T

) + dk sin( 2kπt
T

)

]
(1)

The elliptic Fourier descriptors (ak, bk, ck, dk) are calcu-
lated for each point k of the curve as seen in (2)–(5).
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2k2π2

n∑
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T

)
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Fig. 8 Radial distances for a two-handed gesture
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For each calculated Fourier harmonic, we obtain an el-
lipse that yields four invariant features [54]. The first two
features are the major and minor axis lengths of the calcu-
lated ellipses. The latter two features can be derived from the
first two features and vice versa. In our experiments with
hand contours, we found 10 harmonics sufficient to repre-
sent hand gestures, yielding feature vectors of size 40. The
formulas for the features are given in (6)–(9).

A2
k =

Ik +
√

I 2
k − 4J 2

k

2
(6)

B2
k = J 2

k

A2
k

(7)

Ik = a2
k + b2

k + c2
k + d2

k (8)

Jk = (akdk) − (bkck) (9)

4.3.3 Radial distance function

The radial distance function method, presented in [59] is a
contour based method. Using the distance of a seed-point
(possibly the center of mass) in all directions to the closest
background pixel (Fig. 8), we compute a feature vector of
the image. The calculated image descriptors are invariant to
translation, size and rotation. Rotation invariance is achieved
by choosing the angle with the smallest radial distance as the
point for each seed point.

While describing an isolated hand, the radial distance
function is an efficient measure as it is possible to represent
finger locations and notable extensions of the hand. How-
ever, when describing blobs consisting of not completely
overlapping, but touching hands, obtaining a point which
has a straight line distance to both hands may not be pos-
sible. For this reason, we attempt to find the centers of grav-
ity belonging to both hands. By using the image moments
Mij , we calculate the parameters of the smallest ellipse that
covers both hands using the formulas (10)–(13).

a = M20

M00
− x2 b = 2

M11

M00
− xcyc c = M02

M00
− y2 (10)

l1 = (a + c) + √
b2 + (a − c)2

2
(11)

l2 = (a + c) − √
b2 + (a − c)2

2
(12)

Θ = 1

2
tan−1

(
b

a − c

)
(13)

In the calculations, l1 and l2 are the principal axes of the
bounding ellipse centered on the centroid of the image and
Θ is their rotation angle. By dividing the image using the
minor axis l2 as a separator, we effectively divide the blob
into two approximately equal parts belonging to different
hands. After calculating the centroid of each part using im-
age moments, we obtain seed locations for two radial dis-
tance functions that are sufficient to describe a hand blob
consisting of two hands, as seen in Fig. 8. We chose to calcu-
late two radial distance functions every five (2π/72) degrees
and obtain a feature vector of size 144.

4.3.4 Hu moments

We make use of Hu moments as shape descriptors and com-
pare the performance with our other features. The invariant
moments of Hu are calculated from normalized central im-
age moments using the formulas below [23]:

I1 = η20 + η02

I2 = (η20 − η02)
2 + (2η11)

2

I3 = (η30 − 3η12)
2 + (3η21 − η03)

2

I4 = (η30 + η12)
2 + (η21 + η03)

2

I5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]
+ (3η21 − η03)(η21 + η03)[3(η30 + η12)

2

− (η21 + η03)
2]

I6 = (η20 − η02)[(η30 + η12)
2 − (η21 + η03)

2]
+ 4η11(η30 + η12)(η21 + η03)
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Table 1 Effects of dimensionality reduction on Turkish fingerspelling
recognition using kNN

HU EFD RDF LBP

NO PCA 0.4924 0.6465 0.7606 0.7639

PCA %95 0.4633 0.6964 0.3896 0.2343

PCA %99 0.4924 0.7704 0.6643 0.5649

PCA %100 0.4924 0.7629 0.7609 0.7636

Fig. 9 Effects of PCA on fingerspelling recognition accuracy

I7 = (3η21 − η03)(η30 + η12)[(η30 + η12)
2 − 3(η21 + η03)

2]
+ (η30 − 3η12)(η21 + η03)[3(η30 + η12)

2

− (η21 + η03)
2]

Calculated from binary shape masks, we use the seven Hu
moments as rotation, scale and translation invariant feature
vectors.

4.3.5 Feature selection and dimensionality reduction

In Table 1, we display results on the effects of dimension-
ality reduction on key-frame based recognition accuracy.
For dimensionality reduction, we make use of the principal
component analysis algorithm. In these tests, the kNN algo-
rithm is used to classify the features belonging to the key-
frames of the Turkish Fingerspelling alphabet. Since these
tests are performed on individual key-frames rather than
image sequences, recognition accuracy is lower than our
sequence-wise recognition results. We have chosen to pre-
serve energy at different levels by choosing different num-
ber of coefficients whose eigenvalues sum up to a certain
percentage of the total energy. Figure 9 shows that except
for Elliptic Fourier Descriptors, no feature shows perfor-
mance improvement when projected onto a lower dimen-
sional space.

We explicitly feel the need to note here that each EFD co-
efficient is of a different magnitude giving higher weight to
higher harmonic features. Performing z- normalization on

Fig. 10 Motion blur example

the vector actually reduces overall descriptor accuracy by
negating high level shape characteristics. Thus, the success
of PCA algorithm to converge on features with higher har-
monics increases the descriptors overall efficiency.

4.4 Recognition and results

For modeling and recognizing our gestures, we make use of
a two layered classification method. First, we use a motion
model to decide where a certain gesture starts and ends in
a continuous image sequence. Then we combine the classi-
fication results of frame-wise classifiers to make a decision
for the sequence of images belonging to a gesture.

4.4.1 Motion modeling and key frame selection

In continuous hand gesture recognition, an important issue
is designating frames in which the signer actually performs
a gesture and frames where the signer does not perform it.
We use a key-frame based motion model, where consecutive
key-frame sequences of certain lengths are assumed to be-
long to the same gesture. Given a sequence of images, we
classify the images into two categories depending on their
semantic content. If the frame contains a snapshot of a hand
gesture which can be used to represent a concept, we call the
frame a key-frame. If the frame does not contain any hand
gestures or is a transition between two gestures, we call the
frame a transition frame.

In key-frame selection, the goal is to distinguish probable
sign language hand gestures from transition gestures that oc-
cur while moving the hands from one gesture to another. Al-
though the motion of hands seems to be the key distinguish-
ing feature for such a case, individual usage of such feature
does not produce extremely accurate results. It is mainly be-
cause the motion of hands varies with the signer, with the
accuracy of hand tracking, with the current sign and with
the co-articulation of previous and following sign. There-
fore, supplementing hand motion with a feature that is less
dependent on the above conditions and more dependent on
the quality of captured images becomes useful in the selec-
tion of meaningful and accurate key-frames. For that reason,
we use motion blur in addition to hand motion to automati-
cally model and separate key-frames from transition frames.

In images containing hand gestures, we search for the
presence of blur around the external contours of the hand.
Compared to unblurred images, a major characteristic of
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Fig. 11 Trace image

blurred images is that edges tend to be smoother and contain
smaller gradient values (Fig. 10). Therefore, focusing on the
distribution of gradient values in a certain image patch can
give us an idea about the presence of partial motion blur.
Using the image derivative masks,

Dx =
⎡
⎣−1 0 1

−1 0 1
−1 0 1

⎤
⎦ Dy =

⎡
⎣−1 −1 −1

0 0 0
1 1 1

⎤
⎦ (14)

we convolve the images to obtain the derivative images Ix

and Iy . Using a Gaussian window, we obtain the smoothed
squared image derivatives I 2

x and I 2
y . Then we calculate the

trace of the image (see (15)) in the same manner that is used
to calculate the image trace for the Harris corner detector
(Fig. 11).

A = k(I 2
x + I 2

y )2 (15)

The trace image yields the most significant results in the
edge areas that separate the hands from the background. We
compute the trace image for small windows around the hand
contour. We capture n × n sized small images around the
hand contours that are at least n2/4 pixels apart from each
other (n = 7). Since we are looking for motion blur which is
nonexistent in the direction of motion, the magnitude of the
difference of the maximum and minimum gradient strength
values of the same image can be used to hint an increase or
decrease in the amount of motion blur [36].

To model hand gestures in continuous videos, we make
use of key-frame information. For the classification of
movement and blur features, we use two methods, one gaus-
sian and one heuristic based. In the gaussian method, we
train the system with positive and negative key-frame exam-
ples. However, in the online system, the heuristic method
where the user can manipulate the thresholds to adjust sys-
tem performance to his speed was deemed more usable, as
it was easier to calibrate for different users.

To clearly analyze the effect of automatic keyframe
recognition on fingerspelling recognition, we performed iso-
lated fingerspelling recognition experiments on manual and
automatically selected hand gesture keyframes. In the first
group of images, snapshots of each sign language video
were extracted from fingerspelling videos. Using a fusion of
hand displacement and partial motion blur detection meth-
ods with pre-determined thresholds, each frame was classi-
fied as a keyframe or a transition frame. As these keyframets

Table 2 Turkish fingerspelling recognition accuracy with different
keyframe selection using kNN

HU EFD RDF LBP Fusion

Manual 0.5416 0.7041 0.7283 0.8662 0.8814

Auto 0.4924 0.6465 0.7606 0.7639 0.7793

are manually extracted from image sequences to represent
gestures, they are not affected by possible propagating im-
age segmentation or temporal segmentation errors. There-
fore, the tests with annotated snapshot images provide us in-
formation on feature descriptor and classifier performances
free of segmentation and keyframing errors. In Table 2 we
compare the recognition accuracies for the Turkish finger-
spelling alphabet using both manually selected and automat-
ically extracted keyframes. While comparing the results in
Table 2 one must take into account that isolated snapshots
contain no temporal ordering information. Therefore, tran-
sition frames that are selected and reduce recognition ac-
curacy in automatic keyframe selection should not be con-
sidered useless, as they are simply left out in this kind of
modeling.

In our motion model, when processing hand images in
a continuous video, the system marks the first encoun-
tered keyframe as the start of a gesture. The consecutive
frames following this start frame are all accepted as a part
of this gesture until a certain number of consecutive tran-
sition frames arrives. Two adaptive thresholds are used to
distinguish the start and the end of a gesture sequences. The
minimum sequence length indicates the minimum number
of keyframes to be considered a gesture. This is useful for
separating the background noise and the movement of dy-
namic keyframes from larger gesture sequences. Likewise
the minimum cutoff length threshold separates movements
between two separate frames from the movements of dy-
namic keyframes. Figure 12 displays an overview of the two
layered classification model that combines different classi-
fiers using this motion model.

4.4.2 Hand gesture recognition

In hand gesture classification, hand gesture features of dif-
ferent types are handled individually and are classified using
the K-nearest neighbor algorithm with 10-fold cross valida-
tion. For each recognized key-frame, a decision is obtained
by fusing the classification results from Hu moments (Hu),
Elliptic Fourier Descriptors (EFD), Radial Distance Func-
tions (RDF) and Local Binary Patterns (LBP). The results
from the underlying features are subjected to score level fu-
sion using weighted voting to obtain a frame-wise decision.
As gestures belonging to successive key frames are classi-
fied, the results belonging to a hand gesture sequence are
gathered using the motion model described in Sect. 4.4.1.
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Fig. 12 Classification pipeline

Table 3 Multilingual signer dependent recognition accuracy

Language HU EFD RDF LBP Fused

Subject1 Turkish 0.53 0.63 0.67 0.85 0.88

Subject2 Turkish 0.56 0.70 0.78 0.91 0.93

Subject3 Turkish 0.54 0.75 0.77 0.87 0.87

Subject4 Turkish 0.48 0.61 0.61 0.74 0.78

Subject5 Turkish 0.59 0.79 0.76 0.94 0.96

Average Turkish 0.54 0.70 0.72 0.86 0.88

Subject1 Russian 0.64 0.61 0.72 0.69 0.75

Subject2 Russian 0.38 0.54 0.75 0.8 0.8

Subject3 Russian 0.63 0.61 0.64 0.69 0.73

Average Russian 0.55 0.59 0.7 0.73 0.76

Subject1 Czech 0.60 0.52 0.62 0.75 0.72

Subject2 Czech 0.48 0.61 0.78 0.76 0.84

Subject3 Czech 0.47 0.65 0.67 0.73 0.78

Average Czech 0.52 0.59 0.69 0.75 0.78

The gathered classification results of different key frames
are then fused together using majority voting (Fig. 12).

For offline testing, we have used the fingerspelling videos
for three fingerspelling alphabets (see Sect. 4.1). Images be-
longing to each subject in the dataset have been divided
into equal sized training and test sets. The recognition data
for each subject’s test videos were tested in two settings;
signer dependent setting, where the system is trained using
the training videos of the test subject and signer indepen-
dent setting, where the training videos of the test subject are
excluded from the dataset. The results of signer dependent
classification are shown in Table 3 and the results of signer
independent classification are presented in Table 4.

As it can be inferred from the average results, having the
user’s own data in the recognition set doubles the accuracy
of recognition from 42% to 88%. The main reasons of this
difference can be inferred as the variance in illumination and
the minor differences in the performances of the signers.

However, since the overall aim of the system is to pro-
vide an online word level recognition system, such accuracy

Table 4 Multilingual signer independent recognition accuracy

Language HU EFD RDF LBP Fused

Subject1 Turkish 0.31 0.15 0.39 0.28 0.43

Subject2 Turkish 0.23 0.06 0.24 0.21 0.28

Subject3 Turkish 0.36 0.30 0.48 0.29 0.45

Subject4 Turkish 0.07 0.28 0.61 0.48 0.54

Subject5 Turkish 0.32 0.20 0.45 0.23 0.40

Average Turkish 0.26 0.20 0.43 0.30 0.42

Subject1 Russian 0.36 0.16 0.44 0.44 0.47

Subject2 Russian 0.36 0.25 0.39 0.42 0.4

Subject3 Russian 0.27 0.28 0.43 0.31 0.33

Average Russian 0.33 0.23 0.42 0.39 0.4

Subject1 Czech 0.39 0.34 0.46 0.41 0.48

Subject2 Czech 0.27 0.18 0.49 0.44 0.46

Subject3 Czech 0.22 0.18 0.37 0.37 0.38

Average Czech 0.29 0.23 0.44 0.4 0.44

rates on their own were deemed insufficient. For that rea-
son we opted to implement a vocabulary list of 2000 words
and match the signed letters to the closest word using Lev-
enshtein distance [34]. We compared the sequence of recog-
nized letters when the user returns to rest position (hands
separated and lowered to opposing sides of the body), to
each word in the word list using a normalized Levenshtein
distance to increase word level recognition accuracy.

5 Speech recognition

We have implemented two different speech recognition
modules. First one is continuous speech recognition (imple-
mented for Turkish) and the other is spelled speech recogni-
tion (implemented both for Russian and English). The for-
mer module has been substantially realized before the eN-
TERFACE’10, and adopted for the developed application.
The latter component for spelled speech was principally de-



72 J Multimodal User Interfaces (2011) 4:61–79

veloped during the workshop based on the recent SIRIUS
Russian ASR system [46].

5.1 Continuous speech recognition

Automatic speech recognition (ASR) is needed in the first
stage for the one-way communication from a speaking per-
son to a hearing impaired person by converting spoken
words to text that gets synthesized to sign language in later
stages. We integrated a Weighted Finite-State Transducer
(WFST) based large-vocabulary continuous speech recog-
nition system developed at Bogazici University into this
multimodal communication platform [6, 48]. The integrated
system is currently capable of recognizing just Turkish ut-
terances since language and acoustic models were readily
available only for Turkish.

The speech recognition problem is treated as a trans-
duction from input speech signal to a word sequence in
the WFST framework [41]. The WFSTs provide a unified
framework for representing different knowledge sources in
ASR systems. A typical set of knowledge sources consists
of a transducer H modeling context-dependent phones as
hidden Markov models (HMMs), a context-dependency net-
work C transducing context-dependent phones to context-
independent phones, a lexicon L mapping context-
independent phone sequences to words, and an n-gram lan-
guage model G assigning probabilities to word sequences.
The composition of these models H ◦C ◦L◦G results in an
all-in-one search network that directly maps HMM state se-
quences to weighted word sequences, where weights can be
combinations of pronunciation and language model proba-
bilities. The WFST also offers finite-state operations such as
composition, determinization and minimization to combine
all these knowledge sources into an optimized all-in-one
search network.

The morphology as another knowledge source can be
represented as a WFST and can be integrated into the WFST
framework of an ASR system. The lexical transducer of
the morphological parser maps the letter sequences to lexi-
cal morphemes annotated with morphological features [47].
The lexical transducer can be considered as a computational
dynamic lexicon in ASR in contrast to a static lexicon. The
computational lexicon has some advantages over a fixed-
size word lexicon. It can generate many more words using a
relatively smaller number of root words (55 278) in its lex-
icon. So it achieves lower OOV rates. In the WFST frame-
work, the lexical transducer of the morphological parser can
be considered as a computational lexicon M replacing the
static lexicon L. Since M outputs lexical morphemes, the
language model G should be estimated over these lexical
units. Then with the morphology integrated, the search net-
work can be built as H ◦ C ◦ M ◦ Gmorpheme. The decoding
for the best path in the resulting network is a single-pass
Viterbi search.

Note that the word-based models output word sequences
such as “merhaba saat on uc haberleri ajanstan aliyorsunuz”,
while the morphology-integrated model outputs lexical
morpheme sequences such as; merhaba[Noun] saat[Noun]
on[Adj] üç[Adj] haber[Noun] + lAr[A3pl] + SH[P3sg]
ajans[Noun] + DAn[Abl] al[Verb] + Hyor[Prog1] +
sHnHz[A2pl]. Therefore, we use the morphological parser
as a word generator to convert the recognition output to
words.

We evaluated the performance of the speech recogni-
tion system on a Turkish broadcast news transcription task.
The acoustic model uses hidden Markov models (HMMs)
trained on 188 hours of broadcast news speech data [6, 8].
In the acoustic model, there are 10 843 triphone HMM states
and 11 Gaussians per state with the exception of the 23
Gaussians for the silence HMM. The test set contains 3.1
hours of speech data that has been pre-segmented into short
utterances (2 410 utterances and 23 038 words). We used the
geometric duration modeling in the decoder.

The text corpora that we used for estimating the param-
eters of statistical language models are composed of 182.3
million-words BOUN NewsCor corpus collected from news
portals in Turkish [47] and 1.3 million-words text corpus
(BN Corpus) obtained from the transcriptions of the Turkish
Broadcast News speech database [6].

As a baseline word language model, we built 200K
vocabulary 3-gram language model. Our previous study
showed that higher vocabulary sizes than 200K and higher
n-gram orders did not improve the accuracy significantly [6].
The OOV rate for 200K word vocabulary is about 2% on the
test set. For the morphology-integrated model, the optimal
n-gram order of the language model over lexical morphemes
was chosen as four. The OOV rate of the morphological
parser is 0.68% on the test set.

Figure 13 shows the word error rate versus run-time
factor for 200K vocabulary word model Word-200K and
the morphology-integrated model MP. The improvement in
OOV rate for the morphology-integrated model translates to
WER reductions.

For this communication platform, we implemented a
voice activity detection (VAD) system to prevent false trig-
gers and improve recognition accuracy. A binary super-
vised classification methodology has been adopted for this
purpose. The speech class is trained with improvised talk
and readings on a silent background and the nonspeech
class contains silence, noise and some other noisy activities
(cough, tapping on the microphone, mouse clicks, etc.). We
use 13 dimensional MFCC vectors as features and GMMs
with 16 components for training. Testing is done online and
the decision is given by the likelihood ratio test.

5.2 Spelled speech recognition

Spelled speech input (letter-by-letter input) is widely used
by humans for rare and out-of-vocabulary words (for in-
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Fig. 13 Word error rate versus real-time factor obtained by changing
the pruning beam width from 9 to 12

Fig. 14 Topology of HMM-based acoustical model for a phoneme

stance, personal names, city names, e-mail addresses, etc).
A speaker-dependent automatic speech recognition (ASR)
system has been implemented and embedded into the com-
munication platform.

A single stationary microphone located at 30–40 cm
away from the speaker’s mouth is used for speech input. As
acoustic features we used 13-dimensional Mel-Frequency
Cepstral Coeffs. (MFCC), including the 0-th coeff., with the
first and second derivatives calculated from 26 channel fil-
ter bank analysis of 20 ms long frames with 10 ms over-
lap. Thus, the frequency of audio feature vectors is 100 Hz.
Cepstral Mean Subtraction is applied to audio feature vec-
tors. Acoustic modeling and recognition of phonemes and
words of the recognition vocabulary are based on Hidden
Markov Models (HMM). The acoustical models are realized
as HMMs of the context-independent phones with mixture
Gaussian probability density functions (GMMs). HMMs of
phones have three meaningful states (and two additional
states intended for concatenation of the phones in the letter
models), see Fig. 14.

Figure 15 shows an example of a complex HMM-based
model for the isolated word “SEVEN”. One can see that
there are five phones in this word and the second /e/ may
sometimes disappear in pronunciations of some people.

Fig. 15 Topology of HMM for the isolated word SEVEN

The developed ASR system is multilingual and able to
recognize letters/graphemes pronounced both in English and
Russian. The lexicon of ASR contains 26 English letters,
plus 31 Russian letters (there exist 33 letters in the Russian
language in total, but we recognize 31 of them only, because
two graphemes (the soft sign and the hard sign) do not have
own phonetic representations, but affect on the previous let-
ter(s) pronunciation in the spoken language [26]), plus all
the digits for both languages looped in the null-gram model.
Moreover, two system commands were additionally intro-
duced into the system: “DEL” (backspace) used in order to
delete the latest pronounced but misrecognized letter/word,
and “DOT” (point) needed to indicate on the completion of
the sentence input. The English and Russian vocabularies
use a mutual pool of trained phone models. A pause (silence)
between two letter inputs that lasts more than five seconds
means space symbol (break of two words). A general archi-
tecture of the spelled speech recognition system is shown in
Fig. 16, one can notice that there are two main work modes:
model training and speech decoding.

The stage of system training includes the following
steps:

– transcribing items of the lexicon of an applied domain;
– creation of a stochastic language model or grammar for

possible phrases;
– coding the speech data (feature extraction);
– definition of topology of HMM (prototyping);
– creation of initial HMMs for all the monophones by the

flat-start method;
– re-estimation of HMMs parameters using a speech corpus

and the Baum-Welch algorithm;
– creation of context-dependent phones (triphones) from

monophones;
– mixture splitting and parameters re-estimation.

In order to train the speech recognizer a speech corpus
was recorded in office conditions using one distant-talking
directed microphone. Totally, we have recorded about 20
minutes of speech data from one speaker, these data were
labeled semi-automatically in the terms of phonemes.

The spelled speech decoder (Fig. 17) uses the Viterbi al-
gorithm [45]. An input phrase syntax is described in a simple
grammar loop that allows recognizing one vocabulary item
in a hypothesis. The audio speech recognizer operates very
fast (less than 0.1xRT) so results of speech recognition (in
the form of N-best list of recognition hypotheses) are avail-
able almost immediately after detection of speech end by the
energy-based voice activity detector (VAD).
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Fig. 16 Architecture of the
spelled speech recognition
system

Fig. 17 A general algorithm for spelled speech decoding

Performance of the spelled speech recognition system
has been evaluated using a portion of other speech data in
two languages, collected in the same office conditions as the
training part. Training and testing databases for the auto-
matic speech recognition system were recorded in one ses-
sion and each letter of both languages was repeated 20 times
for the training purpose and 10 more times for the system
evaluation and testing. Figures 18 and 19 show accuracy
of speech recognition (in the form of confusion matrices,
where the first columns are reference letters) for the En-
glish and Russian letters, correspondingly. In these confu-
sion matrices, the sign “+” in cells denotes 100% recog-
nition rate (10 instances of 10) and empty cells mean 0%
(0 instances recognized of 10 pronounced). A color coding
describes these confusion matrices as well: dark green cells
mean 100% recognition rate and, on the contrary, absolutely
white cells mean 0%. The most of the pronounced letters
in the test data were recognized very well; however, some
letters (for example, English consonants B /b’i/ and D /d’i/
or vowels A /ei/ and I /ai/) are rather confusing. The recog-
nition accuracy rate for all the English letters was 93.1%
on the average, and 90%—for the Russian letters. English

spelled speech is recognized a bit better than Russian, be-
cause of the smaller alphabet, moreover many Russian vow-
els are represented phonetically by corresponding mono-
phones (for instance, /a/,/e/,/o/,/i/,/u/,/1/—in notation of the
SAMPA phonetic alphabet) in contrast to the English vow-
els, which are longer and usually represented by allophones
or diphthongs. Moreover, consonant ambiguity is somewhat
higher in Russian.

6 Fingerspelling synthesis

6.1 Animation model

Fingerspelling synthesis system creates 3D animation of the
upper half of a human figure. The baseline system incorpo-
rates 3D articulatory model approximating skin surface by
polygonal meshes, see Fig. 20 on left. The meshes are di-
vided into body segments describing arms, forearms, palm,
knuckle-bones, face, inner mouth, etc. The animation model
allows expressing both manual and non-manual components
of sign languages. The manual component is fully expressed
by rotations of the body segments. The body segments are
connected by joints and hierarchically composed into a tree
structure. Every joint is attached to at least one body seg-
ment. Thus the rotation of one body segment causes rota-
tions of other body segments in lower hierarchy. Joint con-
nection incorporates rotation limits to prevent non-anatomic
poses of the animation model.

Synthesis of the non-manual component employs the
joint connections as well as moving of control points and
morph targets [28]. The joint connections ensure movements
of shoulders, neck, skull, eyeballs (eye gaze) and jaw. In
contrast, the control points and the morph targets allow us
to change the local shape of polygonal meshes describing
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Fig. 18 Confusion matrix for
English letters recognition

Fig. 19 Confusion matrix for
Russian letters recognition

the face, lips, or tongue. The control points have fixed po-
sitions in the particular polygonal meshes and their transla-
tion in 3D causes local deformations in face and tongue [30]

and the morph targets are manually remodeled 3D shape of
polygonal meshes. A complex non-manual gesture simul-
taneously incorporates a weighted combination of several
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Fig. 20 The screen shot of SignEditor. On left the avatar, on right table
of symbols separated to groups by colors

morph targets, local deformation via control points and ro-
tation of joint connections.

6.2 Control model

We consider the data-driven approach for phonetic transcrip-
tions of signs [32] and the rule based approach for Ham-
NoSys (HNS—Hamburg Notation System) notation [29].
An algorithm automatically transferring HNS notation to
control trajectories is the most important part of the sign
speech synthesis system. Current state of the algorithm ac-
cepts most of the valid combinations of HNS symbols like
symmetry of signs, arbitrary initial configuration of hands as
well as actions (direct, circular, . . .), redefinitions of the ini-
tial configuration, parallelism of the actions, etc. The algo-
rithm requires information about the signing space, the ori-
entation of palms and fingers, the size of actions, etc. It has
to be collected manually in relation to the animation model.

Animation model is controlled via animation frames that
are composed into animation trajectories. The animation tra-
jectories store time sequences of values controlling a par-
ticular rotation axis of joint connection, (x, y, z) translation
of control point or weight of morph target. The animation
frames do not directly control joints of shoulder, elbow and
wrist (7 DOF) but include pose matrices P4×4. PR and PL

matrices determine the locations of the wrist, the direction
of fingers and twist of palm separately for both arms. The
inverse kinematics module (IK) determines the final poses
of the arms using these matrices.

6.3 Collection of signs

SignEditor is used to get symbolic descriptions of the let-
ters [25], see Fig. 20. A new sign must be manually en-
tered in accordance with the notation rules. Graphic inter-
face includes all HNS symbols and notation process ensures
the conversion of all letters to symbolic strings. Further-
more SignEditor allows backward editing and verification.

SignEditor incorporates both the animation model and the
control model. This feedback immediately transfers input
string into animated trajectories and exports created letter
to the animation trajectories. The designer of the system can
verify final animation of the created letters.

Target languages for fingerspelling synthesis are Czech
and English. We consider lexicon incorporating 26 let-
ters and 10 numerals for American Sign Language (ASL)
and 46 letters and 10 numerals for Czech Sign Language
(CSL). CSL allows using both one- and two-handed finger-
spelling alphabet. We chose the two-handed variant because
these two-handed signs incorporate simpler hand shapes.
The dominant hand forms the shape of the letter. The non-
dominant hand has the same or a simpler shape and is in con-
tact with the dominant hand. Seven letters of CSL use only
the dominant hand. Others are expressed with both hands lo-
cated in front of the body. CSL numerals 0–5 are one-handed
and 6–9 are two-handed. Several letters in CSL also include
a simple movement of arms. This movement allows express-
ing the diacritic of some CSL letters. HNS provides a rich
repertoire and all CSL letters can be successfully converted
to the avatar animation.

Different situation occurs for letters, and numerals in
ASL. The gesture is expressed by the dominant hand only
and requires very complex hand shapes. For example, let-
ter E includes multiple contacts between index finger, ring
finger, middle finger and the thumb, letter D and numerals
6–9 incorporate a touch of thumb on all remaining fingers of
the hand. M and N letters include an intersection of thumb
between remaining fingers and the letter R uses crossing fin-
gers. Current state of the control module does not allow au-
tomatic conversion of all ASL letters. On the other hand, a
precise animation of these signs is very important, for exam-
ple crossing fingers distinguishes R and U letters. Hence the
ASL letters must be manually corrected. For this purpose we
have extended SignEditor allowing direct editing of all joint
connections and saving corrected animation frames.

6.4 Continuous speech

The lexicon is directly loaded into fingerspelling synthe-
sis during startup. An input of the fingerspelling synthesis
system is an utterance expressed by text of the target lan-
guage. First the synthesis system finds signs in the lexicon
for whole word of the input utterance. Thus words, digits
and isolated letters separated in the input string by space key
are directly chosen from the lexicon. Other unknown words,
names, abbreviations etc. have to be spelled. Because a clear
separation of these spelled words from neighboring signs is
needed, a special “space” sign is inserted at the beginning
and end of each spelled word. This special sign puts down
the avatar’s hands but the letters within spelled words are
directly connected without an interruption.
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The synthesis system concatenates loaded trajectories to
one continuous trajectory in real time. Piecewise linear in-
terpolation is used to get fluent transition between two con-
catenate signs (letters). The duration of the transition is au-
tomatically determined from adjacent animation frames of
concatenated signs to get natural transition [31]. Animation
frames are generated with a fixed frame rate and directly
determine the speed of the animation. Since the speed of
fingerspelling for different sign languages differs, the num-
ber of animation frames produced by SignEditor must be
checked to get the natural rate of resulting animation.

7 Speech synthesis

Two TTS systems are applied in our global system: Open
MARY TTS [50] for the English and Turkish languages de-
veloped by DFKI (Germany), and the Russian TTS engine
developed by UIIP (Belarus) and SPIIRAS (Russia) [22].
Unit selection speech synthesis method is used for En-
glish, HMM-based speech synthesis method is applied for
Turkish, and compilative allophone-diphone based synthesis
method was realized for Russian. Male and female voices
are available for English and Russian and there are only
male voices for Turkish. TTS was realized as a web-based
service, which waits for messages from the web-server.

8 Conclusion

We have developed a multi-modal communication system
that allows the interaction of people with hearing and vi-
sual disabilities by translating fingerspelling to speech and
speech to fingerspelling. In the real-time operating inte-
grated system, different spoken languages and sign lan-
guages such as Czech, Russian and Turkish are used for
input and output. Since this is a first attempt for such a
multimodal and multi-lingual system, our system has cer-
tain shortcomings: On the vision side, the camera is sensi-
tive to skin colored objects in the background and we require
that the background does not contain such colors. Hand and
face interaction sometimes causes errors for the same rea-
son. Speech recognition is sensitive to excessive environ-
mental noise. Since the speech recognition system has been
trained with a news corpus, this makes the recognition bi-
ased towards certain words that frequently appear in the
news. The system is yet to be extended to some language
combinations. We have tested the system with non-disabled
general users. General opinion of the users is that the system
is practical but fingerspelling is a slow method of communi-
cation. Future studies will extend this system for more ap-
plications and perform large scale usability tests with hand-
icapped users. The demo videos of the system can be found
in [1–3].
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