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Abstract We introduce Iterative Perceptual Learning
(IPL), a novel approach to learn computational models for
social behavior synthesis from corpora of human–human
interactions. IPL combines perceptual evaluation with itera-
tive model refinement. Human observers rate the appropri-
ateness of synthesized behaviors in the context of a conver-
sation. These ratings are used to refine the machine learning
models that predict the social signal timings. As the ratings
correspond to those moments in the conversation where the
production of a specific behavior is inappropriate, we regard
features extracted at these moments as negative samples for
the training of a classifier. This is an advantage over the tra-
ditional corpus-based approach to extract negative samples
at random non-positive moments. We perform a comparison
between IPL and the traditional corpus-based approach on
the timing of backchannels for a listener in speaker–listener
dialogs. While both models perform similarly in terms of pre-
cision and recall scores, there is a tendency that the backchan-
nels generated with IPL are rated as more appropriate. We
additionally investigate the effect of the amount of available
training data and the variation of training data on the outcome
of the models.
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1 Introduction

In this paper, we address the learning of computational mod-
els for the synthesis of human behavior in conversational
settings. We target the setting where a human interacts ver-
bally and nonverbally with an intelligent virtual agent (IVA).
The aim is to make this human–machine interaction as close
as possible to natural human–human interaction. From a
machine perspective, this requires that appropriate respon-
sive behavior is displayed to the human (see Fig. 1(top)).
A common approach to endow IVAs with this ability is to
learn conditional responsive behavior patterns from a cor-
pus of human–human dialogs [20]. The verbal and nonverbal
behavior of a dialog partner is continuously encoded in fea-
ture vectors of, e.g., speech activity, gaze direction or body
movement. In addition, discrete social behaviors are identi-
fied in time. Examples are smiles as a reaction to observed
facial movements or backchannels as a reaction to a speaker’s
speech and gaze. The task of the synthesis model (i.e., clas-
sifier) is to associate (probability) scores for the synthesis of
these behaviors to feature instances of the dialog partner’s
behavior.

The application of this corpus-based learning approach
for human behavior synthesis is widespread [20], but suffers
from two main drawbacks. First, the evaluation of the syn-
thesized behavior is typically measured by comparing it to
the behavior performed in the corpus. While this is an objec-
tive measure, it does not take into account the optionality (or
individuality) of social behavior. We argue that social behav-
ior different from that in the corpus can also be appropri-
ate. However, objective measures will discredit such alterna-
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Fig. 1 Schematic overview of social behavior synthesis for an artificial
listing agent (top) and the setting of our IPL framework (bottom)

tive behavior. This might eventually hinder the generalization
ability of the behavior synthesis model.

Second, a classifier is typically trained with feature
instances extracted slightly before the occurrence of a social
behavior. These instances are considered positive samples.
Typically, random feature instances that do not overlap with
these positive samples are used as negative samples. How-
ever, while a social behavior was not performed in the actual
dialog, there is no guarantee that it would be perceived as
inappropriate if it had been performed. Consequently, some
of the negative samples could also be regarded as positive
samples. Having ambiguously labeled samples typically hin-
ders the learning of a classification model.

In this paper, we describe a novel approach that addresses
these drawbacks. Instead of relying on objective measures,
we obtain subjective ratings regarding the appropriateness
of the synthesized behavior. We use these ratings not only
to evaluate the quality of the behavior but also as samples to
iteratively re-train the classifier. This approach is a variant of
active learning [28], where human raters provide the labeling
of samples that have been generated by a machine learning
classifier. We focus on obtaining negative samples that corre-
spond to moments where the production of a specific social
signal is inappropriate. We have termed our approach Itera-
tive Perceptual Learning (IPL). Figure 1 shows a schematic
overview of the IPL approach. IPL is general in the sense
that it can be applied to the learning and synthesis of a broad
range of social behaviors in dialogs. In addition, the approach
is independent of the choice of machine learning classifier
and features.

The contribution of this paper is a novel learning frame-
work. We present a novel approach to learn synthesis models
for social behaviors by combining perceptual evaluation and
machine learning. We use subjective, perceptual ratings to
measure the appropriateness of individual instances of social
behavior. At the same time, we obtain samples (moments in
the dialog) where the production of a specific social behavior

is regarded as inappropriate. Given the availability of these
negative samples, we train machine learning classifiers for
the synthesis of the timings of social behaviors. By iteratively
training and evaluating the resulting synthesized behavior,
we refine the performance of the classifier by focusing the
samples on those feature instances that are relevant.

We evaluate the IPL approach for the synthesis of
backchannel timings in speaker–listener dialogs. IPL is com-
pared to the common corpus-based approach where negative
samples are obtained from the pool of non-positive sam-
ples. Our experiment contributes to the understanding of the
strengths and weaknesses of both approaches. Based on sev-
eral hours of dialog, we analyze the influence of the negative
samples and the amount of available data on both the objec-
tively and subjectively measured quality of the synthesized
listening behavior.

The remainder of this paper is organized as follows. We
first discuss related work on learning social behavior syn-
thesis models. We introduce the IPL approach in Sect. 3.
In Sects. 4 and 5, we describe, respectively, the setup and
the results of an experiment on the synthesis of backchannel
timings. We conclude in Sect. 6.

2 Related work

The field of social signal processing [31] addresses com-
putational approaches towards the automatic understanding,
modeling and generation of human social behavior in artifi-
cial agents and robots. In this work, we focus on the synthesis
of nonverbal behavioral cues. Previous work on this topic has
addressed, among others, the decisions of when to produce
backchannels [13,18,21], eye gaze [24], smiles [3] or head
gestures during speech [19].

These synthesis models are typically based either on hand-
crafted rules [24,27] or on machine learning algorithms [21].
Both give a (probability) score for the production of a social
signal at a selected moment, given feature instances obtained
from observations of the conversational partners. Due to the
real-time nature of interactions, the methods use shallow fea-
tures in the sense that they are non-lexical and are derived
directly from the audio or video signal. Hand-crafted rules
are usually intuitive and can be based on known patterns in
human social behavior, such as observed mutual gaze [1,15]
or rising or falling pitch of the speaker [10,32]. Specifying
these rules based on shallow features is not trivial. Therefore,
recent work has increasingly addressed employing machine
learning algorithms to learn behavior synthesis models. For
the decisions of when to produce backchannels, which we
will address in detail in Sect. 4, different machine learning
classifiers have been explored, including decision trees [22],
Hidden Markov Models [23] and Conditional Random Fields
[21].
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Machine learning models are trained by providing sam-
ples (i.e., feature vectors) to a learning algorithm. For social
behavior modeling, positive samples correspond to feature
instances extracted at, or slightly before, moments in a dia-
log where the production of a specific behavior is appropri-
ate. The dominant approach to obtain these samples is to
record a corpus of human–human interactions in a similar
conversational setting and to identify the moments in time
where a specific behavior is displayed [20]. In general, the
number of such moments is relatively small and there are
probably many appropriate moments where no social behav-
ior has been produced. This is due to differences in behavior
between individuals (e.g., in the number and timing), which
is a consequence of the optional nature of social signals.

Negative samples are usually extracted at random
moments within the conversation with the constraint that
they do not overlap with positive samples. As a result of the
optional nature, these negative samples could be extracted at
moments in time where the production of a social signal is
appropriate, but not present in the corpus. The classifier will
therefore try to label these moments as inappropriate, which
is likely to reduce the quality of the classifications. One way
to handle this is to assign a weight to each sample, and deter-
mine the overall performance of a classification model as
a weighted sum of all sample (mis)classifications. However,
assigning such weights is difficult, unless we look at the over-
lap in time with other samples. In this case, positive samples
that overlap with negative samples could be assigned a zero
weight, or the other way around. Here, we circumvent this
issue by not sampling these points altogether, which should
make the training of the classification model more efficient.

Currently, the optional nature of social signals is also not
reflected in the evaluation practice of machine learning mod-
els that generate their timings. In general, the quality of a
behavior synthesis model is evaluated in terms of precision
and recall of the generated social behaviors compared to those
performed by the actual subjects in the corpus. Any devia-
tion from the actually performed behavior results in lower
scores. This is an undesired effect as there is no guarantee
that the generated listening behavior is also perceived as less
appropriate.

In sum, one of the key challenges in social behavior syn-
thesis is to obtain appropriate positive and negative samples.
This will help in learning behavior synthesis models that are
better able to generalize. In addition, it allows for the per-
ceptual evaluation of the synthesized social behavior. Several
studies have addressed this challenge. To obtain more sam-
ples, De Kok and Heylen [18] recorded three listeners that
interacted in parallel with the same speaker. The result of
their Parallel Listener Consensus approach is a larger pool of
positive samples compared to the setting where only a single
listener interacted with the speaker. In addition, by analyzing
when multiple listeners produced a social signal, moments in

time could be identified where this production is more likely
to occur. The method also allows for the investigation of the
variation in timing and differences between listeners.

To overcome the complex recording setting of [18], Huang
et al. [12] introduced Parasocial Consensus Sampling (PCS).
With this method, human observers watch a video of a con-
versational partner and act as if they were in the conversation.
Every time they would produce a social signal, they are to
press a button. Despite the fact that the observers are not
part of the conversation and pressing a button seems artifi-
cial, the results of PCS in terms of the quantity and timing
of social signals was comparable to those produced by the
actual subjects in the corpus. For social behavior synthesis,
increased generalization was observed when considering as
positive samples only the moments in time where the major-
ity of the human observers indicated they would produce a
social signal.

Both of the above methods address obtaining more posi-
tive samples, which reduces the moments in time where neg-
ative samples can be extracted. Still, there is no guarantee that
a negative sample corresponds to a moment in time where
the production of a social signal is inappropriate. To this
end, Poppe et al. [26] had human observers watch a video
of a speaker and an animation of a listener side-by-side. The
listener was an IVA that produced specific social signals at
predetermined moments in time. Motivated by the observa-
tion that humans are sensitive to flaws in animated social
behavior, the human observers were instructed to press a
button when they judged the produced social behavior as
inappropriate. This approach was used as a subjective, per-
ceptual evaluation measure for synthesized social behavior.
However, it can also be used to obtain negative samples as
we do in this research.

3 Iterative perceptual learning

We target a dyadic conversational setting where we aim at
generating appropriate social signals for an IVA in real-time,
based on the observed social behavior of a human conversa-
tional partner. We consider discrete social signals that (1) are
performed as a reaction to the observable behavior of the con-
versational partner and (2) are more or less optional in nature.
We further assume that the observations can be described as
feature vectors. This allows us to use machine learning tech-
niques that output a (probability) score for the production
of a social signal based on a feature vector instance. These
assumptions are common for learning social signal models
[31]. Examples of this application setting are the animation
of head movement as a reaction to the speech of the conversa-
tional partner, or the synthesis of a backchannel as a reaction
to a speaker’s speech and gaze. The latter example will be
discussed in Sect. 4.
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Fig. 2 Schematic representation of the Iterative Perceptual Learning
framework. The generation, evaluation and learning stage are shown
in pink, blue and green, respectively. L and S correspond to videos of
the listener and speaker, respectively. The numbers correspond to the
current iteration. The summation sign represents model learning, the
plus sign stands for the addition of two sets of samples. Small white and
black circles denote positive and negative samples, respectively. Small
gray circles correspond to the feature instances sampled at random at
non-positive moments. Please refer to the text for details. Best viewed
in color

In this research, we learn social behavior synthesis models
in an iterative, incremental manner. The basis is a machine
learning model which we will treat as a black box. At each
iteration, we train the model given the available positive and
negative samples. As we cannot obtain negative samples from
the corpus directly, we resort to an active learning approach.
Here, human raters provide the labeling of samples that have
been generated by the machine learning classifier [28]. Given
that these samples are focused, the amount of labeling needed
is typically lower compared to the labeling of all data sam-
ples. We apply our framework iteratively, so more training
samples become available. We expect that we will gener-
ate social signals at more appropriate moments. Still, some
of these instances will be perceived as inappropriate and
these end up as negative samples for the next iteration. In
our approach, we focus on obtaining such negative samples.
We use a virtual, computer-animated, copy of the conversant
and animate social signals according to a trained classifier.
We then have human observers rate the (in)appropriateness

Fig. 3 Example stimulus presented to the participants during the eval-
uation

of the displayed social signals in the context of the conver-
sation. Based on these ratings, we obtain negative samples
which are used to train the models in the next iteration. Due to
an increased number of available samples, both positive and
negative, we expect that the models are progressively more
accurate. The subjective ratings double as perceptual evalua-
tion measures. This allows us to determine, at each iteration,
the subjective quality of the generated listening behavior.
This information allows us to determine when the learning
saturates, so we can stop the training.

A schematic representation of the IPL framework appears
in Fig. 2. It shows a bootstrap phase followed by two itera-
tions. Each iteration consists of a generation, evaluation and
learning stage, respectively. We discuss these in the following
sections. We also address the bootstrapping of the approach.
We consider a dialog with a sender and a receiver. Social
behaviors will be synthesized for the receiver in response to
features extracted from the behavior of the sender. However,
the framework is general and can be used for learning any
computational model for the synthesis of discrete nonverbal
behaviors.

3.1 Generation

An iteration starts with the generation of the stimuli. Each
stimulus is a video of the sender placed side-by-side with an
animation of the receiver. See Fig. 3 for an example. There are
three steps involved in the generation stage (the pink areas in
Fig. 2): feature extraction, feature classification and stimulus
generation.

The sender is observed, for example using microphone or
camera. From these recordings, we obtain feature vectors at
each time step. The sample rate is typically high to reduce
the latency. Features can be audio features such as pitch and
intensity, video features such as amount of movement or head
orientation, or any combination of features.

We then classify each feature vector with the classifier
that was trained in the learning step of the previous iteration,
see Sect. 3.3 for details. This results in a numerical output,
for example a probability score. We assume here that higher
scores correspond to moments in time where the production
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of a social signal is more appropriate. Given an entire video,
we thus obtain a sequence of scores, one at each time instant.

The next step is to convert this sequence of scores into
a set of discrete social signal timings. To this end, we can
apply a threshold or select the moments corresponding to the
top n scores. Additional constraints such as minimum time
between two social signal timings, or a minimum or maxi-
mum number of social signals per minute can be enforced at
this stage as well. Given the determined timings of the social
signals, the resulting behavior is animated on an IVA. Here,
the occurrence of a signal is translated into an animation,
e.g. a head movement or backchannel. Finally, we place the
animation of the receiver side-by-side with the video of the
sender and make sure both are synchronized in time.

3.2 Evaluation

In the evaluation stage (blue areas in Fig. 2), human observers
rate the inappropriateness of the animated social signals.
Similar to [16,26], human raters watch the stimuli and press a
button (the yuck button) whenever they consider an animated
social signal of the receiver inappropriate.

After watching and rating a stimulus (i.e., a video of the
speaker and an animation of the listener), the raters’ yucks
are matched to the animated social signals. When several
raters watch the same stimuli, their yucks can be aggregated.
This results in a percentage of raters that judge a certain
social signal instance as inappropriate. These numbers can be
thresholded to filter out accidental mis-presses and determine
which social signal instances are to be considered negative
samples. The instances that received no or only a few yucks
can be regarded as positive samples, in addition to the social
signals performed by the human listener in the recorded con-
versation.

3.3 Learning

A trained machine learning model is the result of the learning
stage (green areas in Fig. 2). In this stage, all positive and
negative samples are used to train the classifier. As mentioned
before, the specifics of the classifier are not important at this
point. In each iteration (except for the first, as we discuss
below), the positive and negative samples are added to those
of the previous iteration. There is thus an increasing number
of samples available for training at each subsequent iteration.

3.4 Bootstrap

As we do not have access to negative samples in the first itera-
tion, we bootstrap the process by learning a model from a lim-
ited amount of training data with negative samples extracted
at random moments where no positive samples occur. This is
the exact same approach as is typical for corpus-based learn-

ing [20]. After the generation and evaluation phases, we then
obtain positive and negative samples, which are then used at
each following iteration. The initial samples of the bootstrap
phase are discarded after the first iteration, see also Fig. 2.

4 IPL for the timing of backchannels

To illustrate the use of the IPL framework for social behavior
synthesis, we target the scenario of a face-to-face conversa-
tion between a speaker and a listener. In this setting, the lis-
tener is to signal continued attention, interest and understand-
ing to the speaker [6], for example with a nod, a short vocal-
ization (“uh-huh”) or a smile. These social signals are com-
monly referred to as backchannels [35] or listener responses
[34]. Our aim is to learn computational models to synthesize
listening behavior, conditioned on the observed behavior of
a human speaker [11]. Specifically, we predict the timing of
backchannels in these speaker–listener dialogs.

We present an experiment in which we learned a backchan-
nel prediction model for the listener using the (IPL) approach
and compare this to the (baseline) with a classifier learned
using the standard corpus-based approach. We evaluate the
influence of several factors on both the objective and percep-
tual quality of the models. In the following, we will explain
the data on which the models are learned and evaluated. Sub-
sequently, the two models and experimental setup are pre-
sented. The results and discussion of the experiment appear
in Sect. 5.

4.1 Corpus

We used the MultiLis corpus [17] for the training and evalu-
ation of our synthesis models. The corpus consists of Dutch-
spoken mediated human–human interactions between pairs
of subjects. In the first interaction, one subject assumed the
role of speaker and one subject was assigned the role of lis-
tener. In a second interaction, the roles were switched. In
total, 32 subjects (29 male, 3 female, mean age 25) partici-
pated in 32 recordings, with a total duration of 131 min.

The speakers were instructed to either summarize a short
video or to provide the instructions of a recipe they had just
studied. Listeners had to remember as many details as possi-
ble. Subjects interacted through a remote videoconferencing
system. The camera was placed behind an interrogation mir-
ror on which the other subject was projected. This allowed
subjects to look directly at the camera and this created the
feeling of eye contact. In addition, this setting allowed us to
analyze gaze.

4.2 Feature preprocessing

From the audio and the video, we extracted three types of
features: acoustic (112 features), speaking (1 feature) and
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looking (1 feature). Acoustic features have been used exten-
sively. Backchannels are typically produced after the com-
pletion of a speaker’s sentence or grammatical clause [7].
Often, the pitch rises or drops at these moments [2,32]. In
addition, these endings are often followed by a short pause
[4,30]. Several authors have found that the production of
backchannels is also cued by a short moment of mutual gaze
[1,8].

From each speaker’s audio channel, we extracted acoustic
features pitch, intensity and the first 12 mel-frequency cep-
trum coefficients (MFCC) every 10 ms using OpenEAR [9].
We expect that these features are informative of the acoustic
properties of the speech. The search for a set of features that
can be extracted in real-time and yields good results for the
prediction of backchannel timings remains an open research
question that will not be addressed in this research. The high
framerate ensured that the latency was minimal. Pitch detec-
tion is typically noisy and can fail for a few frames dur-
ing speech. To solve this issue, we linearly interpolated the
pitch values for gaps smaller than 8 frames, which is in line
with [32]. Between subjects, acoustic signals can vary signifi-
cantly. For instance, pitch is higher in females than in males,
people speak with different volume and/or had the micro-
phone closer to their mouth. We normalized these signals
to account for these differences between speakers by con-
verting each signal into the z-score equivalent. The means
and standard deviations needed for calculating the z-score
were obtained from the first 10 s of each session, which were
excluded from the training data.

As we assume that a classifier is applied to each frame of
data independently (see Sect. 4.4.3), we need to capture the
temporal aspect to some extent. To this end, we calculated
the mean and the slope of each signal over a period of 50,
100, 200 and 500 ms prior to the onset of a backchannel.
As such, we expect that the behavior that cues backchannels
is captured. The slope was calculated by fitting a first-order
polynomial to the signal.

The speaking feature indicates if and for how long the
speaker is talking and is extracted using the SHoUT auto-
matic speech recognizer [14]. The looking feature indicates
if and for how long the speaker is looking at the listener and
is based on the manual annotations provided with the Mul-
tiLis corpus. Both signals are initially binary. To represent
sequentiality, we calculated the relative offset to the moment
where the speaker starts talking, respectively starts looking
at the listener. Specifically, this offset is positive during the
speaker’s speech and negative in a pause. For example, a
value of 5 means that the speaker started an utterance 5 frames
before. A value of −5 is assigned when the speaker stopped
talking 5 frames before. As speaking and not speaking are
obviously correlated, we decided to use a single feature to
represent the offset. For looking, a similar processing was
applied.
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Fig. 4 Schematic representation of the Baseline approach. Please refer
to the text for details

In summary, we extracted 14 acoustic signals, calculated
their z-scores and obtained their means and slopes for four
different window lengths. This resulted in a total of 112
acoustic features. In addition, we used one speaking feature
and one looking feature. We concatenated all features into a
114-dimensional vector per time instance.

4.3 Baseline model

The baseline model (see Fig. 4) represents the common
corpus-based approach for social behavior synthesis. Feature
vectors together with their ground truth labels are presented
to a classifier. The classifier learns a computational model
that approximates the ground truth labels. In our experiment,
we used the Support Vector Machine (SVM). SVMs are com-
monly used in social signal processing and associate a score
to each input feature vector. We are interested in the relative
performance of both approaches and do not focus on obtain-
ing an optimally performing model. Therefore, we used the
default settings of the libSVM library [5] without optimiza-
tion of the parameters involved. These settings are an RBF
kernel with c = 1 and γ = 1/|x |, where |x | is the dimension-
ality of the input vector. Note that machine learning models
that take into account the temporal nature of the input (e.g.,
generative models such as hidden Markov models, or dis-
criminative models such as conditional random fields) are
more suitable, but typically require more training data. We
therefore used the well-understood SVM in our experiment.

Samples are labeled either positive or negative. Positive
samples correspond to annotated backchannels in the cor-
pus. Feature vectors were extracted from the window prior
to the onset of the backchannel. The negative samples were
randomly selected from moments where no backchannel was
annotated in the corpus. Due to the optionality of backchan-
nels, they possibly included false negatives. Typically, there
is only a small number of positive samples available in a
corpus. To increase the amount of training data and to make
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the models less dependent on single frames, we selected four
additional frames around the positive frame. We sampled
these frames from a normalized Gaussian distribution with a
σ such that 95 % of the samples falls within 250 ms of the
positive sample. While this interval is somewhat arbitrary,
corpus analysis revealed that this margin is typical for the
production of backchannels [30]. Finally, we made sure that
we selected an equal number of negative samples.

After training the SVM, we applied it to each input vec-
tor, taken at 10 millisecond intervals, to obtain backchannel
timing predictions. We used the numerical decision values,
which can be regarded as confidence scores for the synthesis
of a backchannel. By sequencing these decision values over
time, we obtained curves representing the appropriateness to
provide a backchannel. To remove artifacts due to the poten-
tially highly non-linear output of the SVM, we smoothed
these curves with a 10 frame moving average. After this fil-
tering, we considered the highest peaks in this curve to corre-
spond to the most likely moments to predict a backchannel. A
threshold was used to determine at which peaks a backchan-
nel should be synthesized for the listener, similar to [21].

4.4 Iterative perceptual learning model

The IPL model is learned according to the framework pre-
sented in Sect. 3. We will explain the design decisions for
each of the steps generation, evaluation and learning.

4.4.1 Generation

For each stimulus video, we used the Elckerlyc platform [33]
to synthesize head nods as backchannels for the listener at
the timings predicted by the trained SVM. To control for the
number of backchannels, we determined the mean backchan-
nel rate over all interactions in the corpus, which was approx-
imately 7.7 per minute. We decided to generate 25 % extra
backchannels (corresponding to a rate of 9.6) with the aim
of potentially collecting more negative samples to be used
in subsequent iterations. Based on these numbers, we deter-
mined the value of the threshold for the peak selection per
stimulus video. The only restriction applied was that two
backchannels could not be within 2 s from each other. Stim-
uli were obtained by putting side-by-side the video of the
actual speaker and the animation of the virtual listener, see
Fig. 3.

4.4.2 Evaluation

Each stimulus was evaluated perceptually by a number of par-
ticipants in the experiment. Participants had to press the yuck
button whenever they perceived an individual backchannel
from the virtual listener as inappropriate. To account for

response time, we matched these presses to the last preceding
backchannels that occurred within 5000 ms of the onset. We
determined for each synthesized backchannel the number of
yucks, which we used as a measure of inappropriateness of
the backchannel.

4.4.3 Learning

We used the exact same machine learning classifier as for the
baseline model. The only difference was the way the negative
samples were selected. Instead of randomly selecting nega-
tive samples, we used the timings of the generated backchan-
nels which were yucked during the evaluation of the previous
iteration as negative samples. Again, we balanced the num-
ber of positive samples and number of negative samples. The
number of positive samples was multiplied by five, in line
with the baseline model. Next, we calculated the sampling
factor for the negative samples. We determined this factor
by dividing the number of positive samples by the number
of individual yucks. Backchannels that were yucked mul-
tiple times, were added as multiple negative samples. The
sampling of both the positive and negative samples was per-
formed in the same way as in the baseline model, using a
normalized Gaussian distribution.

4.5 Experiment

The experiment for the prediction of backchannel timings
compares IPL to the baseline approach. For IPL, we used
four iterations after bootstrapping. At each iteration of the
IPL model, we learned a model using the baseline approach
to allow for comparison between the two approaches. After
each phase, we evaluated the results of the IPL and baseline
models using both objective and subjective measures.

4.5.1 Stimuli

Participants of the experiment were shown a video of a
speaker from the MultiLis corpus side-by-side with an ani-
mated listener, see Fig. 3. The virtual listener nodded her
head when the synthesis model predicted a backchannel.
Other behaviors such as head movement, posture shifts, facial
expressions and eye blinks were not animated to prevent these
factors to contribute to the perception. As a result, the syn-
thesized listening behavior was completely controlled, but
rather minimal. For each interaction in a set we created an
animation of the virtual listener based on the IPL model and a
virtual listener based on the baseline model. The mean dura-
tion of a stimulus video was approximately 4 min, depending
on the interaction between the actual speaker and listener in
the corpus.

123



238 J Multimodal User Interfaces (2014) 8:231–241

Table 1 Overview of the sets used in each iteration and each phase of
the IPL process

Phase Sets for
training

Number of
interactions

Sets for
evaluation

Number of
interactions

Bootstrap Bootstrap set 1 Set 1 1

Iteration 1 Set 1 1 Set 2 2

Iteration 2 Sets 1, 2 3 Set 3 3

Iteration 3 Sets 1, 2, 3 6 Set 4 6

Iteration 4 Sets 1, 2, 3, 4 12 Test set 6

4.5.2 Procedure

The experiment consisted of five phases. We started with a
bootstrap phase, followed by four iterations of IPL. In the
bootstrap phase, a model was learned on a single interaction.
This model was then evaluated perceptually on one other
interaction, see the first row in Table 1.

For all but the first iteration, positive and negative samples
obtained from all previous iterations were used to learn the
IPL model. Given that the negative samples were selected
at random in the bootstrap phase, all samples of this phase
were discarded for the first iteration. Given that the evalua-
tion results for the IPL model doubled as negative samples
for model learning, there were more positive and negative
samples available to learn the IPL model in each subsequent
iteration (see also Fig. 2). In addition, we used a larger set of
stimuli for evaluation. An overview of the number of stimuli
used for learning and evaluation is given in Table 1.

To compare the performance of IPL with the baseline
approach, we also perceptually evaluated the performance of
the baseline approach after each iteration. We learned models
on the same interactions according to Table 1, but with neg-
ative samples selected randomly without overlapping with
positive samples, as explained before. As both models were
trained on the same interactions and rated by the same par-
ticipants, we can make a fair comparison. To this end, we
perceptually evaluated the resulting IPL and baseline mod-
els on a test set of six interactions. The data of the test was
never used for training.

Participants of the experiment were shown stimuli through
a webpage. It was explained to them that they would be par-
ticipating in an experiment to determine the quality of syn-
thesized listening behavior. After entering their name, gender
and age, the participants were presented a set of (at most) 6
stimuli. They were asked to press the spacebar each time the
virtual listener performed a backchannel they judged as inap-
propriate. In principle, this required them to simultaneously
monitor the behavior of the speaker and that of the listener.
In practice, and in line with [26], this did not appear to be
problematic. Participants could replay the stimulus from the
start, which would discard all previously issued yucks for that

stimulus. Each participant was shown the same interaction
twice: once with the virtual listener based on IPL, once based
on the baseline model. The order of the stimuli was varied
systematically. The within-subject design allowed us to eval-
uate the difference between the two models pair-wise. This
is essential as there are typically differences in the amount
of yucks between participants. An experiment session lasted
around 30 min.

4.5.3 Participants

Each stimulus was rated by five participants. Set four and the
test set contained six interactions (12 stimuli), so we decided
to split these sets into two. Including the evaluation on the
test set for iterations 1–4, this gave us 13 groups of stimuli.
Consequently, we required 65 participants to rate the stimuli,
25 for the evaluation of sets 1–4 and 40 for the evaluation of
the test sets. Participants were recruited among colleagues
and students. Several persons participated more than once.
As we used a within-subjects design, this does not bias the
comparison between the models. Of the 65 trials, 8 and 57
were completed by females and males, respectively (mean
age 28, min. 18, max. 47).

4.5.4 Evaluation measures

We used both objective and subjective performance mea-
sures. For the objective measure, we compared the pre-
dicted timing of the backchannels with those performed by
the actual listener in the MultiLis corpus, as is common
for corpus-based learning. A backchannel was regarded as
matching as it was predicted within 500 ms (before or after)
a backchannel produced in the corpus. We calculated the
precision p and recall r . Precision is the amount of matches
amongst all predicted signals, recall is the amount of matches
amongst all relevant instances in the corpus. We combined
these into a single score by taking the F1 measure, a weighted
harmonic mean of the two: F1 = 2 × p × r

p + r . For the subjec-
tive measure, we used the yucks collected in the perceptual
evaluation. We calculated the percentage of backchannels
that did not receive any yucks. In addition, we calculated the
average number of yucks per backchannel.

5 Results and discussion

Each stimulus was rated by five human observers. In total,
this amounted to 24 h of annotated dialog. First, we com-
pare the performance of both models on the test set after the
final iteration. On the objective measure, both approaches
perform the same with F1 scores of 0.323. Direct compari-
son with other works is hindered by differences in the con-
versation type, models used and the margins for which pre-
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Fig. 5 Frequency histogram for number of yucks per synthesized
backchannel on the test set, for baseline and IPL models after itera-
tion four

dicted backchannels are considered matching. In a compa-
rable setting, De Kok et al. [18] achieved an F1 score of
0.265.

The subjective measures show a slightly different effect.
In total, 239 backchannels were generated with each of the
models. The number of yucks obtained from five partici-
pants per stimulus is lower for IPL than for the baseline
(219 and 238, respectively). A pair-wise t-test shows a ten-
dency that the number of yucks per stimulus is lower for IPL,
although this difference is not significant (t(5) = −1.516, p
= 0.09). A larger number of stimuli could have made this
difference more apparent. On average, a backchannel syn-
thesized with IPL received 0.92 yucks from all participants,
whereas this number was 1.0 for a backchannel generated
from the baseline model. A breakdown of the number of
yucks per backchannel is given in Fig. 5. Most of the gener-
ated backchannels received a modest number of yucks.

The number of backchannels that did not receive any yucks
is higher for the IPL model, 149 (62.3 %) compared to 137
(57.3 %) for the baseline model. This finding is important as
none of the participants judged these backchannels as inap-
propriate. Ideally, this would be the case for all backchan-
nels generated by a synthesis algorithm. In conclusion, both
models generate behavior that approximates that of the lis-
tener in the corpus in terms of co-occurring backchannels, but
the behavior generated based on the IPL model is perceived
as slightly more natural. In the following, we look at the
amount of available data on the subjective and objective per-
formance, and at the variation of the performance on different
sets.

5.1 Effect of amount of data

Typically, as more data becomes available for training, one
would expect that the performance of the resulting learned
model improves. Models typically generalize better when
trained on a wider variety of positive and negative samples.
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Fig. 6 Percentage of synthesized backchannels that did not receive any
yucks on the test set, for the baseline and IPL models after each iteration
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Fig. 7 F1 measure on the test set, for the baseline and IPL models after
each iteration

In addition to the IPL model, we learned a corresponding
baseline model trained on the same conversations of the cor-
pus. Both models were trained on the same positive samples
but with different negative samples. After each iteration, we
tested both models on the test set. The results of the eval-
uation are shown in Fig. 6 for the percentage of backchan-
nels that did not receive a yuck. A couple of observations
can be made. First, the performance is not monotonically
increasing for an increasing number of available training
interactions. Even though these numbers are obtained on
the same set of interactions, they are not completely com-
parable as they are obtained from ratings of different par-
ticipants. A within-subject design for iterations is needed to
analyze whether there is a significant trend. Still, as model
(IPL or baseline) was a within-subject factor, we can com-
pare the results pair-wise. From Fig. 6, it becomes clear that
the IPL models learned after the first and fourth iterations are
perceived as more appropriate than those from the baseline
approach.

For the objective F1 measure, a positive trend can be
observed for the amount of training data (see Fig. 7). How-
ever, in the final iteration, the scores are lower for both mod-
els. Apart from the first iteration, differences between the two
models are small.
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Table 2 The F1 measures obtained for IPL/baseline models and eval-
uated on different sets

Model IPL/baseline evaluated on

Set 2 Set 3 Set 4 Test

Iteration 1 0.165/0.154 0.206/0.222 0.152/0.216 0.230/0.263

Iteration 2 – 0.222/0.222 0.158/0.191 0.300/0.313

Iteration 3 – – 0.189/0.222 0.336/0.332

Iteration 4 – – – 0.323/0.323

In sum, we found no evidence that an increasing amount
of training data leads to better models. This might be due
to two causes. First, the features used might not be suffi-
ciently informative to clearly differentiate between appro-
priate and inappropriate moments to produce a backchannel.
In our experiment, this might cause the performance of the
models to saturate quickly. Second, there is typically a sub-
stantial variation between listeners in the amount and timing
of backchannels [17]. We will investigate this in the follow-
ing section.

5.2 Effect of variation in training set

To gain more insight into the variation in backchannel place-
ment between training sets, we evaluated models trained after
each iteration on all training sets of subsequent iterations.
These tests are explicitly not part of the common IPL or base-
line procedure, as we would be using test data for training.
We calculated the F1 measures for all combinations. Results
are summarized in Table 2.

All models perform worse on set four. The listener’s
backchannel behavior or the backchannel-inviting behavior
of the speaker in this set might differ from that in other sets.
We expect this to cause the performance to drop in the final
iteration. This can be explained as follows. Both models aim
at learning a model for predicting backchannel opportunities,
applicable to every speaker and listener. But individuals dif-
fer in their interaction styles and the models are not capable
of attuning to each individual. During training, they con-
verge to the behavior of an average speaker and an average
listener. Apparently, the models are better at generalizing to
the behavior of the first three sets, whereas the interactions
in set four might deviate more from the average behavior.

6 Conclusion and future work

We introduced Iterative Perceptual Learning (IPL), a novel
approach for learning computational models for social behav-
ior synthesis. IPL takes an active learning approach by iter-
atively learning classifiers based on subjective, perceptual

evaluations. Human observers rate the quality of synthesized
behavior, based on the output of trained models. These rat-
ings are given at the level of individual synthesized behav-
iors. Specifically, observers press a button to indicate that the
behavior is inappropriate in the context of the conversation.
By analyzing the ratings of several observers, we can mea-
sure the appropriateness of individual behavior instances.
This subjective measure complements traditional objective
measures such as precision and recall. In addition, the per-
ceptual ratings are used to obtain negative samples for the
subsequent training of the classifier. As such, the behavior
synthesis model is refined iteratively, which allows us to tune
our models to social behavior that is rated as appropriate.

We have demonstrated the application of IPL in a case
study on the timing of backchannels in speaker–listener
dialogs. We compared IPL to the traditional corpus-based
approach. While both models performed similarly in terms
of precision and recall, the results of the IPL model were
rated as perceptually more appropriate. However, this differ-
ence was only marginally significant, but mainly due to the
higher number of IPL backchannels without any negative
ratings. Differences between IPL and the baseline approach
were small and varied between sets of stimuli.

We expect that the features were not sufficiently informa-
tive to differentiate between appropriate and inappropriate
moments to produce a backchannel. This might have caused
the learning of the models to saturate quickly. Future work
should address taking into account a larger amount of context
and possibly other modalities (e.g., body motion and facial
expressions). Furthermore, we consider the use of seman-
tic and lexical features such as those utilized in [29] for the
prediction of backchannel opportunities.

The SVM model might not have been the most suitable
machine learning classifier as it is not a sequential model.
Future work should address the use of temporal classifiers,
especially those that can be attuned to different interaction
styles.

For the sake of experimental control, our virtual listener
only performed nods. No other behaviors were animated.
We should investigate more realistic behavior. The experi-
ment described in this paper used stimuli that consisted of a
video of a speaker and an animation of a listener, which had
to be observed simultaneously. Given the limited means for
expression, this was not problematic. We expect that it will be
more difficult to judge more elaborate and complex behavior
of a virtual listener. Therefore, we propose to use an online
setting, in which the observer is also the speaker. This would
guarantee that the behavior of the listener is contingent with
that of the virtual listener, while the observer (speaker) does
not have to monitor her own behavior. Recently, we proposed
the Switching Wizard of Oz, an experimental paradigm for
the online evaluation of social behavior synthesis algorithms
[25].
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