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Abstract The present study investigates expressive non-
verbal interaction in the musical context starting from behav-
ioral features extracted at individual and group levels. Four
groups of features are defined, which are related to head
movement and direction, and may help gaining insight on the
expressivity and cohesion of the performance, discriminat-
ing between different performance conditions. Then, the fea-
tures are evaluated both at a global scale and at a local scale.
The findings obtained from the analysis of a string quartet
recorded in an ecological setting show that using these fea-
tures alone or in their combination may help in distinguishing
between two types of performance: (a) a concert-like condi-
tion, where all musicians aim at performing at best, (b) a per-
turbed one, where the 1st violinist devises alternative inter-
pretations of the music score without discussing them with
the other musicians. In the global data analysis, the discrim-
inative power of the features is investigated through statisti-
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cal tests. Then, in the local data analysis, a larger amount of
data is used to exploit more sophisticated machine learning
techniques to select suitable subsets of the features, which
are then used to train an SVM classifier to perform binary
classification. Interestingly, the features whose discrimina-
tive power is evaluated as large (respectively, small) in the
global analysis are also evaluated in a similar way in the local
analysis. When used together, the 22 features that have been
defined in the paper demonstrate to be efficient for classifi-
cation, leading to a percentage of about 90 % successfully
classified examples among the ones not used in the training
phase. Similar results are obtained considering only a subset
of 15 features.

Keywords Automated analysis of non-verbal behavior ·
Head ancillary gestures · Focus of attention · Feature
selection · Support vector machines

1 Introduction

Among human interactive and social activities, performing
music is a well-known case in which non-verbal communi-
cation plays a fundamental role. Several studies have used
observational and interview methods to explore the way
musicians interact and determine the overall quality of expe-
rience [1]. Others, including the study reported here, investi-
gate the interaction by means of quantitative measures, with
a particular focus on expressive alignment processes in com-
munication. The literature on alignment grows out of lin-
guistics research on convergence between speakers, but it
has broadened to include various nonverbal behaviors (e.g.,
[2] reviews studies on speech prosody, turn taking, joint
attention, backchanneling, head nods, smiles and mirror-
ing/contagion effects). Within this framework, string quar-
tets (SQs) have been identified as a particularly promising
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context for investigating expressive and adaptive interactions
of groups of people. The SQ scenario involves a particular
social structure, which one would expect to be reflected in a
particular style of communication [3]. In a SQ, all the musi-
cians contribute equally to the performance of the group.
There is some degree of leadership, usually played by the
1st violinist, but not the kind of hierarchy that can be seen
in an orchestra (conductor or concertmaster vs. other musi-
cians). In this perspective, the SQ has been described as a
self-managed team, i.e., a working structure where all part-
ners share roughly equal responsibility in the development
of a common project [4].

In this context, the aim of the present study (which is an
extended version of [5], presented at IEEE ACII 2013) is
to shed light on the way musicians behave in performing
the co-operative and emotionally-engaged task of playing
in a SQ: in particular, we want to measure how the expres-
sive behavior of the musicians may change as a consequence
of modifications in the performing conditions. In the mea-
surement process, we focus on visual features, related to the
movements of the players. Compared to [5], in Sect. 5 of
the present work we have used more sophisticated machine
learning techniques, which have the advantage of being able
to consider more features at the same time. On the other
hand, such techniques also need more data for their training,
as the associated model complexity is larger. For this rea-
son, in Sect. 5 more punctual features have been used, thus
enlarging the number of available training data, and making
possible the use of machine learning techniques such as sup-
port vector machines (SVMs). Moreover, due to the use of
short time windows, the number of samples considered in
the local analysis performed in Sect. 5 is substantially larger
than the one used in global analysis performed in [5] and
refined in Sect. 4 of the present work.

Several works have already shown how the movements of
a player can carry information about the performance of a
musical piece (e.g., by conveying different expressive inten-
tions). In this paper, we focus on head movements, which
belong to the wider category of ancillary or accompanist
gestures [6], i.e., movements of the body of a music player
or of a music instrument which are not directly related to
the production of the sound (in contrast to instrumental
or effective gestures, which are directly involved in sound
production). Besides head movements, other ancillary ges-
tures are, e.g, the movements of the hands of a harpist dur-
ing and after string plucking [7]. The movements of the
bell of a clarinet are often classified as ancillary gestures
[8] since they are performed spontaneously by the music
player, although they have actually a direct role in the pro-
duction of sound, since they are movements of a sound source
(the clarinet). Finally, the movements of the bows of string
players during a performance are (mainly) instrumental
gestures.

Instrumental gestures are obviously informative since,
without them, musicians would not be able to express the
different musical ideas they want to communicate. Ancil-
lary gestures are informative, too, since they often allow one
to recognize different expressive intentions, without looking
at the instrumental gestures/listening to the performance. For
instance, for the case of a piano player, Davidson investigated
how visual information alone is often sufficient to discrimi-
nate among performances of the same piece of music played
with different expressive intentions (inexpressive, normal
and exaggerated) [9], and found that the larger the ampli-
tude of the movement, the deeper the expressive intention
[10]. This finding was also confirmed by other studies, e.g.,
Castellano et al. investigated the discriminatory power of sev-
eral movement-related features (again, for the case of a piano
player) [11], whereas Palmer et al. showed how the move-
ment made by the bell of a clarinet is larger when the player
performs more expressive interpretations of the same piece
[12]. However, these works focus on a performance by one
player only. More recent studies address non-verbal commu-
nication in larger musical ensembles such as a string quar-
tet [13] and a section of an orchestra [14,15]. Interpersonal
interaction among musicians was also studied in [16–21],
whereas [22–24] focused in conductor-musicians scenarios,
and [22–27] investigated the musician–listener interaction.

Among ancillary gestures, as already mentioned, the focus
of this paper is on head movements, which are known to play
a central role in non-verbal communication in general [28]
and in music in particular [15,29,30]. Head movements were
investigated, e.g., in [5,31–34] to estimate the position of a
common point of interest for a group of people, and in [15]
to see how they depend on the presence/absence of a such a
common point of interest. In principle, eye-gazes would be
better suited than head directions for these applications. How-
ever, eye-gaze tracking equipment is still nowadays intrusive
and costly. Moreover, previous studies have shown that head
direction and eye-gaze are often correlated [31–33,35]. In
[34], the contribution of each person in the determination of
the position of the point of interest has been evaluated using
features related to head movements, combined with cooper-
ative game theory.

In a musical context, head movements may express the
way musicians understand the phrasing and breathing of the
music they are performing, and so provide information about
the high-level emotional structures in terms of which the
players are interpreting the music. In addition, head move-
ments are not too sensitive to score details (differently from,
e.g., the movement of the bow tip in the case of a string
player). Additional information indicating how each musi-
cian stands with respect to the group as the performance
unfolds, may be obtained by studying the movement of musi-
cians’ heads with respect to the positions of several points of
interest.
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Fig. 1 A picture of the four musicians of the SQ (Quartetto di Cre-
mona) studied in this paper (a), together with their motion capture
(MoCap) 3D representation (b). The musicians are wearing MoCap
reflective markers and physiological and acoustic sensors. The subjec-
tive center of the SQ, the ear, is represented by a black dot and corre-
sponds to a reflective marker mounted above a tripod situated among
the musicians

As proposed in [21], the ear of the quartet is a prominent
example of such points of interest. The SQ ear refers to a
fixed subjective center of the SQ, whose position is defined
by the musicians themselves, and which is located at nearly
equal distance from each of them (see Fig. 1). In this work, it
has been identified asking the musicians to indicate a position
on the stage, then placing a tripod (and a reflective marker
attached to the tripod) in such a position. The SQ ear is so
called because it refers to the best location of an imaginary
listener who would receive the musical contributions of all
the musicians. This center is expected to function as a refer-
ence point for all the musicians during the performance and
to help them in coordinating and achieving a coherent sound.

In this direction and following [32], in the present work,
four groups of features have been implemented to evaluate:

1. how the heads’ directions of the four musicians converge
toward the SQ ear;

2. how much the musicians move jointly forward and back-
ward with respect to the SQ ear;

3. how the heads’ directions of each subset of three musi-
cians converge toward the head of the remaining one;

4. how much the head of each musician is directed toward
each other musician.

Hence, a different movement behavior of the group with
respect to the ear or other points of interest may be expected
to reflect different expressive performing conditions.

The paper is organized as follows: Sect. 2 describes the
multimodal setup and the experimental procedure, Sect. 3
details the behavioral features implemented to character-
ize group and individual expressive performance, Sect. 4
presents the results obtained when examining the single fea-
tures, and Sect. 5 refers to classification results obtained using
their combination. Finally, Sect. 6 discusses the main find-
ings and presents some conclusions.

2 Subjects and stimuli

2.1 Choice of professional concert level musicians

The Quartetto di Cremona, an internationally recognized
string quartet, was invited to participate to the experiment.
Preliminary encounters confirmed that the components of
this quartet show key qualities that made them suitable for
conducting this study. They were able to tolerate disturbance
created by the multimodal setup (videocameras, markers, and
on-body sensors) thanks to their longstanding experience of
performance in a variety of environmental situations (con-
cert hall, television and radio broadcastings). They under-
stood and replied in detail to the experimenters’ demands as
they are accustomed to working collaboratively with life con-
temporary composers for whom they created artworks. They
demonstrated high flexibility in performing a variety of styles
and have developed well-advanced strategies to rehearse alto-
gether. The piece that was selected is part of their repertoire.

2.2 Choice of the musical fragment

The music piece performed by the SQ during the experiment
was extracted from the Allegro of the String Quartet No.
14 in D minor, known as Death and the Maiden, by Franz
Schubert. This piece is a staple of the quartet’s repertoire
and stirs together a number of very contrasted musical ele-
ments including homorhythmic structure where musicians
tend to play at unison, fugato writing styles which replicate
the musical subject over the different instruments or concerto
style melodic development interpreted by the 1st violinist and
accompanied by repetitive chords and tremolos of the other
musicians.
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2.3 Procedure

Two sessions of recordings were done with the Quartetto di
Cremona (July, 13th and 14th, 2011) following two experi-
mental procedures. In the first procedure (condition A, exper-
imented on the 1st day), the four musicians were instructed to
play five times the Schubert music piece at best in a concert-
like situation. In the second protocol (condition B, experi-
mented on the 2nd day), the 1st violinist of the string quartet
devised alternative interpretations of the music score, which
contradict the usual interpretation (e.g., playing forte where
nuance is written piano, speeding up when a rallentando is
requested, etc.). Also this procedure was repeated five times.
The other members of the quartet were not aware of these
new versions before playing. For each recording, the quality
of each performance was assessed by the musicians them-
selves through post-performance ratings on a 7-items Likert
scale (e.g., expressivity and group cohesion were evaluated
asking and answering questions such as “how emotionally
engaging was your performance?” and “how did you man-
age to coordinate with the other musicians?”, see [36]).

2.4 Apparatus and set-up

The experiment was made within the EU Project SIEM-
PRE (Social Interaction Entertainment Using Music Perfor-
mance)1 and took place at Casa Paganini - InfoMus Research
Centre in Genova, Italy,2 in a 250-seat auditorium, an envi-
ronment similar to a concert hall, suitable for experiments in
ecological setups (see Fig. 1a). A multimodal recording plat-
form was set up to capture and analyze the movement, audio,
and physiological data of the musicians. In particular, the
musicians’ movement behavior was captured by means of the
Qualisys Motion Capture system,3 equipped with 7 cameras.
16 reflective markers were placed on each musician’s joints
and 3 other markers were located on each instrument. In par-
ticular, 3 reflective markers were placed on each musician’s
head (1 marker on the back of the neck, 2 markers above
the eyes). The positions of the markers were extracted by
the Qualisys Motion Capture system using the data collected
by the seven cameras. Original real-time applications based
on the EyesWeb eXtended Multimodal Interaction (XMI)4

software platform were developed to synchronize the Qual-
isys MoCap data together with the video and audio data.
Before being analyzed, the MoCap data were linearly inter-
polated when the tracking of the markers was not possible,
due to possibly undetected markers or missing labels associ-
ated with the markers. However, among the various markers,

1 http://www.siempre.infomus.org.
2 http://www.infomus.org/index_eng.php.
3 http://www.qualisys.com.
4 http://www.infomus.org/eyesweb_eng.php.

the ones located on the heads did not actually require correc-
tions (likewise other markers, such as the ones located on the
shoulders), which is one of the reasons for which such mark-
ers were used in the subsequent data analysis (another one is
that they are expected to be naturally related to the direction
to which the musicians are focusing their attention).

2.5 Selected data

The present paper focuses on one particular component of the
recordings: the time-series data of the positions of the heads
of the musicians. So, among the 76 available markers, only
12 markers were exploited in the data analysis. Moreover,
in a similar way as [15,21,30,34], only their coordinates in
the horizontal plane were used. The code we developed to
perform the data analysis of such time series was written in
MATLAB.

Table 1 summarizes the data used in the analysis, showing
the number (5) of recordings available for each condition, the
duration (of the order of 2–3 min) of each recording, the num-
ber of frames (of the order of ten thousand) available for each
recording, and, for the local analysis performed in Sect. 5,
the number of time windows obtained for each recording,
for a data fragmentation corresponding to 2- and 4-s time
windows, respectively (see Sect. 5 for more details on their
definitions). Moreover, the frame rate of the cameras was
100 frames per second, the maximum number of markers
detected in a frame was 76, and the number of markers per
frames actually used in the data analysis was 12. Here, one
can notice that the larger variability of the duration of the
recordings in condition B is due to the presence of sudden
unexpected accelerandos/rallentandos played by the 1st vio-
linist under such a condition.

Table 1 For each recording: its duration, its number of frames, and, for
the local analysis performed in Sect. 5, its number of time windows, for
both cases of 2- and 4-s time windows

Rec. (cond.) Time length # Frames # 2-s windows # 4-s windows

1(A) 2′19′′ 13,919 138 68

2(A) 2′35′′ 15,506 154 76

3(A) 2′29′′ 14,968 148 73

4(A) 2′29′′ 14,962 148 73

5(A) 2′27′′ 14,736 146 72

1(B) 2′25′′ 14,548 144 71

2(B) 2′10′′ 13,048 129 64

3(B) 2′51′′ 17,142 170 84

4(B) 3′28′′ 20,845 207 103

5(B) 2′32′′ 15,246 151 75

For all cases, the frame rate of the cameras was 100 frames per second,
the maximum number of markers detected in a frame was 76, and the
number of markers per frames actually used in the data analysis was 12
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In Sect. 3, several static and dynamic behavioral features
of the SQ are described. They are related to the movement
of musicians’ heads with respect to specific points of interest
(e.g., the SQ ear).

3 Description of the implemented behavioral features

This section details the features implemented to character-
ize group expressive behavior and to distinguish between
the two performing conditions A and B. The music players
are numbered from 1 to 4, so the number 1, 2, 3, 4 denotes,
respectively, the 1st violinist, the 2nd violinist, the violist,
and the cellist. The frames of each recording are denoted
by k (k = 1, . . . , Nframes). The number of frames depends
slightly on the recording, but for simplicity of notation, this
dependence is not shown in the following formulas.

3.1 Convergence of the heads’ directions toward the ear

The first behavioral feature F1 evaluates how the heads’
directions of the four musicians converge toward the SQ ear
(see Sect. 1).

The following procedure has been followed, for each
frame k of each recording.

1. For each musician i (i = 1, . . . , 4), compute the current
position vector p(k)

i in the horizontal plane of the musi-
cian’s head center of gravity (COG) as the mean of the
position vectors describing the three markers located on
the musician’s head. Then, define the current direction
d(k)

i in the horizontal plane of the musician i’s head as
the unit vector connecting the COG of his head to the
point located in the middle of the line between the two
other markers above his eyes (see Fig. 2).

2. For each musician i (i = 1, . . . , 4), consider the half-line
HL(k)

i starting from the point p(k)
i and with direction d(k)

i ,
i.e., the set of all the points with position vectors

p(k)
i + td(k)

i ,

where t ≥ 0 is any nonnegative real number.
3. For each pair (i, j) of musicians (i, j = 1, . . . , 4, i <

j), compute the position vector p(k)
i, j of the intersec-

tion between the two half-lines HL(k)
i and HL(k)

j . As

p(k)
i �= p(k)

j , such an intersection exists if and only if
the following condition is met:
− the algebraic linear system (in the real unknowns u
and v)

Fig. 2 Illustration of features F1 and F3 measuring how the heads’
directions of the four musicians converge toward the ear and how the
heads’ directions of each subset of three musicians converge toward the
head of the remaining one, respectively. The figure shows a snapshot
of the heads’ markers positions of the music players when condition
A (concert-like) and condition B (perturbed) are tested, respectively.
White half-lines refer to the heads’ directions and the green dot cor-
responds to the position of the point of total convergence (PoTC) (i.e.
where all musician heads are converging). The blue point represents the
point of partial convergence associated with the 1st violinist (PoPC1)
(i.e. where the subset of the other 3 musician’s heads are converging).
Similarly-defined points are associated with the other musicians. One
can observe that in the first snapshot, all musicians’ head directions
converge toward the ear of the SQ (black dot in the picture above),
whereas in the second snapshot, the 2nd violinist, violist and cellist
heads’ directions converge toward the 1st violinist’s one (brown dot).
The positions of all these points are used to compute the features F1
and F3, see formulas (1) and (3)
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p(k)
i + ud(k)

i = p(k)
j + vd(k)

j

has a unique solution (this happens if and only if d(k)
i is

not parallel to d(k)
j ), and both the obtained u and v are

nonnegative.
When the condition above holds, the position vector p(k)

i, j
is then defined equivalently as

p(k)
i, j = p(k)

i + ud(k)
i ,

or

p(k)
i, j = p(k)

j + vd(k)
j .

The procedure is repeated 6 times, determining—for the
frames for which they exist—the 6 position vectors p(k)

1,2,

p(k)
1,3, p(k)

1,4, p(k)
2,3, p(k)

2,4, p(k)
3,4 of the 6 pairwise intersections.

4. Denote by I (k) the subset of the pairs (i, j) of musicians
(i, j = 1, . . . , 4, i < j) for which the pairwise intersec-
tions above exist at frame k, and by |I (k)| its cardinal-
ity. If I (k) is nonempty, then the position vector of the
point of total convergence (PoTC)—the point where the
directions of all musician’s head directions converge (see
Fig. 2)—is defined as

p(k)
PoT C =

∑
(i, j)∈I (k) p(k)

i, j

|I (k)| .

If I (k) is empty, the PoTC is not defined at frame k.
5. Denote by e the fixed position vector of the SQ ear and

evaluate the distance ‖p(k)
PoT C − e‖ between PoTC and

ear. When the PoTC is not defined, the distance is set
equal to its maximum value achieved in the frames of the
recording for which the PoTC exists.

The first behavioral feature F1 is defined as the median
distance between the PoTC and the ear:

F1 = median of ‖p(k)
PoT C − e‖. (1)

The median is computed with respect to the frames of each
single recording, and is less sensitive to outliers than the
mean5 (an alternative to the median could be a “trimmed”
mean, which excludes outliers). Indeed, even in the case of
a recording for which the parallelism condition described
above never occurs, still one reason for the presence of out-
liers is an “almost parallelism” condition for the head direc-
tions of two different players, which in a small percentage

5 For what concerns the definitions of some features, we have corrected
a typo present in [5], which reported an old definition of the features F1
and F3 (given in terms of means over the frames instead than medians
over the frames, as done in the present manuscript), although its numer-
ical results about such features were actually obtained according to the
same definitions of the present manuscript.

Fig. 3 Illustration of feature F2 measuring how much the musicians
move jointly forward and backward with respect to the ear. The figure
shows an example in which cohesion is not maximal as the radial com-
ponents of the head velocities of the 1st violinist, the 2nd violinist and
the violist are smaller than 0 (their heads are moving away from the
ear), but the radial component of the cellist’s head velocity is greater
than 0 (it is moving toward the ear). Such radial components are used
to compute the feature F2 (see formula (2))

of frames may affect severely the determination of the posi-
tions of the point of total convergence (the same remark holds
also for the points of partial convergence, defined later in
Sect. 3.3). Another motivation is that, in some frames, some
intersections between the players’ head directions used to
define the points of total and partial convergence could not
exist (so, an average with respect to the remaining intersec-
tions is performed). As a final step, the feature F1 defined in
formula (1) is also normalized, dividing it by its median over
all the recordings, in such a way that its range is comparable
to the ones of the other features. The results of the data analy-
sis in Sect. 4.1 refer to such a normalized feature (Fig. 3).

3.2 Joint movement dynamics of the heads toward the ear

The second behavioral feature F2 evaluates how much the
musicians move jointly forward and backward with respect
to the SQ ear. The following procedure has been followed,
for each frame k of each recording.

1. Determine the velocity of the i musician’s head COG at
frame k, as v(k)

i .

2. Evaluate the unit vector d(k)
i,ear = e−p(k)

i

‖e−p(k)
i ‖ connecting the i

musician’s head COG to the ear, and determine the radial
component v

(k)
i,rad = v(k)

i · d(k)
i,ear of v(k)

i , that is, the one

along the direction d(k)
i,ear .

3. Compute the following quantity:
S(k)

rad = ∑4
i=1 sign(v

(k)
i,rad), where sign(v

(k)
i,rad) = ±1;

This is a synchronization index that computes whether
the movement changes of each musician (forward and
backward to the SQ ear) happen simultaneously.
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The second behavioral feature F2 is defined as the percent-
age of frames where all the musicians move in a breathing
coordinated manner, which is when S(k)

rad = ±4:

F2 = % of frames for which S(k)
rad = ±4. (2)

Again, this is computed for each single recording.
Finally, compared to [5, Subsection III.B], we have used

a different definition of the feature F2, because the one intro-
duced in the present work is more suitable to measure the
synchronization of the movements of the heads of the musi-
cians (the old one tended to give too much importance to
large values of the speed).

3.3 Convergence of a subset of 3 heads’ directions toward
the remaining musician

The third behavioral feature F3 is a vector made up of four
components, one for each musician. It evaluates how the
heads’ directions of each subset of three musicians converge
toward the head of the remaining one. The following proce-
dure has been used, for each frame k of each recording,

1. For each musician l = 1, . . . , 4, denote by I (k)
l the sub-

set of the pairs (i, j) of musicians (i, j = 1, . . . , 4, i <

j, i, j �= l), different from l, for which the pairwise inter-
sections defined in Sect. 3.1 exist at frame k, and by |I (k)

l |
its cardinality.

If I (k)
l is nonempty, the position vector of the point of

partial convergence (PoPCl ) associated with the musician l
(see Fig. 2) is defined as

p(k)
PoPCl

=
∑

(i, j)∈I (k)
l

p(k)
i, j

|I (k)
l |

.

If I (k)
l is empty, the PoPCl is not defined at frame k. Inter-

estingly, it follows by the definitions that the point of total
convergence PoTC is the center of gravity of the set of all
points of partial convergence PoPCl , for the frames in which
they are all defined.

2. Consider the distance‖p(k)
PoPCl

−p(k)
l ‖between the PoPCl

associated with the musician l and his COG. When the
PoPCl is not defined, the distance is set equal to its max-
imum value achieved in the frames of the recording for
which the PoPCl exists.

Each component F3,l of the third behavioral feature F3

is defined as the median distance (inside each recording)
between the PoPCl and the COG of the musician l:

F3,l = median of ‖p(k)
PoPCl

− p(k)
l ‖. (3)

Fig. 4 Illustration of feature F4 measuring how much the head of each
musician is directed toward each other musician. The figure shows an
example of determination of the focus of attention (FoA) for the 1st
violinist. In this case, the head of the violist (3rd player) is the one that
minimizes the angle between the direction of the 1st violinist’s head
and any vector connecting the 1st violinist’s head to any other head.
Moreover, such minimum angle is less than the threshold, equal to 15◦.
The collection of FoAs is then used to compute the fourth feature F4
(see formula (4))

Here, similarly to the case of the PoTC considered in the fea-
ture F1, the median distance has been considered instead
of the mean, because it is less sensitive to outliers. This
feature is also normalized dividing its components by the
respective medians over all the recordings, in such a way
that their ranges are comparable to the ones of the other fea-
tures. Finally, the results of the data analysis in Sect. 4.3 refer
to such a normalized feature.

3.4 Focus of attention (FoA) of single musician

The fourth set of behavioral features F4 is a matrix whose
elements specify how much the head of each musician is
directed toward each other musician. The following proce-
dure has been followed, for each frame k of each recording
and for each musician i (see Fig. 4 for an example).

1. Compute the angles between the direction of musician
i’s head and the vectors connecting his head to the each
other’s one, respectively.

2. If the minimum of these angles is smaller than a given
threshold (set to the value 15 ◦, adapted from the literature
[31]) and is achieved for the musician ĵ , then the head
of musician i is considered as directed toward musician
ĵ . Define ĵ as the focus of attention of the musician i ,
FoA(k)(i) = ĵ (in the—unlikely—case of odds, one can
choose at random one of the musicians that minimizes
the angle in that frame, and define the associated number
as the focus of attention of the musician i in that frame).

3. Otherwise, conclude that the head of the musician i is not
directed toward any other musician in such frame. Define
0 as the focus of attention of i , FoA(k)(i) = 0.

4. By definition, there are no frames for which FoA(k)(i) =
i (no musician is directed toward himself).
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Each element F4,i, j of the fourth behavioral feature F4

(which is defined for each single recording) is defined as
the percentage of frames in which the focus of attention of
the musician i is j (the possible values of i and j belong
respectively to the set {1, 2, 3, 4} and {0, 1, 2, 3, 4}):
F4,i, j = % of frames for which FoA(k)(i) = j. (4)

4 Results of the data analysis on single features

This section describes the results obtained for each feature
defined in Sect. 3, for both conditions A and B. All features
were submitted to statistical tests to draw inferences on them.
The distribution of data and their variances were first veri-
fied to select the most appropriate statistical tests. For all
features, the obtained values did not follow a normal distrib-
ution according to the selected normality test (Kolmogorov-
Smirnov). The variances were also not homogeneous accord-
ing to the Levene statistical test. Specific non-parametric
tests—which do not require the assumptions of a normal
distribution and equal variances (of the residuals)—were
used for the analysis of the various features. More precisely,
Mann–Whitney U test was applied on the mean F1, F2, F4

feature values of all recordings taken together, for each con-
dition A and B. A multi-level model (more precisely, a linear
mixed model, LMM) was alternatively used for the F3 fea-
ture to consider an additional level in the analysis (subset of
musicians) that could not be included otherwise. (possibly
due to the small number of samples). Regarding the choice
of the mean (with respect to all the recordings associated
to the same performance condition) in some statistical tests
performed in the current section, this is justified by the fact
that such statistical tests evaluate whether two sets of sam-
ples come from populations with the same mean or not. In
the following subsections, we report the cases in which the
results were evaluated to be significant by the tests, and also
the cases in which they were evaluated to be not significant
(possibly due to the small number of samples).

4.1 Convergence of the heads’ directions toward the ear

For the recordings considered in the data analysis, the par-
allelism condition mentioned in Sect. 3.1 actually never
occurred,6 due to the seat configuration of the players and
the resolution of the instruments. Nevertheless, as in the
definition of the feature F1 we have considered intersec-
tions between half-lines, some of such intersections were not
defined in some frames. This happened, for instance, when

6 That condition was mentioned in Sect. 3.1 only to describe how the
procedure could be modified in the unlikely case such a condition would
occur.
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Fig. 5 Means and confidence intervals for the first feature F1 (after
normalization) in conditions A and B. Musicians’ heads variability was
higher in the perturbed condition (B) with respect to the concert-like
one (A)

a pair of musicians looked at opposite directions. However,
for each recording, the sets of intersections used to define
the PoTC was not empty in each frame, so such a point was
actually defined for all the frames, and the correction men-
tioned in Sect. 3.1 was not needed for the feature F1 (a similar
remark holds for all the PoPCs and the feature F3). Then, non-
parametric Mann–Whitney U test showed that there was no
significant difference for the mean values7 of the first feature
F1 (U=5, p = 0.117) with respect to the recordings associated
with each performance condition, see Fig. 5.

4.2 Joint movement dynamics of the heads toward the ear

For the second feature F2, non-parametric Mann–Whitney
U test showed that the difference between its mean val-
ues under conditions A and B was not significant (U = 4,
p = 0.972). In both conditions, feature F2 mean values and
standard deviation were similar, revealing similar cohesion
among musicians in their movements along the direction of
the ear (Fig. 6).

7 One can notice that there is no contradiction about the use of the
median inside the definition of the feature F1 in Sect. 3.1, and the use of
the mean instead in the analysis described in this subsection. Indeed, the
median among the frames of each recording was used in the definition
of the feature F1 in Sect. 3.1, whereas the mean in this subsection was
computed at another level of the analysis, i.e., averaging the obtained
values of the feature F1 with respect to the recordings associated with
the same performance condition. A similar remark holds for the feature
F2.
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Fig. 6 Means and confidence intervals for the second feature F2 in
conditions A and B. One can notice similar values in both conditions
showing that cohesion among musicians along the direction of the ear
remain similar notwithstanding the perturbation

4.3 Convergence of a subset of three heads’ directions
toward the remaining musician

A LMM was chosen to compare musicians’ third feature
F3 values across conditions A and B to handle correlated
data and unequal variance observed in the dataset. To con-
trol the inflation of type I error probability due to multi-
ple comparisons, the Bonferroni correction was applied to
adjust the α-value (the level of statistical significance). The
LMM identified significant main effects of condition (A vs
B), (p < 0.001). As shown in Fig. 7, the distance between the
1st violinist and his associated point of partial convergence
(PoPC1) decreased significantly from the concert-like con-
dition (A) to the perturbed one (B), revealing how the 2nd
violinist, violist and cellist’s heads are converging toward
him. As a side effect, the distance between the 2nd violin-
ist and his associated point of partial convergence (PoPC2)
decreased significantly, whereas the distance between the cel-
list and his associated point of partial convergence (PoPC4)
increased significantly.

4.4 Focus of attention (FoA) of single musician

A statistical analysis was performed, investigating the val-
ues of the components of the fourth feature F4 related to
the 1st violinist. These components quantify how much the
2nd violinist, the violist and the cellist are focusing on
the 1st violinist in conditions A and B. A non-parametric
Mann–Whitney U test revealed a significant difference in
the mean values (U = 8,282, p < 0.001). Figure 8 shows

1st violin 2nd violin viola cello
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Condition A
Condition B

Fig. 7 Means and confidence intervals for the third feature F3 com-
ponents (after normalization) in conditions A and B. One can notice
that the distance between the 1st violinist and his associated point of
partial convergence (PoPC1) was significantly smaller in the perturbed
condition (B) with respect to the concert-like one (A). A similar result
was obtained for the 2nd violinist, whereas the opposite was observed
for the cellist (who sits in front of the 1st violinist)

pie charts summarizing the mean values of the components
of the fourth feature F4 for all the musicians, in conditions
A and B.

4.5 Questionnaire

Independent samples t tests were conducted to compare the
ratings of expressivity and cohesion, in each performance
condition A and B, as indicated by the four musicians them-
selves after each recording. Results (means and confidence
intervals) are shown in Fig. 9. The difference in ratings
was significant, t (38) = 12.13, p < 0.001 for expres-
sivity, not for cohesion (p = 0.07). Interestingly, this rat-
ing of cohesion is consistent with the findings obtained in
Sect. 4.2 for feature F2, according to which cohesion was
high in both conditions, despite the perturbation specific of
condition B.

5 Classification results using combinations of features

As shown in Sect. 4, no single feature was sufficient to dis-
tinguish completely between conditions A and B. Therefore,
in this section we explore the combinations of the features.
More precisely, in the following we describe the results we
obtained by applying machine learning techniques to auto-
matically classify the data into the two classes (conditions)
A and B.
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Fig. 8 Pie-chart representation of the mean values of the components of the fourth feature F4, in conditions A and B. One can notice that the 2nd
violinist, violist and cellist focused their attention on the 1st violinist more in the perturbed condition (B) with respect to the concert-like one (A)

Fig. 9 Means and confidence intervals for the expressivity and cohe-
sion items in the questionnaire, in conditions A and B. One can notice
that expressivity was larger in the concert-like condition (A) with respect
to the perturbed one (B), whereas cohesion was similar in the two cases

5.1 Data fragmentation

In the data analysis performed in this section, more punc-
tual features were used. They were obtained fragmenting the
recordings into smaller time windows, in order to get more
dynamic data, together with a sufficient amount of training
data. More precisely, two data analysis were performed, one
with 4-s windows and 2-s interonset intervals,8 and one with

8 The interonset interval (I oI ) is the lapse of time between the begin-
nings of two consecutive time windows. Since in this work it was cho-

2-s windows and 1-s interonset intervals. The two sizes of the
time window were selected as they refer to two levels of seg-
mentation of the music score, corresponding, respectively, to
riff (2s) and music semiphrase (4s) levels of analysis. The
4 resulting features F1, F2, F3 and F4 (evaluated on each
time window, adapting to it the procedure detailed in Sect. 3)
include 22 sub-features (1 for F1, 1 for F2, 4 for F3, and 16
for F4), which were normalized. A first analysis showed that
there was no clearly discriminating (sub)feature, as the error
intervals for condition A and condition B intersected for all
cases, nevertheless one feature resulted immediately to be
useless: F4,2,3, which was always 0 since in the database of
recordings considered in the present work, the 2nd violin-
ist never glanced in the violist’s direction. This was expected
due to player arrangement reasons, combined with the strong
leader role assumed by the 1st violinist.

5.2 F-scores

A fivefold cross-validation technique was used in the fol-
lowing data analysis. More precisely, in the kth fold (k =
1, . . . , 5), the test set was made up of the time windows cor-

sen to be smaller than the length of the time windows, consecutive time
windows always overlapped. Although this introduced an additional
correlation between the features computed on different time windows,
this was limited to consecutive time windows.
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Table 2 Means, standard
deviations and medians (over
the folds) of the F-scores of the
(sub)features for the binary
classification problem between
classes (conditions) A and B

The F-scores of the
(sub)features depended on the
durations of the time windows,
but they were nearly in the same
order of effectiveness for both
cases

Feat. 2s w. mean 2s w. std. 2s w. mdn. 4s w. mean 4s w. std. 4s w. mdn.

F1 � 0 � 0 � 0 � 0 � 0 � 0

F2 0.01 � 0 0.01 0.01 � 0 0.01

F3,1 71.56 80.56 34.34 67.15 56.51 42.72

F3,2 108.20 26.83 116.45 83.17 25.11 79.27

F3,3 9.68 4.84 10.72 7.60 2.68 8.65

F3,4 25.43 46.80 2.04 24.64 47.41 0.94

F4,1,0 0.52 0.47 0.37 0.35 0.33 0.20

F4,1,2 2.50 0.71 2.65 2.04 0.49 2.13

F4,1,3 49.90 15.93 53.16 35.69 11.77 37.17

F4,1,4 34.06 11.63 38.41 24.21 8.75 27.21

F4,2,0 0.49 0.68 0.14 0.30 0.41 0.10

F4,2,1 6.66 5.95 4.51 3.87 3.54 2.60

F4,2,3 NaN NaN NaN NaN NaN NaN

F4,2,4 18.54 4.52 17.90 11.79 2.64 11.05

F4,3,0 106.98 35.70 121.67 59.87 19.93 68.74

F4,3,1 112.02 22.96 122.05 63.47 12.56 69.41

F4,3,2 1.98 2.51 0.03 1.22 1.57 0.02

F4,3,4 5.52 1.84 6.91 3.49 1.15 4.37

F4,4,0 19.24 8.23 17.87 13.44 5.95 11.96

F4,4,1 44.51 16.08 52.22 27.76 10.40 32.90

F4,4,2 13.56 9.03 10.10 8.31 5.73 6.01

F4,4,3 5.62 1.73 6.03 3.75 1.29 3.92

responding to the kth recording made under condition A and
the kth recording made under condition B, whereas the train-
ing set was made up of all the time windows coming from the
other 8 recordings. In such a way, for each fold, there was no
overlap between training and test windows, since they were
selected from different recordings. Then, for each fold, in
order to assess the discrimination power of the features, their
F-scores (Fisher scores) were computed. Given the training
vectors xk, k = 1, . . . , m, the numbers of instances in class A
and B (i.e., instances associated with each of the two classes)
are denoted by n A and nB , respectively, so m = n A + nB

(such a number depends on the fold). Then, for each fold, the
F-score of the i th feature is defined as follows [37]:

F(i) = (x̄i
A − x̄i )

2 + (x̄i
B − x̄i )

2

1
n A−1

∑n A
k=1(x A

k,i − x̄i
A)2 + 1

nB−1
∑nB

k=1(x B
k,i − x̄i

B)2
,

where x̄i , x̄i
A, x̄i

B are the average of the i th feature on the
whole training set of the fold, and on its subsets correspond-
ing to class A and class B, respectively; x A

k,i is the i th feature
of the kth instance of class A in the training set of the fold,
and x B

k,i is the i th feature of the kth instance of class B in
the training set of the fold. The numerator evaluates the dis-
crimination between the class A and class B sets, and the
denominator evaluates the variability within the two sets.

The F-score is easy to compute and generally effective in
evaluating discriminating features.

The F-scores of the four main features ranked them in the
following order: F4 (mostly, the violist’s and the 1st violin-
ist’s foci of attention) and F3 (in particular, the components
concerning the 2nd and the 1st violinists), then F2 and F1.
The details are given in Table 2. The F-scores were com-
puted for 2-s windows and 4-s windows, and some differ-
ences appeared, which was expected, as the features vary
differently in time, and thus have different stabilities with
respect to time. For example, the point of total convergence is
expected to be more stable than the focus of attention for each
single musician. Some features resulted to be more suitable
to short-time analysis, while others resulted to be more effec-
tive for longer time windows. Finally, note that F4,2,3, which
was always 0, was useless for the discrimination between the
two classes.

5.3 Support vector machine classification

Doing a classification test is a way to show that a model
trained with the aim of discriminating between different
classes has a good generalization capability on examples that
were not used in the training phase. Those classification tests
(which were performed 5 times, using the test sets of the dif-
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ferent folds) are also called validation tests. Their results are
described in the Sect. 5.4. In this subsection, we describe the
procedure we followed to train the classifiers for each fold.

In order to classify the data into the two classes (con-
ditions) A and B, a SVM was trained, using the parameter
optimization strategies explained in [38].

The algorithm is as follows:

1. for each fold (generated according to procedure described
in Sect. 5.2), do a parameter optimization (γ and C para-
meters of the SVM) with a polynomial kernel and a five-
fold cross-validation on the Xtrain data, and train an opti-
mized SVM classifier;

2. test the classifier on the set Xtest of such fold;
3. repeat five times the procedure above to obtain an average

test error with respect to the folds.

The last step means that a nested cross-validation is per-
formed. Moreover, we also investigated the classification per-
formances obtained using less features. In particular, the best
15, 11 and 9 features have been considered, according to
the ranking of their F-scores in each fold (roughly, such
choices correspond to F-score thresholds equal to 1, 5, and
10, respectively). Also in this case, for each fold, the γ and
C parameters of the SVM were optimized through a fivefold
cross-validation on the Xtrain data of the fold.

5.4 Classification results

Table 3 summarizes the results of the classification tests that
were obtained for the procedure described in Sect. 5.3. For
such tests, means and standard deviations with respect to the
folds were computed. A great percentage of time windows
was correctly classified, always with performance better than
chance (50 % for the balanced data considered in this paper),
even when using only nine features. The algorithm showed
to be most effective when all the 22 features were used, but
the results were in a similar scale when using only the 15
best features selected according to their F-score ranking.
Finally, the results worsened as the set of features used for

Table 3 Classification results (in percentages of correct classification
on the test set, averaged on fivefolds) for the two sizes of the time
windows and different numbers of selected features (according to the
F-score in each fold)

# Feat. 2s wind. classif. (%) 4s wind. classif. (%)

22 89.9 ± 2.4 90.3 ± 3.4

15 87.0 ± 3.8 87.6 ± 6.1

11 72.6 ± 4.4 74.4 ± 6.9

9 63.1 ± 4.9 65.9 ± 6.1

Also the standard deviation with respect to the folds is shown

classification was further reduced. When used together, the
22 features we have defined in the paper demonstrated there-
fore to be efficient for classification, and led to a percentage
of about 90 % successfully classified test windows. One can
also notice that the classification results obtained using 2-
and 4-s windows were quite similar.

6 Conclusions

Playing music with others represents one of the most engag-
ing and expressive experience [1]. The findings of this paper
show that a set of behavioral features could be implemented
to automatically distinguish between a highly satisfying
engaging and expressive type of performance versus a less
satisfying expressive performance. Specifically, in the global
analysis presented in Sect. 4, we found that: features F1 and
F2 revealed that a cohesive performance in both performing
conditions A and B was obtained (see Sects. 4.1, 4.2); fea-
ture F3 showed that in perturbed condition B, one point of
interest plays a central role: the point of partial convergence
PoPC1 associated with the 1st violinist (see Sect. 3.3); fea-
tures F3 and F4 enabled to distinguish between concert-like
condition A from perturbed one B, the results obtained from
feature analysis were consistent with the results of the ques-
tionnaire (see Sect. 4.5). Finally, we also combined the fea-
tures to perform binary classification using an SVM classifier
(see Sect. 5), also making a ranking of the features in terms of
their F-scores. The dynamism of the performance was well
rendered for both 2- and 4-s windows, and the classification
algorithm showed a very high success rate (see Sects. 5.1, 5.2,
5.3, 5.4). One of the motivations of the local analysis made
in Sect. 5 was the larger number of data used in such an
analysis, with respect to the global one performed in Sect. 4.
This was due to the data fragmentation in time windows.
Interestingly, the features whose discriminative power was
evaluated as large (respectively, small) in the global analysis
performed in Sect. 4, were also evaluated in a similar way
in the local analysis performed in Sect. 5.2. Finally, an SVM
was trained to perform the automatic discrimination of the
time windows extracted from the various performances. The
experiments showed that the selected 22 local features were
able to separate well the data obtained on the time windows
associated with the performances made under conditions A
and B. The experiments also showed that using less features
produced often a less accurate classification, but even a sub-
set of 15 features produced similar results than the whole set
of features.

The results of this paper confirm in a quantitative way
previous studies on music ensemble performance (e.g., [17]).
It has actually been suggested that musicians pay attention
to other performers’ heads to better predict their upcoming
actions. This is particularly obvious when the behavior of a
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musician is difficult to predict. Indeed, condition B of the
present study sets the 1st violinist in a privileged position,
providing him with information that could be transmitted
to the other musicians mainly through his movement, and
constraining all the other musicians to follow him tightly
to maintain the group cohesion. More generally, the present
study highlights the potential of the SQ scenario as a test case
to study group behavior in social emotionally-engaged and
creative activities in ecological settings.

Although an evaluation of the expressivity and cohesion
by an audience was not performed in this work (whose
main objective was to find suitable features able to discrimi-
nate between the two performance conditions, independently
from how such conditions were perceived by the public), we
mention that in other works on string quartets we took into
account such a perception. For instance, in the experiment
described in [39], the musicians were asked to play the same
musical fragment in a solo condition and then with the rest of
the quartet, and the public was asked to discriminate between
such two conditions looking only at the MoCap data associ-
ated with one player. In such a case, the difference between
the two conditions resulted to be not obvious to the untrained
observers, while musician observers were able to distinguish
between the two conditions.

The data analysis presented in this paper was performed
at two different levels. In the first simpler level of analysis,
the possible dependence of the features on time was not con-
sidered, and global features were considered. In the second
level of analysis, the features were evaluated on shorter time
windows (2 and 4 s long), which allowed to use dynamic
models for the analysis, which were more refined, due to the
increased number of data obtained by segmenting the origi-
nal data. Of course, an even more sophisticated analysis may
be performed, e.g., one may use some training data to fit the
parameters of a time-series model to the data. In the previous
work [21], for instance, such a method was used, combined
with Granger’s causality, to measure to what an extent a time
series associated with one player (in that case, the time series
of the distance of the head of that player from the “ear” of
the quartet), influenced the corresponding time series asso-
ciated with another player. As a possible extension of the
present work, a similar analysis may be performed using
the features considered in this paper. Other possible exten-
sions in the analysis include: the detection of possible nonlin-
ear dependencies among the individual features of different
members of the SQ; the application of the methodology of the
present work to other SQs and other settings (e.g., musicians
in orchestras, or other small groups of highly skilled people,
not necessarily musicians, such as dancers or athletes); the
use of other tools, such as Google Glass, to obtain possibly
better estimates of the focus of attention, and better measure-
ments of the head movements (possibly using suitable image
processing techniques).
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