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ABSTRACT 
 
This paper presents a new lossy coding scheme based on 
3D Wavelet Transform and Lattice Vector Quantization 
for volumetric medical images.  The main contribution of 
this work is the design of a new codebook enclosing a 
multidimensional dead zone during the quantization step 
which enables to better account correlations between 
neighbour voxels. Furthermore, we present an efficient 
rate-distortion model to simplify the bit allocation 
procedure for our intra-band scheme. Our algorithm has 
been evaluated on several CT an MR image volumes. At 
high compression ratios, we show that it can outperform 
the best existing methods in terms of rate-distortion trade-
off. In addition, our method better preserves details and 
produces thus reconstructed images less blurred than the 
well-known 3D SPIHT algorithm which stands for a 
reference. 
 
Index Terms— Lossy Compression, volumetric medical 
images, 3D wavelet transform, 3D Dead Zone Lattice 
Vector Quantization. 
 

1. INTRODUCTION 
 

Most of the current medical imaging techniques 
produce three-dimensional data. Some of them are 
intrinsically volumetric, like Positron Emission 
Tomography (PET), Computerized Tomography (CT), 
Magnetic Resonance (MR), 3D ultrasound, while others 
describe the temporal evolution of a dynamic 
phenomenon as a sequence of 2D images (they are more 
properly labelled as 2D+time). The huge amount of data 
generated every day in the hospital environment yields 
compression to be unavoidable for efficient storage and 
transmission purposes. 

Compression schemes can be divided into two groups: 
lossless compression and lossy compression. Nowadays, 
compression methods used in medical applications are 
most of the time lossless methods in order to preserve the 
data integrity and to facilitate thus a true diagnosis. 
However, lossless coding does not permit to reach high 
compression ratios. Thus, most of applications (e-g: 
telemedecine, fast searching and browsing of medical 

volumetric data) suffer from this limitation. For this kind 
of applications, lossy compression seems to be an 
appropriate alternative. Furthermore, in many applications 
like for example computer aided detection (CAD) [1], it 
has been shown that a balance between data compression 
and data fidelity could be achieved [2]. 

A volumetric medical image is a three-dimensional (3-
D) image data set which can be considered as a sequence 
of two-dimensional (2-D) images (or slices). A direct way 
to perform compression on it is to straightforwardly apply 
a two dimensional compression algorithm to each slice 
independently. However, the slices are generally highly 
correlated with one another. Thus, the basic idea of the 
3D medical image compression algorithms is to take 
advantage of the correlation among the data samples in 
the three dimensional space to improve compression 
performances. The most approaches combine a three-
dimensional space decorrelating transform with the 
extension of a coding algorithm that has proven to be 
effective on 2D images [3]. For example, Catin et al [4] 
were the first, to our knowledge, to compress volumetric 
medical images with Lattice Vector Quantization (LVQ), 
while many works had been done before on LVQ [5] [6] 
in the field of 2D real life images. 

In this paper, we propose the design of a new entropy-
coded LVQ codebook enclosing a multidimensional dead 
zone to encode the coefficients of a 3D Dyadic Wavelet 
Transform (3D DWT) which is known to be one of the 
most efficient decorrelator for 3D medical images [3] [4]. 

One of the main advantages of the proposed scheme –
called 3D Dead Zone Lattice Vector Quantization (3D 
DZLVQ)- is its ability to remove non significant vectors 
while quantizing more accurately significant ones, which 
yields a significant improvement of the overall rate-
distortion trade-off.  Moreover, we introduce an efficient 
bit rate allocation procedure based on the approximation 
of the rate distortion (R-D) functions by an exponential 
model. Numerical and visual results produced by 3D 
DZLVQ on MRI and CT images are promising at low 
rates by comparison with a set of the best 3D coders 
published in the literature.  

 
  



2. 3D DEAD ZONE LATTICE VECTOR 
QUANTIZATION 

 
The whole lossy compression scheme we propose is 

represented in Figure 1. The coefficients produced by the 
3D DWT within each subband are scaled and quantized 
by the 3D DZLVQ algorithm in an intra-band framework 
(dependencies between resolutions are not taken into 
account). The main advantage of LVQ-based methods is 
their low complexity since there is no need to construct or 
store the codebook. Quantized vectors Y are finally 
encoded by using an efficient prefix code which 
associates to Y a unique pair (e,pos), where 

1
Ye = and 

pos stands for the position of Y on the shell of radius e. 
For efficiency in terms of bit rate, e is encoded using 
entropy coding while pos is fixed-length coded [7]. The 
bit rate related to a subband is then: 
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where N(r) is the population of the shell of radius r (i.e. 
the number of codebook vectors whose norm1 is equal to 
r ), P the discrete law of the radius and rt the truncation 
radius of the codebook.   

 

 
 
 
Figure 1: Proposed whole lossy compression scheme.  
 
Here we propose to decrease R at a fixed distortion D 

(or equivalently to decrease D at a fixed rate R) by 
designing a multidimensional dead zone of radius RDZ 
within the codebook.  Our scheme allows to threshold non 
significant source vectors according to a criterion based 
on their norm, while putting more bits on significant ones. 
It can efficiently apply to medical images in the 3D 
wavelet domain which often contain huge non-significant 
areas (for instance the areas where no anatomy is 
imaged). 

 Furthermore, the norm of vectors is a good measure of 
the local activity in the case of correlated and sparse 
source samples like wavelet coefficients under the 
condition of vectors oriented along the direction of the 
details of the corresponding subband.  To discuss this 
issue, let us make a comparison between the histograms of 
the norm of three kind of vectors: Figures 2 (A) to (C) 

                                                 
1  In the whole paper the norm stands for the 1L norm.  
 

correspond to the LHL3
2 subband (vertical details + low 

pass filtering along z) of liver_t2 image (see Table 1) for 
three different vector orientations: vertical (8×1×1), 
horizontal (1×8×1) and cubic (2×2×2) respectively. 
Distribution (A) is more picked than (B) since an 
orientation along the direction of wavelet details allows to 
better capture clusters of significant coefficients and to 
increase the number of vectors around zero. This point 
shows that for coding efficiency purposes one should not 
privilege vectors orthogonal to the direction of the 2D 
wavelet subband details. Moreover, as we perform a 3D 
DWT, additional correlation exists along the temporal 
direction (z) as it is shown in Figure 2(C) with the cubic 
orientation of vectors.  This last one represents actually a 
good compromise for capturing clusters in the three 
directions in all the subbands. Logically, the cubic 
orientation gives the best R-D function of 3D DZLVQ for 
all the subbands. So,  will be used in our work.  

    
Figure 2: Histograms of the 1L  norm of the LHL3 

subband of Liver t2: 8 x 1 x 1 vectors (A), 1 x 8 x 1 
vectors (B), 2 x 2 x 2 vectors (C). 

 
In the proposed framework, according to the vector 

dead zone radius RDZ, the quantization process of any 
source vector X becomes the following (see Figure 3):  

 
Figure3:  3D DZLVQ codebook for vectors of size 
 

If DZRX ≤
1

, X is replaced by the null vector 0.  

If DZRX >
1

, X is scaled by γ  (the scaling factor) and 

quantized by usual fast lattice quantization algorithms [7]. 
Note that the parameters ),( DZRγ enable to tune the trade-
off between rate and distortion. 
 
                                                 
2 L and H mean low pass and high pass filtering respectively. 
The filtering direction follows the order x, y and z. The final 
number indicates the level decomposition  
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3. BIT RATE ALLOCATION PROBELM 

 
As, we use an intra-band approach to quantize and to 
encode the wavelet coefficients, it is necessary to 
implement a rate allocation algorithm to assign a bit rate 
to each subband SBk of the multiresolution decomposition, 
while minimizing the overall distortion, under the 
constraint to reach the total bit rate. This is a difficult 
problem (especially for volumetric images) which can be 
solved by lagrangian multiplicators based methods at the 
price of a high computational complexity. A lot of effort 
has been done for years by many researchers to develop 
analytical rate-distortion models dedicated to wavelet 
coefficients to decrease the complexity of the allocation 
procedure. However, these models are generally built on 
the i.i.d. hypothesis [6] [8] while block based methods 
(like LVQ) could take advantage of non i.i.d. properties of 
real data such as wavelet coefficients. In the 3D DZLVQ 
case, this drawback can be circumvented. Indeed, as 3D 
DZLVQ increases the amount of null vectors, it modifies 
the shape of the R-D function in the low rates range in a 
way that it can be modeled by a single exponential 
function D(R)=Ce-aR with C and a the parameters of the 
model. 
These parameters can be computed using a simple linear 
regression. Let L be the number of R-D points used in the 
regression and dk = D(Rk), k = 1,…,L be the distortion 
value associated to the bit rate Rk of subband SBk. The 
parameters of our model are then:  

                     

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠

⎞
⎜
⎝

⎛
−

−
=

∑ ∑

∑ ∑ ∑

= =

= = =
2

1 1

2

1 1 1exp
L

k

L

k
kk

L

k

L

k

L

k
kkkk

RRL

dRdRL
C

                (3) 

                       ⎟
⎠

⎞
⎜
⎝

⎛
−−= ∑ ∑

= =

L

k

L

k
kk RCd

L
a

1 1
)ln(1                    (4) 

Practically, we can show that only three R-D points are 
necessary to compute C and a. Figure 4 permits to 
compare the experimental R-D function of LHL2 subband 
of Liver_t2 image and the approximation given by our 
model. As we can see, the proposed model is accurate. 

 
Figure 4: Comparison of R-D functions obtained with 
LVQ, 3D DZLVQ, i.i.d Laplacian model and proposed  
exponential model – LHL2 subband of Liver t2 
 

Finally, it offers substantial reduction of the 
computational complexity of rate allocation as it leads to 
an analytical solution to this problem. The interested 
reader may consult the reference [9] related to the 2D case 
for more precision.  
 

4. EXPERIMENTAL RESULTS 
 

In order to give a fair comparison with existing 
works, we have tested our 3D DZLVQ algorithm for lossy 
compression on the 8-bit CT and MR volumetric medical 
image data set used in Bilgin et al’s work [3]. Table 1 
shows the description of these images. The first slices of 
each data set are shown in Figure 5. 
 

 History File name Voxel size(mm) Volume size 
CT tripod fracture  Skull 0.7x0.7x2 256x256x128 

 scaphoid fracture Wrist 0.17x0.17x2 256x256x176 
 carotid dissection Carotid 0.25x0.25x1 256x256x64 
 Apert’s syndrome Aperts 0.35x0.35x2 256x256x96 

MR Normal Liver_t1 1.45x1.45x5 256x256x48 
 Normal Liver_t2 1.37x1.37x5 256x256x48 
 Left Exopthalmos Sag_head 0.98x0.98x3 256x256x48 
 Heart disease Pad_chest 0.78x0.78x5 256x256x64 

 
Table 1: Description of the data sets in our experiments.  
 

 
Figure 5: Caption of volumetric medical images : First 
slice of each data set (a) Skull (b) Wrist (c) Carotid (d) 
Aperts (e) Liver_t1 (f) Liver_t2e1 (g) Sag_head (h) 
Ped_chest  
 
First, we compare the compression performances of our 
method with those of both classical 3D LVQ [4] and 3D-
SPIHT [10] [11].  All the images have been compressed 
by the three methods at rates varying from 0.05 to 1 
bit/voxel (bpv). We have used the well-known 9.7 
floating-point filter [6] with a four-level 3D DWT or a 
three-level 3D DWT when the resolution was limited 
along the z axis (TZ < 64). Furthermore, we have designed 
a pyramidal codebook whose dead zone and scaling 
factors (within each subband) have been chosen to 
optimize the overall rate-distortion trade-off.   
Table 2 shows that at a low rate (0.1 bpv) 3D DZLVQ 
outperforms 3D LVQ and 3D SPIHT, in terms of PSNR, 
except for Wrist and Aperts images. Note that tests at 
other low rates (lower than 0.5 bpv for Skull and 0.35 bpv 
for the remaining images) have lead to the same kind of 
results. 3D SPIHT is better at high rates (in terms of 



PSNR) since the efficiency of the vector dead zone 
naturally decreases at such rates.  
 

 3D DZLVQ 3D SPIHT 3D LVQ 
Skull 34.69 dB 33.98 dB 33,46 dB 
Wrist 43.63 dB 44.95 dB 43.29 dB 

Carotid 41.08 dB 40.51 dB 40.24 dB 
Aperts 46.98 dB 47.41 dB 46.66 dB 

Liver_t1 38.84 dB 38.37 dB 38.02 dB 
Liver_t2el 36.61 dB 36.31 dB 36.12 dB 
Sag_Head 39.03 dB 38.76 dB 38.55 dB 
Pad_chest 42.98 dB 42.97 dB 42.18 dB 

 
Table2: Mean PSNR (dB) Comparison between 3D 
SPIHT, 3D LVQ and 3D DZLVQ at.0.1 bits/voxel (bpv) 
on the 8 database images detailed in Table 
 
Furthermore, table 3 summarizes some results achieved 
by other 3D methods on the Skull image which is 
abundantly used in the literature [3], [10]-[12]. 3D EZW 
[3] is a recent extension of well-known EZW algorithm. 
3D ESCOT is a 3D version of EBCOT algorithm using a 
uses a (2+2, 2) filter with a four-level integer wavelet 
packet transform and a very sophisticated context-
modeling [12]. Table 3 confirms the superiority of the 
proposed algorithm in terms of PSNR at low rates.  
 
 3D SPIHT 3D DZLVQ 3D EZW 3D ESCOT 
0.5 bpv 44.11 dB 44.14 dB 39.82 dB 43,82 dB 
0.1bpv 33.98 dB 34.69 dB 31.68 dB 34,68 dB 
 
Table3: PSNR (dB) Comparison on 128 slice Skull 
between 3D SPIHT, 3D ESCOT, 3D CB-EZW, 3D LVQ 
and 3D DZLVQ 
 
Finally, Figure 6 provides a reconstructed slice of the 
Skull image, after a compression at 0.1 bpv on the whole 
image by both 3D DZLVQ and 3D SPIHT. We can see 
that at this rate, our method seems to better preserve 
details, producing thus an image less blurred than 3D 
SPIHT. Note that at high rates, it seems more difficult to 
note differences between the methods. 

5. DISCUSSION 
 

We have presented here a new lossy compression method 
for volumetric medical images. It is based on a 3D 
wavelet transform followed by a 3D dead zone lattice 
vector quantizer. Our scheme exploits intra-band 
dependencies, contrary to methods like 3D SPIHT which 
take into account dependencies existing between wavelet 
coefficients at the different resolution levels of the 3D 
DWT, using zerotrees. Our scheme requires an efficient 
bit allocation to assign a bit rate to each subband of the 
wavelet decomposition, while minimizing the overall 
distortion. Zerotrees based methods are simpler but 
sensitive to the propagation of errors through the 
resolution levels. 
 

                           
 

   
 
Figure 6: Zoom of decoded slice 60 (Skull) when the 
target decoding bit rate is 0.1 bpv for the whole 128-slice 
unit. Clock-wise from the top to the bottom left: Original 
slice, 3D SPIHT, 3D DZLVQ. 

  
The estimation of the computational complexity of the 

algorithms used in this work is not a trivial task. Indeed, 
3D SPIHT accounts the dependencies between the 
wavelet subbands which are exploited through zerotrees. 
The computational complexity (in operations/voxel) of 
such a structure cannot be expressed. On the other hand, 
contrary to 3D SPIHT, our proposed 3D DZLVQ 
algorithm is based on an intraband approach and requires 
consequently a bit allocation procedure which increases 
the whole complexity, making 3D DZLVQ a slower 
algorithm than 3D SPIHT. However, thanks to the 
proposed analytical solution to the bit allocation problem, 
the reduction of the complexity is significant. For the 
medical image data set and the range of bit rates used in 
the paper, we can show experimentally that the whole 
computational complexity of 3D DZLVQ falls down to 
about 66 operations/voxel. The use of our method is thus 
realistic in a medical data compression application. 
Furthermore, it is highly parallelizable due to the 
intraband characteristic.   

Our method achieves lossy compression competitive 
with the best results published in the literature in terms of 
PSNR. Moreover, it produces reconstructed volumetric 
medical images visually better than 3D SPIHT, which is 
known as one of the most efficient methods for this kind 
of images. This seems to be due to the combination of 
several points. First, the vector orientation along the 
details within each subband allows to better capture 
clusters carrying significant information. In addition, the  

1L  norm of vectors seems to be an appropriate criterion to 
discriminate significant information from non significant 
one. Finally, the proposed pyramidal deadzone allows to 
threshold non significant vectors increasing thus the 



amount of vectors quantized by the null vector, which is 
advantageously exploited by our entropy coded 3D 
DZLVQ algorithm. By this way, it is possible to decrease 
the overall distortion at a constant rate or equivalently to 
decrease the bit rate at a constant distortion. The 
improvement of the rate-distortion trade-off can be 
reached in most of the wavelet subbands, especially in the 
high and average resolutions of the wavelet 
decomposition, which yields a better overall visual quality 
and the preservation of small details. 

In order to be fair in the performance evaluation, it is 
necessary to take into account an important issue. It is 
well-known that the PSNR is a global criterion which is 
not sufficient to measure the quality of the reconstructed 
images, especially in medical applications where the 
evaluation should be done by experienced radiologists 
over a large data set. Unfortunately, such studies are very 
expensive in terms of time and human means. This is the 
reason why, at our knowledge, none recent works on the 
actual 3D lossy coders of the literature uses a medical 
opinion.  

Our goal in this paper is mainly to present a new lossy 
compression algorithm dedicated to the specificities of 
volumetric medical images. First results reported here are 
promising as they show gains in terms of PSNR with 
respect to the best coders published in the literature. 
Furthermore, the proposed algorithm seems to improve 
the overall visual quality by producing less blurred 
reconstructed images at low rates. As mentioned 
previously, these results should be evaluated by medical 
experts in terms of visual quality. However, note that first 
results of another study on compression of 12 bit ENT 
CTs we drive with two medical experts of the Centre 
Alexis Vautrin of Nancy - France (centre specialized in 
cancerology) confirm the superiority of the proposed 
method over 3D SPIHT for this kind of images. Thus, the 
next step of our work will include an evaluation of 
observer performance with medical experts at a larger 
scale. 

 
6. CONCLUSION 

 
We have presented a new 3D medical image 

compression method based on a multidimensional dead 
zone which achieves lossy compression competitive with 
the best results published in the literature in terms of 
PSNR. By assigning more bits on significant vectors 
according to a norm-based criterion, our method allows to 
better preserve fine structures and produces a better 
overall quality of the reconstructed images which is of 
importance in medical applications.  
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