
HAL Id: hal-00908812
https://hal.science/hal-00908812

Submitted on 25 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How visual fatigue and discomfort impact 3D-TV
quality of experience: a comprehensive review of

technological, psychophysical, and psychological factors
Matthieu Urvoy, Marcus Barkowsky, Patrick Le Callet

To cite this version:
Matthieu Urvoy, Marcus Barkowsky, Patrick Le Callet. How visual fatigue and discomfort impact 3D-
TV quality of experience: a comprehensive review of technological, psychophysical, and psychological
factors. Annals of Telecommunications - annales des télécommunications, 2013, 68 (11-12), pp.641–
655. �10.1007/s12243-013-0394-3�. �hal-00908812�

https://hal.science/hal-00908812
https://hal.archives-ouvertes.fr


Annals of Telecommunications manuscript No.
(will be inserted by the editor)

How visual fatigue and discomfort impact 3D-TV Quality
of Experience: a comprehensive review of technological,
psychophysical and psychological factors

Matthieu Urvoy˚ ¨ Marcus Barkowsky ¨ Patrick Le Callet

Received: date / Accepted: date

Abstract The Quality of Experience (QoE) of 3D con-

tents is usually considered to be the combination of the

perceived visual quality, the perceived depth quality,

and lastly the visual fatigue and comfort. When either

fatigue or discomfort are induced, studies tend to show

that observers prefer to experience a 2D version of the

contents. For this reason, providing a comfortable expe-

rience is a prerequisite for observers to actually consider

the depth effect as a visualization improvement.

In this paper, we propose a comprehensive review on

visual fatigue and discomfort induced by the visualiza-

tion of 3D stereoscopic contents, in the light of physio-

logical and psychological processes enabling depth per-

ception. First, we review the multitude of manifesta-

tions of visual fatigue and discomfort (near triad dis-

orders, symptoms for discomfort), as well as means for
detection and evaluation. We then discuss how, in 3D

displays, ocular and cognitive conflicts with real world

experience may cause fatigue and discomfort; these in-

cludes the accommodation - vergence conflict, the inad-

equacy between presented stimuli and observers depth

of focus, and the cognitive integration of conflicting

depth cues. We also discuss some limits for stereopsis

that constrain our ability to perceive depth, and in par-

ticular the perception of planar and in-depth motion,

the limited fusion range and various stereopsis disor-

ders. Finally, this paper discusses how the different as-

pects of fatigue and discomfort apply to 3D technolo-
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gies and contents. We notably highlight the need for

respecting a comfort zone and avoiding camera and ren-

dering artifacts. We also discuss the influence of visual

attention, exposure duration and training. Conclusions

provide guidance for best practices and future research.
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1 Introduction

Today’s market for 3D imaging technologies has been

growing due to the recent availability of an increas-

ing set of contents. Various imaging technologies are

available, such as volumetric or holographic systems, al-

though stereoscopic and auto-stereoscopic systems are

most commonly used [1]. The provided sensation of

depth is vivid and enhances the overall user experience.
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Fig. 1 3D-TV quality of experience: main features

The resulting Quality of Experience [2] has been de-

scribed through various features. However, three main

axis emerge [3–6] (Figure 1). Firstly, the visual quality

reflects the image quality regardless of the depth effect.
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Secondly, the depth quality reflects the quality of the

3D effect and has been assessed by different features

such as realism, power and presence [7]. Alternatively,

naturalness is proposed as a dual feature representative

of both the visual and the depth qualities [3,4]. Finally,

visual fatigue and discomfort reflect the physiological

and psychological demands induced by the perception

of 3D contents.

Some studies show that observers tend to prefer a

2D presentation over a 3D presentation when either

fatigue or discomfort are induced [8]. In other words,

it is necessary to limit fatigue and discomfort in order

for observers to actually consider the depth effect as a

visualization improvement.

Reviews on human factors influencing the percep-

tion of the depth effect in 3D stereoscopic displays are

available in [9,10] but they do not emphasize fatigue

nor discomfort. In [11], Ukai and Howarth provide

an overview of studies on ocular fatigue with stereo-

scopic displays from the literature, and Tam et al. an

overview on visual comfort in [12]. Finally, Lambooij

et al. [13] and Howarth [14] for both visual fatigue

and discomfort in the light of specific issues introduced

by 3D technologies and contents.

In this paper, we review both visual fatigue and dis-

comfort, first in the light of ocular and cognitive mech-

anisms, then in the light of 3D contents, processing and

rendering, without focus on specific displaying systems.

Section 2 first reviews definitions for visual fatigue and

discomfort. Section 3 then reviews subjective and objec-

tive manifestations of fatigue and discomfort. Section

4 then raises different ocular and cognitive processes

and dysfunctions, related to depth perception, which

possibly cause reviewed manifestations. Section 5 then

discusses scenarios in which 3D technologies and con-

tents possibly generate fatigue and discomfort. Finally,

section 6 concludes and provides guidance for best prac-

tices and future research with 3D stereoscopic systems.

2 Visual fatigue and visual discomfort: existing

terminologies and evaluation methods

Depending on the scope of the studies (medical, tech-

nological, etc), terminologies for visual fatigue and dis-

comfort vary; provided definitions can be ambiguous.

For instance, terms such as fatigue, strain and astheno-

pia are co-existing in the literature, but their differences

are unclear. In recent works [13,15], Lambooij et al.

did great work in providing cross-fields definitions for

fatigue and discomfort. They define fatigue as a de-

crease in the performance of the human visual system

as a consequence of physiological strain or stress re-

sulting from excessive exertion [15]. In the same study,

Lambooij et al. defined visual discomfort as the sub-

jective counterpart of visual fatigue, and only reflects

some aspects of the Quality of Experience (QoE).

Adaptation mechanisms from the visual system are

sometimes known to improve its performances, yet the

adaptation itself may as well induce fatigue [15,16]:

both decreases and increases in performances of the vi-

sual system may be related to visual fatigue. As for

visual discomfort, it is perceived instantaneously, while

fatigue is induced after a given duration of effort. Fi-

nally, how fatigue relates to discomfort is still an open

question [15]. These observations show the need for fur-

ther efforts in defining visual fatigue and discomfort, to

notably account for both worsening and improving ef-

fects, as well as temporal aspects.

Typically, questionnaires are used to assess the pres-

ence of symptoms for fatigue and discomfort. In [17],

Kennedy proposed a questionnaire assessing simulator

sickness (SS). As visual fatigue, discomfort and simu-

lator sickness share common symptoms, this question-

naire was soon adapted by Howarth and Costello

for more general purposes [18]. Later studies proposed

additional questionnaires [19], some of which specifi-

cally targeting ocular disorders [20]. Some studies [21]

also employed the Suzumura questionnaire, a 37 items,

five stage questionnaire [22], assessing not only visual

symptoms. Recent studies often mix items from the

SS questionnaire [17] with more general QoE questions

[23]. Discomfort, in particular, is often evaluated with

subjective scales [24], such as Single Stimulus Continu-

ous Quality Evaluation [25].

Objective tests can also be conducted in order to as-

sess the presence of fatigue. In [15], for instance, the au-

thors measure the tear film break-up time to determine

the dryness of the eye. Experimental designs assessing

visual fatigue usually follow one of two approaches: (1)

following a visual task, the presence of symptoms is as-

sessed along with the perceived degree of fatigue [24,

26]; (2) fatigue is voluntarily induced through demand-

ing and repeated visual tasks which allows for symp-

toms identification [27].

3 Subjective and objective signs of fatigue and

discomfort

Numerous studies, notably emanating from the medical

research community, searched for objective and subjec-

tive signs for both fatigue and discomfort. Various ef-

fects were observed, whose majority are either ocular or

cognitive. Yet, more general signs such as stiffed shoul-

ders, modified respiratory and cardiac rhythms [28,29]

and saliva cortisol concentration [29] were also related

to fatigue and discomfort.



How visual fatigue and discomfort impact 3D-TV Quality of Experience: a comprehensive review 3

3.1 Ocular and oculomotor fatigue

There is a large number of objective and subjective

signs for visual fatigue [30], such as dried mucus of the

eyes, tears around the eyelid, changes in blinking rate

[31] and reduction of the speed of eye movements [32,

33] to cite only a few of them. Researchers particularly

focused their efforts on the near vision triad (accommo-

dation, vergence and pupillary response): even in 2D

displays, numerous studies reviewed by Blehm et al.

in [34] showed that visual fatigues transiently induces

accommodation and vergence disorders.

3.1.1 Accommodation disorders

The accommodation (A) is the process by which the eye

adapts the shape of the pupil, thus adapting its optical

power to the object of interest (gaze point), in order to

provide a clear image of the targeted object. Accom-

modation is measured in diopters (δ), the reciprocal of

the accommodation distance (focus point).

The accommodation distance is biased and is gener-

ally shifted towards a resting distance called tonic ac-

commodation or dark-focus (« 1 δ): the refraction state

of the eye in the absence of visual stimulus. This effect

is called adaptation of the accommodation [35,36] and

results in accommodation lead or lag (see Figure 2).
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Fig. 2 Accommodation adaptation: lead (top) and lag (bot-
tom): bias shifts the accommodation towards dark focus.

Susceptibility to visual fatigue may vary with the

value of the tonic accommodation. In [37], Jaschinski-

Kruza showed that persons whose tonic accommoda-

tion is high, thus having far dark focus, report more

visual symptoms. In [38], monocular and binocular ac-

commodation and vergence efforts were used to induce

visual fatigue and resulted in a reduction of the tonic

accommodation (up to 0.50 δ less). This can be consid-

ered as a counter-adaptive mechanism.

Finally, visual fatigue has also been shown to influ-

ence the accommodation response. In [24,39], Yano et

al. measured the accommodation response to a 5 δ pulse

wave before and after exposure to 2D and 3D stereo-

scopic video sequences. Reported subjective scores for

the perceived fatigue correlate to a reduction of the ac-

commodation amplitude; this reduction is larger in 3D

(ą 0, 5 δ) than in 2D (ă 0, 5 δ). Similar results were

obtained by Uetake, Murata et al. after exposure to

2D contents in [40,41].

3.1.2 Vergence disorders

(Con)vergence (C) is the process by which both eyes si-

multaneously move in opposite directions (convergence

or divergence movements), so that a targeted object

appears at the center of both retinas. Vergence is mea-

sured in prism diopters (δ∆). Like in accommodation,

the vergence point is generally shifted towards its rest-

ing position, called phoria or dark vergence [42]. The

resulting vergence error is called fixation disparity (or

reciprocally stability) [43,44]. This phenomenon is re-

ferred to as vergence (or prism) adaptation.

Several studies link vergence adaptation disorders

to visual fatigue. In [45], Jaschinski-Kruza showed

that fatigue increases at near vision (50 cm) with the

distance between the vergence point and the distance of

dark vergence. In [46], he also showed that fatigue also

increases with the slope of the curve that relates the

viewing distance to the fixation disparity. Other stud-

ies [47,48] conducted on groups of 15 patients exhibit-

ing asthenopic symptoms showed that most of them

present a deficient adaptation to base-in (causes eye di-

vergence) or base-out prisms (causes eye convergence).

Similar results were obtained in [15]: these deficiencies

may contribute to the detection of persons who are par-

ticularly susceptible to visual fatigue.

3.1.3 Oculomotor disorders

When a real object is perceived under binocular vision,

both the focus point and the vergence point concur.

The oculomotor system is specifically tuned to such a

scenario and features a crosslink between accommoda-

tion and vergence: accommodation feedback may ini-

tiate vergence responses (convergence accommodation

-CA-) and vice-versa (accommodative convergence -

AC-) [49]. It is usually evaluated through CA{C and

AC{A ratios; CA{C, for instance, is the slope of the

curve that links the amount of induced convergence ac-

commodation from the feedback of a given amount of

convergence. Fusional convergence (C) is faster than

the accommodative convergence (AC): the former obeys
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to retinal disparity (the retinal shift between left and

right views of the same position) while the latter obeys,

through accommodation feedback, to retinal blur. Con-

versely, convergence accommodation (CA) speeds up

accommodation through convergence feedback.

This accommodation - vergence balance, also known

as oculomotor balance, is influenced by visual fatigue.

In [50], for instance, visual fatigue was induced by the

visualization of a 2 hours 2D movie on a Head Mounted

Display (HMD). Results show a significant reduction of

the AC{A ratio. In [27], a similar experiment was per-

formed with a cross-shaped 3D stereoscopic stimulus

moving in depth: both AC{A and CA{C ratios are re-

duced. Conversely, another study [51] involving accom-

modation and vergence ramp tracking exercises showed

opposite evolutions of AC{A and CA{C ratios: the one

ratio originating from the targeted mechanism (accom-

modation or vergence) increased, while the other ratio

decreased. The modification of the oculomotor balance

can thus be interpreted as the result of adaptation pro-

cesses that allow for conflicting demands in accommo-

dation and vergence to be resolved more efficiently.

3.1.4 Pupillary disorders

Third element of the near triad, the pupil size and its

changes are affected by visual fatigue as well. In [52], for

instance, Nakamura showed that pupillary disorders

were more frequent amongst a group of patients suffer-

ing from asthenopia than in a group of unaffected pa-

tients. In [40,41], the perceived fatigue reported by the

observers, after visualization of 60 minutes of 2D video

sequences, correlated with a reduction of the pupil di-
ameter. In [53], Ukai et al. showed that in 30% of cases,

patients experiencing visual fatigue presented an abnor-

mal exaggeration of the rhythmic contraction (myosis)

and dilation (mydriasis) of the pupil, independent of

changes in illumination or in fixation of the eyes, called

hippus [54]. Finally, a study [28] showed that the pupil-

lary light reflex is less controlled in a group of patients

suffering from mild autonomous dysfunctions.

3.2 Cognitive fatigue

While visual fatigue manifests itself through ocular dis-

orders, it also induces cerebral and psychological disor-

ders such as headaches [28]. What is more, studies no-

tably showed that the visualization of 3D stereoscopic

sequences may further delay event-related potentials

(ERPs) such as P100 (at 100 ms) [28] and P700 (at

700 ms) [55]. These observations tend to demonstrate

that visual fatigue also affects cognitive processes from

the human visual system (HVS). More specifically, cog-

nitive fatigue with 3D stereoscopic stimuli may affect

stereopsis, the process by which left and right views

are fused into a single percept featuring depth informa-

tion. The performance of the binocular fusion is usually

assessed by the fusion range: the interval of retinal dis-

parities for which it is possible to fuse left and right

retinal images.

In [15], Lambooij et al. correlated short term vi-

sual fatigue, induced by the reading of a 3D stereo-

scopic text (Wilkins test), to an increase of the fusion

range. Inversely, several studies correlated long term fa-

tigue, induced by the visualization of 60 minutes of 3D

stereoscopic stimuli, to a reduction of the fusion range

[56–58]; baseline fusion range was restored after 5 to 10

minutes rest. Similarly to ocular deficiencies, the fusion

range may be used to identify persons susceptible to vi-

sual fatigue [59,15,60]: persons with small fusion range

reported more visual fatigue symptoms.

There are mainly two different ways to measure the

fusion range: (1) by increasing the disparity of an ini-

tial stimuli, for which fusion is possible, until diplopia

(double vision) appears; inversely, (2) by decreasing the

disparity of an initial stimuli, whose disparity falls out-

side of the fusion range, until fusion is achieved. Both

methods provide different fusion limits, giving rise to a

fusion hysteresis, which in turn may be used to detect

visual fatigue [56].

Some studies considered alternative characteristics

of the binocular fusion. In [57], for instance, Emoto

et al. used the occurrences of diplopia episodes. Stereo-

scopic acuity (one person’s acuity at depth perception)

[61,51] and fusion speed [61] were correlated to visual

fatigue as well.

3.3 Signs for discomfort

Discomfort being subjective by definition, almost all

studies evaluating discomfort rely on questionnaires [17–

21,23], whose aim is to assess the presence of numerous

symptoms specific to discomfort. Most studies, how-

ever, require for observers to rate the level of discomfort

on a scale.

Amongst the large set of assessed symptoms, some

of them proved to be particularly significative: ocu-

lar pain and irritation [62,15,63], double vision [15,64],

blurry vision [15,64] and focusing difficulty [62,63], nau-

sea [62] and headache [62].

More recently, some studies correlated discomfort to

objective measurements. In [63], Kim et al. correlated

the discomfort, perceived during the visualization of a

3D stereoscopic stimulus, to the level of cortical activity
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of the frontal eye field. This cortical area plays an im-

portant role in controlling the eye movements. In [65],

Li et al. showed that the eye blinking rate was inversely

proportional to the discomfort level when visualizing a

static 3D stereoscopic stimuli, and conversely, propor-

tional to the discomfort level when visualizing stimuli

moving in a plane parallel to the screen plane.

4 Causes of fatigue and discomfort

Previous sections reviewed various effects of fatigue and

discomfort. This section will now discuss different is-

sues, specific to 3D perception, that are considered as

potential sources of fatigue and discomfort.

4.1 Ocular constraints

4.1.1 Accommodation - vergence conflict

With (auto)stereoscopic displays, vergence point and

focus point are not synchronized anymore. Indeed, the

observer needs to accommodate on the screen, hence at

the viewing distance. At the same time, any object with

crossed disparity (left and right views are respectively

shifted towards right and left) or uncrossed disparity

(left and right views are respectively shifted towards

left and right) will require the same observer to con-

verge at a point which is located in front of or behind

the display plane. This is illustrated in Figure 3. Uncor-

related demands in vergence and accommodation thus

conflict with their oculomotor coupling.

Accommodation
distance

Vergence
distance

Left eye

Right eye

S
cr

ee
n

Vergence
point Focus point

Fig. 3 Accommodation - vergence conflict: the observer eyes
accommodate on the screen plane and convergence at the
imaged depth.

A significant number of studies proposed that the

accommodation - vergence conflict induces an instable

behavior of the oculomotor system which keeps oscillat-

ing between demands in accommodation and vergence.

Yet, the accommodation lead or lag renders it difficult

to verify such an hypothesis. In [66], for instance, Inoue

and Ohzu showed that accommodation, in the presence

of a conflicting vergence demand, exhibited unusual be-

havior. In [67], the presentation of large screen dispari-

ties (up to 2.6˝ of visual angle) resulted in convergence

difficulties and oculomotor instabilities.

In [68], the increase of the degreee of accommoda-

tion - vergence conflict increases the role of conver-

gence accommodation, while the role of focus accom-

modation diminishes with increasing amounts of reti-

nal blur. Later studies [69,70] proposed that accommo-

dation transiently follows convergence accommodation,

then rely on the retinal blur to adjust its value.

There is a general consensus that accommodation -

vergence conflict is an important source of visual fatigue

and discomfort [39,57,61,66,71,27,72]. Several obser-

vations tend to support this affirmation: (1) the time

required to fuse a binocular stimulus monotonically in-

creases with increasing conflict [61,73]; (2) the stereo

acuity is higher when accommodation and vergence con-

cur [61,74]; (3) the degree of fatigue increases with the

degree of conflict [39,24,57,61]. What is more, a study

[58] showed that the visualization of stereoscopic images

induced discomfort when the screen disparity (the hor-

izontal shift between left and right view at the screen

plane) was larger than 60 minutes of arc.

4.1.2 Planar and in-depth movements of 3D contents

Some researchers argued that visual fatigue and dis-

comfort are more likely to be induced by variations

in the amount of accommodation - vergence conflict,

rather than by the conflict itself [39,24,57,75]. Accord-

ing to this theory, scenarios inducing repeated changes

in vergence load, such as stereoscopic contents featur-

ing in-depth motions or a large depth interval between

foreground and background planes, are likely to induce

fatigue and discomfort.

In [58], for instance, the visualization of 3D stereo-

scopic stimuli whose disparity underwent discontinuous

variations larger than 60 minutes of arc induced visual

discomfort. In a similar experiment [58], discomfort was

induced by the visualization of a 3D stereoscopic se-

quence through a system of prisms whose optical power

was repeatedly varied. In [24,39], Yano et al. presented

an experiment in which observers visualized 3D stereo-

scopic sequences under viewing conditions that mini-

mized the accommodation - vergence conflict (limited

disparity and appropriate viewing distance). Even so,

both fatigue and discomfort were reported when visual-
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ized sequences featured a large amount of in-depth mo-

tion. Finally, another study [76] showed that the speed

of in-depth movements may have a determining influ-

ence on discomfort: discomfort increased with in-depth

motion speed.

Planar movements, without variations in depth, have

also been studied in relation to fatigue and discom-

fort. In [39,24], contrary to in-depth movements, pla-

nar movements had no influence on fatigue nor dis-

comfort. Conversely, in [77], the visualization of a 3D

stereoscopic Maltese cross moving on a circular and pla-

nar path induced increasing discomfort with increasing

angular speed. In the same study, discomfort also in-

creased with the depth interval separating the moving

cross from the background, regardless of the amount of

accommodation - vergence conflict.

4.1.3 Limited depth-of-field

The depth-of-field is defined as the range of distances,

in the real world, that appear in sharp focus, thus spec-

ified in meters. The depth-of-focus is the projection of

the depth-of-field within the image space, through the

optical system (the eyes or the cameras) and is ex-

pressed in diopters (˘0.2 δ for the eyes [39]). In 3D

stereoscopic imaging systems, depth-of-focus refers to

the depth range in front of and behind the screen within

which displayed objects are in sharp focus [78].

Usually, the visual system only performs binocular

fusion in areas whose retinal image is in sharp focus.

While in the real world, depth-of-field and fusion range

generally concur, there is a risk that excessive dispari-

ties in 3D stereoscopic system may image objects out-
side of the depth-of-focus. Some researchers argued that

this may be a source for discomfort [13,78].

The depth-of-focus depends on the optical parame-

ters, thus is influenced by numerous factors that no-

tably include viewing distance, aperture and optical

aberrations. It monotonically increases with the view-

ing distance: the role of focus accommodation decreases

with increasing viewing distances.

For the eyes, the aperture is given by the pupil’s size:

the smaller the pupils, the larger the depth-of-focus [79–

82]. In turn, the pupil size is affected by the luminance

[83]: the more light, the smaller the pupil, the larger the

depth-of-focus. This is especially important with active

stereoscopic displays, whose shutter glasses reduce the

luminance by 80%: a minimum level of 30 cd{m2 at a

distance of 2 meters is advised [9], to sustain an accept-

able depth-of-focus. Finally, in [84], Li and Sun showed

that pupillary response could be induced by the visual-

ization of moving autostereograms: the pupil thus also

reacts to disparity.

In addition to pupillary aspects, depth-of-focus is in-

fluenced by all kinds of optical aberrations (or anoma-

lies). These include accommodative dysfunctions and

refractive errors (e.g. presbiopia) [80,85–87]. Such ano-

malies may as well reduce or enlarge depth-of-focus;

in the latter scenario [85–87], it was argued that these

anomalies may contribute to limit visual fatigue [61].

4.2 Cognitive limitations and anomalies

Besides ocular and oculomotor mechanisms, depth per-

ception brings into play numerous cognitive functions

in charge of processing left and right retinal images.

For many reasons (anomalies, intrinsic behavior), some

of these cognitive functions may not operate properly

when presented with a binocular stimulus, thus possibly

resulting in unusual cognitive loads.

4.2.1 Retinal disparity identification: cortical

anomalies

In [88], subjective experiments were conducted to deter-

mine how disparities are processed by the visual cortex.

Later, experiments were conducted in monkeys in [89,

90]. Results suggest the existence of at least three sets

of cortical neurons, called disparity-tuned visual chan-

nels, that would respectively be stimulated by crossed,

uncrossed and near-null disparities. The channel whose

response is highest (see Figure 4) would then define the

perceived disparity. Later, it was proposed in [91] that

there are no such channels, but rather a continuous set

of cortical neurons each tuned to specific orientations

or amplitudes of disparity.

In [9], Patterson argued that asymmetric distri-

butions of these neurons may explain unbalanced sen-

sitivities to disparities. Possible consequences include

stereo-blindness and stereo-anomaly. Stereo-blindness

affects 6% to 8% of the population and may be ex-

plained by the absence of disparity detectors [88]; it

completely prevents observers to perceive depth in most

displays. Stereo-anomaly is a cognitive disorder where

crossed disparities are perceived as uncrossed dispari-

ties (or vice-versa). It was reported for 20% to 30% of

the population and occurs mostly when viewing con-

ditions are degraded (e.g. brief exposure) [92]. While

it still enables depth perception, stereoanomaly intro-

duces sporadic depth discrepancies, which were consid-

ered by some as a possible source of fatigue and dis-

comfort [9].
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Fig. 4 Disparity tuned channels: cortical neurons acting as
disparity detectors match corresponding retina positions. The
disparity is given by neurons whose response is highest.

4.2.2 A limited binocular fusion range

Stereopsis builds the depth information relative to a ref-

erence surface, called horopter : the set of 3D positions

from the real world that stimulate matching points on

left and right retinas. In other words, the horopter is

the surface of zero retinal disparity. It was first theo-

retically modeled in the the 19th century by G. Vieth

then J. Müller, model later called Vieth-Müller circle

[93]. Any position that does not belong to the horopter

thus generates retinal disparity. The set of positions,

located both sides of the horopter, for which binocu-

lar fusion is possible form a zone called Panum’s area.

Beyond, retinal images cannot be fused; this leads to

diplopia (double vision), binocular rivalry (perception

alternatively switches between left and right views) or

eye suppression (a single view is perceived) [94–96].

Numerous factors influence the extent and shape of

Panum’s area. First studies reported dimensions rang-

ing from 14 arcmin [97] to 120 arcmin [98]. Nowadays,

Panum’s area is considered to spread 40 arcmin [9]. Ini-

tially described as an elliptical surface [96], later studies

showed that its extent increases with the eccentricity

of the stimulus [99]. These results support the fact that

the fusion range increases with the viewing angle [100]

in stereoscopic displays.

The extent of Panum’s area increases with stimulus

size, illumination, exposure duration [101] and training

[102]. Conversely, it decreases when the stimulus’ spa-

tial frequency is increased [96,103] and when the tem-

poral frequency modulation of the disparity is increased

[96]. The visualization of 3D stereoscopic contents fea-

turing small, badly illuminated, high frequency which

frequently move in-depth may thus contribute to reduce

Panum’s area. In turn, resulting episodes of diplopia

or binocular rivalry might induce fatigue and discom-

fort [57]. Ensuring that imaged stereoscopic contents

fall within Panum’s area is thus a key factor in limiting

fatigue and discomfort. However, this requires deter-

mining the perceived retinal disparity from the screen

disparity, which is not trivial: retinal disparity depends

on all kinds of factors, including retinal shape [104] and

horopter shape [105], thus varies from person to person.

In [105], Schreiber et al. showed that the horopter

is shaped as a surface curved outwards (see Figure 5b),

whose profile is slanted backwards (see Figure 5a) [105,

106]. Such a profile seemed to be adapted to natural

scenes in which close objects are at the bottom of the vi-

sual field, while far objects are located at the top of the

visual field (e.g. clouds). This may be linked to a study

[75] in which Nojiri et al. showed that 3D stereoscopic

sequences featuring crossed disparities at the bottom of

the screen and uncrossed disparities at the top of the

screen generated less discomfort than others. In a re-

cent study [106], however, results suggested that the

horopter’s shape is adapted to the perception of convex

slanted surfaces at short distances, but not to disparity

distributions in natural scenes relative to the ground.

In the same study, Cooper and Burge described an

experiment where observers wore deforming lenses for

five days; results showed that the shape of the horopter

did not adapt to the presented deformation, hence it
may not be adaptive (not changeable by experience).

4.2.3 Duality of binocular perception

Central and peripheral visual field areas are differently

processed by the visual cortex and generate different

kinds of information [107,108]. The parvocellular-domi-

nated pathway connects the central retina, or fovea, to

the visual cortex ventral-cortical stream. On one end,

the fovea is mostly (and densely) paved with cone cells,

sensitive to color. On the other end, the visual cortex

ventral-cortical stream brings into play neurons whose

responses are slow and sustained. Thus, high spatial

frequencies are detected in the central area of the vi-

sual field, while fast temporal changes are not. Con-

versely, the magnocellular-dominated pathway connects

the peripheral retina, to the visual cortex dorsal-cortical

stream. On one end, the peripheral retina is sparsely

paved with cone cells. On the other end, the visual
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Fig. 5 Horopter and Panum’s area: simplified localization and shapes

cortex dorsal-cortical stream brings into play neurons

whose responses are fast and transient. Hence, the pe-

ripheral visual area is suited to coarse detection of the

optical flow and motion perception.

This duality is also to be found in stereopsis. Several

studies [96,109,103,110] show that the visualization of

static or slowly moving stimuli featuring high spatial

frequencies brings into play a high stereo-acuity but a

low fusion range. Conversely, the visualization of low

frequency stimuli undergoing rapid movements brings

into play a low stereo-acuity but a large fusion range.

Former and latter scenarios suggest the respective use

of parvocellular and magnocellular pathways [9]. Some

researchers also introduced the notions of patent and
qualitative stereopsis [111]. With patent stereopsis, the

perceived depth monotonically increases with retinal

disparity; with qualitative stereopsis, fusion is more dif-

ficult and only generates a coarse depth information rel-

ative to an object (e.g. behind versus in front of), but

operates on a disparity range much larger than the fu-

sion range. In [112], Stransky and Wilcox suggested

that this dichotomy may be due to the existence of two

separate cortical mechanisms.

It is worth noting that the proposed duality corre-

lates well with the increasing extent of Panum’s area

with eccentricity [99]: Panum’s area is maximal in pe-

ripheral vision. For all these reasons, the visualization

of 3D stereoscopic sequences is likely to be facilitated

if objects featuring in-depth motion and large amounts

of disparity are imaged in peripheral vision. Conversely,

objects featuring detailed depth information should be

imaged in central vision.

4.2.4 Depth cues and cognitive conflicts

Depth perception does not solely rely on retinal dispar-

ity, but employs a variety of cognitive and physiological

cues which may be monocular or binocular. In [113], for

instance, Bingham et al. showed that observers move-

ments, by generating motion parallax, may compensate

at short distance the absence of binocular parallax. Nu-

merous reviews discussed the different depth cues; the

interested reader is notably advised to consult Cut-

ting and Vishton’s comprehensive review [114].

The human visual system features integration mech-

anisms in charge of building the depth percept from

the available depth cues. Some researchers [61,115,116]

argued that the final depth may be built through sta-

tistical inference: i.e. the amount of depth which best

correlates with each depth cue individually. Conversely,

some suggested the existence of deterministic processes

linking the different values of individual depth cues to

given amounts of depth [117,118]. In [118], Domini et

al. proposed a model in which maximum likelihood is

used to estimate the linear relationship between the dis-

parity and the movement of an object; this estimate is

used to determine the perceived depth.

Patterson [9,10], Ono and Comerford [119],

Nakamizo [120] and Richards [121] proposed that

the relative depth information provided by the retinal

disparity may be translated into absolute depth using

other depth cues; this model is known as distance scal-

ing of disparity. Furthermore, some researchers showed

that monocular cues such as occlusions [122] and con-

tours [123] may be used by the visual system in or-

der to determine whether binocular fusion needs to be

solicited. Finally, some researchers suggested the exis-

tence of a mental representation of the structure of the
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visual field that is built over time [11]. Serving as a pre-

diction, such an information may considerably simplify

the integration process.

3D stereoscopic imaging systems, however, render

the depth by introducing artificial depth cues. While

studies are missing, some researchers argued that the

introduction of inappropriate or incoherent cues may

complicate the integration process [10], thus possibly

resulting in unusual cognitive load, fatigue and discom-

fort. For instance, left and right views inversion intro-

duces conflicting monocular and binocular cues to the

visual system; a study showed that this inversion may

cause discomfort [124]. The presence of objects in front

of the screen, cut by the display frame, may also induce

visual discomfort [125]; this is known as stereoscopic

window violations. Another issue possibly lies in the

fact that, in stereoscopic displays, the entire scene is

rendered sharply, while in the real world areas located

outside of the depth-of-field are not in focus and do not

solicit binocular fusion. In the absence of more exhaus-

tive studies, researchers generally advise to ensure that

proposed depth cues be as consistent as possible [126,

10,61,127].

5 Application to 3D stereoscopic displays and

contents

We will now discuss how the issues raised in previous

sections impact 3D stereoscopic displaying technologies

and contents.

5.1 A comfortable range of fusion

In order to minimize the accommodation - vergence

conflict and to ensure adapted depth-of-focus, it is gen-

erally suggested to image contents within a comfort

zone. It is given by the depth budget, in front of and be-

hind the screen (see Figure 6) within which stereoscopic

contents appear inside the fusion range (thus avoiding

diplopia, binocular rivalry and eye suppression) and in-

side the depth-of-focus (otherwise contents should be

blurred).

Decades ago, Percival [128] then Sheard [129] pro-

posed empirical limits for a comfortable fusion zone.

Nowadays, the comfort zone is specified in various ways:

˘0.2 diopters in terms of depth-of-focus [24,78], ˘ 1˝

of angle of screen disparity [13,76], or 1% and 2% re-

spectively of crossed and uncrossed disparities in terms

of screen width [125]. Any of these definitions lead to

similar depth intervals. In Figure 7, they were each plot-

ted for various viewing distances and a 42” screen with

16/9 aspect ratio.

Depth of focus
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Cro
ss

ed
 d

isp
ar

ity

Screen

Comfort zone

Comfortable fusion range

Uncrossed disparity

Fig. 6 Viewing distance, depth-of-focus and fusion range.
An object (black disk) is imaged at various depth and ap-
pears blurred outside of the depth-of-focus. The comfort zone
is given by the intersection between the comfortable fusion
range and the depth-of-focus.
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Fig. 7 Proposed comfort zones at various viewing distances
for a 42” screen of ratio 16{9. Preferred viewing distances
proposed in Video Quality Expert Group (VQEG) test plan
[130] (3H) and ITU-R BT.2022 [131] (3.2H) are plotted on
vertical dash-dotted lines - H is the screen height.

5.2 Camera artifacts

Shooting, post-processing and rendering artifacts can

introduce matching errors between left and right stereo-

scopic views. Toed-in cameras, for instance, generate

vertical disparities [132]; Speranza and Wilcox showed

in [133] that the global introduction of vertical dispar-

ity caused visual discomfort, which increased with the

amplitude of the vertical shift and the exposure dura-

tion. Similar results were presented in [134]. In [135], vi-

sual discomfort was reduced when keystoning, a trape-

zoidal distortion also introduced by toed-in cameras

[132], was compensated at post-processing. Similarly in
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[134], Kooi and Toet showed that keystoning effects

greater than 1 δ∆ causes discomfort. In the same study,

rotations with angles greater than 1˝ and scaling effects

greater than 2.5% also caused discomfort.

5.3 Compression and transmission artifacts

In [8], Barkowsky et al. showed that coding artifacts

may induce discomfort: the percentage of observers re-

porting discomfort increased with the quantization step

of H.264 codec. Transmission errors, in particular packet

losses, may impair differently left and right views, which

possibly results in binocular rivalry. In [8,136], despite

the use of various error concealment strategies, con-

cealed views still caused discomfort. In the same study,

a subjective test showed that observers prefer to tem-

porarily switch to 2D.

5.4 Rendering artifacts

3D stereoscopic displaying technologies suffer from var-

ious defects. Low refresh rates and interferences be-

tween active shutter glasses and some neon lighting

devices operating at low frequencies (50Hz, 60Hz), for

instance, cause interference that can be especially prob-

lematic when perceived in peripheral vision. Few works

proposed comparative studies between different display

technologies with respect to fatigue or discomfort. In

[137], Slalina et al. compared passive LCD, active

plasma and active projection display systems in terms

of QoE. Their results showed no difference in discom-
fort between the three; yet, ambient light proves to be

more disturbing in active displays, possibly because of

interference from neon lights are used to illuminate the

room. In another study [138], Yang et al. compared

an active to a passive LCD display; their results tend

to show that the use of passive glasses, ideally with

incorporated optical correction, are less intrusive than

shutter glasses and may generate less fatigue and less

discomfort.

Crosstalk is probably the most studied display tech-

nology artifact. Widely spread in both active and pas-

sive displays [139,140], it occurs when an information

intended to one eye leaks to the other eye. Crosstalk

is generally perceived as blurring or ghosting effects,

which in turn cause discomfort [141]. In [134], slight

discomfort was induced by the introduction of 5% of

crosstalk; major discomfort was induced when crosstalk

reached 25%. However, in [142], the controlled intro-

duction of crosstalk helped diminishing the discomfort

caused by picket fence effects when an observer changed

the viewing position in front of an autostereoscopic dis-

play.

Finally, when stereoscopic views are synthesized from

depth maps or by 2D-to-3D conversion [143,144], tem-

poral discrepancies such as depth oscillations or turbu-

lence around the edges may also generate discomfort

[13,145].

5.5 Effects of focus and defocus

Several studies showed that, in the presence of con-

flicting demands in accommodation and vergence, the

role of focus accommodation decreased with increas-

ing amounts of blur [68,69]. Conversely, sharply im-

aged contents featuring high frequencies may be more

demanding to visualize as focus accommodation needs

to be accurate. Yet, in [134], the introduction of a small

amount of blur caused significant discomfort.

Blur was long considered to be a weak depth cue

[146]: its symmetry with respect to the focus point

makes it ambiguous as an information source. Yet, a

recent study [116] showed that the amount of blur is

proportional to the disparity; Held et al. showed that

the perceived depth could be modified purely by intro-

duction of blur. In [147], an experiment showed that the

introduction of blur could increase the perceived depth,

as a function of the distance separating the foreground

and the background of the visualized scene.

Studies showed that the distribution of defocus blur

with respect to the depth may have a significant impact

on the perceived depth [116,147]. Introducing defocus

blur may then provide a way to enhance the perceived

depth range while minimizing the accommodation ver-

gence conflict [147]. In other words, artificial blur may

be used to reduce screen disparity while maintaining

the same amount of perceived depth. While studies are

missing, this suggests that artificial blur could be used

to minimize the accommodation - vergence conflict and

to diminish the role of focus accommodation.

5.6 Visual attention

Visual attention has been shown to interact with nu-

merous perceptual mechanisms [148] brought into play

by 3D contents. It performs a selection amongst el-

ements presented in the visual field and thus deter-

mines the perceived stimuli. Previous sections listed

many mechanisms in which stimuli characteristics influ-

ence the limits of depth perception. For instance, depth-

of-focus depends on the size of the object of interest

[149]. The vergence load varies in time and space with
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the depth of perceived objects. Panum’s area dimen-

sions increase with stimuli eccentricity: salient objects,

likely to be perceived in central vision, should present

with a limited disparity in comparison to objects per-

ceived in peripheral vision. In other words, the charac-

teristics of salient elements in stereoscopic 3D contents

are very likely to be crucial with respect to fatigue and

discomfort.

Recent research efforts have been focusing on 3D

visual attention and its possible link with discomfort.

In a recent study [150], Zhang et al. proposed a model

for 3D visual attention that is based on depth, lumi-

nance, color and motion contrast. Even more recently,

in [151], a 3D visual attention model is used to build

an objective model for discomfort in 3D stereoscopic

sequences. A similar model can be found in [152].

5.7 Discrepant or nonexistent motion parallax

Motion parallax, also called monocular disparity, cor-

responds to the depth information provided by the ob-

server’s movements: the temporal succession of differ-

ent views of the same scene at slightly different an-

gles provides a valuable depth information. 3D stereo-

scopic displays do not render this effect, but rather in-

duce a feeling of flatness [14], or modify the shape of

the 3D effect [153]. The scene is compressed in depth

when the observer gets closer to the display plane and

shears when he moves from left to right [153]. Some

researchers suggested that these effects may introduce

cognitive conflicts and generate fatigue or discomfort

[14]. In multiview autostereoscopic systems, however,

motion parallax can be simulated and thus minimizes

depth shearing effects.

5.8 Exposure duration and training effects

There are indications that visual fatigue may be ac-

cumulated: increasing viewing durations may also in-

crease the duration and the amplitude of the visual

symptoms. Such effects are well-known with 2D dis-

plays [40,41]. In [154], for instance, visual evoked corti-

cal potentials were increasingly delayed, day after day,

in 2D display terminal workers. Similar studies exist

with 3D displays. In [155], for instance, the accommo-

dation speed was unchanged after 15 minutes of 3D

stereoscopic visualization but decreased after 30 min-

utes of exposure. In the latter scenario, 90 to 120 min-

utes were required for the observers’ visual system to

retrieve baseline performances. With short term fatigue

induced by the visualization of 3D sequences, however,

experiments showed that affected visual functions re-

covered very rapidly [15]. In [55], finally, the cortical

activity from the beta band increased with exposure

duration to a 3D stereoscopic sequence.

Over time, however, training may increase the per-

formances of the visual system in perceiving depth. In

[101,102], Woo, Jones and Stephens showed that

Panum’s area dimensions increased with visualization

time. In [15], results showed a short-term increase of

the fusion range after stereoscopic visualization. In [57],

fusion range increased when repeated experimental ses-

sions were conducted with the same observer. These

observations suggest that training may contribute to

reduce fatigue and discomfort.

5.9 Towards objective models for fatigue and

discomfort

Some researchers now aim at building objective models

to automatically predict visual fatigue and discomfort

from 3D contents to be visualized. In [156], Choi et al.

proposed a model for fatigue based on spatial and tem-

poral characteristics of the disparity. Linear regression

was conducted on the model’s parameters to best match

absolute category rating (ACR) scores for fatigue. In

[145], they modified their model to fit ACR discomfort

scores. Results showed that predicted discomfort cor-

related well with subjective scores. Finally, in [65], the

authors introduced a discomfort model which is based

on eye blinking rate.

6 Conclusion

In this paper, we reviewed visual fatigue and visual dis-

comfort that are induced by the visualization of 3D

stereoscopic contents. We first listed many of the ef-

fects of fatigue and discomfort. Most disorders are of

ocular nature and affect the near triad (accommoda-

tion, vergence and pupillary response). However, some

studies also demonstrate evidence for cognitive changes

induced by visual fatigue and discomfort. Both these as-

pects were discussed in the light of ocular, oculomotor,

cortical and cognitive processes enabling depth percep-

tion. The accommodation - vergence conflict is well-

known and constrains 3D contents to be imaged within

a comfort zone; however, content’s motion should also

be considered as it may induce discomfort or fatigue

despite being imaged within this zone.

Despite the very limited number of studies focusing

on cognitive aspects of fatigue and discomfort, there is

evidence that cognitive processes enabling depth per-

ception may also induce fatigue and discomfort. Stereo-
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Content characteristics Viewing conditions
‚ Limit fast movements, especially if in-depth or in the central

visual field.

‚ Avoid scenes with large depth separation between foreground and
background.

‚ Eventually prefer blur to more disparity in order to increase the
perceived depth.

‚ Pay particular attention to salient objects (visual attention).

‚ Check for incoherent depth cues (e.g. window violation).

‚ Limit exposure duration to large 3D effects (e.g. pop-out effects).

‚ Limit or compensate camera artifacts (e.g. vertical disparity).

‚ Avoid compression or transmission artifacts
that impair left and right view independently.

‚ Minimize rendering artifacts, notably the
crosstalk.

‚ Ensure minimum illumination to sustain
required depth-of-focus.

‚ Display contents within the comfort zone.

‚ Prefer lightweight and non-intrusive 3D
glasses in stereoscopic displays.

‚ Avoid strong ambient illumination (especially
interfering lighting).

Table 1 A few guidelines for best experience in 3D stereoscopy

anomaly, for instance, is quite frequent and may in-

put discrepant disparity information to the visual cor-

tex. The range of binocular fusion is best described by

Panum’s area; empirical values for the comfort zone

only provide an extremely crude approximation of this

area as all kind of content characteristics (spatial and

temporal frequency, size, illumination, eccentricity) in-

fluence Panum’s area. In terms of accuracy and speed,

depth perception also depends on the visual pathway

taken (central or peripheral visual field). Finally, some

researchers suggest that incoherent depth cues may as

well generate discomfort.

In practice, the 3D value chain brings numerous ar-

tifacts and constraints that impair the QoE. Shooting,

compression and transmission artifacts, for instance, in-

troduces impairments that are known to generate dis-

comfort. However, there are a few guidelines that, if

respected, can limit the occurrence of discomfort or fa-

tigue. Some of them are summarized in Table 1. While

there is a small number of comparative studies between

3D displaying technologies, it appears that active and

passive, LCD-based and projection-based technologies

perform similarly; the glasses, however, seem to influ-

ence discomfort and fatigue.

Research on visual fatigue and visual discomfort

with displays fall within multiple disciplines notably in-

cluding psychophysics, ophthalmology, psychology and

applied research on displaying technologies. Terminolo-

gies vary from domain to domain; visual fatigue, strain

and asthenopia, for instance, are co-existing terms whose

definitions may be overlapping. The existence of a com-

mon terminology may ease interdisciplinary transfers of

knowledge.

This review also highlights potential directions for

future research. The development of models for visual

fatigue and discomfort should be encouraged, as this

will provide objective tool for QoE evaluation. The same

holds true for refined models of the fusion range taking

into account the contents characteristics. The investi-

gation of cognitive processes in charge of the perception

of depth, under discomfort or fatigue, may also provide

extremely valuable knowledge.
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