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Abstract The pervasive use of smart objects is encouraging the development of
the Internet of Things (IoT) vision, where even the most common and simple object
is expected to acquire information from the surrounding ambient and to cooperate
with other objects to achieve a common goal. In such a heterogeneous and complex
scenario, optimal allocation of resources to application tasks (e.g., available energy,
computing speed, storage capacity) is paramount to fairly distribute them and not
overload some objects.

In this paper, we focus on finding the optimal assignment to the physical de-
vices that can perform the same task needed by the running applications. To this,
we rely on the technologies that have been already developed around the notion
of Virtual Object (VO), which is the digital counterpart of the physical object
and is used to augment its functionalities with the use of virtualization technolo-
gies. Our contribution is twofold. Firstly, we extend the current functionalities of
VOs to make them capable of implementing a distributed strategy for the allo-
cation of tasks among objects: the information model is enhanced to include the
Quality of Information (QoI) notion and the possible different architectural so-
lutions are presented. Secondly, we propose a distributed algorithm where VOs
negotiate to reach a consensus on resources allocation, in order to: distribute the
workload among the objects that can cooperate to the same task; ensure that the
QoIrequirements are fulfilled. Simulation results show that, compared to a static
frequency allocation, the algorithm enhances the performance of the system with
an average improvement of 27% in network lifetime, and confirms the compliance
to QoI requirements.
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1 Introduction

The Internet of Things (IoT) [1] is characterized by a huge number of objects
that dynamically cooperate and make their resources available, with the aim of
achieving a common objective. Thanks to the pervasive spread of smart objects,
the IoT is expected to offer amazing improvements in collecting, processing and
distributing information [2]. Context awareness provided by IoT elements is go-
ing to improve users’ knowledge, their relationship with nature and their lifestyle.
Furthermore, not only will the IoT technology enable users to communicate with
objects: the objects themselves, including the most common and simple, will have
the ability to communicate with each other and gain the intelligence to provide
information on their status or acquire data from other objects. This ability will be
also fostered by the widespread adoption of cloud computing technologies [3], along
with the introduction of the Virtual Object (VO) concept [4]. The VO represents
the virtual counterpart of one or more IoT-related physical entities, called Real
World Objects (RWOs). The VO virtualizes the RWOs it refers to, by semantically
describing their resources, capabilities, functionalities and collected data. Major
functionalities implemented by the VO are: caching and provisioning of relevant
data also when the physical device is not reachable, implementing different inter-
faces and languages to extend the range of scenarios the objects can take part to,
implementing complex security mechanisms, optimizing the management of the
object battery.

One of the major issues in IoT scenarios is that of resource allocation manage-
ment. Indeed, it may happen that more than one RWO is capable of performing
the same task (e.g. temperature sensing of a given geographical area). Therefore,
tasks need to be efficiently assigned to RWOs, so that their resource usage is op-
timized (e.g. energy, processing capabilities, communication bandwidth, storage),
provided that task’s required quality conditions are still satisfied.

This issue is addressed in this work, which proposes a resource allocation mech-
anism that takes advantage of the features offered by the VOs. Accordingly, herein
we provide two major contributions, as depicted in Figure 1: i) we extend the cur-
rent functionalities of VOs to make them capable of implementing a distributed
strategy for the allocation of tasks among objects; and ii) we propose a new dis-
tributed algorithm where VOs negotiate to reach a consensus on resources allo-
cation. Specifically, we extend the VO information model to include the features
that are needed in a distributed task allocation scenario, including the Quality
of Information (QoI) that measures the characterization of the information pro-
vided by the objects. Such model is defined so that the VOs can act as the core
components in the distributed algorithm following different possible architectural
scenarios. As to the proposed distributed algorithm, we have defined it so as to
distribute the workload among the objects that can cooperate to the same task
and to ensure the QoI requirements are fulfilled. The proposed solution is based on
the consensus algorithm, which has the advantage of making a group of distributed
peers to reach a common target even in the case they may not be connected during
the whole convergence process. This is indeed the case of IoT objects that may
opportunistically take part to the deployment of IoT applications without assuring
a fixed level of participation. In our specific case, the objects agree on a common
lifetime and accordingly modify the level of participation to the application till
a convergence is reached. Simulation results show that, compared to a static fre-
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Fig. 1 The considered Cloud-based IoT architectural model and proposed framework: RWOs
are the Real World Objects; VOs are the Virtual Objects

quency allocation, the algorithm enhances the performance of the system with an
average improvement of 27% in network lifetime, and confirms the compliance to
QoI requirements.

To contextualize the work and the ideas developed, in Section 2 some previous
studies on the concept of virtualization in IoT are presented. Section 3 provides a
functional analysis of the reference architecture and the problems related to the
allocation of tasks focused on QoI achievement. Section 4 tackles the description
of the resource allocation model developed. The implemented solutions have been
tested using real devices on an application scenario specifically modeled. Simula-
tions and experimental results will be presented in Section 5. Finally, conclusions
and future works are presented in Section 6.
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2 Preliminaries

2.1 Reference Architectural Model

Most of the cloud-based IoT platform implementations rely on the use of a vir-
tualization layer, which is used to implement some functions that augment the
capabilities of the physical devices. In this work we specifically rely to the concept
of Virtual Object (VO), which consists in the virtual counterpart of the physical
devices (i.e., the Real World Objects, RWOs) [4][5][6]. This is a software module
running typically in the cloud, which speaks for the physical counterpart and in-
troduces some functionalities that could not be taken by the real world objects,
such as: deciding when and how to take part to the IoT applications, caching
of data already generated by the physical devices, supporting its discovery from
external systems, as well as making the inter-objects communications possible by
translating the used dissimilar languages. Any other functionality that may make
the physical device smarter can be implemented here, leaving to the physical coun-
terpart just the sensing and actuating activities. Clearly, the VOs are implemented
in the virtual layer, as depicted in Figure 1(a). These communicate directly with
the physical devices implementing all the types of communications protocols and
APIs that the later are capable to understand. On top of the virtualization layer,
an additional layer is implemented where services that rely on the composition
of different VOs are implemented. For instance, the combination of sensed data
from different devices to provide the crowd view about a given magnitude is im-
planted at this layer. On top of this layer is where the applications are deployed
and executed.

Typically, there is one process that implements all the functionalities of a single
VO, which is associated to a single physical device. Accordingly, the VO is the view
provided about a physical device to the external world. However, there are cases
where one VO could be associated to different physical counterparts of which then
it combines the different sensing and actuating capabilities. Vice versa, it may
happen that different VOs are associated to the same physical device, as each one
of these VOs provides different access rights and different views. In the following of
the paper, without losing of generality, we refer to the 1-to-1 case to make things
simpler to explain.

Following this architecture, RWOs are virtualized and represented as VOs by
the VO level, i.e. they are semantically described in terms of their functional
characteristics, status, location and potential uses, in accordance with a template
that should match the type of RWO it is associated to (e.g. embedded device type,
smartphone model). Furthermore, VO supports discovery and mash up of services,
improving the objects’ energy management efficiency, as well as addressing het-
erogeneity and scalability issues. Virtualization not only allows to collect a set of
information, but it provides RWOs with additional intelligence given by the coop-
eration with other RWOs and the awareness of the context in which they operate,
so that they are transformed into entities that can be used to supply services and
applications.
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An implementation of a cloud-based IoT platform that follows this architec-
tural model has been carried out at the University of Cagliari [7]1. This has been
used for the definition of the proposed solution.

2.2 Past works

2.2.1 Virtual Objects

With a thorough comparative analysis between Cyber Physical Cloud (CPC),
Cloud of Sensors (CoS) and IoT, the authors in [8] show how these three technolo-
gies exploit Cloud Computing potentialities, and how much they are related in the
objective of linking digital and real worlds. They base on the concept of object
virtualization, according to which the physical components of an object can be ab-
stracted and made available as virtual resources. Virtualization allows the higher
layers of the IoT architecture to:i) interface with devices; ii) provide device with the
required commands, adapted to their native communication protocol; iii) monitor
their activities and connection capabilities. A VO is the virtual counterpart of one
or more real objects, and as such it inherits all their functionalities, characteristics
and acquired information [9]. Since virtualization is such a fundamental compo-
nent of the IoT, many well-known middlewares, such as SENSEI [10], IoT-A [11]
and iCore [5], are based on it.

Combining virtualization with context-awareness, the IoT system is able to
achieve a clear knowledge of the resources and functionalities made available by
its objects. Since the IoT is characterized by scarce resources, they need to be
managed and orchestrated in an efficient way. The process of detecting the most
appropriate IoT objects’ resources that are able to fulfill the applications’ require-
ments, needs to be accomplished in a distributed and automatic way, in order to
cope with the dynamic nature of the IoT.

In the literature related to the VO technologies, the problem of dynamic as-
signment of tasks to the physical devices is only superficially treated. Specifically,
the following two elements are missing: an information model that allows for rep-
resenting the changing context in which the physical devices are operating so as
to better manage their involvement in the deployment of the different IoT appli-
cations; implementation of the dynamic allocation of tasks to the physical devices
through the VOs as the components that can better take the burden of imple-
menting the logic so as not to deplete the physical devices batteries.

2.2.2 Resource Allocation

Resource allocation has been extensively studied in Wireless Sensor Networks
(WSNs), particularly with reference to network lifetime. In [12], a distributed
task allocation that focuses on the reduction of the overall energy consumption
and task execution time into a heterogeneous WSN is proposed, with attention to
nodes’ residual energy. In [13], a dynamic distributed allocation mechanism based
on gossip has been proposed, where the required sensing frequency is entirely as-
signed to the nodes that correspond to the highest network lifetime. A similar

1 http://www.lysis-iot.com/
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approach is studied in [14], where a distributed algorithm based on particle swarm
optimization is proposed. In [15], the issue of energy saving in Wireless Cooper-
ative Networks is addressed. The algorithm proposed in this paper aims to find
a trade-off between efficiency and fairness, by using a game-theoretic approach.
Since the main criticality of wireless networks is their lifetime, all these algorithms
mainly focus on maximizing this resource.

The last cited papers are some representative works for task allocation in
WSNs. However, the focus of our work is different as we consider the more complex
IoT scenario. The main difference when moving from WSNs to IoT is that objects
can be grouped opportunistically because they are found to be able to provide
collaborative services and then they have to find the way to act in a coordinated
way. This introduces much more heterogeneous scenarios with respect to the case
of WSN networks where objects are managed by the same system and have sim-
ilar characteristics. Additionally, different objects able to perform the same task
can be found available (e.g., measurement of the traffic in the same street, the
measurement of the humidity and/or the temperature in a room, the detection of
moving objects/persons in a given environment, the monitoring of the luminosity
in a public square) and then it is necessary to decide to which one allocate the
needed tasks [16]. This can be done exclusively or assigning part of the task to each
of the available peers depending on a defined objective. To this, the use of VOs
for the description of the objects and their potentialities become necessary. This
should represent the context of the RWO that dynamically changes and should be
used to find the candidates for task assignments.

Accordingly, as far as IoT networks are concerned, resource allocation is an
open issue. Most of the existing studies on resource allocation for IoT are focused
on IoT service provisioning, such as in [17] and [18]. In these studies, the aim is to
allocate the resources that enable service execution, which consists in finding the
available nodes that can perform the needed task. However, they do not focus on
finding the best configuration that corresponds to an optimal resource allocation.
None of the works found in the literature tries to find the optimal resource allo-
cation associated to the lowest impact of the application assigned to the network.
However, as highlighted in [19], when resource allocation is considered, a central
broker is used, which is aimed at deciding which objects should be involved in
the required task execution, which brings to a centralized solution and that can-
not completely benefit from the opportunistic participation of the objects to the
IoT platforms. For instance in [20], the authors propose the allocation of tasks
among objects taking into account the available resources with particular atten-
tion to an urban-scale IoT environment. In this case, the proposed solution is a
service resource allocation approach which minimizes data transmissions between
users mobile devices, which has been transformed into a variant of the degree-
constrained minimum spanning tree problem and applied a genetic algorithm to
reduce the time needed to produce a near-optimal solution in a centralized node.

As to the QoI, it has only been partially considered in this context. This is
defined as the characterization, in terms of some salient attributes represented in
the form of metadata, of the goodness of the data collected, processed and flowing
through a network. In [21], the authors highlight and extend upon past work in the
areas of QoI and then refine a taxonomy of pertinent QoI and VoI (Value of Infor-
mation) attributes anchored around a simple ontological relationship between the
two. They also introduce a framework for scoring and ranking information prod-
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ucts based on the basis of QoI/VoI. Some examples of QoI requirements are data
sampling rate, precision, and provenance [22]. In [23] the authors have investigated
the QoI maximization problem by jointly optimizing the data rate and transmit
power again only for the case of lifetime-constrained wireless sensor networks. In
this specific case, the QoI at the sink node is characterized by the virtue of the
network utility, which quantifies the aggregated value of the data gathered from
different sensor nodes. [24] is one of the few works where the authors extend the
problem to the IoT scenario and consider the challenge of maximizing the quality
of information collected to meet decision needs of real-time IoT applications. A
novel scheduling model is proposed, where applications need multiple data items
to make decisions, and where individual data items can be captured at different
levels of quality. The optimization is then performed in a centralized way at the
service layer. Differently, we assign the job of allocating the tasks to the VOs that
consider the current RWOs context and address the problem with a distributed
approach. We present a first attempt in resource optimization [25], where however
QoI was not taken into account.

3 Proposed strategy

Following the reference architectural model previously described, when a user re-
quests an application, this application is subdivided by the Service Level into
services or tasks, which are then dynamically mapped to the appropriate VOs,
which take in charge their execution by involving the relevant RWOs. To this we
propose a strategy to be adopted when more VOs are found that can trigger phys-
ical devices that can perform the same task. Indeed, at this point there is the need
to decide which device really to select or how to distribute the burden to more than
one. The proposed strategy starts by considering the Quality of Information (QoI)
constraints, necessary to correctly execute the application, which comes with the
service execution request.

For each service execution request, the resource allocation approach proposed
in this paper finds the VO template instances that best suit the required function-
alities and QoI requirements. Once these services are mapped to the appropriate
VOs, a consensus algorithm is run by them in order to negotiate the most ap-
propriate workload distribution, with the aim of extending RWOs lifetime, based
on their residual energy and already assigned services. The major blocks of the
proposed strategy are shown in Figure 1(b), where though the information stored
in the templates the appropriate VO instances are selected and the relevant VOs
start the negotiation following a distributed consensus-based algorithm.

In the rest of this section we describe how the existing information model
for VOs have been extended, how the selection process works and which are the
possible scenarios where this process can be implemented. The algorithm for the
resource allocation is then presented in the following section.

3.1 The Virtual Object Template and Information Model

The VO performs the fundamental task of collecting the varying and changing
information of the real world, supported by mechanisms of learning and self-
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the iCore VO Information Model. Dashed border boxes are new elements introduced by the
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management, and exposes it to the digital world. To this end, a model that ensures
the interaction among VOs in a generic way is needed. Indeed, VOs need to expose
an interface to their characteristics and functionalities, that is easily and straight-
forwardly accessible by the VO level. In addition to providing access to real-world
data, it is necessary that VOs perform a coordination function, allowing multiple
requests from the higher level to be addressed to the same object in a synchronized
way. Furthermore, since the IoT objects ecosystem is made by fixed and mobile
objects, the context where objects operate may change. For this reason, the model
needs to be dynamically updated after its creation. All these features are provided
by the VO template.

The VO template enables the creation, search and selection of VOs in an auto-
mated way. It is closely associated with a particular type of object, that becomes
part of the IoT system, and thus must be mapped into the virtual world.

In order to implement templates that will be instanced to describe VOs, an
information model that encodes all the information used for the appropriate in-
volvement of VOs in the IoT application deployment and delivery is used. The
information model that inspired the one proposed in this work is based on the
iCore FP7 Project [5].

However, to make the iCore model more effective for our target, we extended
it taking into account the mobility of objects, their temporal features and their
QoI-related characteristics. This enhancement is meant to improve the VO search,
discovery and selection processes that enable the tasks assignment to the most
appropriate VOs, with a QoI-oriented perspective. Figure 2 shows the new elements
in dashed border boxes. Note that in this figure there is a distinction between
ICT (Information and Communications Technologies) and non-ICT objects. This
is to highlight that among the RWOs there are objects that are realized with
ICT technologies and then can directly take part to the IoT without additional
components; this is the case of, e.g., smartphones, laptops, sensors, and TV set-
top-boxes. Others are referred to as non-ICT objects as they don’t use natively
these technologies and then need to be associated with ICT objects to take part to
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the IoT. These can include buildings, rooms, streets, bicycles, and people, among
others. The following are new introduced elements in the model:

a) Indoor location: It is particularly useful in cases of indoor environments. It
is used only if the VO is located indoors, and describes the place where it is
located in terms of type of location (e.g., room, hall, house) and identification
number or string. This could be an element that enhances the scalability of
the system. It enables the model to be used not only in large-scale distributed
environments (metropolitan areas or neighborhoods), but also in small size
environments and internal locations (such as buildings or structures in which
a geo-localization of the nodes is not enough).

b) Temporal features: The use of the temporal feature, both in terms of date and
time range, allows to know the activity phases of a device associated with its
VO. Knowing the date and time in which a mobile device is located in a given
place, helps the association process among ICT and non-ICT object. It also
ensures the ability to know in advance when a particular resource is available,
when it is possible to refer to it, and how long it has not been updated.

c) QoI Parameters: The information model, on which the selection processes
are based, includes a field dedicated solely to the QoI parameters. The values
in this field are named uniquely based on RWOs characteristics. In addition,
it introduces their descriptive aspects, that enable their identification. The
parameters stored in this field will therefore be examined in the selection phase
and allow an optimized choice of the resources to use. QoI parameters take into
account issues such as network characteristics (e.g. latency, bandwidth, etc.),
device characteristics (e.g. energy consumed, waste energy, memory, processor,
etc.) and applications requirements (e.g. precision, reliability, latency, etc.).

According to this information model, templates are created, assuming that the
VOs that they represent will be part of the system in the future. Templates resides
in the Cloud, in dedicated repositories, and are used at the moment of instancing
a new VO. When a new VO needs to be instanced, typically because a new RWO
has joined the system, the selection of the more suitable template is made. The
deployment of the VO occurs by loading the desired template from the Cloud.
The RWO associated to the VO must contain the drivers necessary to abstract
the hardware and interface with the rest of the system. The template fields are
then filled in with the information associated to the new VO.

3.2 The Virtual Object Selection Process

The goal of this work is to achieve a resource allocation optimization mechanism
that takes into account QoI policies, according to the applications required by the
upper levels of the architecture. It is necessary that requests from the service level
are related to a series of QoI parameters. In this way, the processes of search,
selection and activation of the VO instances can be performed. Requests from the
service level must contain, in addition to the VO functional, spatial and temporal
search parameters, those related to QoI.

The process of resources allocation starts from the VO level, where service
requests are processed. The request contains all the parameters that ensure a
research refinement, and allows the execution of optimization processes for resource
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allocation. Based on it, the VO level, among the available VOs, looks for the
VO template instances that fulfill all the service requirements, both from the
functional and the QoI point of view. The RWOs associated with the selected
VOs are chosen to cooperate for the execution of the service. However, before the
service execution is started, the available resources are evaluated by the resource
optimization process, so that the workload is fairly distributed among the RWOs.

Table 1 List of tasks for the HVAC management example

task 1 temperature sensing collected every minute
task 2 mean temperature computed every 10 minutes
task 3 user presence sensing collected every 30 seconds
task 4 mean user presence computed every 5 minutes
task 5 evaluation to change HVAC status computed every 10 minutes

In order to explain the process more clearly, we introduce an explanatory ex-
ample, to which we refer in the following as the HVAC management example. We
suppose that the service level receives a request to evaluate, every 10 minutes, if
the Heating, Ventilation and Air Conditioning (HVAC) system of office A inside
the building located at coordinates {x,y} has to be turned on, based on the mean
temperature computed every 10 minutes of the temperature values collected every
minute, and on the mean presence of someone in the office, computed every 5 min-
utes on the presence monitoring values gathered every 30 seconds. The error has to
be no higher than 80%. The service level analyses the application and subdivides
it into tasks. The list of tasks is summarized in Table 1. The service level then
sends the requested tasks to the VO level, which analyses them and determines
the VO templates that can respond. Hence, the VO level starts searching for VO
instances characterized by a template with the appropriate parameters. Taking,
for example, task 1, the selected VO instances have a template with parameters
equal to those described by Figure 3. Suppose that the VO level finds 3 VOs that
match the queried one, which correspond to the following RWOs, each equipped
with a temperature sensor: a smartphone, a smart watch and a digital thermome-
ter. The fact that the same service can be provided by such heterogeneous devices
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Fig. 4 Location of the proposed algorithm into three typical IoT scenarios with reference to
objects’ resource allocation

is completely transparent to the VO level, which can manage all of them simply by
managing their VOs and related attributes. At this stage, the VO level sends a re-
quest for temperature measurement to one of the VOs, including also the required
frequency F ref = 1/60 Hz. The VOs can then start reaching consensus using the
approach described in Section 4.2, regardless of their localisation with respect to
their related RWO. After the first task has been assigned, the same process is used
to allocate the following tasks.

3.3 Possible Scenarios

As previously described, in the IoT scenario we refer to, the VO level deploys the
execution of services to RWOs. Typically, the VO consists in software modules
that run in the cloud or edge of the network infrastructure. However, the fact
that RWOs may be intelligent objects capable of performing complex operations,
suggests that some VO level’s functionalities can be moved from the cloud to the
objects themselves, provided that they have the skills to perform them. Accord-
ingly, there are different scenarios that are possible and depend on the specific
RWO characteristics. The closer is the VO to the physical device the lower the
delay in taking some actions due to the interaction between the virtual and the
physical counterparts.

Starting from this remark, we detected three possible scenarios, as depicted
in Figure 4. Note that here Lysis is the name of the cloud-IoT platform used for
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the proposed solution [7]. The first scenario (see Figure 4(a)) relates to the case
in which the resource selection process concerns a limited number of RWOs that
are able to communicate with each other using short-range technologies and that
are characterized by sufficient computational power and energy. The optimization
process can be distributed on RWOs, in such a way that the management of
resources is as near as possible to the point where they are used. The optimization
mechanism does not pass through the Internet network, i.e., the RWOs do not
have to send information about their changes on the context to the cloud as the
VOs are running locally. Then, the amount of communications to the Internet is
reduced, limiting the relevant energy consumption. Additionally, the algorithm is
faster as once the decision is taken it is directly implemented by the devices.

The second case (Figure 4(b)) refers to situations where the lack of resources by
RWOs do not guarantee the possibility of a distributed optimization. In this case,
if the devices are located in a limited area, it is possible to exploit the gateways of
local networks. Thanks to the fact that devices are connected to local networks,
gateways can take charge of VOs’ functionalities and run the optimization process,
involving all the RWOs interested in the connection. Clearly, this is possible if the
gateway implements the services to run processes when required by the cloud.

The third scenario is depicted in Figure 4(c). This is the one related to the case
in which the devices selected to perform the task are not in the same area, but they
are located in different places and at a great distance so that their communication
can take place only through the Internet. In this case the optimization processis
carried out in the cloud and then it is centralized. This scenario is also the one
related to the case where the objects don’t have sufficient computational capacity
to perform the optimization process, whether their are close and can communicate
using short range technologies or are far each others.

It is important to highlight that the overall procedure is always controlled by
the management functionalities of the IoT platform that is running in the cloud,
which should control the deployment of VOs in the cloud, gateway or in the RWO
depending on the changing conditions and determined case-by-case.

4 The Resource Allocation Model

In this Section, the resource allocation algorithm is presented. More specifically,
the algorithm proposed in the following focuses on lifetime optimization, but it can
be easily extended to focus on other objects’ resources different from the residual
energy, such as storage capacity or processing speed.

In Section 3.3, three possible different scenarios have been described. Since
the more complex to be treated is the first one, i.e. the one that is characterized
by a distributed optimization, in the following the discussion will only focus on
this particular scenario. Nevertheless, note that the same optimization can be
performed by gateways (see Figure 4(b)) or by the cloud (see Figure 4(c)) using
the same equations, but in a centralized fashion.
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4.1 Consensus-Based Resource Allocation Optimization

The resource optimization strategy proposed in this paper relies on a consensus-
based algorithm where VOs decide the amount of resources to allocate to a task, in
order for the workload to be fairly distributed, so that their lifetime is optimized.

As defined in [26], the lifetime of a node is the time until it depletes its battery.
The lifetime of the RWO associated to VO i at time t is expressed as

τi(t) =
Eresi (t)∑

k P
c
ik(t) + P oi (t)

=
Eresi (t)∑

k E
c
ik · fik(t) + P oi (t)

(1)

where Eresi (t) is its residual energy, P cik(t) and Ecik are the power and energy
consumed by the RWO associated to VO i to perform task k, fik(t) is the frequency
at which VO i performs task k, and P oi (t) is the offset power consumed by the
other activities of the node (e.g. tasks that are assigned directly by the user).

We base on the assumption that optimizing the network lifetime is equivalent
to adjusting the VOs’ power consumption so that their associated nodes reach the
same lifetime. This means that, if we consider two VOs i and j that received an
activation request for task k, at time tc when the algorithm converges, τi(tc) =
τj(tc). Therefore

∑
k

αik(tc)fik(tc) +
P oi (tc)

Eresi (tc)
=
∑
k

αjk(tc)fjk(tc) +
P oj (tc)

Eresj (tc)
(2)

where αik(t) = Ecik/E
res
i (t). Defining the total amount of power consumption

contributions with the exception of task k as δik(t) =
∑
l 6=k αil(t) · fil(t) +

P o
i (t)

Eres
i (t) ,

from (2) follows that

fjk(tc) =
αik(tc)

αjk(tc)
· fik(tc) +

δik(tc)− δjk(tc)

αjk(tc)
(3)

According to accuracy constraints provided by the higher layers, the collabo-
rative completion of a task is required to be performed at a reference frequency
F refk =

∑
j fjk(tc). Using (3) in this identity, after some simple computations and

multiplying and dividing by the number Nk of VOs involved in task k, we obtain

αik(tc) · fik(tc) =
ϕ̄k

β̄k(tc)
+
γ̄k(tc)

β̄k(tc)
− δik(tc) (4)

with

ϕ̄k =
F refk

Nk

β̄k(tc) =
1

Nk
·
∑
j

1

αjk(tc)

γ̄k(tc) =
1

Nk
·
∑
j

δjk(tc)

αjk(tc)

It is easy to notice that they represent mean values evaluated over all the VOs
that are able to perform task k. This fact, along with the consideration that, in
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the scenario described by Figure 4(a), nodes that are assigned to the same task
are located close to each other, and thus they can communicate directly without
passing through the cloud, leads to the conclusion that their value can be estimated
in a distributed way using an average consensus algorithm2. We suppose to have a
system where nodes may not be connected during the whole convergence process.
For this reason, in this paper the consensus algorithm proposed in [27], which is
robust against topology changes, is used.

Since variations of α and δ are negligible over the time needed by the algorithm
to converge (as it will be clarified in the experiments), in the following we consider
them constant and omit their dependence from time. Nevertheless, if substantial
variations of them are experienced, the algorithm needs to start again.

4.2 Lifetime Optimization Algorithm

As soon as VO i receives an activation request for task k from the VO layer, it
verifies if it is able to satisfy the minimum level of QoI required by the higher
levels. If it is not, it sets fik to 0 and informs the VO layer about it. Otherwise,
it initializes its local values ϕik = ϕ0

ik, βik = β0
ik and γik = γ0ik. As far as ϕik is

concerned, only one VO receives the reference frequency F refk from the VO layer,
and sets ϕ0

ik to it. The other VOs set it to 0. The initial local values are set as
follows:

ϕ0
ik =

{
F refk if F refk is given

0 otherwise

β0
ik =

1

αik

γ0ik =
δ

αik

(5)

and starts the consensus with its neighbors. Whenever VO i receives an update
from one of its neighbors j, it computes the following updates:

ϕ+
ik = ϕik − λϕ1

∑
j

(ϕik − ϕjk)− λϕ2
∑
j

sgn(ϕik − ϕjk) (6a)

β+
ik = βik − λβ1

∑
j

(βik − βjk)− λβ2
∑
j

sgn(βik − βjk) (6b)

γ+ik = γik − λγ1
∑
j

(γik − γjk)− λγ2
∑
j

sgn(γik − γjk) (6c)

τ+i =
β+
ik

ϕ+
ik + γ+ik

(6d)

f+ik =
1

αik
·
(

1

τ+i
− δik

)
(6e)

where λϕ1 , λβ1 , λγ1 , λϕ2 , λβ2 , and λγ2 are tuning parameters that affect the conver-
gence time and steady-state accuracy [27], and that will be better explained in the

2 As defined in the introduction of this Section, note that Equation 4 can as well be used to
evaluate the optimal frequency values in a centralized fashion
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following Subsection. If f+ik > 0 and if its value has changed after the update, the

VO sends the updated value of ϕ+
ik, β+

ik and γ+ik to its neighbors. It may happen

that f+ik ≤ 0. In this case, the VO cannot participate into executing task k. There-
fore, it sets fik to 0 and informs its neighbors, which restart the consensus process.
The algorithm can be considered converged when fik does not change consistently
after the updates.

4.3 Convergence Time and Steady-State Accuracy

As it is specified in [27], the tuning parameters of the update functions need to be
set to:

0 ≤ λϕ1 , λ
β
1 , λ

γ
1 ≤

1

Nk

λϕ2 , λ
β
2 , λ

γ
2 ≥

2T ·Π
ε

+ µ2, µ 6= 0

(7)

where: Nk is the number of VOs involved in the consensus, ε and T are positive
constants, and T is a horizon time interval such that the involved VOs are con-
nected at least for an ε amount of time (ε ≤ T ); Π and µ are weight parameters.
Appropriately choosing the tuning parameters affects the accuracy of the solution
of the algorithm, as well as the convergence time, as follows:

Accuracy = [2 · (T − ε) + ξ] ·Π

Convergence time ≤
(
T

εµ2

)
·max
i,j
|x0i − x

0
j |

(8)

where ξ > 0 is an arbitrary infinitesimally small parameter, and xi(0), xj(0) are the
initial values for VOs i and j of the generic consensus variables, that in our case
are those specified by (5). These conditions ensure that the algorithm converges
to a solution in a finite time, and with an accuracy that depends on the tuning
parameters.

Supposing that T = ε, i.e. the VOs are always connected during the consensus
process:

Accuracy = ξ ·Π

Convergence time ≤
(

1

µ2

)
·max
i,j
|x0i − x

0
j |

(9)

5 Performance Analysis

The proposed resource allocation mechanism has been implemented and tested on
a realistic scenario that focuses on the home healthcare/assistance of a patient with
minor health problems. These are the application functionalities that need to be
provided: the patient vital signs need to be constantly monitored; the patient needs
to occasionally visit a primary care physician for regular checks, not necessarily
for severe problems; after the visit, the patient needs to go to the pharmacy to
buy the medicines that he takes daily.
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The main devices involved in this scenario are: i) sensors, e.g. temperature,
humidity, brightness, presence, gas and smoke; ii) wearable devices for vital sign
monitoring; iii) intelligent devices, e.g. smartphones, tablets, laptops.

The complexity of the scenario is due to three factors:

– the objects’ heterogeneity: efficient cooperation needs to be ensured among
sensors, controllers, actuators and smart objects, which have different capabil-
ities and likely adopt different communication standards and are produced by
different manufacturers;

– the need to obtain homogeneous data from heterogeneous sources (different
data formats and precision);

– the same object is used to provide different services at the same time, and thus
coordination is needed.

The implementation of the algorithm has been performed on Arduino Mega
2560 [28] boards, which microcontroller is a ATmega 2560. The local network
was created through XBee S1 802.15.4 modules, by Digi International [29]. These
modules use the IEEE 802.15.4 networking protocol for fast point-to-multipoint or
peer-to-peer networking. The XBee modules are ideal for low-power and low-cost
applications. The XBee modules have been connected to Arduino via serial port,
using Xbee USB serial adapters by DF Robot [30].

Several tests were run to validate the proposed framework and the presented
reference scenario. Each test involves the activation of a variable number of ser-
vices, ranging from 1 to 10, and different configurations of the devices that could
simultaneously perform the required services. For each configuration, we simulated
the behavior of the heterogeneous RWOs described above, with different values of
residual energy, consumed energy for single service, provided QoI levels, and dif-
ferent reference frequencies for the service execution were used. We compared the
results obtained with the Optimal Resource Allocation algorithm proposed in this
paper, to which we refer as ORA in the following, with 3 approaches:

– EqF: static allocation mechanism where the reference frequency assigned to
the VOs is equally divided by the number of VOs that can perform the task;

– TAN: dynamic distributed allocation mechanism based on game theory pro-
posed in [12], where the whole reference frequency is assigned to the node with
the highest utility, that is proportional to the ratio between energy consump-
tion and residual energy;

– DLMA: dynamic distributed allocation mechanism based on gossip proposed
in [13], where the reference frequencies are entirely assigned to the nodes that
correspond to the highest network lifetime.

Table 2 Correspondence between RWOs and tasks for the HVAC management example

Task 1 Task 2 Task 3 Task 4 Task 5
Smartphone X X X X X
Smart Watch X X X X X
Digital Thermometer X X X
Presence Sensor X X X
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Fig. 5 HVAC management example plot for algorithm convergence
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In order to describe the algorithm’s behavior, the HVAC management example
has been tested. We supposed to have 4 RWOs: a smartphone, a smart watch,
a digital thermometer and an infrared presence sensor. Not all the RWOs can
perform all the tasks that have been described in Section 3.2 (see Table 1). The
correspondence between tasks and RWOs is reported in Table 2.Figure 5 shows
how the 4 RWOs reach consensus for the 5 different tasks. A different line style
is associated to each device. The plots show the behavior of the consensus local
update values ϕik, βik and γik described in Section 4 (Figure 5(a), 5(b), 5(c))
and the lifetime τi (Figure 5(d)) as a function of the algorithm’s step number. It is
possible to see how, when a task is activated, the values of the local updates related
to each device converge in a few steps. Every time a new task has to be allocated,
the consensus algorithm starts with the initialization of the local update values,
corresponding to the peaks in the figures (at time steps 2, 6, 11, 16 and 21). After
each initialization, the local update variables start to converge, as the reference
frequency is distributed in a fair manner, and the device lifetime converge to the
same value. For each task, the steady state is obtained at step numbers 5, 10, 15,
20 and 25. Since not all the nodes are able to perform the same tasks, there are
some nodes that do not take part to every convergence process. This is the case,
for example, of node 3, which cannot perform tasks 3 and 4. This can be also
proved by Figure 5(d), where the lifetime of node 3 remains unchanged, while the
other 3 nodes converge to a lower lifetime because they have to take charge of a
greater workload. However, when the fifth task, that all the nodes can perform, is
assigned, node 3 reach consensus with the other nodes, and their lifetime converge
again to the same value. It is reasonable to suppose that, with reference to task
5, node 3 takes charge of a higher workload than the other nodes, since it did not
take part to the previous two tasks, and thus its lifetime is higher. Indeed, it is
possible to see from Figure 5(d) that the lifetime value for nodes 1, 2 and 4 does
not change much after the assignment of task 5.

The HVAC management example has been also tested using EqF, TAN and
DLMA approaches. Results are shown in Figure 6. It is possible to note that,
although the other approaches may results in higher lifetime values for some nodes,
the ORA approach is the only one that corresponds to a higher network lifetime,
i.e. it is less likely that one node depletes its battery before the others, as all the
nodes experience a fair resource allocation. Indeed, the lowest lifetime observed is
higher that that of the other approaches.

The proposed algorithm’s behaviour has been also tested with reference to
substantial changes in its modeling parameters’ value. Figure 7 shows an example
of 10 nodes that started consensus for a task. In this example we suppose that
the δ value, which accounts for any possible power consumption coming from
other activities, suddenly increases for node 4. In this case, the lifetime of node 4
decreases so much that it cannot participate to the task anymore, and thus the
consensus algorithm is started again by all the other nodes excluding node 4.

To analyze the benefits of the ORA algorithm, we compared lifetime values
using the four different approaches: ORA, EqF, TAN and DLMA. Results are
shown for different numbers of tasks and involved devices. Figure 8 shows the
results for 5 assigned tasks, when the number of involved devices changes, with a
95% confidence interval. The data analysis shows that ORA brings in all cases to
an improvement of the network lifetime. The graphs show that the best results are
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Fig. 6 Node lifetime changes in HVAC management example using different approaches
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Fig. 7 Example of the ORA algorithm’s behaviour when the δ value increases for node 4
while reaching consensus over a task

Fig. 8 Average values of percentage improvements in network lifetime for a number of devices
equal to 5

obtained for a lower number of assigned tasks. Indeed, the average improvement
of network lifetime decreases as we assign more tasks.

Table 3 Average values of percentage improvements in network lifetime with respect to the
EqF approach, for a number of tasks equal to 5, for different values of reference frequency per
task F ref and different number of devices

Lifetime
improvement [%]

# of devices
2 3 4 5 6 7 8 9 10

F ref

1 24 29 30 25 24 21 17 16 15
2 28 35 40 36 35 33 32 30 28
3 26 36 38 47 45 43 40 38 34
4 25 37 42 45 46 45 44 42 41
5 25 36 43 43 49 49 48 48 47

We also tested the lifetime improvement experienced for a variable number of
devices, when they reach a consensus on 5 tasks. From results shown in Figure 9
it is possible to see a constant increase in lifetime improvement for a number of
devices from 2 to 5 or 6, followed by a low decrease for higher numbers of tasks.
This is consistent with the fact that when the number of devices increases, the
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Fig. 9 Average values of percentage improvements in network lifetime for a number of tasks
equal to 5

Fig. 10 Average values of convergence time

workload per single devices decreases, and the ORA algorithm gets more efficient
into appropriately allocating the workload to the single nodes, with respect to the
other approaches. Nevertheless, at a certain point the workload per single device
gets so low that the efficiency of the ORA algorithm starts to decrease.This is
also proved by Table 3, where lifetime improvement results for different values of
reference frequency per task are reported for the EqF comparison. Similar behav-
ior is reported for the TAN and DLMA comparisons. From the Table results it
is possible to infer that, as the workload increases (i.e. the reference frequency
increases), the number of devices for which the efficiency of the ORA algorithm
starts to decrease gets higher. It has to be noted that, although the ORA algo-
rithm’s efficiency decreases a bit when the number of devices increases, it is always
more efficient than the other considered approaches.

The behavior of the algorithm was also evaluated from the time performance
point of view. The convergence times measured during the testing phase have been
analyzed and represented in Figure 10, as a function of the number of assigned
services. It goes from 533 msec when only 1 task is assigned to 2.03 sec when 10
tasks are assigned. Furthermore, Table 4 summarizes the convergence time values
obtained for 2 to 10 tasks and for 2 to 10 devices. As it is possible to notice,
convergence time increases when the number of tasks and the number of involved
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Table 4 Convergence time for different numbers of tasks and devices

Convergence
time [sec]

# of tasks
2 4 6 8 10

# of
devices

2 0.60 0.87 1.21 1.52 1.84
4 0.63 0.92 1.24 1.62 1.95
6 0.74 1.21 1.35 1.85 2.04
8 0.80 1.22 1.61 1.83 2.18
10 0.84 1.43 1.76 2.25 2.54

(a)

(b)

Fig. 11 Convergence time and error on steady state accuracy for different values of λ1 when
the algorithm in [31] is used (λ2 = 0)

devices increases. Nevertheless, from 2 to 10 devices it increases no more than
27%, while from 2 to 10 tasks its highest increase is 67%.

We further tested the algorithm for different values of λ1 and λ2 parameters
(see Section 4.3), to understand how their changes affect the obtained results. Fig-
ures 11 and 12 show how convergence time and steady state accuracy change when
assigning 5 tasks to 5 nodes, comparing results when the well-known consensus
algorithm in [31] is used, i.e. for different values of λ1 when λ2 = 0 (Figure 11),
and when the algorithm in [27] is used, for different values of λ2 when λ1 = 0.2.
Note that the values λ2 = {0, 0.001, 0.01, 0.1, 1, 10} are able to overcome noise per-
centages of
{0%, 0.5%, 2%, 2.5%, 8%, 50%} with respect to the correct data values. When λ2 =
0, the consensus algorithm in [27] corresponds to the one proposed in [31]. We ob-
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(a)

(b)

Fig. 12 Convergence time and error on steady state accuracy for different values of λ2 when
the algorithm in [27] is used, for a fixed value of λ1 = 0.2

served that, when [31] is used, it is always preferable that λ1 is equal to its highest
limit, which in this case is 0.2, both in terms of convergence time and accuracy.
On the other hand, when [27] is used, it would be preferable that λ2 is set to its
lowest limit, but this is not always possible, as in noisy conditions the algorithm
might not be able to reach convergence. In such situations, λ2 needs to be set to a
value that is higher than 0, so that convergence is surely reached, as discussed in
Section 4.3. Nevertheless, its value should be set to the lowest possible, in order to
prevent convergence time and error on steady state accuracy from increasing too
much. Note that for λ2 = 10 the convergence time decreases with respect to the
case where λ2 = 1. This is due to the fact that the error is so high that the result
is unreliable, and thus it can be reached in a shorter amount of time.

6 Conclusions

The analysis of the issues related to the identification and selection of resources
through the use of VOs, has allowed to implement a process of optimization of the
allocation of tasks, that improves the QoI offered by the object resources in an
IoT scenario. The consensus-based algorithm on which the process is based uses
the parameters measured on the physical resources and shares among the VOs
the frequency of tasks’ execution required by the application, so as to provide the
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best possible QoI. The modeled scenario ensures the validation of the proposed
framework and the improvement of its performance. In all the tests performed, the
simulation results have demonstrated an average improvement of 27% in network
lifetime.

The optimization process implemented has the goal to select VO instances
that would guarantee the minimum QoI level and improve the lifetime of objects.
Future developments will focus on the study of a multi-objective algorithm that
will also take into account other resources, such as storage capacity and processing
speed.
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