
Noname manuscript No.
(will be inserted by the editor)

A Full Stack for Quick Prototyping of IoT Solutions

Daniele Mazzei · Giacomo Baldi · Gabriele
Montelisciani · Gualtiero Fantoni

Received: date / Accepted: date

Abstract The paper presents a novel approach for prototyping interconnected
products belonging to the Internet of Things context. The proposed solution aims
at merging the benefits provided by monolithic vertical approaches (where all
the IoT elements are pre-selected, from the hardware to the cloud) with those
of horizontal solutions (that leave the freedom to select the single components
and write the integration code). The proposed solution allows to speed up the
prototyping process and lets the developers focus on coding the product behaviours
rather than solving customization issues. The advantages of the proposed solution
goes beyond the prototyping, as the prototype can be easily converted into an
industrially viable solution. The paper ends with a real case application where the
proposed stack is used for the development of an IoT unit that converts industrial
refrigerators into smart connected systems.

1 Introduction

As technology advances, people and things are becoming more and more con-
nected[1]. The Internet of Things (IoT)[2] and the machine-to-machine (M2M)
communication[3] are some of the core paradigms that compose such scenario.
The IoT paradigm is based on the connection and data exchange between physical
devices and applications [4], linking real life entities with the virtual world [5][6].

D. Mazzei
Computer Science Department
University of Pisa.
Largo Bruno Pontecorvo, 3, 56127 Pisa PI, Italy Tel.: +39-050-2212779
E-mail: mazzei@di.unipi.it

G. Baldi, G. Montelisciani
Zerynth, New York, USA
E-mail: g.baldi@zerynth.com - g.montelisciani@zerynth.com

G. Fantoni
Department of Civil and Industrial
Engineering, University of Pisa, Italy
E-mail: g.fantoni@ing.unipi.it



2 Daniele Mazzei et al.

IoT is growing in parallel with the Lean Startup paradigm[7], an innovative
business design approach derived from the Lean Production Strategy[8]. As a re-
sult, we assist to a process where startups and innovators are reinventing and
converting everyday products into “smart” or “connected” products: physical de-
vices with a digital service at their heart [9]. As the number of such devices is
growing exponentially, the personal, professional and economic benefits for the
entire society are huge [10].

In particular, embedded devices based on low-power and low-cost micro-controllers
are expected to trigger the IoT revolution allowing the “smartification” of “Things”
without requiring a complete product redesign [11] and, even more important, with
a minimum impact on the hardware cost of the devices.

However, the difference between Things and Devices is remarkable. According
to Fremantle[12] Things are objects of our everyday life placed in our everyday
environment, like a car, a fridge but also a house or city. Devices are sensors, actu-
ators or tags endowed with a computational unit, and are usually part of a Thing.
For example, a popular Smart Thing is the “Smart Fridge”, a common fridge
coupled with temperature monitoring, goods tracking and compressor control sen-
sors integrated in an electronic Device typically endowed with a WiFi network
connection [13]. On the other side, in order to become a useful object, the Smart
Fridge also requires to be coupled with a cloud service that enables the end user to
manage and interface with the system through web or mobile interfaces (services).

2 IoT Architectures and Business Models

With the growth of smart IoT devices, two specific business models for IoT soft-
ware architectures emerged: vertical and horizontal (Figure 1)[14]. In the vertical
approach the IoT devices are typically sensors and actuators nodes connected to
the Internet directly or through a local gateway. These elements are then linked to
proprietary cloud-based services creating monolithic vertical offers. Such approach
has a twofold advantage for the end-user: (i) it reduces (or eliminates) any com-
patibility issue among the different elements of the system, and (ii) it centralizes
the support service to a unique provider. A clear downside concerns the full de-
pendence on the vendor for any technical change, update or upgrade of the final
solution.

This model is easier to be maintained and sold, so that it has been adopted by
various IoT startups focused on B2C (Business-to-Customer) where the end-user
of the solution coincides also with the final customer of the product.

On the other side, a horizontal model can boost growth and disruptive innova-
tion guaranteeing high modularity, scalability and customizability. For this reason,
the horizontal approach has been preferred in B2B (Business-to-Business) cases
where the smart product is just designed by a company [14] and then developed
by system integrators, hardware and ICT companies.

From the software point of view, telcos and big cloud companies opted for
very wide horizontal cloud based offers that are adaptable to a wide range of
applications and products. However, such offers typically lack of a real link with
hardware devices. Indeed, this approach perfectly matches with the business model
of cloud providers: addressing the users towards fully cloud-based pay per use



A Full Stack for Quick Prototyping of IoT Solutions 3

platform as a service (PaaS) architecture where IoT nodes are considered as trivial
remotely controlled devices aimed at generating as large as possible data streams.

Moreover, these solutions are often not suitable for the production of a cus-
tomer oriented smart products (Thing) also because local intelligence and com-
putation are mandatory for guaranteeing the implementation of proper smart be-
haviours. Indeed, smart products need to guarantee off-line usage and local data
storage in order to maintain provided services active also in case of temporary
network failure (e.i. control of a smart fridge, security alarm monitoring, etc.).

Concerning the hardware, an important role to speed up the development phase
and meet the industrial-grade requirements is played by prototyping solutions
aimed at reducing the entry gap in programming and managing embedded devices
for IoT applications. These solutions can be grouped into two categories according
to the adopted approach: (i) solutions running on a proprietary hardware and (ii)
solutions running on generic hardware. Solutions tailored for proprietary hardware
are for example Particle and Onion. Particle1 provides a family of MCU (Micro
Controller Unit) based boards that are ready to be connected to a proprietary
cloud, allowing a quick development of smart product prototypes by using an
Arduino similar C language. Onion2 produces a MPU (Micro Processor Unit)
based board with Wi-Fi connection. In this last case a tiny version of the Linux
OS is executed in the MPU, allowing the development of IoT solutions by using
high-level programming languages like Python, Ruby on Rails and Java.

1 www.particle.io
2 www.onion.io

Fig. 1 Vertical and Horizontal IoT Architectures. On top the Solair.io vertical monolithic
architecture that is typical of startups and SMEs, at the bottom an example of an IoT instance
of the very wide horizontal Microsoft Azure cloud.



4 Daniele Mazzei et al.

At MCU side, various software middle-wear able to run on various IOT hard-
ware platforms, like Micropython3 and Zerynth4 VM (Formerly Viper VM), have
been recently developed. Micropython is a Python interpreter executable by MCUs
that allows a quick and easy development of embedded applications in Python lan-
guage. Micropython scripts can be directly written on the board’s serial port ter-
minal giving developers the possibility to easily test embedded devices features and
peripherals from a serial port emulated terminal console. The authors themselves
have developed in 2014 VIPER (Viper is Python Embedded in Realtime)[15], a
cross-platform Virtual Machine for MCUs that allows programming in Python
language applications for MCU devices with real-time capability and with a very
tiny footprint and low memory usage.

Within the described context, what is still missing to speed-up the development
of smart products for IoT is a fully horizontal, modular, scalable and versatile IoT
development stack. A system that can integrate the possibility to easily program,
with high level languages, embedded devices that are natively connected to cloud
based PaaS where data management modules, rule engines, data visualization tools
and mobile App connection libraries are integrated and ready to use.

3 Technical specifications of a horizontal stack for rapid IoT
prototyping

Hereinafter the problem is abstracted from real implementations and we try to
identify the technical and architectural requirements of a horizontal stack for quick
prototyping of IoT solutions and smart products. With reference to figure 2 going
from bottom to top, and on the basis of the benchmark reported in [16], Technical
Specifications (T.S.) and Design Requirements (D.S.) are here listed:

T.S. 0: Device Hardware layer. The stack has to be designed in order to
guarantee an easy access to both boards (MCU and MPU) and sensors/actuators.
In the case of quick prototyping every obstacle in choosing the hardware must
be avoided. T.S.0 is more a prerequisite than a specification but constitutes the
baseline for all the following T.Ss..

T.S. 1: Device Software layer. A multi-threaded Real-Time Operating Sys-
tem (RTOS) for embedded controllers allows users to easily manage the RT as-
pects of the device software application (embedded application), while a Virtual
Machine or middlewear, that runs on top of the RTOS, allows users to program
MCUs and MPUs in high level scripting languages (like Python, Javascript, Lua,
etc.) thus increasing the re-usability of the code. The introduction of an high-level
programming language doesn’t have to interfere with the real-time and low-power
capability of the system that are mandatory for industrial and professional IOT
scenarios. In case of use of an MPU based board, the Linux OS can be installed
allowing the use of high level languages. However, MPUs are not suitable for bat-
tery powered smart product due their intensive power consumption. Moreover,
real-time features can’t be always guaranteed by MPUs. For this reason, here-
inafter the paper will focus on MCUs.

T.S. 2: Device network layer. This layer enables the co-existence of both
hardware and software elements. Devices connectivity to the network is provided

3 www.micropython.org
4 www.zerynth.com



A Full Stack for Quick Prototyping of IoT Solutions 5

through network hardware units (WiFi, LAN, Cellular, etc.) and their related
drivers. At a practical level the device network layer must support TCP and UDP
connections and higher level protocols such as HTTP and HTTPS. Moreover,
messaging protocols such as MQTT, CoAP etc. need also to be supported to
allow a quick connection with third party clouds. Finally, this is the layer where
other non-internet connections like the recently developed Low Power Wide Area
Network (LPWAN)[17] (e.g. LoRa and Sigfox) are managed.

T.S. 3: Cloud network layer. The devices have to be easily manageable
and the gathered data organized and stored on the cloud. Therefore a cloud based
device manager, a data collection engine and a data storage must be available.
This layer need to be easily customizable to allow the creation of data pipelines
that will feed the higher levels of the cloud infrastructure.

T.S. 4: Cloud application layer. The real cloud applications and logic
are implemented in this layer. Here engines for data mining, rule execution and
data context analysis need to be instantiated. This layer need to be customizable
by using high-level languages allowing an easy and quick definition of the cloud
applications, logics and services.

T.S. 5: Business Intelligence layer. The end users finally need an effec-
tive way to see the data and to analyse them. A set of tools for the acquisition
and transformation of raw data into meaningful and useful information is usually
adopted to quickly provide synthetic information and ad hoc reports. Moreover, in
a higher and higher connected world, a mobile App for easily discover, connecting
and control all the IOT devices is mandatory.

D.R. 1: Developer friendly. From a developer point of view, a cross-platform
Integrated Development Enviroment (IDE) with the possibility of managing all
the above mentioned Device’s layers in a “plug and play” approach would allow
developers to use their own working station without spending time with the in-
stalling and configuring of multiple dedicated tool-chains (compilers, IDEs, and
board specific tools).

D.R. 2: Mass production scalability. A quick prototyping software tool for
embedded systems should enable to switch from the prototype to the final indus-
trial version as well as easily change the prototyping hardware with a production
oriented solution. Indeed, the system needs to include batch production tools like
batch programming of devices and production analytics.

D.R. 3: Secure and Reliable by Design. A product-oriented development
framework needs to guarantee the design of smart devices that will be secure
and reliable by definition. Elements and infrastructures aimed at guarantee tam-
per and hacking resistance[18] can enable the devices’ security since the design
and prototyping phases. Moreover, being the design process oriented to the mass
production, the framework has to ensure the tracking of the produced devices in
order to avoid frauds at the production. In order to guarantee high security and
reliability the system need also to be compliant with real-time specification and
support low power features that are both mandatory in industrial, professional
and commercial IOT scenarios.

D.R. 4: Native support for mobile applications In order to be defined
as “Smart”, a product need to be coupled with a multi-platform mobile App that
allows users to easily interface with the devices, thus enabling different services and
actions [9]. The coding of such App should be based on multi-platform languages,



6 Daniele Mazzei et al.

Fig. 2 Typical IoT Architecture. Data are collected at device level by means of sensors,
streamed to the network by using different hardware and protocols while locally elaborated by
the MCU thanks to the embedded application. On the Cloud side, data are stored, analyzed
and reported by means of dedicated business intelligence engines and reporting interfaces.

avoiding the developers to re-implement the same App for each mobile platform
available on the market.

4 The Zerynth Stack

This section introduces a full stack component solution for embedded devices
(MCU only) going from cross-platform programming of the firmware to cloud
data visualization, analytics and mobile integration. This architecture has been
designed to be as modular and flexible as possible by allowing (i) a significant
freedom in the choice of MCU based boards, sensors, actuators, real-time oper-
ating systems, and (ii) a seamless integration with third-party cloud based PaaS
[15].

The presented architecture has been designed in order to become the core of the
Zerynth solution that is represented in Figure 3. In this section the various com-
ponents of the Zerynth Stack are described highlighting their links with the above
mentioned Technical Specifications (T.S.) and Design Requirements (D.S.):

Internet Connected Devices are physical devices based on MCU that can
be programmed with Zerynth in a cross platform manner using the Python pro-



A Full Stack for Quick Prototyping of IoT Solutions 7

Fig. 3 The Zerynth Stack

gramming language. These devices are typically endowed with sensors and ac-
tuators that can be easily accessed and managed using the high-level Python
libraries provided by Zerynth (T.S.0 and T.S.1). Zerynth also supports TCP and
UDP connections, allowing the use of HTTP and HTTPS protocols if the specific
microcontroller has enough resources (memory) to run cryptography. Moreover,
various network high-level communication protocols like MQTT and COaP are
also supported and used as transport technology for the connection to third party
clouds and PaaS. Zerynth also provides a generic cloud connector library written
in Python that can abstract the details of connecting to a particular cloud service
by exposing a unique cloud interface (Microsoft Azure, Amazon Web Services,
IBM Bluemix, Google IOT and Ubidots are already supported) (T.S.2).

Non-Internet Connected Devices are physical devices that are not directly
connected to the Internet via LAN or WiFi as they are endowed with other data
connections like: ZigBee, LoRa, Sigfox, Z-Wave and similars. The Zerynth socket
library allows data exchange using high-level protocols regardless the underneath
connection. For this reason, non-Internet connected devices can stream and receive
data using the same approach used by the Internet connected objects (T.S.0 and
T.S.1). Moreover, a Zerynth Internet connected device can act as a gateway for
non-Internet connected devices acting as a bridge between the Internet and the
non-Internet networks(T.S.2).

Zerynth Virtual Machine is a real-time operating system for microcon-
trollers coupled with a set of software layers aimed at executing applications pro-
grammed in Python and in C on the embedded device’s MCU. The Zerynth VM
supports multi-threads, exceptions and many other features typical of high-level
programming languages. However, the RTOS also allow fast and time constrained
routines to be executed.These features together with the cross-platform compati-
bility allow the reuse of code that can run on a wide range of different devices with-
out modifications. Moreover, by using the Python language running on a Zerynth
VM, the firmware programmer can focus more on the firware behaviours than on
the complexities of the embedded low level code development (T.S.1).



8 Daniele Mazzei et al.

Zerynth Advanced Device Manager is the cloud frontend towards the
connected devices. The Zerynth Device Manager (ZADM) allows the management
of devices by means of persistent bidirectional TCP connections. The device man-
ager is engineered to support thousands of opened connections both to gather
data and to send commands to connected devices or group of devices. The ZADM
is also configurable to integrate devices without Internet connection capabilities,
that can access the ZADM via an IOT gateway (T.S.3). Devices communicate
with the ZADM via TCP connections over a secure channel (TLS 2.1) exchang-
ing messages in JSON format. To ease the discovery and deployment phase, each
device identifies itself with the ZADM using a one-time security token derived
from the device micro-controller unique identifier. Depending on the desired de-
ployment flow, the device can store a client TLS certificate to authenticate itself
to the ZADM upon the first connection or can receive such certificate in exchange
of the one-time security token. The choice of the deployment protocol depends
by security requirements and by type of hosting (described below) used for the
ZADM.

Through the Zerynth ADM it is possible to discover Zerynth connected objects
with various levels of security and credentials associated with specific users or
groups of them. The ZADM also provides to connected devices a periodic update
that allows all the embedded units to be synchronized with the ZADM timestamp.
Once received, the ZADM timestamp is used to set the real-time clock of the de-
vices MCU and then used for correcting clock skewing and time tagging of the
outcoming messages.

The Zerynth ADM can run on any Virtual Private Servers (VPS) service
through Docker5, allowing Over-the-Air updates of the Zerynth firmware (Byte-
code) and/or of the Zerynth Virtual Machine. The ZADM has been designed in
order to be deployed as a Docker container as well as a cloud microservice [19].
This allows an easy integration of the ZADM in cloud services where also security
dedicated services like Blockchain [20] interfaces are located. In particular, the in-
tegration of the ZADM with a blockchain network would allow to certify the data
collected and received by the devices making the IoT implemented architecture
tamper proof and less vulnerable to hacking [21] [22] (D.R.3).

Device data received by the ZADM are then forwarded to third party clouds
data stream processors using queue system like AMQP6, RabbitMQ7 or similar
data ingestion protocols. This allow an easy integration with all the current avail-
able cloud based platform as a service architectures where event processors and
data storage services are typically included.

Zerynth Studio is the integrated development environment (IDE) of the
Zerynth Stack. It is a browser based IDE that runs on Windows, Linux and Mac.
Through Zerynth Studio all the supported boards can be managed and the cor-
responding application developed in Python 3 language. Applications developed
with Zerynth Studio can be saved locally or synced with users private and public
GitHub repositories8. Zerynth Studio also includes a Package Manager (ZPM) for
the easy installation and publication of libraries (D.R.1).

5 www.docker.com
6 https://www.amqp.org/
7 https://www.rabbitmq.com/
8 https://www.github.io/



A Full Stack for Quick Prototyping of IoT Solutions 9

Zerynth Uplinker is a component of the Zerynth Studio that allows uplinking
Python applications onto the MCU via USB or JTAG connections. Over-the-Air
uplink is also possible by means of the Zerynth ADM. Moreover, the Zerynth
Uplinker is also available in a mass-production version that allows the flashing
of Zerynth applications on multiple devices by using in-line programming facili-
ties (D.R.2) (see figure 4). Moreover, since every Zerynth VM created is tied to
the microcontroller unique identifiers (UID), Zerynth uplinker allows for firmware
tampering protection (i.e. the VM will run only on the microcontroller with the
specified UID) and for hardware and assets tracking, making the silicon vendor
aware of the final use of the distributed microcontrollers (D.R.3).

Zerynth API Zerynth ADM services can be accessed via a generic outbound
API to enable easy integration of external services. Push notifications and backend
API for data monitoring and device control are one of the possible uses. The
Zerynth API can be used for linking the Zerynth powered devices to other cloud
services making the Zerynth Stack agnostic towards other SAS and APIs (T.S.4
and T.S.5). The Zerynth API makes it possible to store devices’ collected data on
the preferred cloud or local database, or alternatively to push data into analytics
pipelines and manage them through dedicated rule-engines.

Mobile SDK a particular instance of the Zerynth API, configured as a back-
end API, is used in the Zerynth mobile SDK that allows fast development of mobile
apps integrated with the Zerynth cloud (D.R.4).

Zerynth APP is a demo app based on a minimal set of features exposed by
the Zerynth Mobile SDK. It is a ready to use App that acts as an interface for all
the objects running Zerynth VMs. The Zerynth App just needs to be installed on
a smartphone and/or tablet running Android or iOS. When launched it discovers
all the Zerynth devices available on the local network or associated to the current
user by means of the Zerynth ADM and Zerynth Mobile SDK. When one of them
is selected by the user, the App becomes its interface. Zerynth App interfaces are
based on HTML5 templates that users can select and edit through the Zerynth
IDE and link them with specific functions of the Zerynth Python scripts. In this
way there is no need to write any iOS or Android code. Device gathered data can
be easily visualized on the Zerynth App HTML5 rendered interface while Zerynth
device control function can be linked with the HTML5 interface buttons or other
control elements. The Zerynth app also allows the triggering of iOS and Android
native notifications that are shown on the user mobile device also if the App is
closed (D.R.4). Moreover, templates developed for the Zerynth App can be also
rendered in a common web-browser, thus empowering Zerynth devices also with a
web interface.

4.1 Observations concerning the stack

It is worth noting that the bidirectional connection through the Zerynth ADM puts
a lot of processing load when it deals with hundreds or thousands of devices. Such
a choice could appear limiting when scaling. While having bidirectional persistent
connections is the most powerful feature of the device manager, the ”standard”
connect-send-receive-disconnect pattern is also supported. The IoT device can de-
cide the pattern. Persistent connections are easily managed with asynchronous



10 Daniele Mazzei et al.

Fig. 4 The Zerynth Design, Prototype and Deploy Workflow

frameworks (Zerynth is using Tornado9 at the moment) up to many thousands.
However, even if the objection of scalability is theoretically valid, the scalability
problem in the number of connected devices has a less relevant practical implica-
tions. In real-world IoT scenarios with millions of devices in the field, probably
the devices are fragmented in subsets, each one connecting to a different device
manager node. Such implementation includes a load balancing system taking care
of uniformly distributing the connections across available device managers. If more
device management nodes are needed, they can be dynamically added.

Regarding the cloud application components, the stack does not impose any
constraint on their placement. In particular, each component is shipped as a docker
image that can be easily configured and executed both in a managed instance or
in clustered mode for scalability purposes. This solution allows an easy and quick
integration of the Zerynth stack in any third party cloud based platform as a
service.

5 Use Case: the ROI Project

The Zerynth Stack has been instantiated for the implementation of the ROI (Re-
frigeration On Internet) smart product that represent a real-world scenario on
which the versatility of the implemented stack is highlighted.

ROI is an easy to install and program monitoring and control unit for the
refrigeration sector that can be installed on both old and modern commercial re-
frigeration systems and cooling units. ROI includes a end-user and a technician
dashboard that allows data visualization and fridge control parameter setup to-
gether with a dedicated reporting section aimed at generating fridge statistics and
normative reports. ROI project is a typical business case where the identifica-
tion of a ready-to-use monolithic solution for the quick prototyping of the MVP
(Minimum Viable Product) is very complex. This is mainly due to the need of a
dedicated hardware unit able to monitor and interact with a wide range of different
systems made of both old and modern refrigerators.

9 http://www.tornadoweb.org



A Full Stack for Quick Prototyping of IoT Solutions 11

The ROI MVP set of features can be summarized in the following list: [F.1]
A Device capable of reading sensor values and sending them through a wireless
connection; [F.2] A Device Manager aimed at handling and monitoring the devices
status; [F.3] A Context Broker aimed at managing the data packages sent by the
devices; [F.4] An Event Processor aimed at controlling the data packages and
eventually notify a non correct status of the devices; [F.5] A Database aimed at
storing all the information coming from every component of the tool-chain that
needs to save data; [F.6] A Data Viewer aimed at showing and reporting the
data stored in the database in a user comprehensive way (such as charts, tables,
graphs).

These features have been enabled by acquiring the following fridge data:

Tr refrigerated room temperature (Degree Celsius);
Hr refrigerated room humidity (Relative Humidity Percentage);
Tev evaporator temperature (Degree Celsius);
Ten environmental temperature (Degree Celsius);
Ds door status (open/closed) (boolean);
Dt door opening time (seconds);
Cs compressor status (On/Off) (boolean).

5.1 Hardware and software Setup

5.1.1 Sensors, Connection Peripherals and Microcontroller board

ROI MVP electronic control board has been based on the Quail board produced by
Mikroelektronika10 that mounts a STM32 Cortex M4 MCU and has 4 mikroBUS
sockets for the connection of external modules. The WiFi3 Mikroe Click based on
the ESP8266 system on chip module has been used as WiFi connection module.
ROI temperatures probes have been based on the DS18B20 digital temperature
sensors that provide pre-calibrated 12-bit temperature readings over 1-Wire inter-
face in the range [−55◦C − +125◦C] with an accuracy of ±0.5◦C. For the inter-
facing of the 1-Wire probes with the Quail board the I2C 1-Wire click based on
the DS2482-800 bridge has been used.

5.1.2 Embedded and Cloud Software

The entire ROI control unit embedded application has been programmed with
only 300 lines of Python 3.4 using the Zerynth Studio and the Zerynth Virtual
Machine All the drivers required by the external hardware modules and sensors
were already available on the Zerynth Package Manager as free Python libraries.
The ROI IoT Cloud architecture has been based on an instance of the Zerynth
stack linked with various FIWARE Cloud11 generic enablers.

The Zerynth ADM has been used for the management [F.2] of the various
fridge monitoring units [F.1]. The control unit has been programmedin in order
to send the Above mentioned fridge data every minute to the ZADM using a JSON
packet.

10 www.mikroe.com
11 www.fiware.org



12 Daniele Mazzei et al.

Fig. 5 The Zerynth Stack instantiated for the ROI Architecture

The ORION Context Broker FIWARE generic enabler has been used for the
management of the devices data flow linking it to the Zerynth Advanced Device
Manager via Zerynth API [F.3]. CEP Context Event Processor from Fiware has
been used for the analysis of fridge’s data in real-time and as events/alarms trigger.
The ROI cloud architecture has been designed in order to be very versatile mak-
ing it easy to adapt also to other industrial data gathering scenarios by means of
a processing rule-set redesign [F.4]. SPAGOBI Business Intelligence engine has
been used as data visualization engine and reporting interface [F.6]. Finally, data
received from ZADM have been also stored in parallel on a MongoDb12 database
by means of a custom Python module connected to the ZADM via Zerynth API
[F.5]. The above mentioned modules and software have been instantiated on a
cloud architecture by encapsulating them in different Docker containers.

5.2 Test and Results

this section has been added during the review process
The ROI system has been installed in two pilot scenarios. The two pilot use

cases have been selected in order to test the system in different commercial targets
with different operational routines and environmental parameters. The first instal-
lation has been done on a meat transformation and supply company where various
large (around 30-40 square meters) refrigerated rooms are used for the storage and
the transformation of meat quarters. This installation allowed testing the system
in an industrial environment where environmental condition are very aggressive
and dynamic and where daily routine and operations can seriously stress the ROI
hardware and setup. In this facility one device has been installed for the monitoring
of a 30 square meteres refrigerated room. The second installation has been done
on a typical Italian restaurant located on a very popular touristic location (Elba
Island) where two ROI units have been installed for the monitoring of a fridge and
a freezer dedicated to the storage of fresh local fish. In this context, refrigerators
have been used with a daily routine that is strongly influenced by the weekly cycle

12 www.mongodb.com



A Full Stack for Quick Prototyping of IoT Solutions 13

of touristic income but the environmental conditions are less aggressive than in
the meat transformation facility.

The three installed devices has been left in place for 3 months and only few
disconnections due to problem with the companies Wi-Fi networks have been
recorded (see figure 6 where data on right side are missing). Alarms for over range
temperatures have been correctly fired and notified via email to the companies’
managers. The cloud system has been also configured for the generation of weekly
temperature logs that have been formatted according with the HACCP (Hazard
analysis and critical control points)13 regulation guidelines (see figure 7) and used
by the managers for their declarations.

Fig. 6 The ROI fridge monitoring dashboard reporting data of the meat processing facility
monitored room.

6 Conclusion

The paper presents an approach for the fast prototyping of IoT devices through a
stack that enables the development process from the hardware layer to the cloud
services. The advantages of programming with this approach include: (i) Coding
in Python or Hybrid C/Python with a multi-threaded real-time OS that requires a
footprint of just 60−80k of Flash and 3−5k of RAM; (ii) Development of flexible,
scalable and customizable IoT solutions with reduced development time and high
reliability; (iii) Cloud connection with the PaaS that best fit with technical tech-
nical and business requirements of the industrial scenario; (iv) Code reuse from
prototype to industrial-grade solutions.
The solution has been successfully applied to a real industrial application: an IoT

13 https://www.fda.gov/Food/GuidanceRegulation/HACCP/



14 Daniele Mazzei et al.

Fig. 7 HACCP report generated by one of the devices installed at the restaurant.

monitoring system for industrial refrigeration presenting characteristics of mod-
ularity and scalability that could not be reached with the typical IoT platform
described in section 2. Even if several elements of the stack have already been de-
veloped, future works will be oriented to (i) extend the number of supported RTOS,
MCU architectures and boards, (ii) extend the device and cloud network facili-
ties to low-range and many other communication protocols, (iii) improve the stack
with a native connection to decentralized security technologies such as blockchains
[23] and other cyber-security infrastructure, (iv) develop new sensors, actuator and
industrial protocol interfacing libraries.

Sometimes, however the choice of the programming language mainly depends
on the language the programmer prefers rather than on other parameters (reusabil-
ity and readability of the code, short developing time, scalability of the solution,
etc..). Conversely, enterprises are looking for tools able to reduce the development
time and time-to-market and to make microcontrollers programmable by people
with no competences in assembler and C.
Future works are oriented also to measure the differences (in term of time, reusabil-
ity, etc..), if any, in the development of interconnected objects by using different
approaches: Zerynth, MicroPython, Micrium, and compare them with the classi-
cal developments in C/C++ and assembly. At present, various universities and re-
search centres are using Zerynth benchmarking it with respect to other approaches
while several companies choose Zerynth as their development tool for IoT prod-
ucts and are providing important market feedback and new requirements. In our
opinion, only such kinds of on-the-field measurements can provide a measurable
evidence of the real advantages introduced by the presented technology confirming
or refuting the presented hypotheses.

Acknowledgment

The authors thank the backers of the Kickstarter campaign who supported the
development of the Viper VM, the 7000 active users of Zerynth and the INCENCe



A Full Stack for Quick Prototyping of IoT Solutions 15

Acceleration program (Grant N.632852) for supporting the development of Refrig-
eration on Internet project.

References

1. R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: the internet of things
architecture, possible applications and key challenges,” in Frontiers of Information Tech-
nology (FIT), 2012 10th International Conference on. IEEE, 2012, pp. 257–260.

2. L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer net-
works, vol. 54, no. 15, pp. 2787–2805, 2010.

3. Y. Huang and G. Li, “Descriptive models for internet of things,” in Intelligent Control
and Information Processing (ICICIP), 2010 International Conference on. IEEE, 2010,
pp. 483–486.

4. T. Fan and Y. Chen, “A scheme of data management in the internet of things,” in 2010 2nd
IEEE InternationalConference on Network Infrastructure and Digital Content. IEEE,
2010, pp. 110–114.

5. Y. Huang and G. Li, “A semantic analysis for internet of things,” in Intelligent Compu-
tation Technology and Automation (ICICTA), 2010 International Conference on, vol. 1.
IEEE, 2010, pp. 336–339.

6. D. Mazzei, G. Fantoni, G. Montelisciani, and G. Baldi, “Internet of things for designing
smart objects,” in Internet of Things (WF-IoT), 2014 IEEE World Forum on. IEEE,
2014, pp. 293–297.

7. E. Ries, The lean startup: How today’s entrepreneurs use continuous innovation to create
radically successful businesses. Crown Books, 2011.

8. J. F. Krafcik, “Triumph of the lean production system,” MIT Sloan Management Review,
vol. 30, no. 1, p. 41, 1988.

9. C. Rowland, E. Goodman, M. Charlier, A. Light, and A. Lui, Designing Connected Prod-
ucts: UX for the Consumer Internet of Things. ” O’Reilly Media, Inc.”, 2015.

10. T. Yashiro, S. Kobayashi, N. Koshizuka, and K. Sakamura, “An internet of things (iot)
architecture for embedded appliances,” in Humanitarian Technology Conference (R10-
HTC), 2013 IEEE Region 10. IEEE, 2013, pp. 314–319.

11. S. Krčo, B. Pokrić, and F. Carrez, “Designing iot architecture (s): A european perspective,”
in Internet of Things (WF-IoT), 2014 IEEE World Forum On. IEEE, 2014, pp. 79–84.

12. P. Fremantle, “A reference architecture for the internet of things,” WSO2 White Paper,
2014.

13. J. Rouillard, “The pervasive fridge. a smart computer system against uneaten food loss,”
in Seventh International Conference on Systems (ICONS2012), 2012, pp. pp–135.

14. R. Quinnell, “Vertical vs. horizontal: Which iot model will thrive?”
http://www.embedded.com/electronics-blogs/other/4422131/Vertical-vs–horizontal–
Which-IoT-model-will-thrive-, 2013, accessed: 2016-09-01.

15. D. Mazzei, G. Montelisciani, G. Baldi, and G. Fantoni, “Changing the programming
paradigm for the embedded in the iot domain,” in Internet of Things (WF-IoT), 2015
IEEE 2nd World Forum on. IEEE, 2015, pp. 239–244.

16. J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis of internet-of-things
platforms,” Computer Communications, vol. 89, pp. 5–16, 2016.

17. M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-range communications in
unlicensed bands: The rising stars in the iot and smart city scenarios,” arXiv preprint
arXiv:1510.00620, 2015.

18. T. Xu, J. B. Wendt, and M. Potkonjak, “Security of iot systems: Design challenges
and opportunities,” in Proceedings of the 2014 IEEE/ACM International Conference on
Computer-Aided Design. IEEE Press, 2014, pp. 417–423.

19. D. Namiot and M. Sneps-Sneppe, “On micro-services architecture,” International Journal
of Open Information Technologies, vol. 2, no. 9, 2014.

20. M. Swan, Blockchain: Blueprint for a new economy. O’Reilly Media, Inc., 2015.
21. K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for the internet of

things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.
22. M. Crosby, P. Pattanayak, S. Verma, and V. Kalyanaraman, “Blockchain technology:

Beyond bitcoin,” Applied Innovation, vol. 2, pp. 6–10, 2016.
23. A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain model

of cryptography and privacy-preserving smart contracts,” in Security and Privacy (SP),
2016 IEEE Symposium on. IEEE, 2016, pp. 839–858.


