
Please cite the Published Version

Zheng, G, Wang, C, Shao, W, Yuan, Y, Tian, Z, Peng, S, Bashir, AK and Mumtaz, S (2021) A
single-player Monte Carlo tree search method combined with node importance for virtual network
embedding. Annales des Telecommunications/Annals of Telecommunications, 76 (5-6). pp. 297-
312. ISSN 0003-4347

DOI: https://doi.org/10.1007/s12243-020-00772-5

Publisher: Springer

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/626177/

Additional Information: This is an Author Accepted Manuscript of a paper accepted for publica-
tion in Annales des Telecommunications/Annals of Telecommunications, published by and copy-
right Springer.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1007/s12243-020-00772-5
https://e-space.mmu.ac.uk/626177/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines


A Single-Player Monte Carlo Tree Search Method Combined with Node 
Importance for Virtual Network Embedding

Guangcong Zheng1, * · Cong Wang1, *� · Weijie Shao1 · Ying Yuan1 · Zejie Tian1 ·
Sancheng Peng2 · Ali Kashif Bashir3,4 · Shahid Mumtaz5

Abstract As a critical technology in network virtualization,
virtual network embedding (VNE) focuses on how to al-
locate physical resources to virtual network requests effi-
ciently. Because the VNE problem is NP-hard, most of the
existing approaches are heuristic-based algorithms that tend
to converge to a local optimal solution and have a low per-
formance. In this paper, we propose a algorithm that com-
bines the basic Monte Carlo tree search (MCTS) method
with node importance to apply domain-specific knowledge.
For a virtual network request, we first model the embed-
ding process as a finite Markov decision process (MDP),
where each virtual node is embedded in one state in the or-
der of node importance that we design. The shortest-path al-
gorithm is then applied to embed links in the terminal state
and return the cost as a part of the reward. Due to the reward
delay mechanism of the MDP, the result of link mapping
can affect the action selected in the previous node-mapping
stage, coordinating the two embedding stages. With node
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importance, domain-specific knowledge can be used in the
Expansion and Simulation stages of MCTS to speed up the
search and estimate the simulation value more accurately.
The experimental results show that, compared with the ex-
isting classic algorithms, our proposed algorithm can im-
prove the performance of VNE in terms of the average phys-
ical node utilization ratio, acceptance ratio, and long-term
revenue-to-cost ratio.

Keywords Network virtualization · Virtual network
embedding · Reinforcement learning · Markov decision
process ·Monte-Carlo tree search · Node ranking

1 Introduction

Over the past three decades, the Internet has achieved in-
credible success in supporting a variety of network technolo-
gies and distributed applications. However, due to its multi-
provider nature, making changes to Internet architecture has
become increasingly difficult. Hence, network virtualization
has been proposed to allow multiple heterogeneous network
architectures to coexist on a shared physical substrate net-
work [1].

In network virtualization, the role of traditional Inter-
net service providers (ISPs) is separated into two indepen-
dent roles: that of infrastructure providers (InPs), who man-
age the physical infrastructure, and that of service providers
(SPs), who provide virtual network (VN) services using re-
sources from multiple InPs [2].

Efficient allocation and scheduling of physical resources
among multiple VN requests (VNRs) is crucial to maximize
the number of coexisting VNs, and to increase the utiliza-
tion and revenue of InPs [3]. As shown in Fig. 1, the virtual
network embedding (VNE) problem is to embed the nodes
and links of VNs into the substrate network in a way that
consumes the smallest amount of resources.
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Fig. 1 Virtual network embedding

VNE can be performed using exact solutions such as in-
teger linear programming (ILP) and mixed integer program-
ming (MIP) [4,5]. However, solving a MIP is known to be an
NP-hard problem [6]. Therefore, solution methods mainly
focus on heuristic algorithms [7]. The process of VNE is
usually divided into two stages: the node-mapping stage and
the link-mapping stage. Most heuristic algorithms use node
ranking-based approaches to solve the two stages separately
[8–12]. Node importance metrics are usually used in the
node-mapping stage to rank virtual and substrate nodes. Then,
the Dijkstra or multi-commodity flow (MCF) algorithm is
used in the link-mapping stage to embed links. However,
such uncoordinated two-stage embedding methods do not
take into account the relationship between the link-mapping
stage and the node-mapping stage. Meanwhile, the perfor-
mance of these algorithms relies heavily on the designed
node importance metrics.

Reinforcement learning (RL) is an area of machine learn-
ing (ML) that enables self-improving agents to learn from
interactions experienced in the environment to achieve a goal
[13]. The RL problem is usually formulated as a Markov de-
cision process, whose reward delay mechanism is suitable
for the delay-sensitive problems [14] such as VNE. Since
reinforcement learning is a type of unsupervised learning,
we can set the profit of the VNE result as its reward with-
out the need to manually mark large amounts of data. The
environment of the VNE problem is fully observable, deter-
ministic, and discrete, so it is easy for us to model the VNE
environment. Instead of separately solving two embedding
stages as most heuristic approaches do, we formulate a coor-
dinated two-stage-based MDP to relate the two stages. As a
methods of addressing MDPs with large state spaces, Monte
Carlo tree search (MCTS) does not need an explicit eval-
uation function like other tree search methods, such as A*
or IDA* [15]. It can use either light or heavy playouts. In-
stead of moving randomly in light playouts, domain-specific

knowledge may be employed as heuristics in heavy playouts
to influence the choice of moves [16].

At present, research using MCTS [17–19] to solve the
VNE problem is still in the minority. We attempt to com-
bine the basic MCTS with the domain-specific knowledge
in the VNE problem, as we think that this useful knowledge
will guide the search for an optimal direction. The node im-
portance used in node ranking-based approaches can be an
efficient way to incorporate the domain-specific knowledge
of the VNE problem, and none of these approaches [17–19]
have considered node importance. Therefore, in this paper,
instead of testing to determine which node importance met-
ric performs best, we focus on the problem of how to com-
bine node importance with the basic MCTS. Two ways of
utilizing node importance are proposed in our paper: de-
termining the embedding order of virtual nodes before the
MCTS and determining the probability of substrate nodes
to be selected during the MCTS. For virtual nodes, a sim-
ple node importance metric is used to apply the knowledge
of the local network resources. Specifically, the importance
of a virtual node is defined as the sum of the node’s CPU
requests and its adjacent link bandwidth. This means that
the agent will give priority to embedding the virtual nodes
that are considered more valuable, e.g., the ones requesting
more CPU and link bandwidth resources. This helps avoid
additional time complexity due to the numerous embedding
orders and can also speed up the search because the embed-
ding process will fail earlier if there exists no feasible solu-
tion in current situation. We only calculate the virtual node
importance for each virtual network once before starting the
MCTS. For substrate nodes, a node importance metric called
the minimum bandwidth consumption in theory is designed
to apply the knowledge of the topology of the substrate net-
work. If a selected substrate node leads to less bandwidth
consumption, it is considered more valuable, and the agent
should give priority to selecting it in the Expansion and Sim-
ulation stages of the MCTS.

The reward of the VNE problem is different from that
of two-player go games such as chess. This is because that
the VNE problem is not just about winning or losing. It is
more appropriate to view it as a single-player game where a
single VNE agent tries to maximize the revenue of embed-
ding VNRs. The reward in the VNE problem is the revenue
of a successful embedding, which may reach a large num-
ber instead of always lying in the range -1 or 1. Therefore,
we propose applying the single-player MCTS instead of the
basic MCTS. This is achieved by replacing the conventional
UCT (Upper Confidence Bound 1 applied to trees) with the
SP-UCT [20] (Single-player UCT) in Selection stage. The
added variance of the simulation results in SP-UCT is ex-
pected to guide the agent to search for a better direction than
the results of the UCT.



Then we will describe our approach to the VNE prob-
lem. We first transform the VNE problem into a model-
based reinforcement learning (RL) problem by formulating
the embedding process as a finite MDP, in which the agent
operates in the modelled simulation environment to obtain
rewards. In each state of the MDP, a substrate node is se-
lected, and one virtual node is mapped onto it. In the ter-
minal state, the shortest-path algorithm is applied to embed
links, and it returns the link embedding cost as one part
of the reward. Due to the reward delay mechanism of the
MDP, the result of link mapping can affect the node map-
ping stage, coordinating the two embedding stages. This im-
proves the poor performance caused by the separation of
the two related embedding stages of the VNE problem in
node ranking-based approaches. Before the MDP, we have
to determine the embedding order of virtual nodes instead
of using a random order. Otherwise, the time complexity
will be too high. Therefore, node importance metrics are
applied to rank virtual nodes in non-increasing order. This
means that we will prioritize embedding virtual nodes that
are considered more valuable. Then, a single-player MCTS
method for the VNE problem (VNE-SPMCTS) is used to
solve this coordinated two-stage-based MDP. Additionally,
the node importance of substrate nodes is applied in our
VNE-SPMCTS to expand the tree node according to the
guidance of domain-specific knowledge of VNE and to esti-
mate the values of the simulation more accurately. Our eval-
uation results are compared to those of one of the state-of-
the-art VNE algorithms, named MaVEn-S [17], which uses
a basic MCTS and the shortest-path link embedding method
to solve the VNE problem.

The remainder of this paper is organized as follows: In
section two, we review the related work on the VNE prob-
lem. A mathematical model for the VNE problem is estab-
lished in section three, including the network model and
problem formalization. In section four, a coordinated two-
stage-based MDP for the VNE problem is proposed. In sec-
tion 5, we propose a single-player Monte Carlo tree search
(SP-MCTS) approach combined with the knowledge of node
importance to solve the MDP of the VNE problem. In sec-
tion 6, we verify and analyse the per-formance of our pro-
posed algorithm. Finally, conclusions are drawn in section
7.

2 Related Work

The main purpose of VNE is to maximize resource utiliza-
tion under the premise of limited physical network resources
[3].

According to the mathematical models and methods used,
the optimization of VNE can be classified into three cate-
gories: exact, heuristic, and meta-heuristic solutions [21].

An exact solution [6] is the optimal solution to the VNE
problem. Concrete VNE exact solutions [4, 5] are usually
formulated in terms of optimization theory, such as integer
linear programming (ILP) and mixed integer programming
(MIP). For example, Chowdhury et al. [4] formulated VNE
as a MIP by introducing meta-nodes and relaxed the integer
program to obtain an LP formulation that could be solved in
polynomial time. Then, two new VN embedding algorithms
called R-ViNE (randomized VN embedding) and D-ViNE
(deterministic VNE embedding) were proposed. However,
due to the high computational complexity, such an exact
solution can not commonly be obtained in large-scale net-
works.

A heuristic solution method can find a good solution in a
large-scale network, and it is a trade-off between efficiency
and performance [7]. Most heuristic solutions [8–10] apply
node importance metrics to rank nodes in the node-mapping
stage and use the shortest-path or MCF algorithm in the link-
mapping stage to embed links. Inspired by PageRank, used
in the Google search engine, Xiang Cheng et al. [9] designed
a topology-aware node-ranking algorithm named NodeR-
ank, which is based on resource and topological attributes.
Two VNE algorithms were proposed: RW-MaxMatch which
maps virtual nodes to substrate nodes according to the rank-
ing and uses the shortest-path or MCF algorithm to embed
links, and RW-BFS which is a back-tracking VN embedding
algorithm based on a breadth-first
search.

Meta-heuristic solutions such as particle swarm optimiza-
tion [22], ant colony optimization [23], genetic algorithms
[24], and simulated annealing algorithms [25] can find near-
optimal solutions and improve performance by escaping from
local optima. For example, the authors of [26] combined
discrete particle swarm optimization (DPSO), simulated an-
nealing algorithms, and taboo-search technology to solve
the premature convergence problem. Then, they proposed
a VNE algorithm based on hybrid particle swarm optimiza-
tion.

In recent years, some works have begun to use reinforce-
ment learning (RL) algorithms to solve the VNE problem
[17–19, 27, 28]. In [27], a decentralized Q-learning based
algorithm was proposed to approximate the state-action val-
ues, which are used to select actions to allocate substrate
resources. At present, research using MCTS is still in the
minority. Haeri et al. [17] used a basic MCTS to solve the
MDP of the VNE problem. They proposed two algorithms
called MaVEn-S and MaVEn-M [17], respectively. MaVEn-
S employs the shortest-path algorithm in the link mapping
stage while MaVEn-M uses the multi-commodity flow al-
gorithm. Yao et al. [28] proposed an RL based dynamic at-
tribute matrix representation (RDAM) algorithm for virtual
network embedding, in which a substrate network is repre-
sented as a static matrix and can be dynamically updated.



Haipeng Yao et al. [19] combined MCTS with a policy net-
work to make node mapping decisions. They trained a pol-
icy network with a historical embedding solution for VNRs,
and then applied a policy gradient to achieve optimal embed-
ding automatically. However, none of these researchers have
combined MCTS with the knowledge of node importance,
which is widely used in node ranking based approaches to
rank nodes. A large amount of domain-specific knowledge
can be applied to calculate the importance of virtual and sub-
strate nodes. Therefore, an efficient way to apply domain-
specific knowledge is to combine node importance with the
basic MCTS. In this paper, we combine the basic MCTS
with node importance metrics in both the Expansion and
Simulation stages to improve the search efficiency.

3 Virtual Network Embedding Problem

In this section, a mathematical model is introduced for the
VNE problem, including the basic network model, problem
formalization, objective function, and performance metrics.

3.1 Network Model

3.1.1 Substrate Network

A substrate network (SN) is modelled as a weighted undi-
rected graph Gs=(Ns,Es,As), where Ns is the set of sub-
strate nodes, Es is the set of substrate links, and As is the set
of attributes of the substrate network.

In this paper, the dependencies such as memory of nodes,
storage of nodes, and delay of links are ignored and only the
CPU capacity and link bandwidth are considered. Each sub-
strate node ns ∈ Ns has a CPU capacity As

cpu(n
s) and each

substrate link es(ns
i ,n

s
j) ∈ Es between the substrate node ns

i
and ns

j has a bandwidth As
bw(e

s). Let Ps(ns
i ,n

s
j) denote the

set of all the paths ps between nodes ns
i and ns

j.

3.1.2 Virtual Network Request

Similar to a substrate network, a virtual network (VN) is
modelled as Gv=(Nv,Ev,Av), where Nv is a set of virtual
nodes, Av

cpu(n
v) denotes the CPU request of virtual node nv,

and Av
bw(e

v) denotes the bandwidth request of the virtual link
ev. In addition, a virtual network request (VNR) can be de-
fined as φ(Gv, td) ∈Φ , where td is the time duration that the
VN requests to stay in the SN, which is called the lifetime.

3.2 VNE Problem Formalization

When a VNR arrives, the SN should decide whether to ac-
cept or reject it. If the VNR is accepted, the resources it re-
quests should be allocated on the corresponding substrate

nodes and paths that the VNR is mapped onto. If there are
not sufficient physical resources available, the VNR should
be rejected or postponed. If a VNR leaves the substrate net-
work, the resources it occupied are released immediately.

The VNE problem can be defined as a mapping:

M : Gv(Nv,Ev,Av)→ Gs(Ns,Es,As), (1)

which can be divided into the following two stages: the node-
mapping stage MN and the link-mapping stage ME .

M = (MN ,ME) (2)

3.2.1 Node-mapping stage

The task of the node-mapping stage is to assign the nodes of
the virtual network to the nodes of the substrate network. It
is defined as a mapping:

MN : Nv→ Ns

∀nv ∈ Nv,∃ns ∈ Ns,MN(nv) = ns,
(3)

and should meet the following constraint:

Av
cpu(n

v)≤ Rs
cpu(n

s), (4)

where Rs
cpu(n

s) denotes the residual cpu resources of sub-
strate node ns.

For a VNR, different virtual nodes should be mapped
onto different substrate nodes; this is defined as

MN(nv
i ) 6= MN(nv

j),∀nv
i ,n

v
j ∈ Nv, i 6= j. (5)

3.2.2 Link-mapping stage

The task of the link-mapping stage is to map the links of a
virtual network to the paths of the substrate network . It can
be defined as a mapping:

ME : Ev→ Ps

∀ev(nv
i ,n

v
j) ∈ Ev,∃ps ∈ Ps,ME(ev) = ps (6)

and should meet the following constraint:

Av
bw(e

v)≤ Rs
bw(e

s),∀es ∈ ps, (7)

where ps is the path between substrate node MN(nv
i ) and

MN(nv
j) and Rbw is the residual bandwidth of the substrate

link es.
Since a virtual link can be embedded onto a substrate

path ps with several links, let hops(ps) denote the number
of hops of the substrate path, which can be defined as

hops(ME(ev)) = hops(ps) = |ps| . (8)



3.3 Objective Function

The revenue of a successfully mapped virtual network Gv is
represented by the total resources it demands.

Revenue(Gv) =
∑

nv∈Nv

Av
cpu(n

v)+
∑

ev∈Ev

Av
bw(e

v) (9)

The cost of the SN to sustain the virtual network Gv is
defined as:

Cost(Gv) =
∑

nv∈Nv

Av
cpu(n

v)+∑
ev∈Ev

Av
bw(e

v) ·hops(ME(ev)). (10)

We apply the score function from MaVEn-S [17]. The
score for a single VNR φ(Gv, td) is denoted by a function
Score().

Score(Gv) =

{
Revenue(Gv)−Cost(Gv) accepted
−∞ rejected

(11)

The goal of this paper is to maximize the above objective
function in the long run.

3.4 Performance Metrics

In this subsection, some metrics are introduced, which are
typically used to measure the performance of the VNE algo-
rithms.

3.4.1 Average physical node utilization ratio (AUR)

For the entire SN, let the ratio between the total CPU re-
sources used and the total CPU capacity of all physical nodes
represent the efficiency of SN utilization.

AUR(Gs) =

∑
ns∈Ns

As
cpu(n

s)−Rs
cpu(n

s)∑
ns∈Ns

As
cpu(ns)

×100% (12)

3.4.2 Acceptance Ratio (AC)

Let the ratio between the number of accepted VNRs |Φ ′|
and the total number of arriving VNRs |Φ | be denoted as
the acceptance ratio. It can also be seen as the probability of
successfully embedding a VNR.

AC(Φ) =
|Φ ′|
|Φ |

(13)

3.4.3 Long-term revenue to cost ratio (R/C)

The long-term R/C ratio [29] is usually used to quantify the
performance of the algorithm, and it can be defined as the
ratio between the long-term revenue and the long-term cost
of the SN.

The long-term revenue is defined as

lim
T→∞

T∑
t=0

Revenue(Gv). (14)

The long-term cost is defined as

lim
T→∞

T∑
t=0

Cost(Gv). (15)

Thus the long-term R/C ratio is defined as

R/C = lim
T→∞

∑T
t=0 Revenue(Gv)∑T

t=0 Cost(Gv)
. (16)

4 Formulate the VNE problem as a finite Markov
decision process

In this section, we first introduce the finite Markov decision
process. Then, we will formulate the VNE problem as a co-
ordinated two-stage-based MDP.

4.1 Finite Markov decision process

The reinforcement learning problem is a framework for prob-
lems that learn from interactions to achieve goals. The decision-
maker and learner together are called the agent. The things
the agent interacts with, including everything outside it, are
collectively called the environment.

A reinforcement learning task that satisfies the Markov
property [13] (that the effects of an action taken in a state de-
pend only on that state and not on the prior history) is called
a Markov decision process. It is a discrete time stochastic
control process. A finite MDP can be defined by a 5-tuple
(S,A, p(),R,γ) where:

– S is a finite set of possible states, where st ∈ S is the
state at time t

– at ∈A(st), whereA(st) is a finite set of available actions
in state st

– p(s′|s,a) is the state-transition probability to state s′ from
state s by taking action a

– rt ∈R⊂ R, is a numerical reward
– γ is the discount factor for reward propagation and satis-

fies 0≤ γ ≤ 1.



In a so-called episodic task, each episode ends in a ter-
minal state. If the sequence of rewards received after time
step t is denoted as rt+1, rt+2, rt+3, and etc., the expected
return Gt is defined by some specific functions of the reward
sequence. In the simplest case, the return is the sum of all
rewards accumulated so far and can be defined as

Gt =
T−t−1∑

k=0

γ
k · rt+k+1,T ∈ N, (17)

where T ∈ N is the final time step. The discount factor γ is
used so that the decision-maker tends to apply actions that
can obtain rewards in the short-term future rather than the
long-term future.

Given any state s and action a, the probability of each
possible pair of a next state s′ and reward r is denoted by

p(s′,r|s,a)=Pr{st+1=s′,rt+1=r|st=s,at=a}. (18)

Given the dynamics as specified by (18), the rest of the
information about the environment can be calculated, such
as the expected rewards for state-action pairs:

r(s,a) = E[rt+1|st = s,at = a]

=
∑
r∈R

r
∑
s′∈S

p(s′,r|s,a), (19)

the state-transition probabilities:

p(s′|s,a) = Pr{st+1 = s′|st = s,at = a}

=
∑
r∈R

p(s′,r|s,a), (20)

and the expected rewards for state-action-next-state triples:

r(s,a,s′) = E[rt+1|st = s,at = a,st+1 = s′]

=

∑
r∈R

rp(s′,r|s,a)

p(s′|s,a)
.

(21)

4.2 MDP of coordinated two-stage VNE

In this subsection, we will formulate a coordinated two-stage
VNE process as a finite MDP. The so-called coordinated
two-stage embedding is mainly achieved by the reward de-
lay mechanism of the MDP. The reward in the node-mapping
stage will not be returned until the completion of the link-
mapping stage, that is, until the entire mapping is completed.
In this way, the mapping result of the link-mapping stage
can affect the action selection process in the previous node
mapping stage.

Take the decision-making of VNE as the agent and the
substrate network, its resources, and its VNRs as the envi-
ronment. The VNE agent aims to satisfy a VNR by embed-
ding its virtual network into the substrate network. In the
MDP of the VNE problem, the state s at time step t can be
defined as

st = (Mt
N ,N

v
t ,N

s
t ), (22)

where Mt
N is the node mapping function at time step t, Nv

t
is the ordered set of residual virtual nodes at time t that are
requesting to be embedded, and Ns

t is the set of residual sub-
strate nodes at time t that are available to be embedded into.
At the first time step t0, the initial mapping function M0

N is
arbitrary.

Let T denote the final time step, where the value of T
is equal to the number of virtual nodes. At each time step
t ∈ [0,T −1], the VNE agent selects a substrate node ns

i that
satisfies the node mapping constraint in (5) and then takes
the action a(nv

t ,n
s
i ), where a(nv

t ,n
s
i ) means that the t + 1-th

virtual node nv
t in the ordered set Nv

t is mapped onto the
substrate node ns

i . After the virtual node nv
t is successfully

embedded, the game moves from state st to a new state st+1,
which is defined as

Nv
t+1 = Nv

t \{nv
t }

Ns
t+1 = Ns

t \{ns
i}

Mt+1
N = Mt

N ,M
t+1
N (nv

t ) = ns
i

(Mt
N ,N

v
t ,N

s
t )⇒ (Mt+1

N ,Nv
t+1,N

s
t+1).

(23)

However, the successful mapping of a single virtual node
cannot generate a reward, which means

r(st ,a,st+1) = 0,∀t ∈ [0,T −2]. (24)

If state s0 is not able to arrive at the terminal state sT , i.e.,
some virtual nodes cannot be embedded, the node-mapping
stage fails and leads to the rejection of the VNR.

If state s0 leads to a terminal state sT , the node-mapping
stage succeeds. Then, the VNE process enters the link-mapping
stage and uses the shortest-path algorithm to embed links. If
the link-mapping stage also succeeds, the VNR is accepted.
Otherwise, it is rejected or postponed. Ultimately, the VNE
agent returns the reward r calculated by (11) according to
the current embedding result and updates the expected re-
ward of previous states.

r(st ,a,st+1) = Score(Gv), t = T −1 (25)

As shown in Fig. 2, there is a finite and coordinated two-
stage based MDP that represents the process of embedding
VNR 1 into the substrate network in Fig. 1. Assume that the
order of virtual nodes is fixed as {nv

1,n
v
2}. In the initial state

s0, the agent randomly chooses an action a from the actions
set A(s), such as a0(nv

1,n
s
6). Then, state s0 goes to the next
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Fig. 2 A finite and coordinated two-stage based Markov decision process of VNE

state s1, where the virtual node nv
1 has already been embed-

ded into the substrate node ns
6. The transition from state s0 to

state s1 represents the successful embedding of virtual node
nv

1 and obtains a reward r(s0,a0,s1)=0. Then, in state s1, the
agent applies action a1(nv

2,n
s
5) to embed the virtual node nv

2
into the substrate node ns

5, and state s1 goes to the termi-
nal state sT . The arrival at sT represents the success of the
node-mapping stage, and then the embedding process moves
to the link mapping stage. The cost of this solution is calcu-
lated by a shortest-path algorithm and is returned as a part of
the reward r(s1,a1,sT )=Score(GV ). The simulation value is
then used to update the evaluation value of previous states.

5 Single-Player Monte Carlo Tree Search Combined
with Node Importance

At present, research using MCTS to solve the VNE problem
is still in the minority. Among these early studies [17–19],
none of them have combined MCTS with the knowledge
of node importance, which is widely used in node ranking-
based approaches to rank nodes. A large amount of domain-
specific knowledge can be applied to calculate the impor-
tance of virtual and substrate nodes. Therefore, an efficient
way to apply domain specific-knowledge is to combine node
importance with the basic MCTS. In this section, a basic
Monte Carlo tree search method is constructed to demon-
strate the general process of how MCTS solve the MDP of
VNE. Then, a refined Single-Player Monte Carlo tree search
combined with the node importance named VNE-SPMCTS
is proposed to achieve better performance. At the end of this
section, we present the pseudocodes of our proposed VNE-
SPMCTS.
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Fig. 3 Monte Carlo tree of the VNE problem

5.1 Basic MCTS to address the MDP

MCTS is a best-first search algorithm which iteratively em-
ploys stochastic simulations to achieve efficient searching
results in a tree. As shown in Fig. 3, the depth of a Monte
Carlo tree (MCT) is equivalent to the value of the final time
step T in an MDP.

Let xt denote the tree node at the t-th level of an MCT. It
can be defined as a 3-tuple xt = (st ,τ,Q), where st denotes
the state at time t in the MDP, τ denotes the number of times
that the node itself and its children have been visited (i.e.
number of iterations on this subtree), and Q is the sum of
the simulation values accumulated so far. In each search, the
best child node of x0 will be selected after I iterations. In
each iteration of a search, there are four stages: Selection,
Expansion, Simulation, and Backpropagation.

5.1.1 Selection

Generally, in an MCT, a tree node is expandable if it repre-
sents a nonterminal state and has unvisited children (i.e., it is
unexpanded). Starting at the root node x0, a child selection
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Fig. 4 Selection stage

strategy is recursively applied to descend through the tree
until the most urgent expandable node is reached, in a way
that balances between exploitation and exploration.

– Exploitation aims to select the node that leads to the
best results obtained so far.

– Exploration aims to explore relatively less promising
actions due to the uncertainty of the evaluation, since
these actions may later turn out to be better.

The first formula for balancing exploitation and explo-
ration in a game, propounded by Kocsis et al. [30], was
called Upper Confidence Bound 1 applied to trees (UCT).

Qi

τi
+C

√
lnτ ′

τi
(26)

– τi denotes the number of simulations for xi.
– Qi

τi
denotes the average value of the simulations.

– τ ′ denotes the number of simulations for the father node
of xi.

– C is the exploration parameter which theoretically equals
to
√

2 and in practice is usually assigned empirically.

A motivating example is shown in Fig. 4 to clarify the
mechanism of the Selection stage. The UCT values of node
x1 and x2 are 2.68 and 2.40 respectively according to (26).
Thus, in the Selection stage of this iteration, the algorithm
selects x1 as the most urgent expandable node in state s1.

5.1.2 Expansion

After the most urgent expandable node is determined in Se-
lection stage, the Expansion stage starts. The algorithm ran-
domly creates one or more child nodes and adds them to the
MCT.

As shown in Fig. 5, in Expansion stage, the algorithm
randomly chooses an action a from the untried actions set

!"

!# !$

!% !&

!' !(

)" * +

," * +

)# * -

,# * .

)% * !

,% * "

)& * #

,& * #

)' * /

,' * "

)( * $

,( * "

)$ * %

,$ * 0

!1
)1 * -

,1 * -

Fig. 5 Expansion stage
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Fig. 6 Simulation stagee

A(s1), where s1 is the state of tree node x1. Then, s1 changes
to s2 after applying action a. As a result, a new node x7 with
state s2 is generated and added to the MCT as the child of
x1.

5.1.3 Simulation

In the Simulation stage, a simulation is carried out from the
new node expanded in the Expansion stage until the end of
game according to the simulation policy (often using a ran-
dom rollout) to produce a simulation value Q. With a large
number of simulations, MCTS is able to calculate the ex-
pected estimate of each state.

As in the example shown in Fig. 6, a simulation value
Q = 1 is generated. This simulation value corresponds to
the reward function in the VNE problem.

5.1.4 Backpropagation

In Backpropagation stage, the simulation result Q is propa-
gated backward to update the states of the nodes that are in
the path from the newly expanded node to the root node. At
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Fig. 7 Backpropagation stagee

the same time, the visit times τ of nodes in this path are also
incremented. The updated values will be used in the next it-
eration to achieve more accurate estimation so as to gain a
better embedding result.

As shown in Fig. 7, the new information including the
simulation result Q = 1 and the increment of the visit times,
is added to all nodes on the path from x7 to x0. Thus, the
UCT values of these nodes are updated for the next iteration.

5.2 SP-UCT in the Selection stage

Notwithstanding the abovementioned basic MCTS, the VNE
problem is different from the normal two-player go-game
[31], in which the basic MCTS performs well. The VNE
problem is a single-player game, in which the VNE agent at-
tempts to maximize the Score() function mentioned in (11).
The main distinction between these types of games lies in
the range of values. In two-player games, the result of a
game is denoted by {loss, draw, win} and has the value {-
1,0,1}. The average score of a node always falls in [-1,1].
However, in single-player games, an arbitrary score can be
achieved that is not in a pre-set interval by definition. For
example, the score function of VNE mentioned in (11) falls
in (−∞,0]. Therefore, specifically so that MCTS can ad-
dress the VNE problem, we employ a variant UCT called
SP-UCT [20].

q+C

√
2lnτ ′

τi
+

√∑
(q−q)2 +D

τi
(27)

The first two terms come from the original UCT formula
mentioned in (26) to give an upper confidence bound for the
average game value q, where τi denotes the number of times
that the xi is visited and τ ′ denotes the number of times that
the father of xi is visited. For the VNE problem, the SP-UCT

adds a third term to represent a possible deviation of the
child nodes. The third term can be represented as

√
σ2 + D

τi
,

where σ2 =
∑

(q−q)2

τi
represents the variance of the simula-

tion results achieved so far in xi. The constant D is added
to ensure that the nodes that have rarely been explored are
considered to be uncertain.

5.3 Combining MCTS with node importance

By applying the domain-specific knowledge of VNE, we ex-
pect an improvement on both accuracy and search efficiency.
As in previous studies [8–12], applying node importance
metrics is an effective way to combine models with domain-
specific knowledge of the VNE problem. Therefore, in this
section, we aim to combine the basic MCTS with node im-
portance. Two ways of utilizing node importance have been
proposed: determining the embedding order of virtual nodes
before the MCTS and determining the probability of sub-
strate nodes to be selected during the MCTS.

5.3.1 Node importance metric for ranking virtual nodes
before the MCTS

Before using MCTS to solve the MDP, we have to fix the
order of the virtual nodes to be embedded. Otherwise, the
time complexity will be undesirably high. Instead of ran-
domly determining the order, we use the node importance to
rank the virtual nodes in a non-increasing order. This means
that the agent will prioritize embedding virtual nodes that
are considered more valuable. Inspired by the minimum re-
maining values (MRV) heuristic in CSPs(constraint satisfac-
tion problems), the virtual node that should be embedded
first is the one with the fewest legal values, i.e., the node
that requires a large number of resources. Since a node that
requires more resources will have fewer available substrate
nodes for embedding, the search will end sooner if it is not
determined to find a feasible solution. This helps to speed
up the search. In this paper, the importance of a virtual node
is related to the amount of resources it demands and is de-
fined as the sum of its CPU demand and its neighboring link
resources. For example, the node importance of virtual node
nv

i is defined as

I(nv
i ) = Av

cpu(n
v
i )+

∑
Av

bw(e
v(nv

i ,n
v
j)), (28)

where ev(nv
i ,n

v
j) is the edge between the virtual node nv

i and
its neighbouring node nv

j.
As our work mainly focuses on how to combine node

importance with MCTS, a simple node importance metric
for virtual nodes is designed, which considers the knowl-
edge of local network resources. The node importance I(Nv)



is calculated for ranking virtual nodes. In contrast to meth-
ods that rank substrate nodes before the search, we do not
apply ”large-to-large, small-to-small” embedding like the
node ranking method [9] does. In our method, the embed-
ding step is formulated as a finite MDP and is performed us-
ing MCTS. The ranking of virtual nodes in a search method
can be likened to the ordering of variables in CSPs, which is
used to speed up the search process.

5.3.2 Node importance metric for selecting substrate nodes
during the MCTS

In practice, it is profitable to reduce the overall resource con-
sumption by assigning devices under the same router to the
virtual network. Based on this prior experience, a new node
importance metric is designed.

When deciding which substrate node ns
i to use for em-

bedding the first virtual node nv
t (t = 0) of a virtual network,

we use the node importance metric I(ns), which is the sum
of the node’s remaining CPU capacity and its neighboring
link resources. Specifically, the node importance of substrate
node ns

i is defined as

I(ns
i ) = As

cpu(n
s
i )+

∑
As

bw(e
s(ns

i ,n
s
j)), (29)

where es(ns
i ,n

s
j) is the edge between substrate node ns

i and
its neighbouring node ns

j. This policy will help the agent
avoid wasting computation on trying those substrate nodes
that may not provide enough resources for the subsequent
link-embedding stage.

When deciding which substrate node ns
i to use for em-

bedding the virtual node nv
t (1≤ t < |Nv|), the node impor-

tance metric I(ns) is defined as

I(ns
i ) =

1
H(ns

i )

H(ns
i ) =

t−1∑
j=0

hops(p(ns
i ,MN(nv

j)))×Av
bw(e

v(nv
t ,n

v
j)),

(30)

where Av
bw(e

v(nv
t ,n

v
j)) denotes the bandwidth of virtual link

between the virtual nodes nv
t and nv

j, p(ns
i ,MN(nv

j)) denotes
the shortest path between the substrate nodes ns

i and MN(nv
j),

hops(p(ns
i ,MN(nv

j))) denotes the number of hops of this short-
est path, and H(ns

i ) denotes the minimum bandwidth con-
sumption if the substrate node ns

i is selected for embedding
the virtual node nv

t .
The hops of the shortest path between each pair of sub-

strate nodes are relative to the topology of the substrate net-
work only and can be calculated by the Floyd [32] algorithm
for one time after reading the initial substrate network. Thus,
the calculation of the substrate node importance will not lead
to a large increase in time complexity.

After the computation of the node importance for each
substrate node ns

i is finished, the VNE agent uses it to de-
cide on the best action a(nv

t ,n
s
i ). In each state s at time t, the

available action a(nv
t ,n

s
i ) is the action that maps the virtual

node nv
t onto substrate node ns

i under the premise that the
action satisfies the embedding constraints mentioned in (5).
Let σ(a) denote the priority of a, which corresponds to our
designed node importance metrics I for substrate nodes. It
can be defined as

σ(a(nv
t ,n

s
i )) =

I(ns
i )

I(ns
min)
≥ 1, (31)

where ns
min ∈ Ns denotes the available substrate node that

has the smallest node importance; this node satisfies

I(ns
min) = min(I(Ns)). (32)

The purpose of VNE is to reduce the consumption of the to-
tal bandwidth cost. The node importance for substrate nodes
can be applied in the Expansion or Simulation stage of MCTS.
In the Expansion stage, the node importance guides the agent
to apply the action (expand the tree node) that may lead to
less bandwidth consumption. In the Simulation stage, the
agent tends to estimate the expected value positively. This
can speed up the tree search and accelerate the process of
finding a near-optimal solution.

However, unlike most of the existing node ranking-based
approaches [8–10] that use deterministic ”large-to-large and
small-to-small” mapping, the node importance metrics of
substrate nodes in this paper are used as probabilities in
MCTS. Let P(a) denote the probability of selecting the avail-
able action a(nv

t ,n
s
i ) at time t. It can be defined as

P(ai) =
σ(ai)

α∑
a∈A(s)

σ(a)α ,∀ai ∈ A(s), (33)

where α is a scale factor designed to adjust the gap be-
tween different node importance values. If α > 1, it en-
larges the gap in the priority of action between different
node importance values. If α = 1, it does not adjust the gap.
If 0 < α < 1, it reduces the gap. Clearly, P(a) is a function
calculated from σ(a). It represents the probability of select-
ing action a according to its priority.

In this way, our algorithm can not only use the domain-
specific knowledge of the node importance to find a near-
optimal solution but can also use the characteristics of MCTS
to avoid local optima.

5.4 Algorithm

Since the environment of VNE is fully observable, determin-
istic, and discrete, the VNE environment is easy to model.
Thus, our proposed algorithm is a model-based reinforce-
ment learning approach, in which we formulate the VNE



problem to create a simulation environment so that we can
run our embedding in this virtual environment to obtain re-
wards. With the modelled environment, the agent can imag-
ine the future through numerous simulations instead of run-
ning in the real world. This allows our agent to learn much
more quickly and achieve better results. Our proposed VNE-
SPMCTS is also an on-policy RL approach, in which the
agent learns while acting. Given a substrate network and
a virtual network request, the agent tries to embed the vir-
tual network into the substrate network in an optimal way.
First, the agent builds a Monte Carlo tree by creating the
root node using the current condition of the substrate net-
work. For each substrate network whose condition is differ-
ent from that of the previous substrate network, we create
a new Monte Carlo Tree. In other words, an MCT is only
designed and trained to solve the problem of embedding a
specific virtual network into the substrate network in a spe-
cific condition. However, even in this case, our algorithm
still has better performance than traditional node ranking-
based methods. Instead of finding one self-considered op-
timal solution as traditional node ranking-based algorithms
do, MCTS-based methods search among several feasible so-
lutions to find a near-optimal solution.

Algorithm 1 VNE-SPMCTS
Require: a substrate network and a virtual network request
Ensure: a near-optimal solution of VNE
1: sort the virtual nodes Nv according to I(Nv)
2: create the initial state s
3: set the iterations number I for each tree search
4: while s is not the terminal state do
5: s′← the best next state calculated by SP-MCTS(s, I)
6: s← s′

7: end while
8: MN ← the node mapping result in the terminal state
9: ME ← the link mapping result obtained by Dijkstra

10: return (MN ,ME)

The pesudocode in Algorithm 1 outlines the details of
our proposed VNE-SPMCTS. Given a substrate network
Gs=(Ns,Es,As) and a virtual network request φ(Gv, td), the
VNE-SPMCTS is able to allocate the resources of the sub-
strate network Gs to the requested virtual network Gv=(Nv,Ev,Av)
for a time duration of td . The output of VNE-SPMCTS is a
near-optimal embedding solution represented as a mapping
function M=(MN ,ME), where MN denotes the node map-
ping solution and ME denotes the link mapping solution.

First, the virtual nodes nv are sorted according to the
node importance I(nv) in (28). The node importance will
decide which is the best virtual node to embed first and will
guide the tree to grow more towards proper branches with
solutions. The task of the Monte Carlo tree search method
is to select the best action a under the current state s. There-
fore, in each state st of the MDP formulated in section 4.2,

SP-MCTS shown in Algorithm 2 is used to build a Monte
Carlo tree, and the agent performs I searches in this tree to
decide the best action a(nv

t ,n
s
i ), where a(nv

t ,n
s
i ) means em-

bedding the virtual node nv
t into substrate node ns

i . The per-
formance of our algorithm can be improved by increasing
the number of searches I as well as the time consumed. Af-
ter applying the best action, the game moves from state st
to st+1. The algorithm repeats the above operations until the
state st reaches the terminal state sT , which represents the
success of the node mapping stage. Then, the shortest-path
algorithm Dijkstra is applied to finish the link mapping, and
to store the link mapping solution in ME . Finally, the near-
optimal embedding solution (MN ,ME) is returned as the out-
put of our proposed VNE-SPMCTS algorithm.

The pseudocode in Algorithm 2 outlines a single-player
Monte Carlo tree search method, whose task is to decide the
best action a under the given state st . First, the root node of
a Monte Carlo tree is created with the given state st and I
searches will be performed in this tree.

Algorithm 2 SP-MCTS(s, I)
Require: s is the current state in the MDP of VNE
Ensure: the best next state s′

1: create a tree node root with state s
2: while I > 0 do
3: node← Selection(root)
4: if node is expandable then
5: node = Expansion(node)
6: end if
7: reward← Simulation(node)
8: BackPropagation(node, reward)
9: I← I−1

10: end while
11: Among all the states of root’s child nodes, choose the state with

the highest exploitation value as the best next state s′

12: return s′

Next, we step into the details of one search. Each search
in an MCT consists of four parts: Selection with Algorithm
3, Expansion with Algorithm 4, Simulation with Algorithm
5, and Back-propagation with Algorithm 6.

Algorithm 3 Selection(x)
Require: the root node x
Ensure: the most expandable node
1: while tree node x is fully expanded do
2: x′ select the best child node according to UCT(x) or SP-

UCT(x)
3: x← x′

4: end while
5: return x

As shown in Algorithm 3, the agent traverses the tree
to find the best child node, where ’best’ is defined by the



Single-Player Upper Confidence Bound applied to trees (SP-
UCT) in (27).

Algorithm 4 Expansion(x)
Require: the most expandable node x
Ensure: x or a leaf node x′ expanded from x
1: s← the state in node x
2: A(s)← the untried action set in state x
3: a← an action from A(s) according to I(a)
4: x′←Move(x, a)
5: add x′ into the set of x’s child nodes
6: remove action a from A(s)
7: return x′

As shown in Algorithm 4, the leaf node x selected in
the Selection stage is not immediately expanded but waits
for the number of visit x.τ to reach a certain number (i.e.,
5). This avoids generating too many branches and decreas-
ing the search attention. At the same time, the evaluation
of a leaf node is more accurate when it is expanded. This
seems to be an implementation trick, but it is of great im-
portance for reaching a good solution. When the number of
visits to the selected node x is large enough, the agent cal-
culates the set of available actions A(s) under the state of
node x. Then, an action a(nv,ns) from the actions set A(s) is
chosen according to the node importance I(ns) we designed
in (29). After that, the agent uses Move(x,a) to apply action
a(nv,ns) to the state s of node x and obtain a expanded node
x′. The expanded node x′ is then returned as the output of
the Expansion stage.

Algorithm 5 Simulation(x)
Require: a leaf node x that is generated in Expansion stage
Ensure: the expected evaluation of the state in node x
1: while x.state is not the terminal state do
2: if there is no available action in x.state then
3: return -∞
4: else
5: s← the state in node x
6: A(s)← the untried action set in state x
7: a← an action from A(s) according to I(a)
8: x←Move(x, a)
9: end if

10: end while
11: s← the state of node x
12: r← evaluateReward(s)
13: return r

As shown in Algorithm 5, numerous simulations from
the current state s of node x to the terminal state are run in the
modelled environment. Then, the agent obtains the reward r
as the output of the Simulation stage, which is related to the
embedding cost in the link mapping stage.

Back-propagation, shown in Algorithm 6, uses the sim-
ulation reward r to update the estimation values of the states

Algorithm 6 Back-propagation
Require: the leaf node x and its reward r
Ensure: None
1: while x is valid do
2: x.τ += 1
3: add r into x.Q
4: x← the parent node of x
5: end while

that are on the path from the leaf node to the root node. Thus,
the embedding cost in the link mapping stage can affect the
action selection in the previous node-mapping stage. This
is the meaning of a coordinated two-stage-based algorithm
means.

Assume that the substrate network has n nodes, and the
current VNR needs m virtual links. In the node mapping
stage, most node ranking algorithms first compute the im-
portance of each substrate node and virtual node and then
rank the nodes separately. The time complexity of ranking
process is O(n lgn). According to the ranking result, these
algorithms embed nodes sequentially. In the link mapping
stage, the algorithms employ Di jsktra algorithm m times,
reaching a time complexity of O(nm lgn). Thus, a feasible
solution is obtained. The overall time complexity of these
node ranking algorithms is polynomial.

Compared to node-ranking algorithms that obtain only
one relatively good solution for a VNR, our VNE-SPMCTS
can obtain I feasible solutions for one node through I itera-
tions (I is a hyper-parameter that is pre-set manually). The
best one out of the I solutions is adopted. For a VN with n
nodes, the time complexity is O(Inm lgn).

Clearly, these node-ranking algorithms are approximately
I times faster than our algorithms, but our algorithm can ob-
tain much better solutions, which is worthwhile in practice.

6 Performance Evaluation

To verify the performance of our algorithm VNE-SPMCTS
proposed in this paper, our algorithm is compared with two
other VNE algorithms: VNE-UEPSO [33] and MaVEn-S
[17].

VNE-UEPSO is a typical meta-heuristic algorithm that
establishes an ILP model for the VN embedding problem in
which path splitting is unsupported, and it uses a unified en-
hanced particle swarm optimization (UEPSO) algorithm to
solve the model. The UEPSO is a variant of the discrete par-
ticle swarm optimization with a biased local selection strat-
egy for position initialization and update.

MaVEn-S is an MCTS based algorithm that formulates
the VNE process as a finite MDP. However, in MaVEn-S,
virtual nodes are in a random order and a basic MCTS with-
out any domain-specific knowledge is introduced to solve
the MDP.



6.1 Simulation Environment

The simulations are performed on two Intel Xeon E5-2640V4
CPUs with 64 GB RAM. All algorithms are implemented in
CloudSim 3.0.3 [34], which is a famous simulation platform
for cloud computing. A topology generator based on Java is
pre-programmed to randomly generate the topology of the
network. Most of the parameters are shown in Table. 1.

6.1.1 Substrate Network

The substrate topology has 64 nodes, and the CPU capacity
of each node is 10000 units. The bandwidth resource of each
substrate link is fixed as 10000 units. The link connectivity
of the substrate topology is set to 0.1.

6.1.2 Virtual Network

For each virtual topology, the connectivity probability is set
to 0.5, the number of virtual nodes is uniformly distributed
between 4 and 10, the bandwidth of each virtual link is uni-
formly distributed between 500 and 5000 units, and the CPU
request of each virtual node is uniformly distributed between
200 and 2000 units. For each VNR, its lifetime is uniformly
distributed between 200 and 1000 time units in CloudSim.

6.1.3 Simulation Procedure

The experiment is simulated in a total of 20000 time units,
where a time unit is determined by the simulated clock in
CloudSim 3.0. The number of VNRs that arrive per 50 time
unit is randomly uniform between 3 and 5. Then the agent
applies the algorithm to embed or reject each VNR. The
lifetime of a virtual network is randomly uniform between
200 and 1000. To guarantee fairness, for all algorithms, we
use the same sequence of VNRs. The acceptance ratio (13),
revenue-to-cost ratio (16), and average node utilization ratio
(12) are stored per 1000 time units to evaluate the perfor-
mance of the three algorithms.

In VNE-UEPSO [33], the size of the particle population
is set to 30. The stopping criterion is that either the num-
ber of iterative rounds exceeds 30 iterations or the global
optimal position has not changed during the previous eight
rounds. The setting of the other of parameters in our evalua-
tion are shown in Table. 1.

6.2 Experiments during time periods

In the simulation, we verify the performance of the three
algorithms with the typical VNE performance metrics dis-
cussed in Section III. The number of iterations for the MCTS-
based method is fixed at 15. Fig. 8 shows the average uti-
lization ratio of all substrate nodes calculated by (12). Fig. 9

Table 1 Parameters for simulation

Parameter Item Value
The total number of time units for simulation 20000
The number of VNRs that arrive per 50 time units 3-5
The number of nodes in the substrate network 64
The number of nodes in each virtual network 4-10
The connectivity probability of the substrate net-
work

0.1

The connectivity probability of the virtual network 0.5
The cpu capacity of substrate nodes 10000
The cpu capacity of virtual nodes 200-2000
The bandwidth capacity of substrate links 10000
The bandwidth capacity of virtual links 500-5000
The lifetime of a virtual network request 200-1000
C in SP-UCT 10000
D in SP-UCT 10000
The number of iterations per MCTS 15

shows the acceptance ratio of all substrate nodes according
to (13). Fig. 10 shows the long-term revenue to cost ratio
according to (16). Our results show that the MCTS based
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Fig. 8 Average physical node utilization ratio (AUR) over the time
periods

algorithms MaVEn-S [17] and our VNE-SPMCTS perform
much better than the DPSO based VNE-UEPSO in terms
of the average physical node utilization ratio, acceptance ra-
tio, and long-term revenue to cost ratio. The main reason is
that the VNE process of MCTS-based algorithms is formu-
lated as a coordinated two-stage-based MDP, which consid-
ers the connection between the separate node-mapping stage
and link-mapping stage. Due to the introduction of the SP-
UCT mechanism in the Selection stage and the node impor-
tance metrics used in the Expansion and Simulation stages
of MCTS, our proposed VNE-SPMCTS algorithm can uti-
lize the domain-specific knowledge and thus can further im-
prove the embedding performance.
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Fig. 9 Acceptance ratio over the time periods
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Fig. 10 Long-term revenue-to-cost ratio (R/C) over the time periods

6.3 Performance in different numbers of iterations

The second experiment tests the performance of the two
MCTS based algorithms MaVEn-S and VNE-SPMCTS un-
der the different numbers of iterations, which can be seen
as a kind of computational budget. The results are shown in
Fig. 11, Fig. 12, and Fig. 13.

The results in Fig. 11, Fig. 12, and Fig. 13 show that
the performance of both algorithms increases as the num-
ber of iterations increases. However, our proposed VNE-
SPMCTS algorithm can increase more quickly when the
number of iterations is small. We can observe that the per-
formance of our method in only 15 iterations is compara-
ble to that of MaVEn-S (the basic MCTS) in 100 iterations.
The performance of VNE-SPMCTS is also better than that
of the MaVEn-S algorithm when the number of iterations
is very large (i.e., when the number of iterations is larger
than 100). This means that our method can achieve the same
performance by using fewer computational resources. It also
shows that our added node importance in MCTS can guide

     5      15      30      50      100      250
number of iterations

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

av
er

ag
e 

ph
ys

ic
al

 n
od

e 
ut

ili
za

tio
n 

ra
tio

MaVEn-S
VNE-SPMCTS

Fig. 11 Average physical node utilization ratio (AUR) under different
numbers of iterations
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Fig. 12 Acceptance ratio under different numbers of iterations
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Fig. 13 Long-term revenue-to-cost ratio (R/C) under different num-
bers of iterations

the agent to search for a better direction earlier and can
speed up the search.



7 Conclusion

In this paper, we transform the conventional VNE problem
into an RL problem by formulating the embedding process
as a coordinated two-stage based MDP. Through the reward
delay mechanism of the MDP, the link mapping stage can
be associated with the node mapping stage. To solve this
MDP, we propose a single-player Monte Carlo tree search
approach combined with the node importance, where the
domain-specific knowledge is used in the Expansion and
Simulation stage to speed up the search and more accurately
estimate the expected value. Instead of testing which node
importance metric performs best, we focus on the problem
of how to combine node importance with the basic MCTS.
Two ways of utilizing node importance are proposed in our
paper: determining the embedding order of virtual nodes be-
fore the MCTS begins and determining the probability of
substrate nodes being selected during the MCTS. The evalu-
ation results show that our proposed VNE-SPMCTS outper-
form the typical meta-heuristic algorithm VNE-UEPSO [33]
and the MCTS based algorithm MaVEn-S [17] in terms of
the average physical node utilization ratio, acceptance ratio,
and long-term revenue-to-cost ratio.
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