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Abstract We characterize trade-offs between the end-

to-end communication delay and the energy in urban

vehicular communications with infrastructure assist-

ance. Our study exploits the self-similarity of the

location of communication entities in cities by modeling

them with a hyperfractal model which charaterizes the

distribution of mobile nodes and relay nodes by a fractal

dimension dF and dr, both larger than the dimension

of the embedded map. We compute theoretical bounds

for the end-to-end communication hop count consider-

ing two different energy-minimizing goals: either total

accumulated energy or maximum energy per node.

Let δ > 1 be the attenuation factor in the street,

we prove that when we aim to a total energy cost

of order n(1−δ)(1−α) the hop count for an end-to-end

transmission is of order n1−α/(dF−1), with α < 1 is a
tunable parameter. This proves that for both goals the

energy decreases as we allow choosing routing paths

of higher length. The asymptotic limit of the energy

becomes significantly small when the number of nodes

becomes asymptotically large. A lower bound on the

network throughput capacity with constraints on path

energy is also given. We show that our model fits

real deployments where open data sets are available.
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The results are confirmed through simulations using

different fractal dimensions in a Matlab simulator.
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1 Introduction

1.1 Motivation and Background

Vehicular communications, to other vehicles, to infra-

structure or to everything (V2X), are key components

of the 5th Generation (5G) communications. In cities,

with an ever increasing connectedness and complexity,

it is paramount to provide an effective integration of

vehicular networks within a complex urban environ-
ment. In addition, sensors allowing automated and

autonomous driving in such complex environments gen-

erate a huge amount of data demanding high bandwidth

and data rates [?]. All these needs require a careful

design for optimal connectivity, low interference, and

maximum security.

5G NR is essentially a multi-beam system, gener-

ated by millimeter-wave (mmWave) technology [?]. For

a long time these frequencies have been disregarded for

cellular communications due to their large near-field

loss, and poor penetration through common material,

yet recent research and experiments have shown that

communications are feasible in ranges of 150-200 meters

dense urban scenarios with the use of such high gain

directional antennas [?]. Meanwhile the embedding

space of vehicular networks leads mostly to a one

dimensional topology since roads are mainly built as

straight lines [?].

Given the numerous challenges of mmWave [?]

and the important place the vehicular communications
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hold in the new communications era, it cannot be

ignored that the effectiveness of the communications

are influenced by the environmental topology. Cars

are located on streets and streets are conditioned

by a world-wide common generic architecture that

has interesting features. One major feature of the

urban architecture that we exploit in this work is

self-similarity. A self-similar object, is an object in

geometry which shows strong similarity (either exactly

or approximately) with smaller parts of itself (i.e. the

whole has the same shape as one or more of the parts).

When the smaller parts are strictly identical with the

larger parts, the object is said to be a fractal.

Although being extensively studied in diverse re-

search fields such as biology and chemistry, self-similarity

has been only recently introduced in wireless com-

munication design and performance. Self-similarity is

present in every aspect of urban environment [?]. The

hierarchic organization with different degrees of scaling

of cities is a perfect illustration of the quasi fractal

structure of human society [?]. Figure ?? presents

a snapshot of the traffic in a neighborhood of Min-

neapolis. Common patterns and hierarchical organiz-

ations can easily be identified in the road traffic and

shall be further exploited in this paper.

Figure 1: Minneapolis traffic snapshot

In this paper, we exploit the “hyperfractal” model

introduced in [?,?] to capture the impact of the net-

work topology on the fundamental performance limits

of vehicular networks in urban settings. The model

consists of assigning self-similar traffic densities to city

streets at any scale, thus avoiding both the extremes

of regularity of the basic Manhattan grid and the

uniform randomness of Poisson point process. The

fitting of the model with traffic data of real cities

having been showcased in [?]. The hyperfractal model

is characterized by a dimension that is larger than the

dimension of the Euclidean dimension of the embedding

space, that is larger than 2 when the whole network lays

in a 2-dimensional plane as it is the case for city maps.

Previous results in [?] revealed that the number of

hops in a routing path between an arbitrary source-

destination pair increases as a power function of the

population n of nodes when n tends to infinity. How-

ever, we showed that the exponent tends to zero when

the fractal dimension tends to infinity. An initial obser-

vation for this model is that the optimal path may have

to go through streets of low density where inter-vehicle

distance can become large, therefore the transmission

could become expensive in terms of energy cost. Hence,

in this paper, we investigate the relationship between

efficient communications and energy costs.

1.2 Contributions and paper organization

Our goal is to characterize trade-offs between the end-

to-end communication delay and the energy in urban

vehicular communications with infrastructure assist-

ance in cities. We will consider the communication with

internal routing involving all mobile nodes considered

as mobile relays, and fixed relays in the infrastructure.

We initially consider that the relays are not connected

with an underground wired network (just beacon on

traffic lights) and only act as wireless relay between

mobile nodes. We will then compare with the case where

the relays are connected to an underground network.

Our first contribution is to give an accurate descrip-

tion of the hyperfractal distribution model in the more

general framework of stochastic geometry and point

processes.

Our main contributions are theoretical bounds for

the end-to-end communication energy and delay budget

as a function of the number of nodes and relays. We will

consider that the main source of energy consumption is

the packet transmission, and thus consider that other

minor energy costs such as the store and forward energy

cost at each relay are negligible value in comparison.

Note that our analysis displays the transmission cost

and the hop count, thus allowing to capture alternative

determination of energy costs in our framework and to

be adapted to various other scenarios. Each of these

parameters could be again split into various realistic

sub-parameters but while this would complicate the

analysis, it will not change significantly the orders of

our quantitative results.

More precisely, we consider two different energy-

minimizing goals: (i) total accumulated energy or (ii)
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maximum energy per node. We will prove that the

delay Dn, measured by the hop count for an end-to-end

transmission, is bounded by DdF−1
n O(ndF−1−α) where

α is a tunable constant less than 1 which also affects

the path energy En such that for the accumulated

energy path E
1/(δ−1)
n DdF−1

n = O(ndF−2) where δ > 1

is the attenuation factor of radio transmissions. For

the maximum energy path we have E
1/δ
n DdF−1

n =

O(ndF−2). In both cases the energy constraint tends

to zero when n tends to infinity.

Finally we will show that our model fits real de-

ployments where open data sets are available. The res-

ults are confirmed through simulations using different

fractal dimensions and path loss coefficients, using a

discrete-event simulator in Matlab.

The paper is organized as follows:

– In Section ??, we describe the hyperfractal geo-

metric model [?,?]. Initially, for the sake of the

explanation, via a model based on a grid map,

then by extending the model realistically by fitting

concrete data extracted from city maps. We end this

section by deriving some fundamental properties of

the archetypal model in the stochastic geometry

framework.

– In Section ??, we describe the physical models of

the telecommunication system over a city map and

in particular we address the energetic balance of the

ad hoc routing strategy between nodes.

– In Section ??, we list and prove our main results.

More particularly, we quantify the energy-delay

trade-off of the end to end communications between

mobile nodes. The result are given in order of mag-

nitude as function of the number of nodes n and the

intensity ρ of the fixed infrastructure. Importantly

we prove that for an end-to-end transmission in a

hyperfractal setup, the energy (either accumulated

along the path or bounded for each node) decreases

if we allow the path length to increase. We also prove

a lower bound on the network throughput capacity

with constraints on path energy.

– In Section ?? we compare the previous results with

a scenario where the hop by hop routing strategy is

replaced by the interconnection of the fixed relays

via an underground cabled network. In this case

we show that the underground network greatly

improves the performance: with the same number

of relays and bounded energy cost, the hop by hop

routing strategy requires a delay increasing in n1/2

while the underground network keeps it constant.

– Finally, Section ?? validates our analytical res-

ults using a discrete-time event-based simulator

developed in Matlab.

2 Related Works

Millimeter-wave is a key technological brick of the

5G NR networks, as foreseen in the ground-breaking

work done in [?] and already proved by ongoing de-

ployments. The research community has been already

investigating challenges that may appear and proposing

innovative solutions. Vehicular communications are one

of the areas that are to benefit from the high capa-

city offered by the mmWave technology. In [?], the

authors propose an information-centric network (ICN)-

based mmWave vehicular framework together with a

decentralized vehicle association algorithm to realize

low-latency content disseminations. The study shows

that the proposed algorithm can improve the content

dissemination efficiency yet there is no consideration

about the energy. The purpose of [?] is optimizing en-

ergy efficiency in a cellular system with relays with D2D

(device-to-device) communications using mmWave.

As mmWave is highly directional and blockages

raise concerns, the authors of [?] propose an online

learning algorithm addressing the problem of beam se-

lection with environment-awareness in mmWave vehicu-

lar systems. The sensitivity to blockages is generally

solved with the assistance of the relaying infrastructure.

The authors of [?] attempt to solve the dependency of

infrastructure for relaying in vehicular communications

by exploiting social interactions. In [?], the problem of

relay selection and power is solved using a centralized

hierarchical deep reinforcement learning based method.

Yet the authors use a simplified highway scenario, which

cannot scale up to a city structure.

Stochastic geometry studies have shown results on

the interactions between vehicles on the highways or in

the street intersections [?,?]. The work in [?] performs

statistical studies on traces of taxis to identify a

planar point process that matches the random vehicle

locations. The authors find that a Log Gaussian Cox

Process provides a good fit for particular traces. In [?]

the authors propose a novel framework for performance

analysis and design of relay selections in mmWave

multi-hop V2V communications. More precisely, the

distance between adjacent cars is modeled as shifted-

exponential distribution.

Self-similarity for urban ad hoc networks has been

introduced in [?,?], where the hyperfractal model ex-

ploits the fractal features of urban ad hoc networks

with road-side infrastructure. In [?], we presented

an analysis of the propagation of information in a

vehicular network where the cars (the only commu-

nication entities) are modeled using the hyperfractal

model. The setting is different to this paper: without

relays at the intersections the network is disconnected
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but becomes connected over time with mobility. The

packets are being broadcast and results on typical

metrics for delay tolerant networks were presented

without investigation on power or energy. The study in

[?] provides results on the minimal path routing using

the hyperfractal model for static nodes to model the

road-side infrastructure that assumes an infinite radio

range, creating concerns for allowed transmission power

and network energy consumption. In contrast, in this

paper, we add constraints on these quantities to provide

insights on the achievable trade-offs between the end-

to-end transmission energy and delay.

3 Geometric Model

In appendix we give a table summarizing our main

notations

3.1 Hyperfractal distribution of street traffic in a city

archetypal model

In this model we initially consider that the city map

is a unit square supporting a network of North-South

streets intersecting a collection of West-East streets.

Thus imagine a city map organized like a Manhattan

map with the difference that the network is dense and

that the traffic density varies to sum to finite value even

if the number of streets is infinite.

As we will show later, the procedure of fitting traffic

maps to hyperfractals does not require grid-like struc-

tures of cities. The necessary condition is only that the

increasing cumulated distance with decreasing density

(i.e., the hyperfractal model makes no assumption on

the geometric shape but only on the scaling of the

population density).

If we rank the streets by traffic density the latter

will decays in k1−dF where k is the rank of the street.

In the archetypal model displayed in Figure ?? the

central cross is assigned at level 0. The other streets will

be assigned at higher levels. For H ≥ 0 there will be

2H North-South streets at level H and and 2H West-

East streets at level H. The density of mobile users on

a street of level H will be

λH =
p

2

(q
2

)H
with 0 < p < 1 and q = 1 − p. With this definition it

comes that:

dF =
log(4/q)

log 2
≥ 2.

The placement process of a mobile user is described

on [?,?]. In short, with probability p the user is

€ 
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Figure 2: (top) Hyperfractal support; (bottom) Relays

process construction.

placed uniformly on the central cross, otherwise it goes

uniformly in one the four quadrants and the process is

repeated until it finds a cross in one of the sub-· · · -sub
quadrants. At each iteration, the level of the streets of

central crosses is incremented by one.

The recursive placement process makes that starting

from a unity mass, we place p on the central cross, and

q/4 is placed in each quadrant and that the quadrant

strictly similar to the main initial map with exception

halving the lengths. Therefore the fractal dimension dF
should satisfy.

q

4
=

(
1

2

)dF

.

3.2 Hyperfractal distribution of relay placement of

relays in the city archetypal model

In addition to mobile nodes being able to relay like

in a MANET, the network will also use fixed relays

placed on existing infrastructures. These fixed relays

will have the same technology as the mobile nodes and

will be placed at street intersection in order to extend

the radio coverage. Indeed without fixed relays at some

street intersections, the packets could not be forwarded

outside its originator street due to poor penetration of

radio millimeter waves in buildings. Indeed the cars

does not spend enough time on street intersection
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when in line of sight of both streets to make a timely

forwarding of all the waiting packets. The placement of

the fixed relays will be hyperfractal, and the abscissa

and the ordinate are independent. We fix a parameter

0 < pr < 1 and qr = 1 − pr. For each coordinate we

have a recursive placement. Let us concentrate on the

selection. With probability pr the abscissa is exactly the

middle of the segment and is level 0. Otherwise it will be

in the left or right segment, the process repeat, the level

increments, until it is placed in the middle of one of the

sub-· · · -sub segments. Let H be the attained level. We

do the same with the ordinate, let V the level obtained.

The point obtained is exactly at the intersection of a

West-East street of level H and a North-South street of

level H. See Figure ??. The probability that a relay is

at a given intersection of two streets of respective level

H et V is

p(H,V ) = p2r

(qr
2

)H+V

.

The set of relay positions on a segment is an

hyperfractal set of dimension (2/qr)
log 2 . The combination

of abscissa or ordinate multiplies by two this dimension:

dr = 2
(2/qr)

log 2
≥ 2.

In the following we consider that the total number

of relays is a Poisson random variable of mean ρ.

This is a simplifying assumption in order to cope

with the dependencies introduced by a fixed number

of relays. The probability that an intersection of two

streets of level H and V does not contain a relay is

exp(−ρp(H,V )) and the event is independent of the

other intersection. If a street intersection were to carry

more than one relay, these relays will be merged in a

single one.

In [?] we show that the average total number of

merged relays R(ρ) is sublinear since

R(ρ) =

∞∑
k=0

(k + 1)2k
(qr
2

)nk
= O(ρ2/dr log ρ).

3.3 Fitting the hyperfractal model for traffic

distribution to real city maps

Most important above all, one must understand that

the hyperfractal model is not a variation on the Man-

hattan street model. Indeed the grid aspect which

appears in our description when displaying the most

dense streets is just a convenience of presentation. In

fact the essence of the model is not in the overall shape

of the city map, but resides in its local organisation of

the street density distribution. It is not needed for a city

map to be grid-like with a binary organisation of the

streets levels in order to fit a hyperfractal model [?,?].

The condition is that the street densities decay in

a heavy polynomial tail, and that the streets of low

density alternate with streets of higher densities at any

arbitrary scale. Of course this would imply an infinite

number of streets which is of course an unrealistic

hypothesis, but this is mitigated by the fact that the

streets with very low theoretical densities will not show

up because they will not carry any node in practice.

Again the overall shape of the city map does not need

to be square, it can be any shape and the streets can

take arbitrary orientations.

The hyperfractal models for traffic and for relays

distributions have been derived by making observations

on the scaling of traffic densities and the scaling of the

infrastructures, with road lengths, distances between

intersections which allow rerouting of packets, etc.

In our previous works [?], we have introduced a

procedure which allows transforming traffic flow maps

into hyperfractal by computing the fractal dimension

dF of each traffic flow map then quantify the metrics

of interest. The fitting procedure exploits the scaling

between the length of different levels of the streets

and the scaling of the 1-dimensional intensity per

street and street intersection. The difficulty is that the

roads rarely have an explicit level hierarchy since the

data we have about cities are in general about road

segment lengths and average street traffic densities.

To circumvent this problem, we do a ranking of the

road segments in the decreasing order of their traffic

density. If S is a segment we denote η(S) its density

and L(S) the accumulated length of the segment ranked

before S (i.e. of larger density than η(S)). For ξ > 0

we denote µ(ξ) = η(L−1(ξ)). Formally L−1(ξ) is the

road segment S with the smallest density such that

L(S) ≤ ξ. The hyperfractal dimension will appear in

the asymptotic estimate of µ(ξ) when ξ → ∞ via the

following property:

µ(ξ) = Θ
(
ξ1−dF

)
. (1)

The following table summarize several hyperfractal

dimensions of nodes analysed so far:

City dF
Adelaide 2.8

Minneapolis 2.9

Nyon 2.3

Seattle 2.3
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3.4 Fitting the hyperfractal model for relay nodes to

real city maps

The procedure is similar to the previous procedure and

has the following steps. First, we consider the set of road

intersections I defined by the pair of segments (S1,S2)

such that S1 and S2 intersect. Let ξ1, ξ2 be two real

numbers we define p(ξ1, ξ2) as the probability that two

intersecting segments S1 and S2 such that Cl(S1) ≤ ξ1
and Cl(S2) ≤ ξ2 contains a relay. The hyperfractality of

the distribution of the relay distribution implies when

ξ1, ξ2 → ∞:

p(ξ1, ξ2) = Θ
(
(ξ1ξ2)

−dr/2
)
. (2)

Since the probability is not directly measurable we

have to estimate it via measurable samples. Indeed let

N(ξ1, ξ2) be the number of intersections (S1,S2) ∈ I
such that Cl(S1) ≤ ξ1 and Cl(S2) ≤ ξ2 and let R(ξ1, ξ2)

be the number of relays between segments (S1,S2) such

that Cl(S1) ≤ ξ1 and Cl(S2) ≤ ξ2. One should have:

R(ξ1, ξ2)

N(ξ1, ξ2)
= Θ

(
(ξ1ξ2)

−dr/2
)

(3)

and from here get the fractal dimension of the relay

process.

3.5 Data Fitting Examples

Using public measurements [?], we show that the data

validates the hyperfractal scaling of relays distribution

with density and length of streets. While traffic data

is becoming accessible, the exact length of each street

segment is difficult to find, therefore the fitting has been

done manually.

Figure ?? shows a snapshot of the traffic lights

locations in a neighborhood of Adelaide, together with

traffic densities on the streets, when available. As the

roadside infrastructure for V2X communications has

not been deployed yet or not at a city scale, we will

use traffic light data as an example for relays [?].

By applying the described fitting procedure and using

equation (??) the estimated fractal dimension of the

traffic lights distribution in Adelaide is dr = 3.5 which

is significantly larger than the fractal dimension for

the traffic distribution (2.8). In Figure ?? we show the

fitting of the data for the density distribution function.

Note that it is the asymptotic behavior of the plots

that are of interest (i.e., the increasing accumulated

distance with decreasing density therefore decreasing

the probability of having a relay installed) since the

1 1.5 2 2.5 3 3.5 4
10-2

10-1

100

101

102

Figure 3: (top) Traffic and lights data in Adelaide;

(bottom) Computation of dr

scaling property comes from the roads with low density,

thus the convergence towards the rightmost part of the

plot is of interest.

3.6 Fundamental properties of the Hyperfractal point

processes

We come back to our hyperfractal archetypal model

with the grid binary street model.

As we saw, the support of the population of nmobile

nodes is a grid of streets. Let us denote this structure

by X =
⋃∞

l=0 XH with

XH =
⋃
b

{b2−(H+1)} × [0, 1] ∪ [0, 1]× {b2−(H+1)}

where l denotes the level and l starts from 0, and

b denotes all odd integers between 1 and 2H+1 − 1.

Figure ?? displays three first levels, H = 0, 1, 2.

Observe that the central “cross” X0 splits
⋃∞

H=1 XH

in 4 “quadrants” which all are homothetic to X with

the scaling factor 1/2.
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3.6.1 Street traffic

Following [?], the Poisson point process Φ of (mobile)

users on the support X with total intensity (mean

number of points) n (0 < n < ∞) having 1-dimensional

intensity nλH on each street of level H.

The process Φ is neither stationary nor isotropic.

However, it has the following self-similarity property:

the intensity measure of Φ on X is hypothetically

reproduced in each of the four quadrants of
⋃∞

l=1 Xl

with the scaling of its support by the factor 1/2 and of

its value by q/4.

The fractal dimension is a scalar parameter char-

acterizing a geometric object with repetitive patterns.

It indicates how the volume of the object decreases

when submitted to an homothetic scaling. When the

object is a convex subset of an euclidian space of

finite dimension, the fractal dimension is equal to this

dimension. When the object is a fractal subset of this

euclidian space as defined in [?], it is a possibly a

non integer but positive scalar strictly smaller than

the euclidian dimension. When the object is a measure

defined in the euclidian space, as it is the case in this

paper, then the fractal dimension can be strictly larger

than the euclidian dimension. In this case we say that

the measure is hyperfractal (i.e., when dF > 2).

Notice that when p = 1 the model reduces to the

Poisson process on the central cross, while for p → 0,

dF → 2 it corresponds to the uniform measure in the

unit square.

3.6.2 Fixed Relays

We denote the fixed relay placement process by Ξ. To

define Ξ it is convenient to consider an auxiliary Pois-

son process Φr with both processes supported by a 1-

dimensional subset of X namely, the set of intersections

of segments constituting X . We assume that Φr has

discrete intensity p(H,V ) at all intersections XH ∩ XV

for H,V = 0, . . . ,∞ for some parameter, recalling that

ρ > 0 is the relay intensity parameter. That is, at any

such intersection the mass of Φr is Poisson random

variable with parameter ρp(H,V ) and ρ is the total

expected number of points of Φr in the model. The self-

similar structure of Φr is explained by its construction

as explained before, as illustrated in Figure ??. The

Poisson process Φr is not simple: we define the relay

process Ξ as the support measure of Φr, i.e., only one

relay is installed at crossings where Φr has at least one

point.

Remark 1 Note that the relay process Ξ forms a non-

homogeneous binomial point process (i.e. points are

placed independently) on the crossings of X with

a given intersection of two segments from XH and

XV occupied by a relay point with probability 1 −
exp(−ρp(H,V )).

A complete hyperfractal map with mobile nodes and

relays is illustrated in Figure ??.
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Figure 4: Complete hyperfractal map with mobile nodes

(”+”) and relays (”o”)

3.7 Fundamental properties of the Poisson processes

Φ, Φr, and Ξ

In the following, we shall provide some fundamental

tools that allow one to handle our model in a typical

stochastic geometric framework. This section gives in-

sights about the theoretical foundations of hyperfractal
point process which is of independent interest to our

main results and can be used in other works.

Let L + 1 be a geometric random variable with

parameter p (i.e., P(L = l) = p(1 − p)l, l = 0, 1, . . .)

and given L, let x0 be the random location uniformly

chosen on XL. We call x0 the typical mobile user of

Φ. More precisely, we shall consider the point process

Φ ∪ {x0} where x0 is sampled as described above and

independently of Φ.

Similarly, let U + 1 and W + 1 be two independent

geometric random variables with parameter pr and

given (U,W ), let x∗ be a crossing uniformly sampled

from all the intersections of XU ∩ XW . We call x∗ the

typical auxiliary point of Φr. More precisely, we shall

consider point process Φr ∪ {x∗} where x∗ is sampled

as described above and independently of Φr.

Finding the definition of the typical relay node ξ0 is

less explicit yet similar to the typical point definition.

Informally, the conditional distribution of points “seen”

from the origin given that the process has a point there
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is exactly the same as the conditional distribution of

points of the process “seen” from an arbitrary location

given the process has a point at that location.

We define it as the random location on the set of

the crossings of X involving the following biasing of the

distribution of x∗ by the inverse of the total number of

the auxiliary points co-located with x∗

P(ξ0 = x) =
E
[

1(x∗=x)
1+Φr({x∗})

]
E
[

1
1+Φr({x∗})

] .
More precisely we consider Ξ ′∪{ξ0} (which distribution

is given for any intersection x of segments in X and a

possible configuration ϕ of relays) by considering

P( ξ0 = x,Ξ ′ = ϕ ) =
E
[
1(x∗=x)1(supp(Φr)\{x}=ϕ)

1+Φr({x∗})

]
E
[

1
1+Φr({x∗})

]
where Φr and x∗ are independent (as defined above).

Note that, in contrast to the typical points of Poisson

processes Φ and Φr, the typical relay ξ0 is not independ-

ent of remaining relays Ξ ′.

In what follows, we shall prove that our typical

points support the Campbell-Mecke formula (see [?,?])

thus justifying our definition and also providing an

important tool for future exploiting the model in a

typical stochastic geometric framework.

Theorem 1 (Campbell-Mecke formula) For all

measurable functions f(x, ϕ) where x ∈ X and ϕ is a

realization of a point process on X ,

E

[∑
xi∈Φ

f(xi, Φ)

]
= nE [f(x0, Φ ∪ {x0})] (4)

E

[ ∑
xi∈Φr

f(xi, Φr)

]
= ρE [f(x∗, Φr ∪ {x∗})] (5)

and

E

[∑
xi∈Ξ

f(xi, Ξ)

]
= E [Ξ(X )]E [f(ξ0, Ξ

′ ∪ {ξ0})]

(6)

where the total expected number of relay nodes E [Ξ(X )] =

R(ρ)

Proof (Proof of Theorem ??.) First, consider the pro-

cess of users Φ. The Campbell-Mecke formula and the

Slivnyak theorem [?] for the non-stationary Poisson

point processes Φ give

E

[∑
xi∈Φ

f(xi, Φ)

]
=

∫
X
E [f(x, Φ ∪ {x})]µ(dx), (7)

where µ(dx) is the intensity measure of the process Φ.

Specifying this intensity measures the right-hand side

term of (??), thus this becomes

∞∑
l=0

∫
Xl

E [f(x, Φ ∪ {x})]n(1− p)lpdx.

In this expression, one can recognize E [f(x0, Φ ∪ {x0})]
which concludes the proof of (??). The proof of (??)

follows the same lines. Consider now the relay process

Ξ. By the definition of Ξ, one can express the left-hand

side of (??) in the following way:

E

[∑
xi∈Ξ

f(xi, Ξ)

]
= E

[ ∑
xi∈Φr

f(xi, supp(Φr))

Φr({xi})

]
,

where supp(Φr) denotes the support of Φr. Using (??),

we thus obtain:

E

[∑
xi∈Ξ

f(xi, Ξ)

]
= ρE

[
f(x∗, supp(Φr ∪ {x∗}))

1 + Φr({x∗})

]
.

(8)

By the definition of the joint distribution of x∗ and

supp(Φr ∪ {x∗}) the right-hand side of (??) is equal to

ρE

[
1

1 + Φr({x∗})

]
E [f(ξ0, Ξ

′ ∪ {ξ0})] .

This completes the proof of (??) with

E [Ξ(X )] = ρE

[
1

1 + Φr({x∗})

]
.

4 Hyperfractal Properties and Communication

model, Canyon effect

Our model is a store-and-forward routing and not a

store-carry-and-forward routing. The packet received at

one time slot is immediately re-transmitted to the next

relay on the very next time slot. Under this hypothesis a

convenient hypothesis is to consider that all the mobile

nodes are immobile during the routing of the packets

toward their destination. Indeed the propagation speed

(including store-and-forward operation) are infinitely

larger than the physical motion speed of the mobile

nodes, somewhat 100 km/sec compared to few 10 m/s.

Using a store-carry-and-forward routing strategy like

in a Delay Tolerant Network would lead to far too

large end-to-end delays which will severely impact the

perceived quality of the connection.

In this section we extract the relevant properties

of the Hyperfractal model and relate them to our

communication model. We also provide some additional
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insights into these models via the framework of the

stochastic geometry and point process. These latter

results are of independent interest and allow to lay

foundations for other works.

As explained in our previous works [?], the poor

penetration capability of the millimeter waves leads to

the so-called “canyon effect”, which basically tells that

radio signals emitted by mobile user mostly propagate

on streets and do not penetrate buildings. In this work

we consider a hop by hop routing strategy between

mobile nodes in a store and forward ad hoc mode. We

consider that the mobility of users will be considerably

slow compared to the speed of packet commutation.

Assuming that mobile nodes stay a negligible time at

intersection (indeed in the archetypal model nodes are

distributed like a uniform Poisson in each street and the

intersection points with the other streets make a non

measurable set), their communication would unlikely

escape their original street in absence of fixed relays

at intersection. The fixed relays are assumed to cover

their two streets and will be instrumental to extend

connectivity to (mostly) the whole city.

As we primarily seek to understand the relationship

between end-to-end communications and energy costs,

we do not consider detailed aspects of the communic-

ation protocol that impact these (e.g., the distributed

aspects needed to gather position information and con-

struct routing tables in every node). The transmission

is done in a half-duplex way, a node is not allowed to

transmit and receive during the same time-slot. The

received signal is affected by additive white Gaussian

noise (AWGN) noise N and path-loss with pathloss

exponent δ ≥ 2.

As a consequence of the high directivity and low

permeability of the waves in high frequency (6GHz,

28GHz, 73 GHz as candidates for 5G NR), the next

hop is always the next neighbor on a street, i.e. there

exists no other node between the transmitter and the

receiver. Indeed, while a lot of work is still dedicated

to characterising the exact overall network connectivity

for mmWave communications V2V in urban setting [?],

it is known that intermediate vehicles create significant

blockage and a severe attenuation of the received power

for vehicles past near neighbours [?,?]. Thus the routing

strategy considered is a nearest neighbor routing. In

fact, we can show that, under reasonable assumptions,

this strategy is optimal.

Lemma 1 If the noise conditions are the same around

each node, then the nearest neighbor routing strategy is

optimal in terms of energy.

Proof To simplify this proof we ignore the signal at-

tenuation due to the mobile users positioned as radio

obstacles between the sender and the receiver of one hop

packet transmission, although this will have an import-

ant impact on energy. Consider the packet transmission

from a node at a location x to a node at location y on

the same street. If N is the noise level and K is the

required SNR, then the transmitter must use a signal

of power |y − x|δNK. Assume that there is a node

at position z between x and y. Transmitting from x

to z and then from z to y would require a cumulated

energy (|z − x|δ + |y − z|δ)NK which is smaller than

the required energy for the direct transmission, since

|x− z|δ + |z − y|δ ≤ (|x− z|+ |z − y|)δ.

Let us make the simplifying assumption that all

nodes on a street transmit with the same nominal power

Pm which depends only on the number m of nodes on

the street. We argue that a good approximation is to

suppose that:

Pm =
Pmax

mδ
(9)

where Pmax is the transmitting power necessary for a

node at one end of the street to transmit a packet

directly to a node at the other end of the street. In

other words, assume a road of infinite length where the

nodes are regularly spaced by intervals of length L is

the length of our street. If in this configuration every

node has a nominal power of Pmax, then the nominal

power to achieve the same performance with a density

m times larger but with the same noise values should

be Pmaxm
−δ in order to cope with the loss effect. Thus

would give expression (??) if the nodes were regularly

spaced by intervals of length L/m. But since the spacing

intervals are irregular, one should cope with the largest
gap Lm/m, this brings a small complication in the

evaluation of Pm. But the probability that there exists

a spacing larger than a given value x/m is smaller

than m(1 − x
mL )

m ≤ mx/L. Thus we have Lm =

O(logm/m) (asymptotically almost surely, and in fact

as soon as lim infm Lm/ logm > 1), and consequently

Pm = O(Pmax log
δ m/mδ). To help the reader, we focus

on the expression (??) as we are mainly interested in

the order of magnitude.

Definition 1 The end-to-end transmission delay is

represented by the total number of hops the packet

takes in its path towards the destination.

As the energy to transmit a packet is the trans-

mission power per unit of time, we consider the time

necessary to send a packet as being equal to the

length of a time-slot. We thus do not consider any

MAC protocol for re-transmission and acknowledgment

of the reception (e.g., we do not consider CSMA-like
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protocols). In any case, as it will be later observed

throughout our derivations, varying the MAC protocol

would just change some constants but not the overall

scaling. Therefore, from now on, we will refer to Pmax

as the nominal power. Following this reasoning, the

accumulated energy to cover a whole street containing

m nodes with uniform distribution via nearest neighbor

routing is mPm = Pmax

mδ−1 . In this case, the larger the

population of the street the smaller the nominal power

and the smaller the energy to cover the street.

Foxed relays stand in intersections, and thus on

two streets with different values of m. We consider

a relay to use two different radio interfaces, each

with a transmission power according to the previously

mentioned rule for each of the streets. This is a perfectly

valid assumption, in line with 5G devices specifications

for dual connectivity [?].

5 Main Results

We now provide our theoretical bounds for the end-to-

end communication hop count. The number of mobile

nodes is exactly n, where n is an integer which runs to

infinity.

5.1 Energy vs Delay

Given that the transmitting power is dependent on the

average density of the nodes on the streets and that the

transmission power per node is limited by the protocols

to a value of Pmax, the connectivity is restricted. We

introduce the following notions and notations. Let t be

a node and let P (t) be the nominal transmission energy

of this node.

Definition 2 Let T be a sequence of nodes that

constitutes a routing path. The path length is D(T ) =

|T |. The relevant energy quantities related to the paths

are:

– The path accumulated energy is the quantity E(T ) =∑
t∈T P (t).

– The path maximum energy is the quantity M(T ) =

maxt∈T P (t).

The path accumulated energy is of interest as we

want to optimize the quantity of energy expended in

the-end-to-end communication, and respectively, the

path maximum power as we want to find the path which

maximum power does not exceed a given threshold

depending on the energy sustainability of the nodes or

the protocol. For example, it is unlikely that a node can

sustain a nominal power of Pmax equal to the power

needed to transmit in a range corresponding to the

entire length of a street. In this case it is necessary

to find a path that uses streets with enough population

to reduce the node nominal power and communication

range (due to the mmWave technology limitations).

Definition 3 Let E be a quantity of energy.

– Let G(n,E) be the set of all nodes connected to the

central cross with a path accumulated energy not

exceeding E.

– Let Gk(n,E) be the subset of G(n,E), where the

path to the central cross should not go through more

than k fixed relays.

Definition 4 Let G′(n,E) and G′
k(n,E) be the re-

spective equivalents of G(n,E) and Gk(n,E) but with

the consideration of the path maximum power instead

of accumulated energy.

5.2 Path accumulated energy

The following theorem gives the asymptotic connectiv-

ity properties of the hyperfractal in function of the

accumulated energy and in function of the path max-

imum power. This shows that for n large, even for some

sequences of energy thresholds En tending to zero, the

sets G1(n,En) asymptotically dominate the network.

The same holds for the sets sequence G′
1(n,En).

Theorem 2 In an urban network with n mobile nodes

following a hyperfractal distribution, when ρn both tend

to infinity the following holds:

lim
n→∞

E
{
|G1(n, n

−γPmax)|
n

}
= 1 (10)

for γ < δ − 1, and

lim
n→∞

E
{
|G′

1(n, n
−γPmax)|
n

}
= 1 (11)

for γ < δ, where δ is the pathloss coefficient.

The following lemma ensures the existence of nodes

in a street (with proof in the Appendix).

Lemma 2 There exists a > 0 such that, for all integers

H and n, the probability that a street of level H contains

less than nλH/2 mobile nodes or more than 2nλH

mobile nodes is smaller than exp(−anλH).

The following corollary gives a result on the scaling

of the number of mobile relays in a segment of street

and the accumulated energy, getting us one step closer

to the results we are looking for.



Energy and Delay Trade-Offs of End-to-End Vehicular Communications using a Hyperfractal Urban Modelling 11

Corollary 1 Let 0 < τ ≤ 1, assume an interval

corresponding to a fraction τ of the street length. If the

interval is on a street of level H, the probability that

it contains less than τλHn/2 nodes and it is covered

with accumulated energy greater than ϕ(nλH)1−δPmax

is smaller than e−anτλH . The probability that the energy

for each transmission is smaller than (nλH)−δPmax is

smaller than e−anλH .

Proof This is a slight variation of the previous proof. If

we denote by NH(n, τ) the number of nodes on the seg-

ment, we have E[etNH(n,τ)] = (1 + λHτ(ez − 1))
n
. The

previous proof applies by replacing λH by τλH . The

accumulated energy has the expression Pmax
NH(n,τ)

Nδ
H(n)

.

Further applying the previous reasoning to each of the

random variables NH(n) and NH(n, τ) gets the first

result.

The second result is simpler to get because at level

H the energy for transmission is equal to m−δPmax

where m is the number of mobile in the streets. Since

this number is larger than nλH with probability larger

1− exp(−anλH).

Proof (of Theorem ??)

We will prove first for G1(n, n
−γPmax). Let Hn be a

sequence of integer which tends to infinity. We consider

the horizontal street of the central cross. The probab-

ility that all the intersections with the streets of level

smaller than Hn contains a relay is greater than (1 −
exp(−ρnp

2
r(qr/2)

Hn))2
Hn

(with qr = 1− pr) and finally

greater than 1 − 2Hn exp(−ρnp
2
r(qr/2)

Hn). This prob-

ability tends to 1 when Hn = ⌊ 1
2 log(ρnp

2
r)/ log(2/qr)⌋

since it is larger than (1 − xν
n exp(−xn)) with xn =

e−
√

ρnp2
r and ν = log(2)/ log(2/qr).

Let us reduce Hn if necessary in order to have

nλHn
> nγ/(δ−1). Applying corollary ?? (with τ =

1), we cover all nodes in each streets of level Hn or

lower by a cumulated energy smaller than n−γPmax

with probability smaller than 2Hn exp(−nγ/(δ−1)) since

Hn = O(log n).

To terminate this part of the proof it suffices to

notice that the proportion of the mobile nodes carried

by all the streets of level Hn compared to the total

population of nodes tends to 1 in probability.

The part on the coverage of the giant component

G′
1(n, n

−γPmax) proceeds the same way but with the

second result of Corollary ??.

Throughout the rest of the paper, we consider ρn =

nθ (or of the order of) for some 0 < θ < 1.

The following theorem is the main result of our

paper and shows that increasing the path length de-

creases the accumulated energy. In fact, for n → ∞,

the limiting energy goes to zero.

Theorem 3 In a hyperfractal city with n nodes, with

mobile fractal dimension dF and relays fractal dimen-

sion dr, with the condition dr > (dF − 1)θ the shortest

path of accumulated energy En = cEn
(1−δ)(1−α)Pmax,

where cE > 0 and α < dF−1
dr

θ, between two nodes

belonging to the giant component G1(n,En), passes

through a number of hops:

Dn = O(n
1− α

dF −1 ) (12)

Although the source and the destination belong

to G1(n,En), it is not necessary that all the nodes

constituting the path also belong to G1(n,En), i.e., the

path may include nodes that are more than one hop

from the central cross.

Remark 2 We have the identity(
En

Pmax

)1/(δ−1)

DdF−1
n = O(ndF−2). (13)

Let us now prove the theorem.

Proof The main part of our proof is to consider the case

when the source, denoted by mH , and the destination,

mV , both stand on two different segments of the central

cross. In this case, we consider the energy constraint
1
3En. We can easily extend the result to the case when

the source and the destination stand anywhere in the

giant component G1(n,En) by taking En as energy

constraint and the theorem follows.

When mH and mV are on the central cross, there

exists a direct path that takes the direct route by

staying on the central cross, more specifically, in Fig-

ure ??(a), the segments [SA],[AO],[OC],[CD]. Then,

the path length is of order Θ(n) while the accumulated

energy of order Θ(n1−δ)Pmax.

In order to significantly reduce the order of mag-

nitude of the path hop length, one must consider a

diverted path with three fixed relays, as indicated in

Figure ??(a). The diverted path proceeds into two

streets of level x. Let T be the path. It is considered

that, for 0 < β < 1/2,

x = β
log(ρn)

log(2/qr)
(14)

The path is made of two times two segments: the

segment of street [SA] on the central cross which

corresponds to the distance from the source to the

first fixed relay to a street of level x, and then the

segment [AB] between this relay and the fixed relay

to the crossing street of level x. The second part of the

path is symmetric and corresponds to the connection

between this relay and the destination through segment

[BC] and [CD].
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Figure 5: (a) Diverted path with three fixed relays; (b)

with five fixed relays.

Denote by L(x, y) the distance from an arbitrary

position on a street of level y to the first fixed relay to

a street of level x. The probability that a fixed relay

exists at a crossing of two streets of respective level x

and y is 1−exp(−ρnp(x, y)). Since the spacing between

the streets of level x is 2−x, it is known from [?] that

L(x, y) ≤ 2−x

1− exp(−ρnp(x, y))

where ρn is the effective intensity of relays in the map

The average distance from mH to the first relay to a

street of level x is L(x, 0). Since ρnp(x, 0) = p2rρ
1−β
n

which tends polynomially to infinity when n → ∞ (with

ρn = nθ). Therefore the probability that the relay does

not exist at the intersection with the first street of level

x decays exponentially fast and L(x, 0) ∼ 2−x. If we

assume that the two diverted routes from mH and mV ,

namely [AB] and [BC] have a relay at their intersection

point, denoted B in Figure ??(a), then T is a valid

path and has with high probability the following energy
score:

E(T ) = O(L(x, 0)n1−δPmax) +O((nλx)
1−δPmax)

which holds under the condition of corollary ??, namely

that nλx → ∞ so that the estimates be valid almost

surely. The number of nodes on the path,D(T ), satisfies

with probability tending to 1, exponentially fast:

D(T ) = O(L(x, 0)n) +O(nλx).

The second term in the both right-hand side assumes

the worst case when [AB] and [BC] segments span from

end to end on their respective street. The condition for

this is that nλx → ∞. We have

nλx =
p

2
nρ

−2 β
dr

(dF−1)
n

which tends to infinity since ρn = nθ, β < 1/2

and 2 β
dr
(dF − 1)θ < 1. We detect that the main

contributor of the accumulated energy are the seg-

ments [mHA] and [CmV ] with a cumulated energy

which is with high probability O(2−xn1−δPmax) or

O

((
nρ

−2β/dr
n

)1−δ

Pmax

)
while [AB] and [BC], have

a contribution which is O((nλx)
1−δPmax), of order(

nρ
−2β(dF−1)/dr
n

)1−δ

which is preponderant over the

contribution of [mHA] and [CmV ] (since δ > 1 and

dF > 2), thus E[T ] = O

((
nρ

−2β(dF−1)/dr
n

)1−δ

Pmax

)
.

But regarding the number of hops, the segments [mHA]

and [CmV ] have the preponderant contributions and

D[T ] = O
(
nρ

−2β/dr
n

)
. In summary we have with high

probability
E[T ] = O

(
n1−δρ

−2 β
dr

(dF−1)(1−δ)
n Pmax

)
D[T ] = O

(
nρ

−2 β
dr

n

)
.

(15)

The probability that the two streets of level x have

a fixed relay at their crossing is 1 − exp(−ρnp(x, x)).

Since ρnp(x, x) = p2rρ
1−2β
n the probability tends to 1

when α < 1/2 . Thus the energy-delay balance formula

of (??) is valid when β < 1/2.

By using α = 2 β
dr
(dF − 1)θ, we can now complete

the proof of Theorem ??.

In Theorem ??, it is always assumed that En → 0,

since α < 1. In this case,Dn spans from O(n1−1/(dF−1))

to O(n) (corresponding to a path staying on the central

cross). When the fractal dimension dF is large it does

not make a large span. In fact, if En is assumed to be

constant, i.e. α = 1, then we can have a substantial

reduction in the number of hops, as described in the

following theorem.

Theorem 4 In a hyperfractal unit map with n nodes,

with mobile fractal dimension dF and relays fractal

dimension dr, and θ = 1, the shortest path of accu-

mulated energy En = vEPmax with vE > 6, between

two nodes belonging to the giant component G1(n,En),

passes through a number of hops Dn with:

Dn = O
(
n
1− 2

dr(1+1/dF )

)
The theorem shows the achievable limits of delay

and number of hops when the constraint on the path

energy is let loose. In fact, this allows taking the path

with five fixed relays as in Figure ??(b). The condition

on vE > 6 comes from the 5 relays plus the step required

to escape the giant component.

Remark 3 When dr → 2 then Dn = O(n1/(dF+1)), and

the hyperfractal model is behaving like a hypercube of

dimension dF + 1. Notice that in this case Dn tends to

be O(1) when dF → ∞.
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Proof In the proof of Theorem ??, it is assumed that

x < log ρn

2 log(2/qr)
in order to ensure that the number of

hops on the route of level x tends to infinity. However,

we can rise the parameter x in the range log ρn

2 log(2/qr)
≤

x < logn
2 log(2/q) .

We have nλx → 0. In this case, E(T ) → 2Pmax since

the streets of level x are empty of nodes with probability

tending to 1. Let us denote x = γ logn
2 log(2/q) with γ < 1.

We have D(T ) = O(L(x, 0)n) = O(n1−γ/dr ). Clearly,

γ cannot be greater than 1 as, in this case, the two

streets of level x will not hold a fixed relay with

high probability and the packet will not turn at the

intersection. Therefore the smallest order that one can

obtain on the diverted path with three relays is limited

to n1−1/dr , which is not the claimed one.

To obtain the claimed order, one must use the

diverted path with five fixed relays, as shown in Fig-

ure ??(b). The diverted path is composed by the

segments: [SA′],[A′E],[EF ],[FG],[GC ′] and [C ′D′]. It

is shown in [?] that the order can be decreased to

n1−2/((1+1/dF )dr).

5.3 Path maximum power

The next results revisit the previous theorems on the

path accumulated energy in the alternative case of the

imposed constraint on the path maximum power.

Theorem 5 Let dr > 2 (dF−1)
dF+1 dF θ. The shortest path

of maximum power less than Mn = n−δ(1−α)Pmax with

α < 2 (dF−1)dF

(dF+1)dr
θ, between two nodes belonging to the

giant component G′
1(n,Mn), passes through a number

of hops:

Dn = O
(
n1−α/(dF−1)

)
It is important to note that although the orders

of magnitude of path length Dn are the same in both

Theorem ?? and Theorem ??, the results consider two

different giant components: (accumulated) G1(n,En)

and (maximum) G′
1(n,Mn).

Remark 4 We have the identity(
Mn

Pmax

)1/δ

DdF−1
n = O(ndF−2). (16)

Proof The proceed the same way as with Theorem ??

and we same construction with β < 1/2 we get

again (??) (as we only need to replace 1 − δ by −δ)

(with M [T ] as the maximum transmission power on

the path T ):
M [T ] = O

(
n−δρ

2 β
dr

(dF−1)δ
n Pmax

)
D[T ] = O

(
nρ

−2 β
dr

n

)

But if we look carefully this would give a value for the

α parameter which could not go beyond dF−1
dr

θ while

the theorem claims 2 (dF−1)dF

(dF+1)dr
θ which would make β to

go slightly beyond 1/2.

To this end we rely on the construction of Fig-

ure ??(b) where we make a derivation from point E

and point G which are intersection to streets of level y

with

y = (1− β)
log ρn

log(2/qr)
,

The derivation is needed because the point B′ will not

contain a relay with a probability tending to 1.

The points E and G are the first intersections from

point B′ with streets of level y which contains relays.

The two streets intersect at point F . The probability

that point F contains a relay is 1 − exp(−ρnp(y, y)).

Since ρnp(y, y) = p2rρ
1−β
n and tends to infinity because

β < 1, thus the probability tends to 1.

Similarly the average distance between B′ and the

points E and G is L(y, x) and is equivalent to 2−y since

the probability of holding a relay is 1−exp(−ρnp(x, y))

which tends to 1 since ρnp(x, y) = p2rρ
1/2
n .

Thus the maximum energy in the new path T ,

M(T ), satisfies with high probability

M [T ] = O(L(x, 0)n1−δPmax) +O((nλx)
1−δPmax)

+O(L(y, x)(nλy)
1−δPmax)

D[T ] = O(L(x, 0)n) +O(nλx) +O(L(y, x)nλy)

Here the condition taken from corollary ?? are less

demanding since it is nλx and nλy to be tending to

infinity when n → ∞ that is we wantnλx = p
2nρ

−2 β
dr

(dF−1)
n → ∞

nλy = p
2nρ

−2 1−β
dr

(dF−1)
n → ∞

which is the direct consequence of the fact that 1−β <

β < dF

dF+1 Taking away the non preponderant terms

and using the fact that L(y, x) ∼ 2−y and 2−yλy =
p
2ρ

−2(1−β)dF /dr
n we get
M [T ] = O

(
n−δρ

2 β
dr

(dF−1)δ
n Pmax

)
D[T ] = O

(
n

(
ρ
−2 β

dr
n + ρ

−2
(1−β)dF )

dr
n

)) (17)

Since β < dF

dF+1 the above formula is equivalent to (??).

increasing β above dF

dF+1 will not decrease the order of

D[T ] as expected because we already know that this is

the optimal order for the delay obtained in [?].

Corollary 2 Let θ = 1 the maximum path transmitting

power between two points belonging to the giant compon-

ent, G′
1(n,Mn) be Mn at most O(Pmax). The number of

hops Dn on the shortest path is O
(
n1−2/(dr(1+1/dF )

)
.
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Proof It suffices to consider θ = 1 and α → (dF−1)dF

(dF+1) dr
in Theorem ??.

This corollary gives the path length when no con-

straint on transmitting power exists (the maximum

transmitting power allowed is the highest power for a

transmission between two neighbors in the hyperfractal

map). We obtain here the same results of [?], where an

infinite radio range is considered, which is not a feasible

result for mmWave technology deployments.

5.4 Remarks on the network throughput capacity

Let us consider the scaling of the network throughput

capacity with constraints on the energy. In [?], the

authors express the throughput capacity of random

wireless networks as:

ζ(n) = Θ

(
n2
∑

i∈G ωi(n)∑
i,j∈G rij

)
. (18)

where ζ(n) is the throughput capacity, defined as

the expected number of packets delivered to their

destinations per slot, ωi(n) is the expected transmission

rate of each node i among all the nodes n and G is

the giant component. In the following, denote by C the

transmission rate of each node.

Using our results of Theorems ?? and ?? and

substituting them in (??), we obtain the following

corollary on a lower bound of the network throughput

capacity with constraints on path energy.

Corollary 3 In a hyperfractal with n nodes, fractal

dimension of nodes dF , α < 1 and C the transmission

rate of each node when either

– En = O
(
n(1−δ)(1−α)Pmax

)
is the maximum accu-

mulated energy of the minimal path between any pair

of nodes in the giant component G1(n,En)

or

– Mn = O(n−δ(1−α)Pmax) is the maximum path power

of the minimal path between any pair of nodes in the

giant component G′
1(n,Mn),

a lower bound on the network throughput is:

ζ(n) = Ω
(
Cn

α
dF −1

)
(19)

Remark 5 We notice that with α < 1 and dF > 3 we

have ζ(n) of order which can be smaller than n1/2 which

is less than the capacity in a random uniform network

with omni-directional propagation as described in [?].

Remark 6 When α = 1, i.e. with no energy constraint

En = cEPmax the path length can drop down to

Dn = O
(
n1−2/((1+1/dF )dr)

)
and, in this case, we have

ζ(n) = Ω(n2/((1+1/dF )dr)) which tends to be in O(n)

when dF → ∞ and dr → 2. In this situation the

capacity is of optimal order since Dn tends to be O(1).

6 Variation of city areas, underground network

In the previous analysis we assumed that the area of

the city was not varying with the number n of mobile

nodes and the intensity ρ of relays. We assumed that the

area stay constant (the unit square). Although we can

imagine the number of mobile nodes can vary during the

day, but it is difficult to imagine that the fixed relays

infrastructure could be partially disabled accordingly

(although it could be for the sake of energy saving).

By definition, cities are conceived of networks that

constitute the essential functioning of cities [?]. The

physical form of cities is the ultimate result of a mul-

titude of hardware and software processes, constrained

by the geometry of the man-made world. It is known

that their population correlate to their level of activity,

and although varying with cultural and functional

backgrounds, the city density is more or less constant

in the same area [?,?]. In the following the area A of

the city will depend on the population of the mobile

node: the quantity A(n) is proportional to n, with

A(n) = Ω(n).

Under this model a mapping of a city in a square as

the one we use for the hyperfractal archetypal model,

will imply that the side of the square will be Ω(
√
n).

In other word, the energy needed to transmit a packet

from one end of a street to the other end will something

like Pmax = P1n
δ/2 where P1 is the maximum nominal

emission power of the wireless nodes. The consequence

will be that the parameter Pmax must be modified in the

previous results, with the consequence that the energy

balance may no longer tend to zero.

Theorem 6 Assuming θ < dr

dF−1 , in variable area

hyperfractal city with a bounded maximum emission

power, when path accumulated energy tends to zero or

stay bounded we necessary have the delay or hop count

Dn of order n1/2.

Proof Following Theorem ?? it tends to zero when α <
δ/2−1
δ−1 which is possible, assuming that θ < dr

dF−1 which

allows that θ can be significantly smaller than 1. But

this would imply a hop count of greater than n1−θ/dr

which cannot go below the order n1/2.

On the other hand in [?] we only consider the

coverage by fixed relay, e.g. by assuming that the relays
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Figure 6: Minimum accumulated end-to-end energy

versus hops for a transmitter-receiver pair (fixed and

allowed number of hops in red circles, and maximum

number of hops in black stars).

are connected via an underground wired network. In the

following result we consider that we remove the hop by

hop routing option between mobile nodes.

Theorem 7 In the hypothesis of the relays connected

to an underground wired network, when θ > dr

4 , then

for nodes in the giant component the energy balance is

almost surely bounded and the hop count limited to one

hop.

Proof We are in the conditions of [?] because the

maximal radio range is O(
√
n) and when θ > dr

4 , the

covered fraction of the network by a single hop from

the fixed relays tends to 1 when n → ∞.

Remark 7 We notice that in both situations the para-

meter θ can be significantly smaller than 1 but in the

second case it cannot go below 1/2 which is the limit

when dr → 2.

7 Numerical Evaluation

We evaluate the accuracy of the theoretical findings

in different scenarios by comparing them to results

obtained by simulating the events in a two-dimensional

network. We developed a MatLab discrete time event-

based simulator following the model presented in Sec-

tion ??. The length of the map is 1000 and, therefore,

Pmax is just 1000δ, where δ is the pathloss coefficient

that will be chosen to be 2, 3 or 4, in line with

millimeter-wave propagation characteristics. Figure ??

shows the trade-offs between accumulated end-to-end

energy and hop count for a transmitter-receiver pair by

selecting randomly pairs of vehicles in a hyperfractal

map with n = 800, pathloss coefficient δ = 4, fractal

dimension of nodes dF = 4.33 and fractal dimension

of relays dr = 3. The plot shows the minimum

accumulated energy for the end-to-end transmission

for a fixed and allowed number of hops, k, in red

circle markers. Note that the energy does not decrease

monotonically as forcing to take a longer path may not

allow to take the best path. However when considering

the minimum accumulated energy of all paths up to a

number of hops, the black star markers in Figure ??, the

energy decreases and exhibits the behavior claimed in

Theorem ??. That is, the minimum accumulated energy

is indeed decreasing when the number of hops is allowed

to grow (and the end-to-end communication is allowed

to choose longer, yet cheaper, paths).

Let us further validate Theorem ?? through simula-

tions performed for 100 randomly chosen transmitter-

receiver pairs in hyperfractal maps with various con-

figurations. We run simulations for different values of

the number of nodes, n = 800 nodes and 1000 nodes

respectively, different values of pathloss, δ = 2 and

δ = 3 and different configurations of the hyperfractal

map. The setups of the hyperfractal maps are: node

fractal dimension dF = 4.33 and relay fractal dimension

dr = 3.3 for the first setup and dF = 3.3 and dr = 2.3

for the second setup.

The results exhibited in Figure ?? are obtained by

computing, for each of the transmitter-receiver pair, the

minimum accumulated end-to-end energy for a path

smaller than k, then averaging over the 100 results.

The left-hand sides of the Figures ?? (a) and ?? (b)

show the variation of the minimum path accumulated

energy for the path with the increase of the number of

hops in a hyperfractal setup of dF = 4.33 and dr = 3

for n = 800 in ?? (a) and n = 1000 in ?? (b). The

figures illustrate that, indeed, allowing the hop count

to grow decreases the energy considerably. The decay

of the maximum accumulated energy with the allowed
number of hops is even more visible in logarithmic scale

in the right side of the same figures.

The decays remain substantial when changing the

hyperfractal setup to dF = 3.3, dr = 2.3. Figures ?? (c)

and ?? (d) show the results for n = 800 and n = 1000 in

the new setup. The decay is dramatic as shown with a

logarithmic scale. Even though there can be oscillations

around the linearly decreasing characteristic, as seen in

Figure ?? (d), left-hand side, the global behavior stays

the same, decreasing, as better noticed in logarithmic

scale in Figure ?? (d), right-hand side.

When changing the pathloss coefficient to δ = 3, the

effect of Theorem ?? remains, as illustrated in Figure ??

for a hyperfractal setup of dF = 4.33, dr = 3, n = 800

nodes.

To validate the results of Theorem ?? on the

variation of path length with the imposed constraint

on maximum energy per node, we choose randomly

100 transmitter-receiver pairs belonging to the central

cross and compute the shortest path by applying a
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(c)
(dF , dr, n) = 3.3, 2.3, 800
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(d) (dF , dr, n) =
3.3, 2.3, 1000

Figure 7: Minimum accumulated end-to-end energy versus hops, averaging over 100 transmitter-receiver pairs,

δ = 2, linear scale left side of sub-figures, logarithmic scale right side of sub-figures

constraint on the maximum transmission energy of

nodes belonging to the path. The hyperfractal setups

are: nodes fractal dimension dF = 3.3, relays fractal

dimension dr = 2.3, pathloss coefficient δ = 3 and we

vary the number of nodes, n to be either n = 500 or

n = 800. For both values of n, Figure ?? (a) confirms

that decreasing the constraint of path maximum energy

increases the path length.

Changing the fractal dimensions does not change

the behavior, as illustrated in Figure ?? (b). The

hyperfractal configurations are: nodes fractal dimension

dF = 4.33, relays fractal dimension dr = 3, pathloss

coefficient δ = 4 and we vary the number of nodes, n to

be either n = 500 or n = 800. Again, making a tougher

constraint on the path maximum energy leads to the

increase of the path length, showing that achievable

trade-offs in hyperfractal maps of nodes with RSU.

8 Conclusion

This paper presented results on the trade-offs between

the end-to-end communication delay and energy spent

on completing a transmission in millimeter-wave vehicu-

lar communications in urban settings by exploiting

the “hyperfractal” model. This model captures self-

similarity as an environment characteristic. The self-

similar characteristic of the road-side infrastructure has

also been incorporated.

Analytical bounds have been derived for the end-

to-end communication hop count under the constraints

of total accumulated energy, and maximum energy per

node, exhibiting the achievable trade-offs in a hyper-

fractal network. The work presented a lower bound on

the network throughput capacity with constraints on

path energy. Further examples of model fitting with

data have been given. The analytical results have been

validated using a discrete-time event-based simulator

developed in Matlab.

9 Appendices

9.1 Proof of Lemma ??

Proof Let NH(n) be the number of nodes contained

in a street of level H. Let z be a real number. By

Chebyshev’s inequality, we have when z > 0:

P
(
NH(n) <

nλH

2

)
= P

(
e−zNH(n) > eznλH/2

)
≤ E[e−zNH(n)]

e−znλH/2

Since E[ezNH(n)] = (1 + (ez − 1)λH)
n
;

E[e−zNH(n)]

e−znλH/2
= exp

(
n
(
log
(
1 + (e−z − 1)λH

)
+ zλH/2

))
.
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(b) Logarithmic scale

Figure 8: Minimum accumulated end-to-end energy

versus hops, averaging over 100 transmitter-receiver

pairs, δ = 3

For |z| bounded there exists b > 0 such that |ez −
1| ≤ b|z| and there exists c such that ez−1 ≤ z+cz2. For

|x| bounded there exists d such that log(1+x) ≤ x−cx2.

From these steps we obtain that, for sufficiently small

|z|, one has:

log
(
1 + (e−z − 1)λH

)
+ z

λH

2
≤ −z

λH

2
+ bλHz2 − cλ2

Hz2

≤ −aλH .

which settles that

E[e−zNH(n)]

e−znλH/2
≤ e−anλH . (20)

The proof of the second part of the lemma proceeds via

similar reasoning, by using the inequality:

P (NH(n) > 2nλH) ≤ E[ezNH(n)]

e2znλH
. (21)

Φ Poisson process of the mobile nodes

dF hyperfractal dimension of the mobile

nodes density

p geometric decay rate of mobile node

density versus street depth, q = 1− p

Φr Poisson process of fixed relays

dr hyperfractal dimension of the fixed

relay density

pr geometric decay rate of fixed relay

versus street depth, qr = 1− pr
XH set of the streets with depth index H
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(b) dF = 4.33, dr = 3

Figure 9: Path Maximum Energy trade-off with delay

(i.e. path length)

ρ intensity of the fixed relay density

n number of mobile nodes in the city

Pmax maximal node transmission power

Pm node transmisssion power in a street carrying m

mobile nodes (P1 = Pmax)

δ radio path loss coefficient

E(T ) cumulated transmission energy on path T
M(T ) maximal transmission energy on routing path T
D(T ) number of nodes in the path T
G(n,E) city giant connected component of mobile nodes

connected with cumulated energy smaller than E

G′(n,E) city giant connected component of mobile nodes

connected with maximal energy smaller than E
Conflict of interest
We would like not to be reviewed by Andrew Eckford

or Luoyi Fu.


