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Abstract We propose two methods for tuning membership functions of a kernel fuzzy

classifier based on the idea of SVM (support vector machine) training. We assume that

in a kernel fuzzy classifier a fuzzy rule is defined for each class in the feature space. In

the first method, we tune the slopes of the membership functions at the same time so

that the margin between classes is maximized under the constraints that the degree

of membership to which a data sample belongs is the maximum among all the classes.

This method is similar to a linear all-at-once SVM. We call this AAO tuning. In the

second method, we tune the membership function of a class one at a time. Namely, for

a class the slope of the associated membership function is tuned so that the margin

between the class and the remaining classes is maximized under the constraints that

the degrees of membership for the data belonging to the class are large and those for the

remaining data are small. This method is similar to a linear one-against-all SVM. This

is called OAA tuning. According to the computer experiment for fuzzy classifiers based

on kernel discriminant analysis and those with ellipsoidal regions, usually both methods

improve classification performance by tuning membership functions and classification

performance by AAO tuning is slightly better than that by OAA tuning.

Keywords Fuzzy Classifiers · Kernel Discriminant Analysis · Mahalanobis Distance ·
Membership Functions · Support Vector Machines · Tuning

1 Introduction

Extracting fuzzy rules from data is widely accepted as a method for building fuzzy

systems that are comparable in generalization abilities to, and are advantageous in

analyzing system behaviors over, neural networks. And various types of fuzzy systems

have been developed [1–3].

After fuzzy rule extraction, fuzzy rule tuning, i.e., tuning of membership functions,

is one of the important steps in realizing fuzzy systems with high generalization abil-

ity. Membership functions can be tuned by multi-layer neural networks [4,5], genetic
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algorithms [6], reducing the total number of misclassifications allowing correctly classi-

fied data to be misclassified [7,8], and support-vector-machine like training [9]. In [8],

tuning of fuzzy rules of a kernel fuzzy classifier with ellipsoidal regions is analytically

done. Namely, by calculating the number of misclassifications if the membership func-

tions are tuned allowing the correctly classified data to be misclassified so long as the

total recognition rate is improved. In [9], fuzzy classifiers based on kernel discriminant

analysis (KDA) are developed for two-class problems, in which one-dimensional mem-

bership functions are defined on the vector that maximally separates two classes in the

feature space. Membership functions are tuned by support-vector-machine (SVM) like

training to improve generalization ability of the classifier. But this tuning method is

restricted to pairwise classification for multi-class problems.

In this paper, we propose two methods for tuning slopes of the membership func-

tions that are applicable to kernel fuzzy classifiers with one fuzzy rule for each class.

In the first method, we simultaneously maximize margins between classes under the

constraints that the degree of membership of the class to which a data sample belongs

is the largest. This is similar to training a linear all-at-once SVM (support vector ma-

chine) and is called AAO tuning. To reduce computation time for AAO tuning, in the

second method we tune each fuzzy rule separately. Namely, we tune the membership

function for a class so that the margin between the class and the remaining classes is

maximized under the constraints that the degrees of membership of the data belong-

ing to the class are large while those of the data belonging to the remaining classes

are small. This is similar to training a linear one-against-all SVM and is called OAA

tuning. By computer experiment, we compare classification performance of the two

methods for kernel fuzzy classifiers based on KDA and those with ellipsoidal regions.

In Section 2, we summarize fuzzy classifiers based on KDA and those with ellipsoidal

regions and their tuning methods, and in Section 3, we propose two tuning methods.

In Section 4, we compare the tuning methods for some benchmark data sets.

2 Kernel fuzzy classifiers

2.1 Architecture

To classify m-dimensional vector x into one of n classes, we first map the input space

into the feature space by the mapping function �(x) and generate a fuzzy classifier

in the feature space. Assume we have M training data pairs {xi, yi} (i = 1, . . . ,M),

where yi ∈ {1, . . . , n} are class labels. For class i, in the feature space we define a line

ψi(x), on which a membership function is defined.

We calculate the center of class i data on ψi(x), ci, by

ci =
1

|Xi|
�

j∈Xi

ψi(xj) for i = 1, ..., n, (1)

where Xi is the set of training data indices belonging to class i and |Xi| is the number

of elements in Xi.

We define the following fuzzy rule for class i:

If ψi(x) is ci then x belong to class i. (2)

Namely, if ψi(x) is closer to ci, it is more probable that x belongs to class i.
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To calculate the distance from ψi(x) to ci, we define the distance di(x), where

di(x) = |ψi(x) − ci| and based on the distance we define the membership function for

class i as follows:

mi(x) = 1 − βi di(x) − bi, (3)

where βi is a positive parameter to control the slope of the membership function and

bi is a bias term.

Depending on the value of ψi(x), (3) may give a negative degree of membership.

To avoid this we can use the following equivalent membership function:

mi(x) = exp
�
−βi d

2
i (x) − bi

�
. (4)

Using the fuzzy rules, x is classified into the class

arg max
i=1,... ,n

mi(x), (5)

where arg returns the subscript that maximizes mi(x).

In a kernel fuzzy classifier based on KDA defined for two-class problems [9], mapped

training data are projected onto vector w in the feature space, where w is obtained

so that the projected data are maximally separated. In this case, for the two classes,

ψi(x) (i = 1, 2) is given by

ψi(x) = wT
�(x). (6)

For the kernel fuzzy classifier with ellipsoidal regions [8], ψi(x) is given by the

kernel Mahalanobis distance δ(x):

δ2(x) = (�(x) − ci)
T Q+

�i

(�(x) − ci), (7)

where ci is the center of class i data in the feature space and Q+
�i

is the pseudo-inverse

of the covariance matrix Q�i
. The membership function for class i is given by

mi(x) = exp
�
−βi δ

2(x) − bi

�
, (8)

where βi is a positive parameter to control the Mahalanobis distance and bi is a bias

term.

In the following, we briefly explain the kernel fuzzy classifier based on KDA and

those with ellipsoidal regions and their tuning methods.

2.2 Kernel fuzzy classifiers based on KDA

2.2.1 Determination of w

In the KDA-based fuzzy classifier, ψi(x), on which the membership function is defined,

is given by (6). Vector w is determined by KDA so that two classes are maximally

separated in the feature space. Namely, w is obtained by maximizing

J(w) =
d2c
s2

=
wTQBw

wTQTw
, (9)
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where QB is the between-class scatter matrix given by

QB = (c1 − c2)(c1 − c2)
T , (10)

and QT is the total scatter matrix given by

QT =
1

M
(�(x1), ...,�(xM ))(IM − 1M )

�
���
�T (x1)

...

�T (xM )

�
��	 . (11)

Here, IM is the M ×M unit matrix and 1M is the M ×M matrix with all elements

being 1/M . Maximizing (9) minimizes the variance of all the mapped training data

measured on w while maximizing the distance between classes measured on w.

We calculate w using kernel tricks. Any solution w in the feature space can be

written as an expansion of the form

w = (�(x1), ...,�(xM ))�, (12)

where � = (α1, ..., αM )T and α1, ..., αM are scalars. Substituting (12) into (9), we can

rewrite the KDA criterion, J , as

J(�) =
�TKB�

�TKT�
, (13)

where

KB = (kB1 − kB2)(kB1 − kB2)
T , (14)

kBi
=

�
������

1

|Xi|
�

j∈Xi

H(x1,xj)

. . .
1

|Xi|
�

j∈Xi

H(xM ,xj)

�
�����	

for i = 1, 2, (15)

KT =
1

M
K(IM − 1M )K. (16)

Here H(x,x′) = �T (x)�(x′) is a kernel function, and K = {H(xi,xj)} is a kernel

matrix constructed by using all the training data. Thus KT is a positive semi-definite

matrix. If KT is positive definite, the solution of (13) is given by

� = K−1
T (kB1 − kB2). (17)

If KT is positive semi-definite, the inverse K−1
T does not exist. One way to overcome

singularity is to add positive values to the diagonal elements [10]:

� = (KT + εIM )−1(kB1 − kB2), (18)

where ε is a small positive parameter.

Assuming that ‖w‖ = 1, we can calculate the projection of �(x) on w, p, with

kernel tricks as follows:

p = wT
�(x) = (H(x,x1), ...,H(x,xM ))�. (19)
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2.2.2 Tuning membership functions

We define the function L(x) as the difference of m1(x) and m2(x):

L(x) = m1(x) −m2(x)

= −d1(p)
β1

+
d2(p)

β2
+ (b2 − b1). (20)

Now we set � = (− 1
β1
, 1

β2
)T , d = (d1(p), d2(p))

T , and b = b2 − b1. Then (20) is

rewritten as follows:

L(d) = �
T d + b. (21)

If the data sample x satisfies L(d) > 0, it is classified into Class 1, and if L(d) < 0, it

is classified into Class 2. When L(d) = 0, it is unclassifiable.

From the above discussion, L(d) is the decision function of the fuzzy classifier

whose input is a two-dimensional vector d = (d1(p), d2(p))
T , and its form is the same

as that of the decision function of linear SVMs. Hence, by calculating the weight vector

� and bias term b based on the same training algorithm as that of linear SVMs in the

two-dimensional space (d1(p), d2(p)), we can determine the slope parameter βi and bias

term bi of each membership function. (But in this formulation, we cannot determine the

values of b1 and b2 uniquely. However, because the classification boundary is invariant

so long as b = b2 − b1 is constant, we can assume that either bi is equal to 0.)

For multiclass problems, if we define fuzzy rules by one-against-all strategy, we need

to define a fuzzy rule for a class and a fuzzy rule for the remaining classes. Namely, we

first determine the vector that maximally separates class i and the remaining classes.

Then for class i, we define a fuzzy rule and for classes other than i we define one fuzzy

rule. But this is not a good strategy because it is difficult to interpret the fuzzy rules

for the ensembles of classes.

But by pairwise classification, we can apply the above method. Namely, we first

determine the vector that maximally separates the two classes in a class pair and tune

the membership function defined on the vector. In this case, we need the bias terms to

be zero, because the above method cannot determine the bias terms uniquely.

2.3 Kernel fuzzy classifiers with ellipsoidal regions

In calculating the kernel Mahalanobis distance in (8), we need to use kernel tricks [8]

but it is time consuming. Therefore, we consider calculating the kernel Mahalanobis

distance using the idea of the empirical feature space [11,12], which is spanned by

at most M training data and is equivalent to the feature space in that they give the

same kernel values if one of the argument is included in the training data. To speedup

computation, we avoid calculating the eigenvalues of the kernel matrix and use the

following mapping function to the empirical feature space [12]:

h(x) =


H(xk1 ,x), ...,H(xkN

,x)
�T
, (22)

where xkj
(j = 1, ..., N) are linearly independent in the feature space. The linearly

independent data can be selected by Cholesky factorization.
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Using (22), the center ci for class i in the empirical feature space is calculated by

ci =
1

|Xi|
�

j∈Xi

h(xj). (23)

Then the covariance matrix Q�i
is given by

Q�i
=

1

|Xi|
�

j∈Xi

(h(xj) − ci)
T (h(xj) − ci). (24)

Tuning parameters βi in (8) are tuned until there is no improvement in the recog-

nition rate. Namely, if βi is decreased, the degree of mi(φ(�)) increases. This may

lead to correct classification of the data, which were misclassified before tuning, while

some data, which were correctly classified, may be misclassified. Here we allow the

data, which were classified correctly before tuning to be misclassified as long as the

overall recognition rate of the training data is improved. We determine the values of

βi, in which misclassification or correct classification of training data occurs, dived the

range of βi accordingly, calculate the number of a net increase in correct classification,

and change the value of βi to the middle of the interval that realizes the maximum

recognition rate. This tuning method is efficient in tuning but because it is a local

optimization method, we may obtain a local optimum solution.

3 Proposed tuning methods

In this section, we discuss two methods for tuning membership functions: AAO (all-

at-once) tuning and OAA (one-against-all) tuning methods.

3.1 All-at-once tuning methods

For x belonging to class i if

mi(x) > mj(x) for j �= i, j = 1, . . . , n (25)

are satisfied, x is correctly classified. This is equivalent to

βiνi(x) + bi < βjνj(x) + bj for j �= i, j = 1, . . . , n, (26)

where νi(x) = di(x) for the kernel fuzzy classifier based on KDA and νi(x) = δ2i (x)

for the kernel fuzzy classifier with ellipsoidal regions.

We consider tuning membership functions so that the margin between classes are

maximized under the constraints (26). Because νi(x) is a constant for training data,

(26) are linear inequalities. Thus, we can formulate the optimization of βi and bi using

all-at-once formulation of SVMs with linear kernels [13]. We call this tuning method

AAO tuning.

We consider solving a linear programming support vector machine as follows:

minimize Q(�,b, �) =
n�

i=1

βi + C
M�

j=1

n�
i �=yj ,i=1

ξji (27)

subject to βi νi(xj) − βyj νyj (xj) + bi − byj ≥ 1 − ξji, (28)

βi > 0 for i �= yj , i = 1, ..., n, j = 1, ...,M, (29)



7

where C is a margin parameter that determines the trade-off between the classification

error and the generalization ability, ξji are non-negative slack variables for xj and class

i, and yj ∈ {1, . . . , n} is a class label. The first term in the objective function is to

maximize the margin. By taking the linear sum of βi, instead of the quadratic term,

the above problem become a linear programming problem. The constant 1 in the right

hand side of (28) is to introduce the margin between classes.

To solve (27) and (29) by linear programming, we need to change the variables

nonnegative. Thus, defining b+i ≥ 0, b−i ≥ 0, we can express bi = b+i − b−i and the

following linear programming program is obtained:

minimize Q(�+,�−, b+, b−, �) =
n�

i=1

βi + C
M�

j=1

n�
i �=yj ,i=1

ξji (30)

subject to βi νi(xj) − βyjνyj (xj) + b+i − b−i − b+yj
+ b−yj

≥ 1 − ξji,

βi > 0 for i �= yj , i = 1, ..., n, j = 1, ...,M. (31)

The number of variables for (30) and (31) is 3n+M(n−1) and the number of constraints

is M(n− 1).

3.2 One-against-all tuning

The optimization problem given by (30) and (31) are inefficient to solve, if the number

of training data and/or the number of classes are large. To solve the optimization

problem in such a situation, we consider approximating the all-at-once formulation

given by (30) and (31) by the one-against-all formulation called OAA tuning. To do

this, we impose the following conditions to xj (j = 1, . . . ,M):

βi νi(xj) + bi ≤ 0.5 + ξij for yij = 1, (32)

βi νi(xj) + bi ≥ 1 − ξij for yij = −1, (33)

where yij = 1 if xj belongs to class i and −1 otherwise, and ξij(≥ 0) are slack variables

associated with xj for class i. Inequality (32) is to make the degree of membership to

which the data belongs higher and (33) is to make the degree to which the data does

not belong lower.

Combining (32) and (33), we obtain

yij(βi νi(xj) + bi) ≤ pij + ξij for j = 1, . . . ,M, (34)

where pij = 0.5 for yij = 1 and −1 for yij = −1.

Then, for class i we solve the following problem:

minimize Q(βi, bi, �i) = βi + C

M�
j=1

ξij (35)

subject to yij(βi νi(xj) + bi) ≤ pij + ξij , βi > 0 for j = 1, ...,M. (36)
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Like (30) and (31), defining b+i ≥ 0, b−i ≥ 0 for (35) and (36), we obtain bi =

b+i − b−i . Thus, (35) and (36) become

minimize Q(β+
i , β

−
i , b

+
i , b

−
i , �) = βi + C

M�
j=1

ξij (37)

subject to yij

�
βi νij(xj) + b+i − b−i

�
≤ pij + ξij ,

βi > 0 for j = 1, ...,M. (38)

We solve the above problem for i = 1, . . . , n. Thus, for each class the number of

variables is M + 3 and the number of constraints is M .

The optimization problem given by (37) and (38) can be solved much faster than

that by (30) and (31) but for a large sized problem, we need speeding up tuning using

the decomposition technique [14].

4 Computer experiments

We compared the effectiveness of the proposed methods using two-class [15] and multi-

class problems [13]. We used the kernel fuzzy classifier based on KDA [9] and kernel

fuzzy classifier with ellipsoidal regions [8] and tuned the membership functions using

the two proposed methods. The fuzzy classifier based on KDA has a parameter ε to

determine the threshold to select independent data and in our study we set ε = 10−8.

As a baseline classifier, we used fuzzy pairwise L1 support vector machine [13,16]. We

used the simplex method to solve a linear programming SVM.

4.1 Benchmark data sets

Table 1 lists the benchmark datasets used in our study. For two class problems, there

are 100 or 20 pairs of training and test data sets. Except for the wine and glass data

sets, each multi-class problem consists of one training data set and one test data set.

Therefore, for these problems with test data sets, we compared the recognition rates of

the test data sets. For the wine and glass data sets, we compared the recognition rates

of the validation data sets in fivefold cross-validation, namely, the recognition rates of

the data that were deleted during cross-validation.

4.2 Parameter setting

We used RBF kernels: exp(−γ‖x − x′‖2) where γ is a positive kernel parameter, and

determined the values of kernel parameter and the margin parameter by fivefold cross-

validation. For two-class problems we determined the values using the first five train-

ing data sets. The parameter ranges are as follows: γ = {0.1, 0.5, 1, 5, 10, 15}, C =

{1, 10, 50, 100, 500, 1000, 2000, 3000, 5000, 8000, 10000, 50000, 100000}. We used the SVM

as a baseline classifier and Table 2 shows the parameter values for the SVM and the

kernel fuzzy classifier based on KDA. Table 3 shows the selected parameter values for

the kernel fuzzy classifier with ellipsoidal regions.
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Table 1 Benchmark data sets

Data Sets Inputs Train Test Classes

Banana 100 2 400 4900 2
B．cancer 100 9 200 77 2
Diabetes 100 8 468 300 2
German 100 20 700 300 2
Heart 100 13 170 100 2
Image 20 18 1300 1010 2

Ringnorm 100 20 400 7000 2
F．solar 100 9 666 400 2
Splice 20 60 1000 2175 2

Thyroid 100 5 140 75 2
Titanic 100 3 150 2051 2

Twonorm 100 20 400 7000 2
Waveform 100 21 400 4600 2

Iris 1 4 75 75 3
Numeral 1 12 810 820 10

Segmentation 1 19 210 2100 7
Vehicle 1 18 188 658 4
Wine 1 13 178 — 3
Glass 1 9 214 — 6

Table 2 Parameter values for the SVM and the kernel fuzzy classifier based on KDA

SVM OAA-Tuning AAO-Tuning
Data γ C γ C γ C

Banana 15 100 10 50 10 10
B．cancer 0.1 500 0.1 3000 0.1 10
Diabetes 0.1 3000 0.5 10 0.1 50
German 0.1 50 0 0 0.1 10
Heart 0.1 50 0.1 50 0.1 100
Image 15 500 0 0 15 1

Ringnorm 15 1 0.1 500 0.1 500
F. solar 0.5 10 15 100 0.1 10
Splice 10 10 10 1 10 1

Thyroid 15 100 5 100 1 1000
Titanic 0.5 10 1 10 15 1

Twonorm 0.5 1 0.5 50 0.5 1
Waveform 10 1 0.5 50 0.5 10

Iris 0.1 100 1 10 1 10
Numeral 0.1 500 0.5 50 0.5 500

Segmentation 10 100 10 50 1 1
Vehicle 0.5 10000 5 10 10 1
Wine 5 500 0.5 1 0.5 10
Glass 15 50 10 50 10 10

4.3 Results for kernel fuzzy classifiers based on KDA

Table 4 lists the results of the proposed tuning methods for the kernel fuzzy classifier

based on KDA. We also include the results for the SVM and fuzzy classifier based on

KDA without tuning. Namely, we set αi = 1 and bi = 0. If the kernel parameter value

was different for OAA tuning and AAO tuning, we used the parameter value with

the better recognition rate between the tuning methods. For the two-class problems

we show the recognition rates and the standard deviations. But for the multiclass
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Table 3 Parameter values for the kernel fuzzy classifier with ellipsoidal regions

OAA-Tuning AAO-Tuning
Data γ C γ C

Banana 10 1 15 1
B．cancer 0.1 1 0.1 1
Diabetes 15 1 0.5 1
German 15 1 0.1 1
Heart 0.1 1 0.1 1
Image 10 1 10 1

Ringnorm 0.1 1 0.1 1
F. solar 0.5 1 0.5 1
Splice 15 1 0.1 1

Thyroid 1 1 1 1
Titanic 5 1 1 1

Twonorm 15 1 0.1 1
Waveform 10 1 0.5 1

Iris 0.1 10 0.1 50
Numeral 0.1 1 — —

Segmentation 0.1 10 0.1 1
Vehicle 0.5 1 0.1 10
Wine 5 1 0.1 1
Glass 1 1 0.5 10

problems, the recognition rates for the test data are shown except for the wine and

glass data sets. For these data sets, the recognition rates for the cross-validation data

sets are shown.

For the two-class problems, we performed Welch t test with the significance level

of 5% and showed the best results by the statistical test in boldface. Likewise, for the

multiclass problems, the best recognition rate is shown in boldface.

From the table, the performance of the AAO tuning method is comparable to or

better than that of the SVM six times. And there is not much performance difference

between OAA tuning and AAO tuning. By tuning the fuzzy classifier both or either by

OAA tuning or AAO tuning, the recognition rate is improved or comparable compared

to that without tuning.

For multi-class problems, the recognition rates by AAO tuning are slightly lower

than those by SVM. To check the effect of ε on the recognition rate, we changed the

value of ε, fixing the values of γ and C determined for ε = 10−8, and evaluated the

recognition rate of the iris test data set. Table 5 shows the results. For ε = 10−4 and

10−6 the best recognition rate of 97.33% was obtained. Thus, there is still a room

for improving the recognition rate by determining the optimal value of ε by cross-

validation.

As discussed in Section 3, AAO tuning requires more computation time and mem-

ory than OAA tuning. We compared the computation time of the tuning methods

including training and testing the classifier for the parameter values determined by

cross-validation. Table 6 shows the computational time for the iris and numeral data

sets by AAO tuning and OAA tuning. From the table, the optimization problem by

OAA tuning can be solved much faster than that by AAO tuning especially for the

numeral data set with 10 classes.
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4.4 Results for fuzzy classifiers with ellipsoidal regions

Table 7 lists the recognition rates of the kernel fuzzy classifier with ellipsoidal regions.

The same as Table 4, the best recognition rates are shown in boldface. For the titanic

problem, the average recognition rate by the AAO tuning is shown in boldface and

the standard deviation by the SVM is shown in boldface. This means that the average

recognition rate by the AAO tuning is statistically better than that by the SVM but

the standard deviation by the AAO tuning is statistically larger than that by the SVM.

The two tuning methods performed comparable to or better than the SVM two

or three times. In general, the recognition performance is inferior to the kernel fuzzy

classifier based on KDA. But by tuning the fuzzy rules both or either by AAO tuning

or OAA tuning, the recognition rate is improved. Thus, the effectiveness of the tuning

methods is also proved for this classifier.

Table 4 Recognition rates of the test data by the kernel fuzzy classifier based on KDA

Data SVM OAA Tuning AAO Tuning Without Tuning

Banana 89.3±0.52 89.1±0.55 88.0±0.65 89.1±0.53
B．cancer 72.4±4.67 73.8±4.55 73.5±4.81 69.4±4.43
Diabetes 76.3±1.83 75.3±3.47 75.8±1.85 75.2±1.96
German 76.2±2.27 75.3±2.16 75.4±2.41 72.4±2.48
Heart 83.7±3.41 82.4±3.19 82.3±3.28 82.3±3.20
Image 97.3±0.41 97.2±0.40 97.2±0.38 97.2±0.34

Ringnorm 97.8±0.30 97.9±0.27 97.7±0.35 94.7±0.60
F. solar 67.6±1.74 60.1±5.29 66.3±1.55 66.3±1.58
Splice 89.2±0.71 89.3±0.61 89.3±0.61 89.3±0.61

Thyroid 96.1±2.08 95.0±2.30 92.9±3.11 94.6±2.35
Titanic 77.2±1.12 72.8±3.36 77.1±1.86 76.6±2.04

Twonorm 97.6±0.14 97.3±0.21 97.3±0.22 97.3±0.21
Waveform 90.0±0.44 90.3±0.44 90.3±0.41 90.1±0.49

Iris 97.33 94.67 94.67 89.33
Numeral 99.63 99.39 99.51 98.41

Segmentation 93.81 90.24 90.76 88.62
Vehicle 82.98 74.47 77.36 75.38
Wine 100 99.43 100 99.43
Glass 71.48 71.04 70.58 66.32

Table 5 Recognition rates of the iris test data
set for different values of ε

ε Test

10−1 90.67
10−2 90.67
10−3 94.67
10−4 97.33
10−5 94.67
10−6 97.33
10−7 96.00
10−8 94.67

Table 6 Computation time (seconds)

Data OAA Tuning AAO Tuning

Iris 0.121 0.188
Numeral 220 2708
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5 Conclusions

In this paper we discuss two methods of tuning membership functions. The first method

tunes membership functions all at once by an SVM with linear kernels. We call this

method AAO tuning. And the second method tunes the membership function for a

class by a one-against-all SVM. We call this method OAA tuning. According to the

computer experiment on classification performance of kernel fuzz classifiers based on

KDA and those with ellipsoidal regions, both tuning methods improved classification

performance by tuning and that of AAO tuning is slightly better than that of OAA

tuning. Comparing the fuzzy classifier based on KDA and the fuzzy classifier with

ellipsoidal regions, usually the former performed better.

Comparing the results of the proposed methods with those of the SVM, the SVM

performed better in most cases, especially for the fuzzy classifier with ellipsoidal regions.

We would like to leave the problem of clarifying the reason as a future study.
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