

University of Birmingham

Artificial Bee Colony training of neural networks:
comparison with back-propagation
Bullinaria, John; Alyahya, Khulood

DOI:
10.1007/s12293-014-0137-7

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Bullinaria, J & Alyahya, K 2014, 'Artificial Bee Colony training of neural networks: comparison with back-
propagation', Memetic Computing, vol. 6, no. 3, pp. 171-182. https://doi.org/10.1007/s12293-014-0137-7

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
The final publication is available at Springer via http://dx.doi.org/10.1007/s12293-014-0137-7

Checked June 2015

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 27. Apr. 2024

https://doi.org/10.1007/s12293-014-0137-7
https://doi.org/10.1007/s12293-014-0137-7
https://birmingham.elsevierpure.com/en/publications/0ce524bb-0fbc-4992-a8bf-fe125e942ae1

Artificial Bee Colony Training of Neural Networks:
Comparison with Back-Propagation

John A. Bullinaria and Khulood AlYahya

School of Computer Science
University of Birmingham

Birmingham, B15 2TT, UK

j.a.bullinaria@cs.bham.ac.uk

Phone: +44 (0) 121 414 2590

Abstract: The Artificial Bee Colony (ABC) is a swarm intelligence algorithm for

optimization that has previously been applied to the training of neural networks.

This paper examines more carefully the performance of the ABC algorithm for

optimizing the connection weights of feed-forward neural networks for

classification tasks, and presents a more rigorous comparison with the traditional

Back-Propagation (BP) training algorithm. The empirical results for benchmark

problems demonstrate that using the standard “stopping early” approach with

optimized learning parameters leads to improved BP performance over the

previous comparative study, and that a simple variation of the ABC approach

provides improved ABC performance too. With both improvements applied, the

ABC approach does perform very well on small problems, but the generalization

performances achieved are only significantly better than standard BP on one out

of six datasets, and the training times increase rapidly as the size of the problem

grows. If different, evolutionary optimized, BP learning rates are allowed for the

two layers of the neural network, BP is significantly better than the ABC on two

of the six datasets, and not significantly different on the other four.

Keywords: Artificial Bee Colony, Neural Networks, Learning, Evolution.

A copy-edited version of this paper has been published in the journal Memetic Computing, 2014, DOI: 10.1007/s12293-014-0137-7

 2

1. Introduction

The study of different insect behaviours, animal colonies and swarms has led to the development of

many nature inspired optimization algorithms [6]. Such swarm intelligence algorithms typically

involve a group of simple agents that cooperate with each other locally, either directly or indirectly,

and these simple interactions lead to the emergence of complex intelligent global behaviour for

solving problems. The best known examples are Particle Swarm Optimization (PSO), inspired by the

social behaviour of flocks of birds, and Ant Colony Optimization (ACO), inspired by the foraging

behaviour of ants.

A more recent, and less well studied, swarm intelligence algorithm is the Artificial Bee Colony

(ABC), originally proposed by Karaboga [10] and inspired by the foraging behaviour of honeybees

[14]. There are many potential applications of the ABC, but this paper will concentrate on their use in

optimizing the weights of artificial Neural Networks (NNs). Of course, there already exist many

hybrid neural network learning algorithms that aim to improve upon standard gradient descent

algorithms such as Back-Propagation (BP), but the advantages of those approaches are debatable. In

particular, Cantu-Paz and Kamath [4] have shown that most combinations of Evolutionary Algorithms

(EAs) and neural networks performed no better than simple BP on the classification tasks they tested.

Karaboga and colleagues [12, 15], however, have previously applied the ABC to neural network

learning and claimed some success. The aim of this paper is to explore more carefully how effective

the ABC really is for training feed-forward neural networks to perform classification tasks.

The remainder of this paper is organized as follows: The next two sections describe the ABC

algorithm and how it can be applied to neural network training. Then a series of computational

experiments are presented that explore the power of the standard and improved ABC for neural

network applications in comparison with standard optimized BP. Further experiments with

evolutionary optimized BP then demonstrate that the best ABC results are worse than can be achieved

with BP. The paper ends with some conclusions and discussion.

2. The Standard Artificial Bee Colony Algorithm

The ABC algorithm is a stochastic optimization algorithm inspired by the foraging behaviour of

honeybees [10, 14]. The algorithm represents solutions in the given multi-dimensional search space

as food sources (nectar), and maintains a population of three types of bee (employed, onlooker, and

scout) to search for the best food source (solution). Comparative studies [11, 13] have indicated that

the ABC performance is competitive with other population-based algorithms such as PSO, Genetic

Algorithms (GA) and Differential Evolution (DE).

The general idea of the ABC is that it begins with random solutions and repeatedly attempts to

find better solutions by searching the neighbourhoods of the current best solutions and abandoning

unpromising solutions. The problem solutions at each stage are represented as food sources that are

 3

each associated with an employed bee. An equal number of onlooker bees each choose one of those

food sources to be exploited based on their quality or fitness, using standard roulette wheel selection

[6]. Both onlooker and employed bees continuously try to locate better food sources in the

neighbourhood of their current food source by changing a randomly chosen dimension of their food

source position (i.e., a randomly chosen parameter of their solution) by a random amount in the

direction of another randomly chosen food source. Specifically, at each stage, a randomly chosen

parameter xi of food source i is updated by r.(xi – xj) where r is a random number drawn uniformly

from the range [–1, 1], and xj is the corresponding parameter of a different randomly chosen food

source j [15]. If that update results in a better solution, the existing food source is replaced by the one

at the updated position. Meanwhile, scout bees carry out global exploration of the search space by

randomly choosing new food sources to initialize the algorithm, and to replace food sources that have

been deemed exhausted because they have failed too many times to lead to an improvement.

It follows from the above specification that the standard ABC algorithm has only three control

parameters that need to be set appropriately for each given problem. First, the bee colony size, equal

to twice the number of food sources, and effectively equivalent to an EA population size. Second, the

local search abandoning limit. Third, the maximum number of search cycles, that is equivalent to an

EA number of generations, which can be defined indirectly by a suitably chosen fitness-based

termination criterion.

3. Neural Network Training using the ABC

Applying the ABC algorithm to training neural networks is relatively straightforward. The multi-

dimensional search space is the space of network connection weights and neuron thresholds, and the

fitness comes from a standard measure of network output performance (such as sum-squared error or

cross entropy) on the training data. However, the main objective here is for the trained network to

generalize to perform well on previously unseen testing data, and it is well known that learning the

training data too precisely can lead to “over-fitting” and unnecessarily poor generalization

performance [1]. With gradient descent training, such as BP, that is typically avoided by “stopping

the training early”, or by adding a regularization term to the cost function (such as “weight decay”),

and optimizing those with reference to an independent validation dataset [1]. In principle, similar

approaches can be applied to optimize the ABC training, though that does not appear to have been

done in the previous studies.

Karaboga and Ozturk [15] have carried out the most comprehensive study so far, testing the ABC

approach to neural network training on nine PROBEN1 benchmark classification problems [20], and

comparing the results with those they obtained using two traditional neural network learning

algorithms (BP and Levenberg-Marquardt) and three population based algorithms (PSO, GA and DE).

Overall, their ABC training achieved good results. Similar success with ABC trained neural networks

 4

has also been claimed by numerous other authors [16, 17, 18, 22, 23], and further improved results

have been obtained with hybrid learning algorithms involving the ABC combined with more

traditional neural network training algorithms [9, 19, 21]. The key question to be addressed in this

paper is: how can these good ABC results be reconciled with the earlier negative results that Cantu-

Paz and Kamath obtained for the closely related population-based EAs [4]?

To facilitate fair comparisons, the approaches used by the previous studies in this area will be

followed as closely as possible. As with the earlier comparative study of using EAs for NN training

[4], the ABC algorithm will be compared here with standard BP. Following the earlier study of using

the ABC for NN training [15], standard fully connected feed-forward classification neural networks

will be used with one hidden layer and sigmoidal hidden and output activation functions. The training

cost function will again be sum squared error, a simple winner-take-all approach will be used to

determine the predicted output classes during testing, and performance will be computed as simple

percentage correct scores.

An important issue when comparing learning algorithms is that many of the standard benchmark

datasets in the UCI Machine Learning Repository [2] are actually trivial in the sense that even the

simplest low complexity O(nd) algorithms do not perform significantly worse on them than more

sophisticated algorithms [5]. In fact, four of the nine datasets used in the Karaboga and Ozturk study

[15] are trivial in that sense (Cancer, Card, Diabetes and Glass) [5], so those will not be considered

any further. They will be replaced by the more challenging Optical Recognition of Handwritten

Digits dataset that has 64 inputs representing pixelated images and 10 output classes for the digits 0 to

9, with 3823 training patterns and 1797 for testing [2]. The same neural network architectures, with 6

hidden units, were used as in the Karaboga and Ozturk study [15] for their five remaining datasets.

However, 6 hidden units was nowhere near enough for the new Digits dataset, so 40 were used. The

crucial details for the six datasets studied are summarized in Table 1, showing the corresponding

network architectures, numbers of weights, and dataset sizes.

Throughout this study, standard unpaired two-tailed t tests will be used to determine the

statistical significances of any performance differences found. Using this test on the Karaboga and

Ozturk [15] results (repeated in Table 2) for each of their five datasets indicate that BP is significantly

better (p < 0.001) than the ABC on one (Gene), significantly worse (p < 0.001) on three (Heart,

Soybean, Thyroid), and not significantly different (p > 0.1) on one (Horse). A potential problem with

these results, however, is that the reported performance of both algorithms appear surprisingly poor,

particularly for the Thyroid and Soybean datasets, so the following sections will attempt to optimize

the performance of each algorithm, and repeat the comparisons using the improved results.

4. Neural Network Training using Optimized BP

A common problem with all comparisons against BP is that it is very easy for BP to perform poorly

 5

on the chosen datasets if its learning parameters are not optimized well, and that can be difficult to do

by hand, because the parameters are not independent, and the best values depend on the properties of

the given dataset. The study of Karaboga and Ozturk [15] simply used the same learning parameters

for all nine datasets, and it is likely that they were far from optimal for at least some of them. One

solution is to use an evolutionary algorithm to optimize the key BP learning parameters, such as the

random initial weight range [–ρ, ρ] and learning rate η. With a fixed, sufficiently large, number of

training epochs for each problem, the evolved learning rate is then able to implement a form of early

stopping and avoid over-fitting, and that consistently leads to improved performances [3]. However,

such evolutionary approaches tend to be rather computationally intensive, and might be regarded as

giving BP an unfair advantage over the ABC. A standard non-evolutionary approach will therefore be

studied first, but using information that consistently emerges from evolutionary investigations [3],

namely that very small initial weight ranges and very slow learning rates tend to work best, with a

standard stopping early approach to set the number of epochs. The details of the experimental set-up

and analysis were chosen to provide the closest possible match with the ABC approach discussed in

the next section.

The datasets were each split into standard training, validation and testing sub-sets (as indicated in

Table 1), with the validation set performance used to determine the optimal stopping point for the

training on the training set. For each training run, for each dataset, the initial network weights were

drawn uniformly from the range [–0.03, 0.03] and a maximum of one million epochs of BP training

were applied. Clearly, a learning rate for each training dataset was required that consistently resulted

in achieving the maximum validation set performance in the allowed number of epochs. These were

found by initially trying a learning rate of 0.000001 in each case, and then increasing that by factors

of ten till it was large enough, giving 0.000001 for Gene, 0.00001 for Heart and Digits, 0.0001 for

Horse, 0.001 for Soybean, and 0.01 for Thyroid. These large differences serve to emphasize again

how important it is to set the learning parameters differently and appropriately for each dataset. It is

quite likely that the learning could be speeded up in some cases (by using fewer epochs and larger

learning rates), but determining by how much would potentially require more computational effort

overall for no improvement in performance.

As always, the random factors lead to fluctuating performances within and across runs, so there

are often no clear optimal stopping points for the training, and it is not obvious that all runs should be

selected for use in computing the average test set performances. A number of valid model selection

approaches were possible, but it made best sense to choose an approach to averaging that most closely

matched the natural averaging approach for the ABC. The generalization performance was therefore

taken to be the average of ten individual neural network test set performances, where the ten sets of

network weights were those that produced the top ten validation set performances from five BP

training runs sampled every 100 epochs of training. This computation was repeated ten times to give

 6

an indication of the mean and variance of the performance across independent sets of runs. These

results are presented in the “Opt. BP” column of Table 2 for comparison with the corresponding

results from the earlier study [15]. With the optimized parameter values, BP is now significantly

better (p < 0.001) than the ABC on three of the datasets (Thyroid, Soybean, Gene), and not

significantly different (p > 0.1) on the other two (Heart, Horse), despite the fact that BP has been

trained on less data (i.e., not on the subset of the full training data set that was kept aside to be the

validation set). So, at this stage, the empirical results show that the ABC is significantly worse than

BP for training neural networks.

5. Neural Network Training using the Optimized ABC

In the same way that non-optimized learning parameter values resulted in misleadingly poor BP

results, it may be that better optimization of the ABC parameters can bring that approach back up to,

or even beyond, the performance levels of BP. It is this possibility that will be addressed next.

The obvious way to proceed is by investigating how the ABC performance depends on its

parameters, and thereby determining the best parameter values to enable a fair comparison against BP.

A preliminary investigation indicated that the bee colony size and abandoning limit had very little

effect on the results achieved, but the number of search cycles was extremely important. This is not

surprising, given that the ABC will obviously be prone to under- and over-fitting in exactly the same

way as gradient descent algorithms such as BP, and stopping the training early (at an optimum point

determined by performance on a validation set) can be expected to lead to improved generalization

performance on the test set. The way to get the best generalization results is therefore to apply the

ABC algorithm for enough cycles that over-fitting has clearly begun, and then go back and take the

solutions (i.e. network weights) corresponding to the best validation set performances to be the ones

to represent the Optimized ABC. In line with the averaging approach for BP used earlier, the

generalization performance here was taken to be the average test set performance over ten networks

using the sets of weights corresponding to the ten best validation performances from each ABC run,

sampled every 100 search cycles, and that was repeated ten times to provide an estimate of the mean

and variance of these results across ABC runs. The earlier use of five BP runs to give the ten best sets

of BP weights can now be seen as providing a reasonable approximation to picking the best weights

from whole bee colonies.

For neural network training using the ABC, there is another crucial parameter that can have a big

effect on the results, namely the size of the search space, which here corresponds to the limit on the

network weights. It is known that optimizing the initial random weight range for BP can have a big

effect on the generalization performance [3], so it is not surprising that it also has a big effect for the

ABC too. This can easily be tested by starting with the default ABC colony size of 30 and

abandoning limit of 1000 used by Karaboga and Ozturk [15], and applying ABC training with a wide

 7

range of different search space limits to find the best for each dataset.

Figure 1 shows how the performance varies with the search space size, i.e. the weight range

[-ρ, ρ] used to generate the initial solutions and to limit the weights throughout training. There is

inevitable problem dependence, but if the range is too small or too large, the generalization

performance deteriorates in each case. The study of Karaboga and Ozturk [15] simply used the same

range of [–2, 2] for all the datasets, but that is significantly worse than optimal for four of the six

datasets (Thyroid, Horse, Gene, Digits), and not significantly different for the other two (Heart,

Soybean). The performances of the optimal data points from Figure 1 are shown in the “Opt. ABC”

column of Table 2, and despite the reduced amount of training data caused by excluding the

validation set, no datasets have reduced performance compared with the original study. However,

even with the optimized weight ranges and early stopping points, the ABC is still significantly worse

(p < 0.01) than BP on four data sets (Thyroid, Soybean, Gene, Digits), and not significantly different

(p > 0.1) on the other two (Heart, Horse).

The pattern of results found quite generally for BP initial weight ranges is that using smaller

values tends to result in better generalization, until a point is reached when any further reductions

make little difference. The problem that the ABC approach has here is that smaller values can also

lead to an over-restricted search space if the weights are constrained to stay within that range

throughout training. However, there is an alternative version of the ABC (that will be referred to here

as Unconstrained ABC, or UABC) that still defines an initial weight range, but allows the ABC

algorithm to take the weights outside that range. Doing that leads to the improved pattern of

performances shown in Figure 2. Now the generalization is fairly level for small weight ranges, as

with BP, and the range [–0.03, 0.03], that was used for the BP runs, is small enough to work well for

all the datasets. Smaller values tend to increase the number of training cycles without significant

performance improvement, so there is nothing to be gained by using a smaller range. The optimized

performances using this approach and initial weight range are given in the “Opt. UABC” column of

Table 2. This shows significant performance improvement (p < 0.01) over the restricted weight range

approach (in the “Opt. ABC” column) for four of the datasets (Thyroid, Soybean, Gene, Digits), and

no significant difference (p > 0.1) for the other two (Heart, Horse). Comparing the optimized UABC

results with the optimized BP results shows no significant difference (p > 0.1) for five of the six

datasets (Thyroid, Heart, Horse, Soybean, Digits), but the UABC is now significantly better (p < 0.01)

than BP for the Gene dataset.

It was noted above that the bee colony size and abandoning limit had little effect on the results

obtained by the ABC for neural network training, but this now needs to be checked more carefully, in

case their optimization can lead to further improvements in performance. First, Figure 3 confirms

that, as long as the colony size does not fall below about 10, it makes no significant difference to the

final performance what the colony size is. Obviously, larger colonies will be able to explore more

 8

solutions per cycle, inevitably resulting in longer compute times per cycle, but that tends to not be

fully compensated by a reduction in the number of cycles required to reach the best solutions, so there

is an overall advantage in keeping the colony size reasonably low. The default size of 30 used above

is well within the range of good values, but not so high as to have serious adverse computational

resource implications.

The effect of varying the abandoning limit is shown in Figure 4. As long as it is not below about

30, it makes no significant difference what the limit is. Even for very low abandoning limits, there is

little degradation in performance. For neural network training, finding better solutions appears to be

quite common compared to other ABC applications, so reasonably high abandoning limits are rarely

reached. In fact, the default limit of 1000 is only ever reached for one of the six datasets (Soybean).

For lower limits, what tends to happen is that as the training approaches the local maximum of the

fitness function, it becomes harder to find an improved solution, and so the current solution is

abandoned and the search effectively starts again from scratch. That may happen before the peak in

validation set performance, so to be sure of not loosing the best solutions by abandoning the search

too soon, a form of elitism needs to be employed, whereby the best solution on the validation set at

each cycle is immune from abandoning. It is that elitism which hides the underlying differences in

Figure 4.

If one looks at the details of the ABC training runs, the value of the abandoning limit is actually

seen to make a big difference. Figure 5 shows the individual validation set performances at each

stage of a typical ABC run for the Soybean dataset. The upper two graphs are for the default

abandoning limit of 1000, with elitism (left graph) and without elitism (right graph). Initially there is

no difference between the two cases, because the abandoning limit is never reached, and later on the

abandoned solutions are sufficiently few and late that good results are achieved whether or not elitism

is used. For abandoning limits that are much lower, such as the case of 16 shown in the lower two

graphs, a very different pattern emerges. Without elitism (right graph), abandoning solutions too

early prevents any good solutions from emerging at all. With elitism, a single good solution emerges

early on and is refined throughout, with the others never managing to compete with it. Thus, despite

the apparent lack of differences seen in Figure 4, keeping the abandoning limit high (at or above the

default value of 1000), and the scout bees virtually never employed, is the way to make best use of the

whole bee colony. This analysis also clarifies why the bee colony size makes so little difference in

Figure 3. All that is required is one good solution and a few others to drive essentially random

potential weight updates, so maintaining large colonies offers little advantage.

Thus, the ABC algorithm parameters are now fully understood and optimized, and the results

shown in Table 2 are confirmed as the best possible without further modification of the algorithm

itself. The ABC has achieved neural network generalization performance significantly better than BP

on the Gene dataset, but the results for the other five datasets studied are not significantly different to

 9

those obtained using standard BP with appropriate learning parameter values.

This leads to the obvious next question: what is it that allows the ABC to perform significantly

better than BP on the Gene dataset, but not on the other datasets? For BP learning, the weight update

sizes depend on the back-propagated output errors and the chosen value of the learning rate

parameter. With ABC optimization, the potential weight update sizes depend on the weight

differences across the current set of solutions, which is determined at each stage of training by the

weight distributions for each layer of the network. This means the ABC algorithm will effectively

generate its own learning rates for each network layer. Standard BP has a single fixed learning rate

throughout the whole network, but there is nothing to prevent having different BP learning rates for

the distinct network components (i.e. layers of weights and thresholds). The problem, in practice,

with trying to make good use of such differences is that finding optimal values for a whole set of BP

learning rates, that interact with all the other network details, is extremely difficult to do “by hand”.

When automatic optimization of such a framework has been carried out using evolutionary

computation techniques, large differences in BP learning rates have emerged across the network

components, leading to significant improvements in performance for some datasets [3]. It is therefore

a reasonable hypothesis that this is the factor that allows the ABC to perform better than BP on the

Gene dataset. The next section will test that hypothesis.

6. Neural Network Training using Evolved BP

As noted above, simulated evolution provides a reliable approach for optimizing BP learning

parameters [3]. This section will use that technique to search for further improvements beyond the

BP parameter values used earlier. The evolutionary approach will first be applied to optimize the

single learning rate case, and the results from that will be compared with those from the above

“optimization by hand” approach. If the two approaches produce neural networks with optimal

performances that do not differ significantly for any of the datasets studied, that will provide further

confidence that the non-evolutionary BP and ABC optimization processes already employed have

been appropriate, and also that the adopted evolutionary approach is likely to result in optimal

solutions when it is then applied to the more difficult-to-optimize two-learning-rate case.

A simple EA was initially set up to optimize the two key neural network BP learning parameters,

namely the random initial weight range [–ρ, ρ], and the single learning rate η [3]. With a fixed,

sufficiently large, number of training epochs specified for each dataset, under-fitting and over-fitting

of the training data can be avoided by the learning rate η evolving so that the training ends near the

optimal point. In this case, the validation set performance is not needed to determine an early

stopping point, but is instead used to provide the fitness to drive the evolutionary selection processes.

To maintain fairness of the comparisons, no additional learning factors (such as momentum or weight

decay) were included, that might also be evolved and lead to further improved performance, but it will

 10

be straightforward to introduce them into this framework in the future [3]. The number of hidden

units was not evolved because that invariably results in using the maximum allowed number [3], and,

again to ensure fair comparisons, it was appropriate to keep that parameter the same as for the ABC

algorithm anyway. The same training, validation and testing datasets were used as in the earlier non-

evolutionary approaches.

The EA follows a fairly standard approach that has proved successful in the past [3]. It maintains

a population of individual neural networks, each with a genotype representing their evolvable

parameters. In the initial case, just ρ and η are evolved, but there will generally be many more

evolving parameters than that. The evolution starts from an initial population with random genotype

parameter values, and for each new generation, each neural network has random initial weights drawn

from its innate range [–ρ, ρ], learns from the training data using its innate learning rate η, and has its

fitness determined using the validation set. The fittest half of the population are then copied into the

next generation, and also randomly select a partner to produce one child, thus maintaining the

population size. The offspring inherit innate characteristics (i.e., genotype parameter values) drawn

randomly from within the corresponding ranges spanned by their two parents, with random Gaussian

mutations added to allow values outside the parental ranges. For each new generation, all the

networks, both copies and offspring, start their learning from newly drawn random initial weights, so

there is no learned information carried from one generation to the next. The evolutionary process

continues for sufficient generations that no further improvements are evident.

Clearly, having to train whole populations of neural networks over many generations involves a

massive computational cost. Consequently, it was not feasible to train each network for one million

BP epochs as in the earlier non-evolutionary approach, nor have massive population sizes.

Fortunately, just 1000 epochs proved to be sufficient for training in all cases, except the relatively

small Thyroid networks which were previously found to be slower to learn and required 100,000

epochs. That still led to slow progress for the relatively large Digits networks, so only 200 epochs

were used for those, which proved to be enough. Moreover, relatively small population sizes of only

50 proved sufficient to maintain a reasonable population diversity in all cases.

With only two parameters to evolve in the initial case, the evolutionary runs were very

consistent, and all settled within 1000 generations. Simply taking the ten best individuals on the

validation set from the final generations of four evolutionary runs for each dataset was sufficient to

provide ten independent trained Evolved BP networks, which were evaluated on the previously

unseen testing data to give the final generalization performance for that dataset. The results are

presented in the “Evo. BP” column of Table 3, along with the corresponding non-evolutionary

optimized UABC and BP results from Table 2.

For all six datasets, the performances obtained using the Evolved BP learning parameters are not

significantly different (p > 0.08) to those arising from the non-evolutionary optimized BP. This

 11

complete lack of differences suggests that the earlier BP runs have been successfully optimized “by

hand”, and that the evolved performances have not been compromised by using many fewer epochs of

training. It is also consistent with the absence of improvements found in the study of Cantu-Paz and

Kamath [4].

The key question here is whether allowing and evolving more than one BP learning rate can lead

to improved performance. Using the previously described evolutionary approach to optimize the

initial weight range ρ and two BP learning rates η, one for each layer of weights, leads to the

generalization performances shown in the “Evo. 2lr BP” column of Table 3. Compared with evolving

a standard single learning rate for the whole network, these results are significantly better (p < 0.01)

for two datasets (Gene and Digits), marginally better (0.01 < p < 0.05) for two datasets (Thyroid and

Horse), and not significantly different (p > 0.4) for the remaining two datasets (Heart and Soybean).

This finding is consistent with earlier evolutionary studies which have shown that evolving two or

more BP learning rates can sometimes lead to improved performances over standard BP learning [3].

The crucial comparison is between these improved BP results and the optimized ABC results.

Now BP is significantly better (p < 0.01) than the ABC for two datasets (Thyroid and Digits), and not

significantly different (p > 0.06) for the other four (Heart, Horse, Soybean and Gene). This is

consistent with the above hypothesis that the ABC’s advantage over standard BP for the Gene dataset

comes from its ability to have different learning rates for the two weight layers. The fact that

evolving optimally different BP learning rates for the two weight layers not only removes that

advantage, but also gives BP an advantage over the ABC for two other datasets, suggests that the

ABC is unable to control its learning rates as effectively as the evolution can for BP.

Obviously, the evolutionary process is computationally expensive, and it would be useful to

know if any general patterns emerge that could be used for future datasets without the need for full

evolutionary runs. Unfortunately, Table 4 shows that there is a rather large variation in the evolved

parameters across the six datasets, with no obvious emergent pattern.

7. Conclusions and Discussion

This paper has investigated the use of the ABC algorithm for training neural networks, and shown

how it can be optimized to give better results than those found in previous studies. However, in most

cases, the best ABC generalization performance levels obtained are not significantly different to

standard BP that has been properly optimized for the given problems. The BP parameters were first

optimized “by hand” in the same way as the ABC, and then by simulated evolution by natural

selection. First, with one standard BP learning rate for the whole network, the by-hand and

evolutionary optimization results were not significantly different, with the ABC performing

significantly better than BP for one dataset, and not significantly different for the other five. Then

with two evolved BP learning rates, one for each network layer, it was found that the results for some

 12

datasets were significantly better than with only one learning rate, and that the BP performances were

significantly better than the ABC for two datasets, and not significantly different for the other four.

One could argue that the ABC algorithms are relatively minor extensions of standard EAs in that

they both involve populations of solutions, the generation of new solutions based on existing

solutions, and the discovery of better solutions by iteratively using fitness based selection to

determine which “offspring” should replace which existing solutions. The obvious question to ask,

then, is whether the offspring generation and selection inspired by bees perform any better on the

application of interest (i.e. neural network training) than those inspired by evolution by natural

selection. It has been established in this paper that the scout bee component of the ABC algorithm is

redundant in this case, in that no degradation in performance arises from setting the abandoning limit

to values so high that the scout bees never become involved after the initial solution set generation.

Thus there is effectively no further wide-scale random exploration of the search space during training.

This means that all the offspring are generated by changing the value of a single randomly chosen

parameter (i.e. network weight) by an amount that depends on the difference between that value and

the corresponding value of another individual. That is exactly how a basic EA cross-over and

mutation would optimize its genotype [3], so it is not surprising that a similar conclusion has emerged

to that of the earlier study of Cantu-Paz and Kamath [4] which showed that weight optimization using

EAs gave results that were not significantly better than standard BP.

A crucial feature of using the ABC for neural network training is that the bee colony is

representing a set of solutions that are not converging to a single point like in many other optimization

problems, nor even a small number of points. This is likely to be the main reason why the ABC is not

performing any better than BP. The individual solutions could, for example, be equivalent neural

networks that simply have the order of their hidden units permuted, and this could potentially lead to

something like the permutation problem for evolving neural networks, which is known to exist but not

pose serious problems in practice [7, 8]. Contrary to previous suggestions [15], the weight changes

do not get smaller as the solutions converge, but rather they reflect the distribution of weights across

the relevant network components. This is clearly not preventing the ABC algorithm from finding

good solutions, but, together with the finding that the scout bees are not making any useful

contribution, it does mean that the ABC is actually performing little more than stochastic hill

climbing, which one would expect to end up with similar results to an informed hill climbing

algorithm like BP, albeit more slowly. It also means that previous claims that the ABC can avoid

becoming stuck in local optima better than BP [15, 16, 17, 22] could well prove unfounded too.

This also leads to an important related issue concerning the increased computational cost of using

the ABC compared with BP. With the ABC updating random network weights one at a time, by

amounts involving a random factor, it will inevitably become less computationally efficient as the

network sizes increase. Of course, BP also becomes more computationally costly as the network size

 13

grows, but to a much lesser extent than the ABC. This differing dependence on the network size

makes fair comparisons of the two approaches difficult, because past empirical studies have shown

that the generalization performance usually improves with more hidden units, as long as appropriate

regularization (such as stopping early) is used [3]. Getting better results by using much larger

networks than the current study will not only pose problems with getting the experiments completed

in a reasonable time, but will also put the ABC at a considerable compute time disadvantage

compared with BP. If equal fixed maximum compute times were to be enforced for both algorithms,

BP would end up being able to use significantly more hidden units, and thus achieve significantly

better generalization performances than the ABC in that way.

For cases requiring evolutionary parameter optimization, which is likely to be necessary

whenever two or more BP learning rates are used, the computational cost of training many

generations of many individual networks is clearly going to be considerable compared to standard

hand-optimized BP and even the ABC. However, the evolution will generally be able to result in

faster individual training runs [3], and as long as the total compute times required remain feasible, this

may not be a problem in practice. It is also often possible to deduce general patterns concerning the

optimal parameter values from earlier evolutionary runs, that can be applied directly to new problems

without the need for full evolutionary optimization, but it is clear from the results in Table 4 that

much more work will be required before that approach can be effective here.

The overall conclusion of this paper is that there is currently no evidence that the ABC algorithm

offers a reliable advantage over BP for training neural networks. Using the optimized ABC to train

neural network classifiers leads to generalization performance levels that are significantly better than

standard single learning rate BP for only one of the six datasets tested, and not significantly different

on the others, and if BP is allowed a different learning rate for each network layer, then it is

significantly better than the ABC for two of the six datasets, and not significantly different on the

others. All the indications are that the best ABC approach is doing little more than performing

stochastic hill climbing, and that will generally be much slower than BP.

There clearly remains considerable scope for future work in this area, but, unfortunately, most of

it will be extremely computationally expensive. First, of course, the investigation of a wider range of

datasets, with many more runs per dataset, would provide a more reliable indication of the patterns of

results that can be expected more generally. Then, the application of the evolutionary approach to the

optimization of even more BP learning parameters may allow even better BP results [3]. Finally,

testing how the generalization performances and run times depend on the number of neural network

hidden units will allow investigation of the computational cost issues noted above. Ultimately, it will

be the results of this future work that will determine whether the ABC is a worthwhile algorithm for

training neural networks, but the current results suggest that it is not.

 14

References

1. Bishop CM (1995) Neural Networks for Pattern Recognition. Oxford, UK: Oxford University

Press

2. Blake CL, Merz CJ (1998) UCI Repository of Machine Learning Databases. University of

California, http://www.ics.uci.edu/~mlearn/MLRepository.html

3. Bullinaria JA (2007) Using evolution to improve neural network learning: Pitfalls and solutions.

Neural Computing and Applications 16:209-226

4. Cantu-Paz E, Kamath C (2005) An empirical comparison of combinations of evolutionary

algorithms and neural networks for classification problems. IEEE Transactions on Systems, Man,

and Cybernetics-Part B: Cybernetics 35:915-927

5. Duch W, Maszczyk T, Jankowski N (2012) Make it cheap: Learning with O(nd) complexity.

Proceedings of the World Congress on Computational Intelligence, 132-135

6. Engelbrecht AP (2007) Computational Intelligence: An Introduction. Sussex, UK: Wiley

7. Haidason S, Neville R (2010) Quantifying the severity of the permutation problem in neuro-

evolution. Proceedings of 4th International Workshop on Natural Computing (IWNC), 149-156

8. Hancock P (1992) Genetic algorithms and permutation problems: A comparison of

recombination operators for neural net structure specification. Proceedings of the International

Workshop on Combinations of Genetic Algorithms and Neural Networks, 108-122

9. Irani R, Nasimi R (2011) Application of Artificial Bee Colony-based neural network in bottom

hole pressure prediction in underbalanced drilling. Journal of Petroleum Science and Engineering

78:6-12

10. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical

Report TR06, Computer Engineering Department, Erciyes University, Turkey

11. Karaboga D, Akay B (2009) A comparative study of Artificial Bee Colony algorithm. Applied

Mathematics and Computation 214:108-132

12. Karaboga D, Akay B, Ozturk C (2007) Artificial Bee Colony (ABC) optimization algorithm for

training feed-forward neural networks. Proceedings of the 4th International Conference on

Modeling Decisions for Artificial Intelligence, 318-329

13. Karaboga D, Basturk B (2008) On the performance of Artificial Bee Colony (ABC) algorithm.

Applied Soft Computing 8:687-697

14. Karaboga D, Gorkemli B, Ozturk C, Karaboga N (2012) A comprehensive survey: Artificial Bee

Colony (ABC) algorithm and applications. Artificial Intelligence Review 1-37

15. Karaboga D, Ozturk C (2009) Neural networks training by Artificial Bee Colony algorithm on

pattern classification. Neural Network World 19:279-292

16. Kurban T, Besdok E (2009) A comparison of RBF neural network training algorithms for inertial

sensor based terrain classification. Sensors 9:6312-6329

 15

17. Omkar SN, Senthilnath J (2009) Artificial Bee Colony for classification of acoustic emission

signal source. International Journal of Aerospace Innovations 1:129-143

18. Ozkan C, Kisi O, Akay B (2011) Neural networks with Artificial Bee Colony algorithm for

modeling daily reference evapotranspiration. Irrigation Science 29:431-441

19. Ozturk C, Karaboga D (2011) Hybrid Artificial Bee Colony algorithm for neural network

training. Proceedings of the IEEE Congress on Evolutionary Computation, 84-88

20. Prechelt L (1994) PROBEN1 – A set of benchmarks and benchmarking rules for neural network

training algorithms. Technical Report 21/94, Universitat Karlsruhe, Fakult at fur Informatik,

Germany

21. Qiongshuai L, Shiqing W (2011) A hybrid model of neural network and classification in wine.

Proceedings of the 3rd International Conference on Computer Research and Development, 58-61

22. Shah H, Ghazali R, Nawi NM (2011) Using Artificial Bee Colony algorithm for MLP training on

earthquake time series data prediction. Journal of Computing 3:135-142

23. Yeh WC, Hsieh TJ (2012) Artificial Bee Colony algorithm-neural networks for S-system models

of biochemical networks approximation. Neural Computing and Applications 21:365-375

 16

Table 1 Neural network architectures (inputs – hidden units – outputs), numbers of weights, and

training, validation and testing dataset sizes for each of the six datasets.

Dataset Architecture Weights Training Validation Testing

Thyroid 21 – 6 – 3 153 3600 1800 1800

Heart 35 – 6 – 2 230 460 230 230

Horse 58 – 6 – 3 375 182 91 91

Soybean 82 – 6 – 19 631 342 171 170

Gene 120 – 6 – 3 747 1588 794 793

Digits 64 – 40 – 10 3010 3058 765 1797

 17

Table 2 Mean neural network Classification Error Percentages (CEP) and standard deviations (s.d.)

for each of the six datasets using: BP from [15], ABC from [15], Optimized BP, Optimized ABC, and

Optimized Unconstrained ABC. All results that are significantly different (p < 0.01) to the one on

their immediate left are indicated by a *.

Dataset BP [15] ABC [15] Opt. BP Opt. ABC Opt. UABC

Thyroid CEP 7.26 6.95 * 2.06 * 6.14 * 1.87 *

 s.d. 0.00 0.01 0.21 0.07 0.14

Heart CEP 21.44 19.48 * 19.43 19.13 19.49

 s.d. 0.55 1.41 0.54 1.34 0.57

Horse CEP 27.84 28.63 28.43 27.69 27.14

 s.d. 2.12 2.61 2.70 1.23 1.69

Soybean CEP 61.16 38.63 * 10.08 * 13.93 * 9.91 *

 s.d. 19.18 3.18 1.98 1.13 1.04

Gene CEP 11.37 29.50 * 13.23 * 19.55 * 12.22 *

 s.d. 1.15 1.88 0.57 0.71 0.52

Digits CEP – – 4.32 6.29 * 4.27 *

 s.d. – – 0.27 0.18 0.34

 18

Table 3 Mean neural network Classification Error Percentages (CEP) and standard deviations (s.d.)

for the six datasets using: Optimized Unconstrained ABC, Optimized BP, Evolved BP, and Evolved

two learning rates BP. All BP results that are significantly different (p < 0.01) to the corresponding

UABC result are indicated by a *.

Dataset Opt. UABC Opt. BP Evo. BP Evo. 2lr BP

Thyroid CEP 1.87 2.06 1.89 1.62 *

 s.d. 0.14 0.21 0.26 0.16

Heart CEP 19.49 19.43 20.17 19.74

 s.d. 0.57 0.54 1.14 1.18

Horse CEP 27.14 28.43 28.35 26.15

 s.d. 1.69 2.70 2.63 1.35

Soybean CEP 9.91 10.08 9.18 9.18

 s.d. 1.04 1.98 0.84 0.57

Gene CEP 12.22 13.23 * 13.10 * 11.85

 s.d. 0.52 0.57 0.77 0.80

Digits CEP 4.27 4.32 4.15 3.55 *

 s.d. 0.34 0.27 0.18 0.39

 19

Table 4 Means (mean) and standard deviations (s.d.) of the evolved initial weight ranges ρ and

learning rates η, for each of the six datasets, for standard BP with one learning rate, and enhanced BP

with two learning rates.

Dataset Standard BP Two learning rates BP

 ρ η ρ ηIH ηHO

Thyroid mean 0.054 0.22 0.087 0.71 0.038

 s.d. 0.051 0.04 0.053 0.12 0.019

Heart mean 0.34 1.07 0.23 1.93 0.0061

 s.d. 0.18 0.16 0.11 1.04 0.0036

Horse mean 0.27 0.12 0.74 0.018 0.00019

 s.d. 0.59 0.24 0.30 0.008 0.00005

Soybean mean 0.27 0.0092 0.014 0.00056 0.076

 s.d. 0.14 0.0015 0.003 0.00021 0.148

Gene mean 0.11 0.00015 0.55 0.12 0.000063

 s.d. 0.02 0.00003 0.09 0.05 0.000013

Digits mean 0.097 0.0079 0.019 0.00018 0.14

 s.d. 0.030 0.0027 0.005 0.00006 0.03

 20

Fig. 1 Generalization performance as a function of weight range for the ABC trained neural networks

with limited random initial weight range, and the same limited weight range throughout training.

Fig. 2 Generalization performance as a function of initial weight range for the ABC trained neural

networks with limited random initial weight range, but unconstrained weights at later stages of

training.

 21

Fig. 3 Generalization performance as a function of the bee colony size for the UABC trained neural

networks with optimal initial weight range and abandoning limit of 1000.

Fig. 4 Generalization performance as a function of the abandoning limit for the UABC trained neural

networks with optimal initial weight range and bee colony size of 30.

 22

Fig. 5 Individual solution performances during a typical ABC training run for the Soybean dataset

with abandoning limit of 1000 (top) and 16 (bottom), with elitism (left) and without elitism (right).

