
Memetic Computing (2022) 14:151–164
https://doi.org/10.1007/s12293-022-00363-y

REGULAR RESEARCH PAPER

Constrained Multi-Objective Optimization with a Limited Budget of
Function Evaluations

Roy de Winter1,2 · Philip Bronkhorst2 · Bas van Stein1 · Thomas Bäck1

Received: 15 July 2021 / Accepted: 27 February 2022 / Published online: 8 April 2022
© The Author(s) 2022

Abstract
This paper proposes the Self-Adaptive algorithm forMulti-ObjectiveConstrainedOptimization by usingRadialBasis Function
Approximations, SAMO-COBRA. This algorithm automatically determines the best Radial Basis Function-fit as surrogates
for the objectives as well as the constraints, to find new feasible Pareto-optimal solutions. SAMO-COBRA is compared to
a wide set of other state-of-the-art algorithms (IC-SA-NSGA-II, SA-NSGA-II, NSGA-II, NSGA-III, CEGO, SMES-RBF)
on 18 constrained multi-objective problems. In the first experiment, SAMO-COBRA outperforms the other algorithms in
terms of achieved Hypervolume (HV) after being given a fixed small evaluation budget on the majority of test functions. In
the second experiment, SAMO-COBRA outperforms the majority of competitors in terms of required function evaluations
to achieve 95% of the maximum achievable Hypervolume. In addition to academic test functions, SAMO-COBRA has been
applied on a real-world ship design optimization problem with three objectives, two complex constraints, and five decision
variables.

Keywords Constrained optimization · Multi-objective optimization · Optimization under limited budgets · Real-world
application.

1 Introduction

Real-world optimization problems often have multiple con-
flicting objectives, several constraints, and decision variables
in the continuous domain [4,16,43]. Without loss of general-
ity, a constrained multi-objective optimization problem can
be defined as follows [13]:

minimize: f : Ω → R
k , f (x) = (f1(x), . . . , fk(x))�

subject to: gi (x) ≤ 0 ∀i ∈ {1, . . . ,m}
x ∈ Ω ⊂ R

d .

B Roy de Winter
r.de.winter@liacs.leidenuniv.nl

Bas van Stein
b.van.stein@liacs.leidenuniv.nl

Thomas Bäck
t.h.w.baeck@liacs.leidenuniv.nl

1 Leiden Institute of Advanced Computer Science, Leiden
University, Niels Bohrweg 1, 2333, CA, Leiden, The
Netherlands

2 Research and Development, C-Job Naval Architects,
Regulusplein 1, 2132, JN Hoofddorp, The Netherlands

where k represents the number of objectives, m represents
the number of constraints, and d represents the number of
parameters in the optimizationproblem.Solving this problem
type can be done by searching for feasible Pareto-optimal
solutions. The definition of a solution that is feasible and
Pareto-optimal can be found in Def. 1.

Definition 1 (Feasible Pareto-optimal solution): x ∈ Ω is
called feasible Pareto-optimal with respect toΩ and gi (x) ≤
0 ∀i ∈ {1, . . . ,m}, if and only if there is no solution x′
for which v = f (x′) = (f1(x′), . . . , fk(x′))� dominates
u = f (x) = (f1(x), . . . , fk(x))� where gi (x) ≤ 0 and
gi (x′) ≤ 0 ∀i ∈ {1, . . . ,m}.
On top of the already complex constrained multi-objective
optimization problem characteristics, there is also a need
to reduce the computational and licensing cost involved.
There are many engineering examples which require expen-
sive function evaluations [35], special hardware, or software
licences [37]. Practical examples of such problems can be
found in the automotive industry, aerospace engineering, and
the maritime industry.

Handling constraints in optimization problems can be
done in several ways: using penalty functions, separation of

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12293-022-00363-y&domain=pdf
http://orcid.org/0000-0002-0865-4709
http://orcid.org/0000-0002-0013-7969
http://orcid.org/0000-0001-6768-1478

152 Memetic Computing (2022) 14:151–164

constraints and objectives, treating constraints as additional
objectives, or hybridmethods [3,16]. In our approachweonly
consider separation of constraints and objectives because the
main issuewith penalty functions is that the ideal penalty fac-
tors cannot be known in advance, and tuning the parameters
requires a lot of additional function evaluations. The issue
with treating constraints as additional objectives is that it
makes the objective space unnecessarily more complex with
a too strong bias towards the constraints.

An algorithm which uses the separation of constraints
and objectives in combination with surrogates is SAMO-
COBRA [41]. SAMO-COBRA, which is an abbreviation
for Self-Adaptive Multi-Objective Constrained Optimiza-
tion by using Radial Basis Function Approximations, owes
its name to the very efficient constraint handling algo-
rithms: COBRA [31] and SACOBRA [3]. Besides constraint
handling, SAMO-COBRA shows to be efficient in finding
Pareto-optimal solutions, thereby solving constrained multi-
objective problems by using a limited number of function
evaluations.

Compared to our previous work describing SAMO-
COBRA [41], in this paper the SAMO-COBRA algorithm is
described inmore detail, SAMO-COBRA is compared to two
new state-of-the-art algorithms, additional experiments are
conducted to evaluate its performance, and SAMO-COBRA
has been used in practice to solve a real-world optimization
problem. In the real-world application SAMO-COBRA is
used to solve a real-world ship design optimization prob-
lem with five variables, two complex constraints, and three
objectives.

1.1 Outline

The remainder of this paper is organized as follows. In Sect. 2
related work is discussed. In Sect. 3 the SAMO-COBRA
algorithm is proposed and described in detail. In Sect. 4 the
experimental setup is given on how SAMO-COBRA is com-
pared to other state of the art algorithms. In Sect. 5 the results
of the experiments are reported. In Sect. 6 an example is
given of a real-world application of SAMO-COBRA. The
final concluding remarks are given in Sect. 7.

2 Related work

Existing work on surrogate assisted optimization is typ-
ically limited to a subset of three relevant requirements:
multi-objective, constrained, and speed. For example, meth-
ods exist for quickly solving constrained single-objective
problems (e.g. SACOBRA [3]), for multi-objective opti-
mization without efficient constraint handling techniques
(e.g. SMS-EGO [29] and PAREGO [25]), or for constrained
multi-objective optimization without using meta-models,

leading to a large number of required function evaluations
(e.g. NSGA-II [14], NSGA-III [24], SPEA2 [44], and SMS-
EMOA [6]). Some recently proposed algorithms address all
three requirements, however, their computational cost grows
cubically in every iteration and exponentially for each addi-
tional decision parameter due to the use ofKriging surrogates
(e.g. CEGO [42], ECMO [36]).

Only very occasionally a surrogate-based algorithm is
published that dealswith both constraints andmultiple objec-
tives in an effectivemannerwithout using aKriging surrogate
(e.g., Datta’s and Regis’ SMES-RBF [11], Blank and Deb’s
SA-NSGA-II [8], and Blank’s and Deb’s IC-SA-NSGA-II
[8]).

SMES-RBF is a surrogate assisted evolutionary strategy
that uses cubic Radial Basis Functions as a surrogate for
the objectives and constraints to estimate the actual function
values. The most promising solution(s) according to a non-
dominated sorting procedure are then evaluated on the real
objective and constraint function until the evaluation budget
limit has been reached.

SA-NSGA-II is the surrogate assisted NSGA-II algorithm
that exploits the Cubic Radial Basis Functions with a linear
tail as a surrogate to find the Pareto frontier. SA-NSGA-II
starts with a Latin Hypercube Sample to train the surrogates.
Afterwards, in every iteration the surrogates are updated and
used by the NSGA-II algorithm to determine the solutions to
be evaluated next.

IC-SA-NSGA-II assumes that the constraints are inex-
pensive and exploits this assumption by only evaluating the
objective functions if the constraints are satisfied. IC-SA-
NSGA-II starts by creating aRiesz s-Energy sample (Energy)
[22], which results in a well-spaced feasible point set. After
the initial sample is evaluated, cubic Radial Basis Functions
with a linear tail are fitted as surrogates for the objective
and constraint functions. The surrogates are then used by the
NSGA-II algorithm to find novel solutions. The constraint
functions are evaluated first, the objective functions are only
evaluated if the constraints are not violated. The novel eval-
uated solutions are added to the archive which is used in the
next iteration to retrain the surrogates. This continues until
the objective evaluation budget has been exhausted.

3 Constrainedmulti-objective optimization
algorithm

In this section, the new SAMO-COBRA algorithm is intro-
duced. It is designed for dealing with continuous decision
variables, multiple objectives, multiple complex constraints,
and expensive objective function evaluations in an efficient
manner. The idea behind the algorithm is that in every itera-
tion, for each objective and for each constraint independently,
the best transformation and the best RBF kernel is sought. In

123

Memetic Computing (2022) 14:151–164 153

each iteration the best fit is used to search for a new unseen
feasible Pareto efficient point that contributes the most to
the HyperVolume (HV) which is computed between a refer-
ence point and the Pareto-frontier (PF). The pseudocode of
SAMO-COBRA can be found in Algorithm 1. The Python
implementation can be found on the Github page [39]. In the
subsections below, the algorithm is explained in more detail.

3.1 Initial design of experiments

Bossek et al. showed empirically that, when dealing with
sequential model-based optimization, in most cases it is best
to use the Halton sampling strategy [21] with an initial sam-
ple that is as small as possible [9]. A few experiments (See
Appendix A.1) confirmed that a small initial sample size and
Halton sampling, also leads to the best results when applied
on six constrained multi-objective problems from Sect. 4.

An RBF model that models the relationship between the
input space and the output space can already be trained with
d + 1 evaluated solutions. Therefore, it is advised to create
an initial Halton sample of size d + 1 before the sequential
optimization procedure starts, when using SAMO-COBRA.
Every sample in the initial design is then evaluated (lines 2-4
of Algorithm 1) so that all samples have their corresponding
constraint and objective scores.

3.2 Radial basis function fitting and interpolation

RBF interpolation approximates a function by fitting a lin-
ear weighted combination of RBFs [3]. The challenge is to
find correct weights (θ) and a good RBF kernel ϕ(‖x− c‖).
An RBF is only dependent on the distance between the input
point x to the center c. The RBFs used in this work take
each evaluated point as the centroid of the function, and the
weighted linear combination of RBFs always produces a per-
fect fit through the training points. Besides the perfect fit on
the training points, the linear combination of the RBFs can
also give a reasonable approximation of the unknown area.

Any functionwhich is only dependent on the distance from
a specific point to another point belongs to the group ofRBFs.
The RBF kernels (ϕ) considered in this work are the cubic
with ϕ(r) = r3, Gaussian with ϕ(r) = exp (−(ε · r)2),
multiquadric with ϕ(r) = √

1 + (ε · r)2, inverse quadratic
with ϕ(r) = (1 + (ε · r)2)−1, inverse multiquadric with
ϕ(r) = (

√
1 + (ε · r)2)−1, and thin plate splinewithϕ(r) =

r2 log r . Note that the shape/width parameter ε for every indi-
vidual RBF is kept constant such as proposed by Urquhart et
al. [38]. Moreover, all shape parameters are fixed to ε = 1.

Finding suitable linear weighted combinations θ of the
RBFs can be done by inverting Φ ∈ R

n×n where Φ i, j =
ϕ(‖xi − x j‖):

θ = Φ−1 · f (1)

Here f is a vector of length n with the function values belong-
ing to one of the objectives or constraints. Because Φ is not
always invertible, Micchelli introduced RBFs with a poly-
nomial tail, better known as augmented RBFs [26]. In this
work augmented RBFs are used with a second order poly-
nomial tail. The polynomial tail is created by extending the
original matrix Φ with P = (1, xi1, . . . , xid , x2i,1, . . . , x

2
id),

in its i th row, where xi j is the j th component of vector
xi , for i = 1, . . . , n and j = 1, . . . , d, P�, and zeros
0(2d+1)×(2d+1), leading to 1 + 2d more weights μ to learn.

[
Φ P
P� 0(2d+1)×(2d+1)

] [
θ

μ

]
=

[
f

02d+1

]
(2)

Now that the weights θ can be computed and μ with Eq. 1
(Lines 16, 17, 20, 21 ofAlgorithm1), for each unseen input x′
the function value (f ′) can be interpolated/predicted by using
Eq. (3).

f ′ = Φ ′ · [
θμ

]

f ′ =
n∑

i=1

θiϕ(‖x′ − xi‖) + μ0 +
d∑

l=1

μlx
′
l +

d∑

l=1

μlx
′2
l ,

x ∈ R
d

(3)

3.3 Scaling

In SAMO- COBRA, various scaling and transformation
functions are used in lines 9-13 of the algorithm. This is
done to improve the predictive accuracy of the RBF surro-
gatemodels. The four functionsScale,Plog,Standardize
and the Scale Constraint are described below.

Scale: The input space/decision variables are
scaled into the range [−1, 1]with x = 2 ·
(x−xlb)/(xub−xlb)−1. By scaling large
values in the input space, computation-
ally singular (ill-conditioned) coefficient
matrices in Eq. (1) can be prevented. In
case the large values in the input space
are kept, the linear equation solver will
terminate with an error, or it will result in
a large root mean square error [3]. Addi-
tionally, when fitting the RBFs, a small
change in one of the variables, is rela-
tively the same small change in all the
other variables, making each variable in
the basis equally important and equally
sensitive.

Standardize: The relationship between the input space
and the objective function values is mod-
elled with RBF surrogates. Besides this
relationship, Bagheri et al. also exploited

123

154 Memetic Computing (2022) 14:151–164

Algorithm 1: SAMO-COBRA. Input:Objective functions f (x), constraint function(s) g(x), decision parameters’ lower
and upper bounds [lb,ub] ⊂ R

d , reference point ref ∈ R
k , number of initial samples N , maximum evaluation budget

Nmax , RBFkernels (ϕ) = {cubic, gaussian,multiquadric, invquadric, invmultiquadric, thinplatespline}Output:
Evaluated feasible Pareto efficient solutions.
1 Function SAMO-COBRA(f , g, [lb,ub], ref , N , Nmax , RBFkernels):
2 X ← {x1, · · · , xN } � Generate initial design, X ∈ R

d×N

3 F ← f (X) � Obtain objective scores, F ∈ R
k×N

4 G ← g(X) � Obtain constraint scores, G ∈ R
m×N

5 for i ← 1 to k + m do
6 RBF∗

i ← (kernel = cubic, Plog=True) � Initialize best RBF configuration
7 end
8 while N < Nmax do
9 X̂ ← Scale(X, [−1, 1]d) � Scale input space to [−1, 1]d

10 F̃ ← Plog(F) � See function plog in Eq. (5)

11 G̃ ← Plog(G) � See function plog in Eq. (5)

12 F̂ ← Standardize(F) � Standardize objective space

13 Ĝ ← Scale Constraint(G) � 0 remains feasibility boundary
14 for ϕ ∈ RBFkernels do � For each kernel
15 for i ← 1 to k do � For each objective
16 Ŝϕ

i ← FitRBF(X̂, F̂(i,·),ϕ) � Fit RBF with standardized objective values

17 S̃ϕ
i ← FitRBF(X̂, F̃(i,·),ϕ) � Fit RBF with Plog transformed objective values

18 end
19 for j ← 1 to m do � For each constraint
20 Ŝϕ

k+ j ← FitRBF(X̂, Ĝ(j,·),ϕ) � Fit RBF with scaled constrained scores

21 S̃ϕ
k+ j ← FitRBF(X̂, G̃(j,·),ϕ) � Fit RBF with Plog transformed constraint values

22 end
23 end

24 S∗ ←
{
S

(RBF∗
i)

i | ∀i = 1, . . . , (k + m)
}

� Apply best RBF configuration defined on line 32

25 PF ←Pareto(X,F,G) � PF indicator see Def. 1, PF ∈ {0, 1}N
26 x∗ ← Maximize(HV, PF, ref , S∗) � Get best solution based on HV contribution, see Section 3.4
27 xnew ← Scale(x∗, [lb,ub]) � Scale to original scale
28 N ← N + 1 � Increase iteration counter to new matrix sizes

29 X ← [X xnew] � Add new solution, X ∈ R
d×N

30 F ← [F f (xnew)] � Add evaluated objectives, F ∈ R
k×N

31 G ← [G g(xnew)] � Add evaluated constraints, G ∈ R
m×N

32 RBF∗,SE ←SelectBestRBF(SE, S, x∗,F,G,PF, N) � Get best RBF configuration, see Section 3.6
33 end
34 return (F(·,PF), G(·,PF), X(·,PF))

similarities between RBF and Kriging
surrogates to comeupwith an uncertainty
quantification method [2]. The formula
for this uncertainty quantificationmethod
is given in Eq. (4).

ÛRBF = ϕ(‖x′ − x′‖) − Φ ′�Φ−1Φ ′

(4)

The uncertainty (ÛRBF) of solutions far
away from earlier evaluated solutions is
higher compared to solutions close to ear-
lier evaluated solutions. This uncertainty
quantification method can therefore help
in exploration, and prevent the algorithm
fromgetting stuck in a local optimal solu-

tion. However, as can be derived from
Eq. (4), the uncertainty quantification
method is only dependent on the input
space and not on the scale of the objec-
tive and/or weights of the RBF models.
The objective values are therefore stan-
dardized as y′ = (y − ȳ)/σ so that the
uncertainty scale and the objective scale
match. Here σ is the standard deviation
of y, and ȳ the mean of y.

Scale Constraint: The constraint evaluation function should
return a continuous value, namely the
amount by which the constraint is vio-
lated. Since it is possible to have mul-
tiple constraints, and each constraint is
equally important, every constraint out-

123

Memetic Computing (2022) 14:151–164 155

put is scaled with c′ = c/(max(c) −
min(c)), where max(c) is the maximum
constraint violation encountered so far,
and min(c) is the smallest constraint
value seen so far. After scaling, the
difference between min(c) and max(c)
becomes 1 for all constraints, making
every constraint equally important while
0 remains the feasibility boundary.

Plog: In caseswhere there are very steep slopes,
a logarithmic transformationof the objec-
tive and/or constraint scores can be ben-
eficial for the predictive accuracy [32].
Therefore, the scores are transformed
with the Plog transformation function.
The extension to a matrix argument Y
is defined component-wise, i.e., each
matrix element yi j is subject to Plog.

Plog(y) =
{

+ ln(1 + y), if y ≥ 0

− ln(1 − y), if y < 0
(5)

3.4 Maximize hypervolume contribution

After modelling the relationship between the input space and
the response variables with the RBFs, the RBFs are used as
cheap surrogates. For each constraint and objective, the best
RBF configuration is chosen as described in Sect. 3.6. By
using Eq. (3) for each unseen input x′, every corresponding
constraint and objective prediction can be calculated. Given
the RBF approximations for a solution x′, the constraint pre-
dictions can be used to check if the solution is predicted to
satisfy all the constraints. Besides the constraint predictions,
the objective predictions can be used to see if the solution
is a highly preferred solution or not. Whether one solution
is preferred above another solution can be computed with
an infill criteria, also known as acquisition function. There
are two infill criteria considered in this work, the S-Metric
Selection criteria (SMS), and the Predicted Hyper-Volume
criteria (PHV). Computation of the two infill criteria is done
as follows:

1. Compute all objective scores for a given solution x′ with
Eq. (3). With the interpolated objective scores, compute
the additional Predicted Hyper-Volume (PHV) score this
solution adds to the PF. This is a purely exploitative infill
criteria without any uncertainty quantification method.

2. Compute all objective scores for a given solution x′ with
Eq. (3) and subtract the uncertainty of each objective given
x′ and Eq. (4).With the interpolated objective scoreminus
the uncertainty, the potential HV that this solution could
add to the PF is calculated. This infill criteria is similar
to the Kriging S-metric Selection (SMS) criterion from

Fig. 1 Visual representation of hypervolume contribution of two solu-
tions F1 and F2. The additional hypervolume of F1 is larger compared to
the additional hypervolume F2. For this reason, F1 is the more preferred
solution

Emmerich et al. [6]. Because of the subtracted uncertainty,
itwill bemore exploratory compared to the PHVcriterion.

How much a solution adds to the PF is based on how much
HV the solution adds between the already evaluated non-
dominated solutions and a predefined reference point. A
visual representation of the HV scores of two different solu-
tions is displayed in Figure 1. By using any of the two infill
criteria, the constrained multi-objective problem has been
translated into a constrained single-objective problem.
After an infill criteria is chosen by the user, the con-
strained single-objective problem can be formulated and
optimized. The COBYLA (Constrained Optimization BY
Linear Approximations) algorithm [30] is used to maximize
the infill criteria (Line 26 of Algorithm 1). COBYLA is
allowed to vary x′ between the lower and the upper bound
of the design space x′ ∈ [lb,ub]. COBYLA deals with
constraints by preferring feasible solutions above infeasible
solutions. This way, COBYLA searches for a Pareto-optimal
solution which does not violate any of the constraints and
has the highest possible infill criteria score.

If no feasible solution can be found by COBYLA, the
solutionwith the smallest constraint violation is searched for.
Note that COBYLA does not use the real objective and con-
straint function evaluations during the search for the next best
solution. Instead, COBYLA uses the cheap RBF surrogates
as surrogate for the real objective and constraint functions.
Only after the next best solution on the surrogates is found,
it is evaluated on the real objective and constraint functions
(Lines 27-31 of Algorithm 1).

3.5 Surrogate exploration and RBF adaptation

To increase the chance of finding the best feasible pareto-
optimal solution in every iteration, two hyper parameter
updates are done. In every iteration of SAMO-COBRA the
surrogate search budget and the allowed constraint RBF
approximation error margin are updated.

123

156 Memetic Computing (2022) 14:151–164

The chances of finding the best feasible Pareto-optimal
solution can be increased by starting the surrogate search
not from one solution but from multiple randomly gener-
ated solutions independently. Each independent local search
done by COBYLA gets an allocated search budget, which is
updated every iteration together with the number of starting
points. The problem characteristics (number of variables d,
constraints m, and objectives k) influence the optimiza-
tion problem complexity. Therefore, the surrogate evaluation
budget and number of starting points are empirically chosen
and set at 50 · (d + m + k) and 2 · (d + m + k) respec-
tively. In every iteration of SAMO-COBRA the convergence
of COBYLA is checked. If COBYLA converges every time
to a feasible solution, the number of randomly generated
points is increased by 10% and the surrogate search budget is
decreased by 10%. The opposite update is done if COBYLA
did not converge from one of the starting points. The 10%
search budget update step size is empirically chosen as a
well working step size (See Appendix A.2 for the experi-
ment). The search budget is updated this way to limit the time
spent on exploring the surrogates and to further increase the
chances of finding a solution that adds themost HV to the PF.

Because in the first iterations the RBFs do not model the
constraints very well yet, an allowed error (ε) of 1% for each
constraint is built in. If the solution evaluated on the real con-
straint function is feasible, the error margin of this constraint
approximation is reduced by 10%. If a solution is infeasi-
ble, the RBFs surrogate approximation is clearly still wrong.
Therefore, the error margin of the corresponding constraint
is increased by 10%. The 10% ε update step size is empiri-
cally chosen as a well working step size (See Appendix A.2
for the experiment).

3.6 Selection of the best RBF

In every iteration, the best RBF kernel and transformation
strategy is chosen (Line 32 of Algorithm 1). The pseudocode
of this function can be found in Algorithm 2. Finding the
best RBF kernel and transformation strategy is done by com-
puting the difference between the RBF interpolated solution
and the solution computed with the real constraint and objec-
tive functions. This difference is computed every iteration,
resulting in a list of historical RBF approximation errors for
each constraint and objective function, for each kernel, with
and without the Plog transformation.

Based on the RBF approximation errors, the best RBF
kernel and transformation are chosen. Bagheri et al. show
empirically, that if only the last approximation error is con-
sidered in the single objective case, the algorithm converges
to the best solution faster [1]. This is the case because when
closer to the optimum, the vicinity of the last solution is the
most important. In the multi-objective case, the vicinities
of all the feasible Pareto-optimal solutions are important.

Experiments confirmed that the approximation errors of the
feasible Pareto-optimal solutions and the last four solutions
should be considered. The approximation errors of the last
four solutions ensure that the algorithm does not get stuck on
one RBF configuration and the error of the Pareto-efficient
solutions ensures that all the vicinities of the optimal solu-
tions are considered. The Mean Squared Error measure is
used to quantify which RBF kernel and which transforma-
tion function in the previous iterations resulted in the smallest
approximation error.

To give insight into this RBF kernel and transformation
switching approach, an additional experiment is conducted.
In Appendix A.3, an experiment is described and results are
given on how frequent the RBF kernel is changed and how
often the Plog transformation strategy is changed.

4 Experimental setup

Two experiments are set up to compare SAMO-COBRA
with other state of the art algorithms. In these experi-
ments, two variants of the SAMO-COBRA algorithm are
tested, one without the uncertainty quantification method
(PHV), and one with the uncertainty quantification method
(SMS). The performance of the two variants are compared
to the performance of the following algorithms: CEGO
[42], IC-SA-NSGA-II [8], SA-NSGA-II [8], NSGA-II [14],
NSGA-III [24], and SMES-RBF [11]. The performance of
the algorithms except for SMES-RBF are assessed on 18 aca-
demic benchmark functions. SMES-RBF is not tested since
the implementation of SMES-RBF has not been made avail-
able and as such it could only be compared to the results
reported in the SMES-RBF publication.

The 18 test functions and their characteristics are listed in
Table 1. Some of the problems are real-world-like-problems
while others are artificially created benchmark problems,
proposed by several authors over the past years [37]. Each
algorithm is tested 10 times on every test function to get a
trustworthy result. The results for NSGA-II and NSGA-III
had a high variance. Therefore, 100 runs are executed for
those algorithms. In the first experiment, the algorithms are
given a fixed budget to find a feasible Pareto-frontier. In the
second experiment the algorithms are evaluated to see how
many function evaluations they require to achieve a prede-
fined threshold performance.

4.1 Hyper parameter settings

In the experiments for each algorithm either the original
implementation is used or an implementation which was
readily available in Python. For all algorithms, the recom-
mended hyper parameters from the original implementations
are used. Since there are no clear recommendations for the

123

Memetic Computing (2022) 14:151–164 157

Algorithm 2: SelectBestRBF Input: SE Historic squared RBF approximation error, per RBF kernel, with and without
Plog transformation, for each objective, and for each constraint. S surrogate models for each kernel, with and without
Plog transformation, for each objective, and for each constraint. x∗ last evaluated solution.F objective scores,G constraint
scores,PFPareto-frontier indicator vector. N number of function evaluations.Output: bestRBFkernel, and Plog strategy
for each objective and constraint separately, and historic squared approximation errors.

1 Function SelectBestRBF((SE, S, x∗,F,G,PF, N)):
2 ID ← PF ∪ {IDi ← 1 | ∀i = N − 4, . . . , N } � Mark last 4 and Pareto Efficient Solutions in vector
3 T ← {Ti ← ∞ | ∀i = 1, . . . , (k + m)} � Temporary vector for smallest sum of approximation errors
4 for ϕ ∈ RBFkernels do � For each kernel
5 for i ← 1 to k do � For each objective

6 ŜE
ϕ
i,N ← (

Interpolate(Ŝϕ
i , x∗) − Fi,N

)2 � Error2 of RBF trained with standardized values

7 S̃E
ϕ
i,N ← (

Interpolate(S̃ϕ
i , x∗) − Fi,N

)2 � Error2 of RBF trained with Plog transformed values
8 end
9 for j ← 1 to m do � For each constraint

10 ŜE
ϕ
k+ j,N ← (

Interpolate(Ŝϕ
k+ j , x

∗) − G j,N
)2 � Error2 of RBF trained with standardized values

11 S̃E
ϕ
k+ j,N ← (

Interpolate(S̃ϕ
k+ j , x

∗) − G j,N
)2 � Error2 of RBF trained with Plog transformed values

12 end
13 for i ← 1 to k + m do � For each constraint and objective find best RBF kernel and Plog

strategy

14 if (
∑N

n=1 IDn · ŜEϕ
i,n) < Ti then � If cumulative sum of marked solutions is smaller then temp

15 Ti ← ∑N
n=1 IDn · ŜEϕ

i,n � Store sum of smallest approximation errors in temp
16 RBF∗

i ← (kernel = ϕ, Plog=False) � Store best RBF kernel and Plog strategy

17 if (
∑N

n=1 IDn · S̃Eϕ
i,n) < Ti then � If cumulative sum of marked solutions is smaller then temp

18 Ti ← IDn · S̃Eϕ
i,n � Store sum of smallest approximation errors in temp

19 RBF∗
i ← (kernel = ϕ, Plog=True) � Store best RBF kernel and Plog strategy

20 end
21 end
22 return (RBF∗,SE)

hyper parameters of NSGA-II and NSGA-III, a grid search
is conducted. In the grid search the optimal population size
and number of generations are determined for NSGA-II. For
NSGA-III a grid search is done to find the best parameter
value for the number of divisions that influence the spacing
of the reference points of NSGA-III. For the sake of brevity,
only the results with the best scores from this grid search are
reported.

The implementations of the different algorithms are listed
here: the original implementation of CEGO can be found
on the dedicated Github page.1 The original implementation
of IC-SA-NSGA-II and SA-NSGA-II can be found on the
personal page of Julian Blank.2 For NSGA-II and NSGA-III
the implementation of Platypus is used.3 The implementation
of the SMES-RBF algorithm is not provided. Therefore, only
the reported results from the SMES-RBF paper [11] can be
compared.

More details concerning the implementation of SAMO-
COBRA, the experiments, and the statistical comparison can
be found on Github [39].

1 https://github.com/RoydeZomer/CEGO.
2 https://julianblank.com/static/misc/pycheapconstr.zip.
3 https://platypus.readthedocs.io/.

4.2 Fixed budget experiment

In the first experiment, each algorithm was given a limited
fixed number of function evaluation after which the HV per-
formance metric is computed [7]. Each algorithm is allowed
to do 40·d function evaluations, here d represents the number
of decision variables of the optimization test function.

The HV metric is selected as the performance metric to
quantify the results. This because HV simultaneously mea-
sures accuracy and diversity, and because it is the most
common performance metric [34]. The HV is computed
between the obtained Feasible Pareto-optimal solutions and
the reference point reported in Table 1. Higher HV scores
mean that more HV is covered and therefore a better approx-
imation of the Pareto-frontier is found.

4.3 Convergence experiment

In the second experiment, each algorithm is tested to see
when it reaches a threshold value of the HV metric. The
threshold is set to 95% of the maximum achievable HV per
test function between the reference points in Table 1 and the
Pareto-frontier. Since the Pareto-front is not known for every
function, NSGA-II is used to find the maximal HV between

123

https://github.com/RoydeZomer/CEGO
https://julianblank.com/static/misc/pycheapconstr.zip
https://platypus.readthedocs.io/

158 Memetic Computing (2022) 14:151–164

Table 1 Test functions with citation, the reference points, the number
of objectives k, number of parameters d, number of constraints m and
feasibility percentage P(%) based on 1 million random samples

Function Reference point k d m P(%)

BNH [10] (140, 50) 2 2 2 96.92

CEXP [12] (1, 9) 2 2 2 57.14

SRN [15] (301, 72) 2 2 2 16.18

TNK [15] (2, 2) 2 2 2 5.05

CTP1 [12] (1, 2) 2 2 2 92.67

C3DTLZ4 [37] (3, 3) 2 6 2 22.22

OSY [10,15] (0,386) 2 6 6 2.78

TBTD [18] (0.1, 50000) 2 3 2 19.46

NBP [17] (11150, 12500) 2 2 5 41.34

DBD [18] (5,50) 2 4 5 28.55

SPD [28] (16, 19000, -260000) 3 6 9 3.27

CSI [24] (42, 4.5, 13) 3 7 10 18.17

SRD [27] (7000, 1700) 2 7 11 96.92

WB [18] (350, 0.1) 2 4 5 35.28

BICOP1 [11] (9, 9) 2 10 1 100

BICOP2 [11] (70, 70) 2 10 2 10.55

TRIPCOP [11] (34, -4, 90) 3 2 3 15.85

WP [24] (83000, 1350, 2.85, 5 3 7 92.06

15989825, 25000)

a reference point and the Pareto-frontier by running it with a
population size of 100 · d and allowing the algorithm to run
for 1000 generations.

For each algorithm, after each iteration or generation, the
HV is computed. As soon as the threshold value is achieved,
the number of function evaluations are used as the evaluation
metric.

4.3.1 SMES-RBF convergence experiment

To be able to compare the results of SMES-RBF with the
results of SAMO-COBRA, a different experiment is con-
ducted. In this experiment the number of function evaluations
are compared between SAMO-COBRA and SMES-RBF to
achieve the HV as reported in the SMES-RBF paper [11].

5 Results

Thecomplete set of results from the experiments canbe found
onGithub [39]. It is important to keep inmindwhenanalysing
the results that IC-SA-NSGA-II as opposed to the other algo-
rithms, uses many more constraint function evaluations.

5.1 Fixed budget experiment results

The results of the first experiment, in which the HV is com-
puted after 40·d function evaluations, can be found inTable 2.
AWilcoxon rank-sum test with Bonferroni correction is used
to determine if there is a significant difference between the
algorithm with the best results compared to the algorithm
with the lesser results.

Interestingly, the SAMO-COBRA with the predicted HV
infill criterion (PHV) outperforms the state-of-the art algo-
rithms in 16 out of the 18 test functions with the exception
of the SAMO-COBRA SMS variant. Only on the WB and
C3DTLZ4 test function the IC-SA-NSGA-II algorithm finds
a significantly larger HV score. However, for the IC-SA-
NSGA-II algorithm only the objective function evaluations
are counted and not the constraint function calls. It is
therefore not remarkable that for some test functions IC-SA-
NSGA-II finds a higher HV.

Inspection showed that IC-SA-NSGA-II uses 10 000 con-
straint function evaluations to find a well spread feasible
initial sample, after which IC-SA-NSGA-II starts optimiz-
ing. In order to obtain thePareto frontier, the IC-SA-NSGA-II
used on average 10 537 and 10776 constraint function eval-
uations for respectively theWB and C3DTLZ4 test function.

5.2 Convergence experiment results

In Table 3, the number of function evaluations are reported
that are required to achieve the 95% threshold value of the
maximum HV. For some test functions this was quite easy to
achieve since it only required to evaluate the initial sample.
On other test functions the algorithms required many more
evaluations to achieve the threshold. Note again that for IC-
SA-NSGA-II only the objective function calls are reported
and not the constrained function evaluations.

NSGA-II and NSGA-III are terminated after 5000 func-
tion evaluations on the C3DLTZ4, OSY, SPD, and SRD test
function. CEGO was not able to obtain the threshold value
for the SPD and CSI function within 24 hours.

As can be seen in Table 3, SAMO-COBRA with the
Predicted HV (PHV) infill criterion again outperforms the
other algorithms for the majority of the test functions. This
is interesting because this infill criterion is designed to be
exploitative.

5.2.1 SMES-RBF convergence experiment results

As mentioned before, the implementation of SMES-RBF
is not provided. Therefore, the reported results of SMES-
RBF are compared with the results of SAMO-COBRA. In
Table 4 the number of function evaluations are reported that
are required to obtain the same HV as reported in the SMES-
RBF paper.

123

Memetic Computing (2022) 14:151–164 159

Table 2 Mean HV after 40 · d function evaluations for each algorithm on each test function.

Function PHV SMS CEGO IC-SA-
NSGA-II

SA-
NSGA-II

NSGA-II NSGA-III

BNH 5256.0 5251.0 5218.0 5154.6 5158.3 5089.7 4848.8
CEXP 3.7968 3.7967 3.7658 3.7072 3.6749 3.1544 2.9561
SRN 62385 62377 62307 61074 60767 54233 52585
TNK 8.0430 8.0474 8.0309 8.0033 7.8031 6.4282 6.2948
CTP1 1.3026 1.3023 1.2972 1.2941 1.2924 1.1929 1.1864
C3DTLZ4 6.3016 6.4697 6.2664 6.6326 5.9269 5.2489 5.2500
OSY 100577 100458 100181 96978 96889 46631 42204
TBTD 4029.3 4027.5 4055.0 4026.3 3841.9 3421.5 3446.0
NBP 1.0785 · 108 1.0785 · 108 1.0784 · 108 1.0740 · 108 1.0552 · 108 9.8573 · 107 9.5816 · 107
DBD 228.77 228.34 227.85 227.25 227.80 218.47 218.33
SPD 3.8859 · 1010 3.7602 · 1010 3.4057 · 1010 3.6956 · 1010 3.6939 · 1010 2.6069 · 1010 2.5689 · 1010
CSI 27.800 25.167 terminated 25.605 25.532 17.296 16.993
SRD 4205165 4164992 4148333 4200148 4198861 2766367 2673599
WB 34.395 34.392 34.522 34.618 34.457 34.0270 33.995
BICOP1 80.664 78.160 terminated 80.618 80.635 67.6506 70.911
BICOP2 4834.33 4822.13 terminated 4826.74 4816.30 4816.12 4816.72
TRIPCOP 20610 20611 20609 20568 20544 20101 19982
WP 1.5991 · 1019 1.5698 · 1019 1.5350 · 1019 1.4173 · 1019 1.3903 · 1019 1.1623 · 1019 1.1797 · 1019

Note that for IC-SA-NSGA-II only the objective function evaluations are counted. PHV and SMS represent the SAMO-COBRA variants. The
highest mean HV per test function are presented in bold. The Wilcoxon rank-sum test (with Bonferroni correction) significance is represented with
a grayscale. Background colours represent: p ≤ 0.001, p ≤ 0.01, p ≤ 0.05. Red shows that the algorithm took more than 24 hours

Table 3 Test Function, Threshold Hypervolume, and number of function evaluations required to achieve this threshold per optimization algorithm.

Function Threshold PHV SMS CEGO IC-SA-NSGA-II SA-NSGA-II NSGA-II NSGA-III

BNH 5005.5 11 ↑ 16 12 31 36 56 114

CEXP 3.6181 13 ↑ 16 23 61 71 392 404

SRN 59441 15 ↑ 15 ↑ 17 36 66 200 227

TNK 7.6568 11 9↑ 9 ↑ 21 66 432 586

CTP1 1.2398 10 ↑ 14 14 26 36 140 170

C3DTLZ4 6.4430 179 181 226 100 ↑ 275 +5000 +5000

OSY 95592 15 ↑ 31 16 110 105 +5000 +5000

TBTD 3925 31 ↑ 58 49 47 357 324 369

NBP 1.024E8 5 ↑ 9 6 21 36 102 206

DBD 217.31 13 ↑ 19 16 43 48 112 142

SPD 3.6887E10 43 ↑ 125 - 185 205 +5000 +5000

CSI 25.717 59 ↑ 484 - 276 376 +5000 +5000

SRD 3997308 17 ↑ 55 28 81 81 952 1357

WB 32.9034 7 ↑ 10 10 43 43 24 24

BICOP1 76.6328 22 ↑ 25 35 114 119 1700 1975

BICOP2 4606.57 17 18 18 109 109 10 ↑ 12

TRIPCOP 19578.0 7 ↑ 8 7 ↑ 21 21 42 8

WP 1.5147E19 48 ↑ 66 111 232 292 3120 3876

The results of the algorithm with the smallest number of function evaluations are reported in bold and accompanied with a ↑. PHV and SMS
represents the SAMO-COBRA variants. Experiments that required more than 5000 function evaluations or more than 24 hours are terminated

123

160 Memetic Computing (2022) 14:151–164

Table 4 Number of function evaluations after which SAMO-COBRA
with PHV infill criterion achieved same hypervolume for test functions
as SMES-RBF

Function SMES-RBF PHV-SAMO-COBRA

BNH 200 50

BNH 500 122

SRN 200 23

SRN 500 27

TNK 200 24

TNK 500 194

OSY 500 14

OSY 1000 14

OSY 2000 14

TRICOP 200 12

TRICOP 500 12

BICOP1 500 56

BICOP2 500 31

BICOP2 1000 31

BICOP2 2000 38

BICOP2 5000 82

As shown in Table 4, the number of function evaluations
of SAMO-COBRA is much smaller. Interestingly, the HV
results for the BICOP1 test function after 1000, 2000, and
5000 function evaluations of SMES-RBF reported in the
original paper are, given the Nadir point, not possible.

To further inspect the performance of the algorithms over
time, convergence plots are made for the BNH and TRICOP
test function. The convergence plots show the HV computed
in each iteration. In this experiment the same estimation of
Nadir points as in the original SMES-RBF paper [11] are
used as the reference points. The convergence of the HV
on the BNH test function can be found in Figure 2. The
convergence of the HV on the TRICOP test function can be
found in Figure 3.

5.3 PHV vs SMS infill criterion

An interesting conclusion from all the experiments is that
the exploiting strategy of the PHV infill criterion leads in
most cases to the highest HV and to the least number of
required function evaluations to obtain the 95% threshold.
It is no surprise that this exploiting strategy works well in a
constrainedmulti-objective setting, since a similar effect was
already shown by Rehbach et al. [33]. Rehbach et al. show
that in the single objective case it is only useful to include an
expected improvement infill criterion if the dimensionality
of the problem is low, if it is multimodal, and if the algo-
rithm can get stuck in a local optimum. The results in Table 2
and Table 3 allow us to give the following advice based on

Fig. 2 Convergence plot of BNH test problem for NSGA-II, NSGA-III,
SA-NSGA-II, IC-SA-NSGA-II, CEGO, PHV-SAMO-COBRA, SMS-
SAMO-COBRA. The dashed lines represents final obtained Hypervol-
ume of SMES-RBF after 200 and 500 function evaluations

Fig. 3 Convergence plot of TRICOP test problem forNSGA-II,NSGA-
III, SA-NSGA-II, IC-SA-NSGA-II, CEGO, PHV-SAMO-COBRA,
SMS-SAMO-COBRA. The dashed lines represents final obtained
Hypervolume of SMES-RBF after 1000 and 2000 function evaluations

empirical results: When searching for a set of Pareto-optimal
solutions, an uncertainty quantification method should not
be used. This is due to the fact that, when searching for
a trade-off between objectives, the algorithm is forced to
explore more of the objective space in the different objective
directions. The exploration of objectives stimulates diver-
sity, which makes the algorithm less likely to get stuck in a
local optimum, thereby making the uncertainty quantifica-
tion method redundant.

6 Real-world application

SAMO-COBRA has been used in practice to design a wind
feeder vessel to support the installation of windmills at sea.

123

Memetic Computing (2022) 14:151–164 161

Fig. 4 Impression of the Wind Feeder Vessel design by C-Job Naval
Architects

Although high winds are good for power production, they
usually also result in rough seas. These rough seas around the
wind park installation sites increase the demand for reliable
vessels. An example of such a reliable vessel (See Figure 4)
has been designed and later optimized with SAMO-COBRA
atC-JobNavalArchitects.4 This vessel is designed to support
the construction of wind farms and to transport the materials
from the shore to the installation sites.

The objectives of the optimization case of the wind feeder
vessel are to have a robust seakeeping performance to max-
imize the year-round operability, while also keeping the
operational cost and capital expenses at a minimum. The
operability can be optimized by maximizing the so-called
Operability Robustness Index (ORI) [20]. The seakeeping
assessment is done with a strip theory code of NAPA.5 Strip
theory is proven to be fast and reliable with a sufficient accu-
racy for conventional hull forms [5,19]. The capital expenses
can be translated into the cost of steel that is required to build
the vessel, this is roughly equal to the Lightship Weight
(LSW) of the vessel. The LSW is calculated by summing
the weight of all the equipment plus the minimum amount
of steel that is required to fulfil the longitudinal strength
requirements. The operational expenses can be dealt with by
minimizing the ship resistance in the water at service speed
(Rt[kN]). This resistance is calculated with the HoltropMen-
nen method [23].

All objectives, practical constraints, relevant rules, reg-
ulations, and loading conditions can be evaluated with the
modular Accelerated Concept Design framework [40]. In
this software, a parametric 3D model of the ship is set up
by a naval architect after which automated software tools
can evaluate any design variation in one function call. In the
wind feeder vessel case, five design parameters are defined:
Aftship Length, Midship Length, Foreship length, Beam at
Waterline, and Draught. Since sea-keeping and longitudi-

4 Dedicated Naval Architects, https://c-job.com/.
5 Intelligent solutions for the maritime industry, https://www.napa.fi/.

Fig. 5 Pareto Frontier of Ship Design case with Original Design by
human expert represented by a square. Objectives are maximize the
Operability Robustness Index (ORI[-]), minimize ship resistance (Rt
[kN]), and minimize Lightship Weight (LSW[t])

nal strength are already captured in the objectives, only two
constraints are needed. The two constraints are for space
reservation of the wind turbine blades and the meta-centric
height for intact stability of the vessel. Based on 50 Halton
samples, 36% of the design space is feasible.

SAMO-COBRA is then used to optimize this ship design
optimization problem. To enhance the exploration in this case
study, SAMO-COBRA started with more than advised 50
initial Halton samples. After evaluation of the initial sample,
the SAMO-COBRA algorithm with the PHV infill criterion
is used to propose 250 more solutions. On a desktop with an
Intel Xeon Processor E3-1245 V3 quad-core processor with
16GBofworkingmemory, the 300 evaluations required three
and a half hours of wall clock time.

After analysing the results from the optimization study,
the base design by the naval architect was shown to be much
too large, causing the ship to be too heavy with a sub-optimal
performance. Ifwe zoom inon a fewPareto-optimal solutions
and compare themwith the original, then the solutionwith the
same ORI score has a 10.3% smaller resistance value, and
19.64% less light ship weight. The solution with the same
resistance score has a 4% better ORI score, and 13.68% less
light ship weight. All the evaluated feasible solutions are
visualized on the Pareto frontier in Figure 5.

7 Conclusion and future work

In this paper, two variants of the SAMO-COBRA algorithm
are introduced, based on using two different infill criteria:
S-Metric-Selection and Predicted Hypervolume (PHV), of
which the latter is more exploitative than the former. The per-
formance of the two SAMO-COBRA variants is compared
to six other state-of-the-art algorithms: IC-SA-NSGA-II, SA-

123

https://c-job.com/
https://www.napa.fi/

162 Memetic Computing (2022) 14:151–164

NSGA-II, NSGA-II, NSGA-III and SMES-RBF. On 16 out
of the 18 test functions, SAMO-COBRA with the PHV infill
criterion showed similar or better results. On two test func-
tions, IC-SA-NSGA-II obtained significantly better results
which can be explained by the fact that IC-SA-NSGA-II uses
at least 10 000 more constraint function evaluations.

The SAMO-COBRA algorithm with the PHV infill cri-
terion showed to be very efficient at solving constrained
multi-objective optimization problems in terms of required
function evaluations. We speculate that this exploiting infill
criterion works best in most cases because of the charac-
teristics of multi-objective problems. While dealing with
multi-objective problems, the algorithm is already forced to
explore more of the objective space, making the uncertainty
quantification method redundant.

Besides such a performance comparison on test functions,
SAMO-COBRA has also already been used in practice on
a ship design optimization problem with three objectives,
two constraints, and five decision variables. In this applica-
tion, the algorithm demonstrates its ability to outperform the
human expert in all objectives simultaneously.

Further research efforts will be put into creating infill cri-
teria which can propose multiple solutions simultaneously.
This way, in each iteration, evaluations can be run in parallel
and wall clock time can be reduced even further. Besides par-
allelization, effort will be put into dealing with mixed integer
decision parameters and solving multi-fidelity optimization
problems.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Appendix

TheSAMO-COBRAalgorithmhas several hyper-parameters
which can be tuned. For the most important one, the infill
criteria (SMS or PHV) the results from our experiments are
shown in theExperiment Sect. 4.Other hyper-parameters like
the initial sample strategy, the RBF kernel, and ε adaptation
step size have a minor influence on the results as presented
in the experiments below.

Table 5 Hyper-volume after 40 · d function evaluations for SAMO-
COBRA with different initial sampling sizes and strategies. Bold
indicates significant better or indifferent results according to aWilcoxon
rank-sum test with p ≤ 0.05

Function Halton d + 1 Halton 3 · d LHS d + 1

BNH 5256.4 5255.7 5256.3

CEXP 3.7973 3.7976 3.7979

SRN 62391 62375 62387

TNK 8.0505 8.0487 8.0442

CTP1 1.3030 1.3030 1.3029

TRICOP1 20611 20611 20610

A.1 Sample strategy experiment

The initial sample strategy chosen is based on the compar-
ison of the Hyper-volume results of six test functions after
40 ·d function evaluations in 10 independent runs. The strat-
egy resulting in the highest Hyper-volume in most cases is
recommended as the best sampling strategy for the SAMO-
COBRA algorithm. The following subset of test functions
are selected for the experiments: BNH, CEXP, SRN, TNK,
CTP1, and TRICOP.
As can be seen from the results in Table 5, the Halton sam-
pling strategy with d + 1 initial samples in most cases lead
to better or similar results compared to the other two initial
sampling strategies.

A.2 RBF and� adaptation experiment

The 10% update step size for the RBF evaluation budget,
the number of starting points, and the ε constraint mar-
gin are empirically chosen based on the below experiments.
5%, 10%, 20%, and 50% are the update step sizes experi-
mented with. The update step size which leads to the highest
Hyper-volume in most cases is selected and recommended
for the SAMO-COBRA algorithm. The following subset of
test functions are selected for the experiments: BNH, CEXP,
SRN, TNK, CTP1, and TRICOP. Each function is optimized
10 times with independent runs.
As canbe seen from the results inTable 6, the 10%update step
size lead to better or statistically indifferent results compared
to the other tried step sizes.

A.3 RBF kernel and scaling selection experiment

In each iteration of the SAMO-COBRA algorithm, the best
RBF kernel (Cubic, Gaussian, Multiquadric, Inverse Multi-
quadric, Thin Plate Spline) and best transformation function
are chosen (Scale,Plog, and Standardize) for each objec-
tive and constraint independently. In Table 7 the amount of
strategy switches per test function and themost frequent cho-

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Memetic Computing (2022) 14:151–164 163

Table 6 Hyper-volume after 40 · d function evaluations for SAMO-
COBRA with different update step sizes. Bold indicates significant
better or indifferent results according to a Wilcoxon rank-sum test with
p ≤ 0.05

Function 5% 10% 20% 50%

BNH 5256.4 5256.4 5256.4 5256.4

CEXP 3.7971 3.7973 3.7969 3.7952

SRN 62389 62392 62384 62374

TNK 8.0441 8.0505 8.0473 8.0485

CTP1 1.3032 1.3030 1.3029 1.3028

TRICOP1 20611 20611 20611 20611

Table 7 Column A shows the number of iterations the kernel and/or
transformation is switched for any objective or constraint, column K
shows the number of iterations theRBFkernel is switched for any objec-
tive or constraint, column T shows the number of iterations for which
the transformation strategy is switched for any constraint or constraint,
column O1 shows the number of iterations the kernel and/or transfor-
mation is switched for the first objective, column C1 shows the number
of iterations the kernel and/or transformation is switched for the first
constraint, columnKernel shows the most frequent used kernel for this
test function. The maximum possible number of switches could have
been 77 for all the test functions

Function A K T O1 C1 Kernel

BNH 27 27 3 15 10 Cubic

CEXP 15 15 2 11 4 Multiquadric

SRN 24 24 4 21 3 Multiquadric

TNK 22 22 4 9 3 ThinPlateSpline

CTP1 16 16 4 7 9 ThinPlateSpline

TRICOP1 28 28 2 23 5 ThinPlateSpline

sen RBF kernel per test function are displayed. The results
are based on one run with 3 initial samples and 77 iterations
of the SAMO-COBRA algorithmwith the PHV infill criteria
on the BNH, CEXP, SRN, TNK, CTP1, and TRICOP test
functions.

References

1. Bagheri S, Konen W, Bäck T (2016) Online selection of surro-
gatemodels for constrained black-box optimization. In: 2016 IEEE
Symposium Series on Computational Intelligence (SSCI), pp. 1–8.
IEEE

2. Bagheri S, Konen W, Bäck T (2017) Comparing kriging and radial
basis function surrogates. In: Proc. 27. Workshop Computational
Intelligence, pp. 243–259

3. Bagheri S, Konen W, Emmerich M, Bäck T (2017) Self-adjusting
parameter control for surrogate-assisted constrained optimization
under limited budgets. Appl Soft Comput 61:377–393. https://doi.
org/10.1016/j.asoc.2017.07.060

4. Bandaru S, NgAH, Deb K (2017) Data miningmethods for knowl-
edge discovery in multi-objective optimization: Part a-survey.
Expert Syst Appl 70:139–159

5. Beck RF, ReedAM, Sclavounos PD, Hutchison BL (2001)Modern
computational methods for ships in a seaway. discussion. author’s
closure. Trans-Soc Naval Archit Marine Eng 109:1–51

6. Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: Multi-
objective selection based on dominated hypervolume. European J
Oper Res 181(3):1653–1669. https://doi.org/10.1016/j.ejor.2006.
08.008

7. BeumeN,NaujoksB, EmmerichM (2007) Sms-emoa:Multiobjec-
tive selection based on dominated hypervolume. European J Oper
Res 181(3):1653–1669

8. Blank J, Deb K (2021) Constrained bi-objective surrogate-assisted
optimization of problems with heterogeneous evaluation times:
Expensive objectives and inexpensive constraints. In: Ishibuchi H,
Zhang Q, Cheng R, Li K, Li H, Wang H, Zhou A (eds) Evolution-
arymulti-criterion optimization. Springer International Publishing,
Cham, pp 257–269

9. Bossek J, Doerr C, Kerschke P (2020) Initial design strategies
and their effects on sequential model-based optimization. arXiv
preprint arXiv:2003.13826

10. Coello CAC, Lamont GB, Van Veldhuizen DA et al (2007) Evo-
lutionary algorithms for solving multi-objective problems, vol 5.
Springer, New York

11. Datta R, Regis RG (2016) A surrogate-assisted evolution strat-
egy for constrained multi-objective optimization. Expert Syst Appl
57:270–284. https://doi.org/10.1016/j.eswa.2016.03.044

12. Deb K (2001) Multi-objective optimization using evolutionary
algorithms, vol 16. John Wiley & Sons, New Jersey

13. Deb K (2011) Multi-objective optimisation using evolutionary
algorithms: an introduction. In: Multi-objective evolutionary opti-
misation for product design and manufacturing, pp. 3–34. Springer

14. Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and eli-
tist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut
Comput 6(2):182–197. https://doi.org/10.1109/4235.996017

15. DebK,PratapA,MeyarivanT (2001)Constrained test problems for
multi-objective evolutionary optimization. In: International con-
ference on evolutionary multi-criterion optimization, pp. 284–298.
Springer. https://doi.org/10.1007/3-540-44719-9_20

16. Fan Z, Fang Y, Li W, Lu J, Cai X, Wei C (2017) A comparative
study of constrained multi-objective evolutionary algorithms on
constrained multi-objective optimization problems. In: 2017 IEEE
congress on evolutionary computation (CEC), pp. 209–216. IEEE

17. Forrester A, Sobester A, Keane A (2008) Engineering design via
surrogate modelling: a practical guide. John Wiley & Sons, New
Jersey. https://doi.org/10.2514/4.479557

18. GongW, Cai Z, Zhu L (2009) An efficient multiobjective differen-
tial evolution algorithm for engineering design. Struct Multidiscip
Optim 38(2):137–157. https://doi.org/10.1007/s00158-008-0269-
9

19. Gourlay T, von Graefe A, Shigunov V, Lataire E (2015) Compar-
ison of aqwa, gl rankine, moses, octopus, pdstrip and wamit with
model test results for cargo ship wave-induced motions in shal-
low water. In: International Conference on Offshore Mechanics
and Arctic Engineering, vol. 56598, p. V011T12A006. American
Society of Mechanical Engineers

20. GutschM, Steen S, Sprenger F (2020)Operability robustness index
as seakeeping performance criterion for offshore vessels. Ocean
Eng 217:107931

21. Halton JH (1960) On the efficiency of certain quasi-random
sequences of points in evaluating multi-dimensional integrals.
Numerische Mathematik 2(1):84–90

22. Hardin D, Saff E (2005) Minimal riesz energy point configurations
for rectifiable d-dimensionalmanifolds.AdvMath 193(1):174–204

23. Holtrop J, Mennen G (1982) An approximate power prediction
method. Int Shipbuild Prog 29(335):166–170

24. Jain H, Deb K (2014) An evolutionary many-objective optimiza-
tion algorithm using reference-point based nondominated sorting

123

https://doi.org/10.1016/j.asoc.2017.07.060
https://doi.org/10.1016/j.asoc.2017.07.060
https://doi.org/10.1016/j.ejor.2006.08.008
https://doi.org/10.1016/j.ejor.2006.08.008
http://arxiv.org/abs/2003.13826
https://doi.org/10.1016/j.eswa.2016.03.044
https://doi.org/10.1109/4235.996017
https://doi.org/10.1007/3-540-44719-9_20
https://doi.org/10.2514/4.479557
https://doi.org/10.1007/s00158-008-0269-9
https://doi.org/10.1007/s00158-008-0269-9

164 Memetic Computing (2022) 14:151–164

approach, part II: Handling constraints and extending to an adap-
tive approach. IEEE Trans Evolut Comput 18(4):602–622. https://
doi.org/10.1109/tevc.2013.2281534

25. Knowles J (2006) ParEGO: a hybrid algorithm with on-line land-
scape approximation for expensive multiobjective optimization
problems. IEEETransEvolutComput 10(1):50–66. https://doi.org/
10.1109/tevc.2005.851274

26. Micchelli CA (1986) Interpolation of scattered data: distancematri-
ces and conditionally positive definite functions. Construct Approx
2(1):11–22

27. Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion
optimizer: a multi-objective optimization algorithm for solving
engineering problems. Appl Intell 46(1):79–95. https://doi.org/10.
1007/s10489-016-0825-8

28. ParsonsMG, Scott RL (2004) Formulation of multicriterion design
optimization problems for solutionwith scalar numerical optimiza-
tion methods. J Ship Res 48(1):61–76. https://doi.org/10.1007/
s10489-016-0825-8

29. Ponweiser W, Wagner T, Biermann D, Vincze M (2008) Multi-
objective optimization on a limited budget of evaluations using
model-assisted S-metric selection. In: International Conference
on Parallel Problem Solving from Nature, pp. 784–794. Springer.
https://doi.org/10.1007/978-3-540-87700-4_78

30. Powell MJD (1994) A direct search optimizationmethod that mod-
els the objective and constraint functions by linear interpolation.
In: Advances in Optimization and Numerical Analysis, pp. 51–67.
Springer Netherlands. https://doi.org/10.1007/978-94-015-8330-
5_4

31. Regis RG (2014) Constrained optimization by radial basis function
interpolation for high-dimensional expensive black-box problems
with infeasible initial points. Eng Optim 46(2):218–243

32. Regis RG, Shoemaker CA (2013)A quasi-multistart framework for
global optimization of expensive functions using response surface
models. JGlobalOptim56(4):1719–1753. https://doi.org/10.1007/
s10898-012-9940-1

33. Rehbach F, Zaefferer M, Naujoks B, Bartz-Beielstein T (2020)
Expected improvement versus predicted value in surrogate-based
optimization. arXiv preprint arXiv:2001.02957. https://doi.org/10.
1145/3377930.3389816

34. Riquelme N, Von Lücken C, Baran B (2015) Performance metrics
in multi-objective optimization. In: 2015 Latin American Comput-
ing Conference (CLEI), pp. 1–11. IEEE

35. Santana-Quintero LV, Montano AA, Coello CAC (2010) A review
of techniques for handling expensive functions in evolutionary
multi-objective optimization. Comput Intell Expens Optim Prob
29–59

36. Singh P, Couckuyt I, Ferranti F, Dhaene T (2014) A con-
strained multi-objective surrogate-based optimization algorithm.
In: 2014 IEEE Congress on Evolutionary Computation (CEC).
IEEE. https://doi.org/10.1109/cec.2014.6900581

37. Tanabe R, Oyama A (2017) A note on constrained multi-objective
optimization benchmark problems. In: 2017 IEEE Congress on
Evolutionary Computation (CEC), pp. 1127–1134. IEEE

38. Urquhart M, Ljungskog E, Sebben S (2020) Surrogate-based opti-
misation using adaptively scaled radial basis functions. Appl Soft
Comput 88:106050

39. de Winter R (2020) Roydezomer/samo-cobra: Release with new
experiments. https://doi.org/10.5281/zenodo.5105636

40. de Winter R, Furustam J, Bäck T, Muller T (2021) Optimizing
ships using the holistic accelerated concept design methodology.
In: Okada T, Suzuki K, Kawamura Y (eds) Practical design of
ships and other floating structures. Springer Singapore, Singapore,
pp 38–50

41. deWinter R, van Stein B, Bäck T (2021) Samo-cobra: A fast surro-
gate assisted constrained multi-objective optimization algorithm.
In: Ishibuchi H, Zhang Q, Cheng R, Li K, Li H, Wang H, Zhou A
(eds) Evolutionary multi-criterion optimization. Springer Interna-
tional Publishing, Cham, pp 270–282

42. de Winter R, van Stein B, Dijkman M, Bäck T (2018) Designing
ships using constrained multi-objective efficient global optimiza-
tion. In: International Conference onMachine Learning, Optimiza-
tion, and Data Science, pp. 191–203. Springer. https://doi.org/10.
1007/978-3-030-13709-0_16

43. Yang Y, Liu J, Tan S (2021) A multi-objective evolutionary algo-
rithm for steady-state constrained multi-objective optimization
problems. Appl Soft Comput 101:107042

44. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: Improving the
strength pareto evolutionary algorithm. TIK-report 103

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1109/tevc.2013.2281534
https://doi.org/10.1109/tevc.2013.2281534
https://doi.org/10.1109/tevc.2005.851274
https://doi.org/10.1109/tevc.2005.851274
https://doi.org/10.1007/s10489-016-0825-8
https://doi.org/10.1007/s10489-016-0825-8
https://doi.org/10.1007/s10489-016-0825-8
https://doi.org/10.1007/s10489-016-0825-8
https://doi.org/10.1007/978-3-540-87700-4_78
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1007/s10898-012-9940-1
https://doi.org/10.1007/s10898-012-9940-1
http://arxiv.org/abs/2001.02957
https://doi.org/10.1145/3377930.3389816
https://doi.org/10.1145/3377930.3389816
https://doi.org/10.1109/cec.2014.6900581
https://doi.org/10.5281/zenodo.5105636
https://doi.org/10.1007/978-3-030-13709-0_16
https://doi.org/10.1007/978-3-030-13709-0_16

	Constrained Multi-Objective Optimization with a Limited Budget of Function Evaluations
	Abstract
	1 Introduction
	1.1 Outline

	2 Related work
	3 Constrained multi-objective optimization algorithm
	3.1 Initial design of experiments
	3.2 Radial basis function fitting and interpolation
	3.3 Scaling
	3.4 Maximize hypervolume contribution
	3.5 Surrogate exploration and RBF adaptation
	3.6 Selection of the best RBF

	4 Experimental setup
	4.1 Hyper parameter settings
	4.2 Fixed budget experiment
	4.3 Convergence experiment
	4.3.1 SMES-RBF convergence experiment

	5 Results
	5.1 Fixed budget experiment results
	5.2 Convergence experiment results
	5.2.1 SMES-RBF convergence experiment results

	5.3 PHV vs SMS infill criterion

	6 Real-world application
	7 Conclusion and future work
	A Appendix
	A.1 Sample strategy experiment
	A.2 RBF and ε adaptation experiment
	A.3 RBF kernel and scaling selection experiment

	References

