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1. Introduction 

This paper considers the stochastic project management problem of finding efficient 

time-cost trade-offs for project activities that can be undertaken by using several different 

resource combinations. Finding the efficient time-cost tradeoffs is a fundamental problem in 

the management of real-life activities. Project management models have usually dealt with this 

problem at the aggregate project level by reducing it to a single criterion: either a makespan 

related criterion (minimizing the makespan or maximizing the probability of concluding the 

project in a given time interval), subject to cost and/or resource related constraints (e.g., 

Golenko-Ginzburg and Gonik 1998; Heilmann 2001; Mokhtari et al. 2011), or minimizing cost 

subject to deadline related constraints (e.g., Guthjar et al. 2000; Tereso et al. 2004; Klerides 

and Hadjiconstantinou 2010; Mokhtari et al. 2010; Godinho and Branco 2012; Guthjar 2015; 

Kang and Choi 2015). In some cases it is important to explicitly generate the efficient time-cost 

combinations, instead of reducing the problem to a single criterion. Such an approach is 

followed by Godinho and Costa (2007) and Kiliç et al. (2008), among others. 

Although several authors have pointed out the importance of properly taking the 

managerial flexibility into account (e.g., Jørgensen and Wallace 2000), most project 

management models ignore the possibility of adapting the management strategy (e.g., by 

changing the resource being used) to the way the project is evolving. The importance of 

properly taking risk and managerial flexibility into account has also been stressed in the capital 

budgeting literature, particularly in real option models. Such models usually focus on the 

exploration phase of a project, although the implementation or building phase of an activity 

can also have an important impact on the financial success of the project. Some authors have 

explicitly modeled the implementation phase, usually considering the project to be a single 

activity with a stochastic duration (e.g., Majd and Pindyck 1987; Pindyck 1993; Friedl 2002). 

The efficient management of an activity may thus be relevant, both in the context of 

analyzing the implementation phase of a project, or as a step in the definition of an optimal 

strategy for managing a project represented by a network. 

This leads us to the questions: 

- How do we model the management of the implementation phase of a stochastic 

project activity, so that project managers can choose a strategy for the application of 

available resources in order to achieve a given time-cost combination? 

- How do we determine efficient strategies for such a model? 
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In this paper we consider activities that can be performed by using different resources, 

and in which the resource being used can be changed throughout the duration of the activity. 

In this regard, a strategy is a plan defining which resources will be used in each situation to 

undertake an activity. The use of a resource entails a given cost per unit of time. We consider 

that the performance speed of the resources is stochastic, so, if there are problems and the 

activity is performed more slowly, we will have a higher cost. This means that instead of 

defining a static plan for the use of resources, it is important to change the resources in a 

reaction to how the activity is evolving. For a model with some detail, obtaining the exact 

efficient time-cost frontier may be impracticable due to the scale of the problem. So we aim to 

achieve a manageable approximation of the efficient frontier, with approximation errors that 

are defined as an input to the solution algorithms. 

In this paper, therefore, our main objective is to define an effective algorithm that 

approximates the efficient time-cost frontier for an activity, considering that different resources 

can be used to undertake it and that the resource being used at any given time can be changed 

frequently over the duration of the activity. We intend to obtain solutions that present small 

and controllable approximation errors. 

In most previous works, the stochastic time-cost tradeoff problem has been considered 

by using static, or non-adaptive, policies, which assume that crashing decisions or decisions 

concerning activity modes are made at the beginning of the project, without the possibility of 

postponing some decisions until an activity starts. There are, however, some exceptions, with 

some authors considering adaptive policies. Tereso et al. (2004) assume that the resources 

allocated to some activities are fixed, but for others activities they can be chosen according to 

the way the project is developing. Godinho and Branco (2012) and Kang and Choi (2015) 

present adaptive models in which the decision concerning the mode for performing an activity 

is made at the beginning of the activity, according to a policy that takes into account the time 

at which the activity starts. 

In the model proposed in this paper, we consider an analysis of adaptive strategies at the 

level of the activity, assuming that managers can make decisions concerning the activity as a 

reaction to the way it is developing. In the previously mentioned adaptive approaches, the 

authors assume that, after the mode for performing an activity is chosen, no further changes 

will be made. By considering decisions made while the activity is developing, we are using a 

more detailed level of analysis. As far as we know, such an analysis has been very rarely 

considered in the literature, since most authors consider the probability distributions of the time 

and cost of each activity to be predetermined. 
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We must also mention that different approaches have been followed by other authors, 

concerning the way that uncertainty is modeled or handled. Ke et al. (2010) propose three 

models, each one using a fuzzy approach in which the duration and the cost of the activities are 

fuzzy and the manager can change the duration of the activity by undertaking actions that also 

affect its cost. Mahdiraji et al. (2011) use a grey mathematical programming model in which 

intervals are used instead of crisp values to represent the activity duration and cost. Although 

such approaches may be appealing for some decision makers, they may not be suitable for 

handling a large number of short uncertain periods, as we will have when we model an activity 

in detail. In fact, the works we could find using such approaches consider the level of the 

project, not the level of the activity which we want to take into account in this work. 

Cohen et al. (2007) propose a robust approach for finding the minimum cost for the 

project, ensuring that a predetermined due date is met. The approach is adaptive, resorting to 

linear decision rules, and robust, using interval-type and ellipsoidal-type uncertainty sets for 

the activity durations. The robustness of the model ensures that the model constraints are 

satisfied by all possible realizations of the data in the uncertainty sets, and it guarantees that a 

worst-case cost is minimized in the uncertainty sets. As in the approaches based on the use of 

fuzzy sets and intervals, in this approach it is difficult to define reasonable uncertainty sets for 

short time periods, which must be done when we want to define strategies to be used within an 

activity. 

Other authors use multi-objective approaches that consider other objectives besides time 

and cost. Diao et al. (2011) present an approach for analyzing the time-cost-quality tradeoff in 

a deterministic setting. Salmasnia et al. (2012) consider the time-cost-quality tradeoff in a 

stochastic setting. Azaron et al. (2007) consider the total direct costs of the activities, the mean 

project completion time and the variance of the completion time. Azaron and Tavakkoli-

Moghaddam (2007) add a fourth objective - the probability of the project completion time not 

exceeding a given threshold - and consider a context in which new projects are generated and 

activities associated with successive projects contend for resources. Such approaches usually 

require some assumptions, for example a deterministic analysis (in the case of Diao et al. 2011), 

the independence of activity durations, or the existence of a predefined multi-objective method 

to be used in the analysis (in the cases of Azaron et al. 2007 and Azaron and Tavakkoli-

Moghaddam 2007). In the case of Salmasnia et al. (2012), the authors simplify the problem by 

focusing on finding the resource allocation that maximizes the probability of the objectives 

lying in predefined intervals, based on a linear approximation of the relation between this 

probability and the levels of resources. Additionally, these approaches are not adaptive, since 
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they do not allow decisions to be based on the way a project is developing. So, they cannot be 

easily applied to the definition of an adaptive strategy for undertaking an activity, which we 

want to develop. 

 

We concluded that alternative approaches found in the literature for handling projects 

were not developed for managing a single activity. Among the works found in the literature, 

Laslo (2003) and, particularly, Godinho and Costa (2007) are the works that are closest to ours. 

Laslo (2003) analyzes the distributions of the time and cost of an activity when the amount of 

work and the idle times are stochastic and the performance speed is defined before the 

beginning of the activity. Like us, the author is concerned with modeling the time-cost tradeoff 

of an activity but, differently from us, the author does not consider changing the resource being 

used according to the way the activity is evolving. 

Godinho and Costa (2007) propose a model for identifying strategies that lead to efficient 

time-cost tradeoffs for undertaking a single activity. The authors model activity evolution as 

stochastic and assume that different resources can be used to undertake it. They also assume 

that the activity cost and time distributions can be summarized in aggregate values for these 

criteria. They present some mathematical results with a view to identifying efficient strategies, 

and they also address the problem of finding a small set of strategies whose times and costs are 

close to those of efficient strategies. However, Godinho and Costa (2007) work with 

approximations of the cost and time of a strategy that may induce important approximation 

errors, in fact making the model unsuitable for real-size problems. Godinho and Costa (2007) 

illustrate the model and the algorithms with an example of a very limited size. 

More effective algorithms are thus needed to be able to handle real problems. This paper 

follows the model described by Godinho and Costa (2007), but it presents new mathematical 

results that enable a more effective identification of strategies that are close to the efficient 

ones. We are able to rigorously define a neighborhood of the set of efficient strategies and 

ensure that the strategies we obtain are in that neighborhood. We use these results to develop 

two algorithms: a procedure based on tree structures and a dynamic programming algorithm. 

The computational tests show that the dynamic programming algorithm performs much better, 

in terms of both memory requirements and running time. 

The main contribution of this paper is thus its proposal of a new, effective algorithm that 

allows for a good approximation of the efficient time-cost frontier that can be attained by 

managing the implementation phase of a stochastic activity. It offers the basis for developing 

useful tools for managers dealing with activities under uncertain time-cost settings. Although 
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we use aggregate values of time and cost, we notice that the use of such aggregate criteria 

values may be an intermediate step towards identifying a small set of representative strategies 

whose complete time and cost distributions may then be used in an integrated model. 

The paper is structured as follows. The next section provides a description of the model. 

The notation is slightly different from that in Godinho and Costa (2007), for a clearer 

presentation of the new results and algorithms. Section 3 presents new mathematical results. 

Section 4 introduces the algorithms for identifying the sets of strategies. Section 5 presents the 

results of the computational tests performed with the algorithms. Section 6 shows an 

application example, for illustration purposes. Some final remarks are presented in the last 

section. An appendix contains the proof of the mathematical results. 

 

2. The model 

In this paper we follow the model proposed by Godinho and Costa (2007). We have made 

some adjustments to the notation to better present the mathematical results and the new 

algorithms that we describe. 

There are two main components in the model: resources, which are used to perform the 

activity (they correspond to the processes used by Godinho and Costa, 2007), and strategies, 

which are plans that define which resource will be used in each situation to undertake the 

activity. 

This section presents the most important features of the model. In subsection 2.1, we set 

out the main ideas and assumptions underlying the model. Subsection 2.2 describes the most 

important notation for the resources. Subsection 2.3 presents the notation for the strategies, and 

some basic definitions concerning them. 

2.1. Main ideas and assumptions 

We consider an activity that can be undertaken by using the same resources, or 

combinations of resources, throughout its duration. Each resource, or combination of resources, 

corresponds to what is sometimes termed a mode of undertaking the activity (see, e.g., Tereso 

et al. 2004; Godinho and Branco 2012; Guthjar 2015). To simplify the explanation, we will 

hereafter use the term resource both for the case in which there is only one relevant resource 

and for the case where a combination of different resources must be taken into account. 
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The goal of the model is to determine the efficient time-cost combinations that can be 

achieved for the activity. We assume that the resource being used to undertake the activity can 

be changed along the execution of the activity, and we define strategies that determine which 

resource should be chosen, according to the way the activity is evolving. A strategy will define 

which resource should be used in each possible situation. 

Risk is introduced through the speed with which the activity is performed. The same 

resource could perform the activity faster if things go well, or slower if there are problems. 

Differences in the speed are also considered by other authors, either directly (as in Golenko-

Ginzburg and Gonik 1998, p. 151) or indirectly through uncertainty in the duration or the “work 

content” (the term used by Tereso et al. 2004, p. 1) of an activity. We consider that the use of 

a resource entails a given cost per unit of time so, if there are problems and the activity is 

performed more slowly the cost will be higher. 

The use of resources is discretized by considering a minimum utilization time for each 

resource, and it is assumed that the resource is used in multiples of this utilization time. A 

resource utilization unit corresponds to using the resource for this minimum utilization time. 

We also assume that the resource being used to undertake the activity may be changed at the 

end of each utilization unit, that is, at the end of the utilization time. This utilization time 

depends on the resource: different resources can require different minimum utilization times 

(e.g., internal resources can probably be changed more frequently than outsourced resources). 

When there are no constraints preventing resources from being changed in continuous time, 

the definition of resource-dependent utilization times can be used to introduce some flexibility 

in the model, since the use of different resources may be modelled with different detail. In spite 

of this flexibility, we believe that in most cases it makes sense to define a utilization time for 

each resource that is the same as the calendar unit of the project. 

We assume that it is possible to quantify the fraction of the activity that has been 

completed, at each time. This fraction of the activity can be seen as the quotient between the 

expected effort that would be needed to reach the current state of the activity and the total 

expected effort needed to complete the activity. For example, if an activity consists of testing 

a given number of identical items, the completed fraction of the activity at a given time will be 

the percentage of items that have been tested. 

We will now summarize and discuss the main assumptions of the model. 

 

Assumption 1: An activity can be undertaken using the same resources or combinations of 

resources throughout its duration, and the cost of using a resource for a unit of time is constant. 
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In project management, the work breakdown structure consists of dividing deliverables 

and project work into smaller, more manageable components, leading to specific actions that 

must be performed, which are the activities. So, the activities tend to be naturally homogeneous 

and the same resources are generally used throughout all the activity. Also, the cost of each 

resource for a unit of time is usually constant in projects (at least when the project time frame 

is not very long). We thus believe that this assumption will be met for almost all project 

activities. 

Assumption 2: At each time it is possible to quantify the fraction of the activity that has been 

completed. 

 Earned value techniques can be applied to quantify the fraction of an activity that has 

been completed. The concept of earned value measures the amount of work that has been 

accomplished up to a given date, or in a given time period, regarding a project or an activity 

(see, e.g., Project Management Institute 2005). Dividing the earned value by the total amount 

of work involved in an activity allows us to calculate the fraction of the activity that has been 

completed. 

Among the techniques that can be used to measure earned value, we can point out the 

fixed formula, the weighted milestone, the percent complete and the apportioned effort. The 

fixed formula is used for efforts that span one or two periods, and it credits a fixed percentage 

of work at the start of the work and the remaining at the completion. Efforts that are related to 

the completion of tangible end products or services, with a duration longer than two periods, 

can be measured with the weighted milestone or the percent complete techniques. The former 

technique divides the work to be completed into segments, each ending with an observable 

milestone, and assigns a value to each milestone. The percent complete technique uses 

indicators of the cumulative progress made against the plan for each task. If there are no 

objective indicators, this technique must rely on estimates made by workers or by project 

managers, and it can thus become very subjective. However, if there are objective indicators 

(e.g., number of units produced, which can be compared with the number of units to be 

completed, for a given product), this technique can be both objective and very useful. The 

apportioned effort technique is used for support activities that have a direct relationship with 

other activities (possible examples may be quality assurance and inspection activities). In this 

technique, the earned value of the support activity is determined based on the earned value of 

the base activity, usually assuming that the support activity corresponds to a predetermined 

percentage of the base activity. For more information on techniques for measuring earned value 

see, for example, Project Management Institute (2005). 
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The model presented in this paper was developed for activities whose completion can 

be quantified in some detail, preferably in an objective way. So, it is particularly suitable for 

activities whose earned value can be determined by using objective indicators and the percent 

complete technique. Producing or testing a given number of items, installing a given number 

of components, and many construction-related tasks are examples of activities whose earned 

value can easily be quantified in this way. Activities whose earned value can be measured using 

the weighted milestone technique can also be used with this model, provided that the number 

of segments is large enough to allow the activity advance to be quantified in some detail. 

For other activities, it may be harder to quantify the percentage of completion. For 

example, for activities whose earned value can only be based on subjective assessments (e.g., 

several research and development activities where there may be some uncertainty concerning 

how close we are to complete the activity), the results of the model may become less reliable. 

Also, for activities for which the earned value is measured considering only two periods (using 

the fixed formula), the application of the model may become impossible, due to insufficient 

detail. 

Assumption 3: All the resources that can be used to undertake the activity are available 

throughout its duration, and the resource being used to perform the activity can be changed at 

the end of each utilization unit. 

 The model assumes that resources can be reallocated from other uses (e.g., operational 

work) and used in the activity. The cost of using a resource in the project must reflect the 

opportunity cost of diverting it from its alternative uses. We also assume that whenever the 

resource being used to perform the activity is changed, setup times and costs are incurred. 

Assumption 4: The choice of a strategy for undertaking the activity is based on an aggregated 

cost and an aggregated time; the aggregated cost is calculated as the expected value of the 

probability distribution of the cost, and the aggregated time is calculated as the expected value 

of the time, based on adjusted probabilities. 

 Each strategy will lead to a probability distribution for time and for cost. The model 

uses aggregated values for these criteria to identify efficient strategies. We use the aggregation 

procedures proposed by Godinho and Costa (2007). These authors argue that cost risk will 

usually be diversifiable; therefore, according to financial theory, no risk premium should be 

required to bear that risk, and the expected value of the cost will be suitable. For the time 

criterion, it is assumed that the time risk cannot usually be hedged, and time-adjusted 

probabilities allow the model to take this risk into account. By defining larger time-adjusted 
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probabilities for longer times it is also possible to penalize the strategies that may lead to a 

longer activity duration. 

Assumption 5: The fraction of the activity completed in each resource utilization unit is 

defined by a discrete probability distribution with two possible, strictly positive, outcomes (or, 

equivalently, a resource utilization unit may lead to two different advances of the activity). 

 The use of a discrete distribution with two possible outcomes per unit of time is 

common in real options models (such as the binomial model). Still, this may be considered 

quite a strong assumption for project management. Our model, however, intends to be only an 

approximate representation of the reality, and a representation based on two outcomes can 

capture the common situation in which either “everything is going as planned” or “a problem 

occurred”. We note that by making the resource utilization time flexible in this model smaller 

time units can be used, which, considered over a longer period, could lead to a more realistic 

representation of the reality (for example, by considering time units of one hour for the 

utilization of a resource instead of one-day time units we are, in fact, allowing a wider range 

of outcomes per day). We also note that extending the model and the algorithms presented in 

this paper to more than two outcomes per resource utilization unit is almost immediate. 

However, we must point out that both considering smaller time units and considering more 

than two outcomes will add complexity and computational effort. 

 The fact that we assume that each fraction of the activity undertaken at a given time 

unit is strictly positive prevents us from considering cases where the activity could be pushed 

back by unexpected events. In most activities there is no possibility of being pushed back, but 

we must nonetheless point out that this is a limitation of the model. 

 We would also like to mention that considering a predefined minimum time for the 

utilization of each resource could lead to situations where we are very close to the end of the 

activity, and in fact we would need to use the resource for less than that minimum time in order 

to complete it. In this case, since the model always works with multiples of the resource 

utilization time there will in fact be a loss of effort – in spite of requiring less than a resource 

utilization unit, the model requires a complete utilization unit to be expended. Whenever there 

are real life constraints for using the resource for less than the minimum utilization time, this 

will not be a limitation; however, if it is possible to reallocate a resource in continuous time, 

there will be an approximation error. If short utilization times are used the approximation errors 

will be small. 
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Assumption 6: In the discrete probability distribution considered in assumption 5, the 

probabilities of the outcomes only depend on whether the largest or the smallest advance of the 

activity occurred in the last utilization of a resource. 

 This assumption specifies that the probability of “things going well” when a resource 

is used depends on whether or not “things went well” the last time a resource was used. If there 

were problems last time (i.e., if the completed fraction of the activity was the smallest one), 

this will usually mean that there is a larger probability of having problems again (i.e., the 

completed fraction of the activity once again being the smallest one). On the other hand, if 

everything went well the last time a resource was used the probability of having problems will 

usually be smaller. Although it can be argued that a longer history could be used to define the 

probabilities (for example, we could look at what happened in the last two or three units of 

utilization of a resource), we believe that in most cases this assumption will provide enough 

flexibility for realistically modeling the way an activity is developing. 

2.2. Notation related to the resources 

Most parameters needed to apply the model concern the resources. There are n resources 

that can be used to undertake the activity. A resource is usually identified by symbol i or j , and 

the set of resources is identified as  1,...,N n . 

As explained above, we allow different resources to have different utilization times 

(although it will usually be reasonable to consider a utilization time that is the same as the 

calendar unit of the project, for all resources). For resource i, the utilization time will be denoted 

by 𝑡𝑖(𝑡𝑖 > 0). The constant cost associated with a unit utilization of resource i (that is, the cost 

of using resource i for a time 𝑡𝑖) is denoted by 𝑐𝑖(𝑐𝑖 ≥ 0). 

For the resources, we must also consider the setup times and cost both for changing the 

resource being used and for using a resource at the start of the activity. , 0i jt   and , 0i jc   

are, respectively, the setup time for and cost of switching from resource i  to resource .j  0, 0it   

and 0, 0ic   are, respectively, the setup time for and the setup cost of using resource i  at the 

beginning of the activity. 

We assume that the performance speed of the different resources is stochastic. We 

assume that when there is a utilization unit of resource i the fraction of the activity that is 

completed follows a discrete distribution with two possible values: a smaller advance 
ia  and a 

larger advance 
i ia b  (with 0ia   and 0ib  ). The probability of each of these fractions being 
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completed will depend on state of the activity. To formalize this, we denote by ix  the fraction 

of the activity that is completed by a utilization unit of resource i. Then 

  i i i ix a b B p     , (1) 

with   being the state of the activity,  ip   being a probability that depends of  and  B p

being a random variable that follows a Bernoulli distribution with probability p  of taking value 

1. As explained before, the state of the activity,  , could be defined as a function of the history 

of the activity, but we believe that it is enough to take into account whether “everything went 

as planned” or “there was a problem” the last time a resource was used. 

We define two states:  ,     , with     meaning that the activity had a 

large advance the last time a resource was used, and     meaning that the activity had a 

small advance (we assume that when the activity is at the beginning, the advance probability 

in (1) will be  0ip  , with a predetermined 
0  ). 

For each resource, two probabilities must be defined for the fraction of the activity that 

is performed by a resource utilization unit:  ip  , which is the probability of performing a 

larger fraction of the activity after a larger fraction was also performed in the previous resource 

utilization unit; and  ip  , which is the probability of performing a larger fraction of the 

activity when a smaller fraction was performed in the previous resource utilization unit. 

The aggregation of time is based on the use of time-adjusted probabilities, which can 

elicited taking into account the initial probabilities  ip   and  ip   (for details on the 

procedure that can be used to obtain time-adjusted probabilities, please see Godinho and Costa 

2007, p. 321). The time-adjusted probabilities can be defined as: 

•  ,T

ip   : time-adjusted probability corresponding to initial probability 

  ,ip   to be used when a bigger advance in the initial utilization unit of 

resource i leads to a longer aggregated time; 

•  ,T

ip   : time-adjusted probability corresponding to initial probability 

  ,ip   to be used when a smaller advance in the initial utilization unit of 

resource i leads to a longer aggregated time; 
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•  ,T

ip   : time-adjusted probability corresponding to initial probability 

  ,ip   to be used when a bigger advance in the initial utilization unit of 

resource i leads to a longer aggregated time; 

•  ,T

ip   : time-adjusted probability corresponding to initial probability 

  ,ip   to be used when a smaller advance in the initial utilization unit of 

resource i leads to a longer aggregated time. 

The application of these probabilities is explained in the end of the next sub-section. 

 

2.3. Notation and concepts related to the strategies 

A strategy is a plan that defines which resources will be used to complete the activity or 

a fraction of the activity. A strategy starts with a utilization unit of a resource. As defined in 

(1), using the resource enables a smaller or a larger fraction of the activity to be performed. 

The resource choices made after that initial utilization of a resource may depend on the outcome 

of that utilization – that is, different “sub-strategies” could be followed depending on whether 

a larger or a smaller advance occurred with this first resource utilization. To take this into 

account we represent a strategy s as a triple: 

 , ,s i s s   (2) 

In this notation, i  is the first resource to be used, and s  and s are the strategies to be 

followed when the smallest advance (
ia ) and the largest advance (

i ia b ) occur, respectively. 

This notation is recursive in that the definition of a strategy uses the definition of the strategies 

that will be used for each possible outcome of the first resource utilization unit. In this context, 

strategies s  and s will sometimes be referred to as sub-strategies or branches of strategy s. 

The empty strategy, denoted by  , will be used to signal the end of the strategy: for example, 

if the activity is completed after an advance 
i ia b , then s  . 

A strategy s may not guarantee the completion of the activity. The maximum fraction of 

the activity that is guaranteed to be completed by using s is denoted by   ,x s  and can be 

defined as 
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 

       

0

, , min ;i i i

x

x i s s a x s a b x s   

  



   

 (3) 

A strategy s with   1x s   allows completion of the whole activity, and it is called a 

complete strategy. The set of complete strategies is denoted by  1S . 

A strategy with   1x s   is called a partial strategy, since it does not allow the 

completion of the whole activity (a partial strategy s can be used to complete the activity only 

if a fraction of at least  1 x s  of the activity has already been performed). The set of partial 

strategies with  x s x  is denoted by  S x . 

Each strategy has a probability distribution for time and for cost. To make decisions it is 

useful to work with aggregated values instead of their distributions. In this paper we follow the 

aggregation procedure proposed by Godinho and Costa (2007). The authors argue that cost risk 

will usually be diversifiable; therefore, according to financial theory, no risk premium should 

be required to bear that risk, and the expected cost can be used. 

The expression for calculating the cost of a partial strategy must consider four different 

cases: an empty strategy; a strategy that requires a resource utilization unit and ends 

immediately afterwards; a strategy that starts with a required resource utilization unit and ends 

if the largest activity advance occurs (i.e., the activity is completed only if “everything goes as 

planned”); and a strategy that starts with a resource utilization unit but, whatever the outcome 

of this resource utilization, it does not guarantee the completion of the activity. These four 

cases are considered in the following expression for the cost of a partial strategy: 

 

 

       
        

    

,

, ,

0, if 

,  if , ,

, 1 , , if  , , , ,

1 , , ,

                                           if  , , , , , ,

i

i i i i

i i ii i i i

s

c s i

C s c p C s c s i i s s

c p C s c p C s c

s i i s s i s s

 

 



 

   

 

     


 


  


          


            
   







 (4) 

where , , ,s s s s     are strategies and ,i i   are resources. Note that since the strategy is an 

argument for the cost and the first resource to be used is the first element in the triple that 

defines the strategy, the cost function does indeed account for the first resource used in the 

strategy (the same thing happens with the calculation of time, in (7)). 
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A complete strategy allows the completion of the whole activity, so there is no need to 

use resources before starting a complete strategy. If 
0  is the state of the activity at its beginning 

and i is the first resource to be used, then the cost of a complete strategy  , ,s i s s   can be 

defined as: 

   0, 0,C iC s c C s     (5) 

The aggregation of time is based on the use of adjusted probabilities. This is because time 

risk cannot usually be hedged, and such time-adjusted probabilities allow the model to take this 

risk into account. The proposed approach adjusts differently the same advance probability 

 ip  , according to whether the corresponding branch leads to a longer or a shorter aggregated 

time. Probabilities corresponding to branches that lead to longer times are usually adjusted 

upwards to penalize longer times. 

The time-adjusted probability applied when a larger fraction of the activity is undertaken 

by a utilization unit of resource i is denoted by  T

ip  , with   being the state of the activity 

at the beginning of the strategy (of course, when a smaller fraction of the activity is undertaken, 

the probability is  1 T

ip  ).  T

ip   can take one of two different values, according to the 

branch of the strategy that leads to a shorter aggregated time. If the first branch leads to a 

shorter aggregated time, it takes the value  ,T

ip  , otherwise it takes the value  ,T

ip  . 

Formally: 

 
     

     

,

, ,

,

, ,

, if , ,

, if  , ,

T

i i i i iT

i
T

i i i i i

p T s t T s t
p

p T s t T s t






 

 

  

  

     
 

    

 (6) 

 

Using (6), and following the same logic as in (4), we define the time of a partial strategy 

as: 

 

 

       
        

    

,

, ,

0, if 

,  if , ,

, 1 , , if  , , , ,

1 , , ,

                                           if  , , , , , ,

i

T

i i i i

T T

i i ii i i i

s

t s i

T s t p T s t s i i s s

t p T s t p T s t

s i i s s i s s

 

 



 

   

 

     


 


  


          

           
   









 (7) 
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where , , ,s s s s     are strategies and ,i i   are resources. 

If 
0  is the state of the activity at the beginning and i is the first resource to be used, then 

the aggregated time of a complete strategy  , ,s i s s   can be defined as: 

   0, 0,C iT s t T s     (8) 

 The strategies and the corresponding times and costs are the outputs of the algorithms. 

There are, however, two parameters concerning the algorithms that should be defined by the 

user: the maximum acceptable approximation errors for time and cost, denoted by  
T

 and ,
C

respectively. The algorithms that we propose look for strategies whose time and cost are at 

least close to those of an efficient strategy, in the sense that no other strategy is able to 

simultaneously improve the time by more than 
T

 and improve the cost by more than 
C

. 

There strategies are termed   efficient  ,
T C  strategies. 

 

3. Mathematical results 

Our goal is to identify the efficient strategies that enable the completion of the activity. 

The complexity of the problem led us to exclude mathematical programming methods, which 

would lead to very large, probably impossible to solve, problems. A possible alternative 

approach might be using meta-heuristics. In fact, several different meta-heuristics have been 

used in the stochastic time-cost tradeoff problem, like the ant system approach used by 

Mokhtari et al (2011) or the electromagnetism-like algorithm used by Godinho and Branco 

(2012). However, the issue in this model, is the representation of strategies. Strategies may 

have very large dimensions, and the size of different strategies may vary for the same problem. 

This would make it very difficult to apply usual meta-heuristics to the presented model. 

Instead, we chose to rely on the use of some mathematical properties of the model, and 

derive new ones, in order to develop algorithms for obtaining efficient strategies. Godinho and 

Costa (2007) provide a theorem stating that a complete strategy that contains a dominated 

partial strategy is also dominated. This theorem is very useful since it allows us to work only 

with efficient partial strategies when we are looking for the set of efficient complete strategies. 

The authors also present a result for calculating a “reduced set of strategies” that is guaranteed 

to contain a strategy in a given neighborhood of each element of the original set of efficient 
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strategies. In this paper we use some different concepts that allow us to more effectively find 

an approximation to the set of efficient strategies.  

Definition 1: A complete strategy  1s S  is   efficient  ,
T C , for 0, 0T C   , if there 

is no other complete strategy  1s S  for which, simultaneously,    C C CC s C s     and 

   C C TT s T s    . 

Definition 2: A set of complete strategies  1S S  is a full set of   efficient  ,
T C

 strategies 

if: 

a.        1 1 1, , 0C C C Cs s S T s T s C s C s             (no strategy in S  is dominated by 

another strategy belonging to S ) 

b.          1 : C C C C C Ts S s S C s C s T s T s             

 

Part b of Definition 2 states that a full set of  , efficientT C    strategies is guaranteed 

to contain a strategy that is in a neighborhood of each efficient strategy. So, such a set is an 

approximation to the set of efficient strategies. The next property states that the strategies of a 

full set of  , efficientT C    strategies are indeed  , efficientT C   , despite the fact that this 

condition is not explicitly imposed. 

 

Property 1: All strategies in a full set of  , efficientT C    strategies are  ,T C   efficient.2 

 

We now extend the previous definitions to the partial strategies. For this, we define  iS x  

as the set of strategies that allow the execution of a fraction x of the activity and start by using 

resource i , that is, the set strategies of the form  , ,s i s s   with   .x s x  

Definition 3: A partial strategy  s S x  is  T C
x i efficient  , , , ,  , for 0, 0T C   , 

 0,1x ,   , i N , if  is S x  and there is no other partial strategy  is S x  such that, 

simultaneously,    , , CC s C s x       and    , , TT s T s x      . 

Definition 4: A set of partial strategies  iS S x  is a full set of  T C
x i efficient  , , , ,   

strategies if: 

                                                 

2The proofs of the mathematical properties are given in the Appendix. 
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a.        1 1 1, , , , , , 0s s S T s T s C s C s                (no strategy in S  is dominated 

by another strategy belonging to S ) 

b.          : , , , ,i C Ts S x s S C s C s x T s T s x                   

 

Property 2: All the strategies belonging to a full set of  , , , , efficientT C x i     strategies are 

 , , , , efficientT C x i    . 

 

We now present a procedure that is guaranteed to provide full sets of 

 , , , , efficientT C x i     strategies. 

 

Let  ,iS x  be obtained using the following recursive procedure: 

1. For 0 ix a  , let     , , ,iS x i    . That is,  ,iS x  is just composed of the 

strategy that consists of one utilization unit of resource i. 

2. For 
i i ia b x a   , define: 

     
1

, , , : ,
n

i j i

j

U x s i s s S x a  



  
     
  

 (9) 

This means that  ,iU x is the set composed of all partial strategies obtained by 

starting to use resource i, and then using a strategy from  
1

,
n

j i

j

S x a


 . 

3. For 1 i ix a b   , define: 

       
1 1

, , , : , , ,
n n

i j i j i i

j j

U x s i s s s S x a s S x a b     

 

  
       
  

 (10) 

This means that  ,iU x  is the set composed of all strategies obtained by starting 

to use resource i, and then using a strategy from  
1

,
n

j i

j

S x a


  if the advance 
ia  

occurs, and a strategy from  
1

,
n

j i i

j

S x a b


   if the activity advances by 
i ia b . 
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4. For 1 ix a  ,  ,iS x  is obtained from  ,iU x  by discarding all strategies that 

are dominated by other strategies in  ,iU x  and some strategies s  for which there 

exists  ,is S x  with: 

   , , T iT s T s a      (11) 

   , , C iC s C s a      (12) 

Property 3: Consider the sets of strategies obtained through steps 1-4 above. The sets  ,iS x  

are full sets of  , , , , efficientT C x i     strategies. 

 

This result provides a way to find full sets of  , , , , efficientT C x i     strategies, which 

are partial strategies. In fact, our ultimate goal is to determine sets of complete strategies. For 

given values of 0, 0T C   , if we calculate the full sets of  , , 1, , efficientT C x i     

strategies for all ,i N   , and afterwards if we combine all these sets and remove the 

dominated strategies from the set thus obtained, we will get a full set of  , efficientT C    

strategies: a set of complete strategies that is an approximation to the set of efficient strategies. 

We now assume that we want to find the full sets of  , efficientT C    strategies for 

some predefined values of 0, 0T C   . Note that if we want the set of efficient strategies 

(instead of an approximation to this set), it suffices to make 0T C   .  

In the next section we present two algorithms for calculating these sets. Both these 

algorithms are in fact ways of implementing the procedure presented above to obtain full sets 

of  , , 1, , efficientT C x i     partial strategies, for all , ,i N    and afterwards using 

these sets to obtain a full set of  , efficientT C    strategies. 

 

4. Algorithms for identifying efficient strategies 

In this section we present two possible algorithms for identifying efficient strategies. The 

first is based on the use of tree structures that are close to the representation of strategies defined 

by (2), and the second is a dynamic programming algorithm. 
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4.1. A tree-based algorithm 

Expression (2) defines the concept of strategy in a way that is closely related to a tree 

structure. In fact, it defines a root and two branches, each of which may either be empty or have 

a similar structure. Fig. 1 depicts a tree representing strategy 

      1, 1, 2, , , , 2, 1, , ,      . 

 

 

 

 

 

 

Fig. 1 Tree representing the strategy       1, 1, 2, , , , 2, 1, , ,       (it is assumed that the upper branch 

always corresponds to a smaller activity advance) 

 

A tree with only event nodes may be used for representing a strategy, such as the one 

shown in Fig. 1. An event node in Fig. 1 represents the use of a resource. The problem of 

identifying  , efficientT C   strategies can be defined as a search in decision trees, by adding 

decision nodes that represent the resource choices. Before each utilization of a resource there 

is a choice, corresponding to a decision node in the tree. So, before each resource utilization 

unit we must consider the choice of resource by adding decision nodes. The beginning of a tree 

explicitly representing such choices is depicted in Fig. 2. 

 

 

 

 

 

 

  

 

 

 

Fig. 2 Decision tree with nodes representing the choices of resources. It is assumed that N= {1;2}  
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A possible way of finding a full set of  , efficientT C    strategies consists of building 

the complete decision tree (of the type shown in Fig. 2), making all possible combinations of 

decisions and only keeping enough strategies to ensure that we have a full set of

 , efficientT C    strategies. However, this way of finding  , efficientT C    strategies is 

impractical since the decision trees will usually be huge, and the possible combinations of 

decisions will be extremely large. However, the mathematical results presented earlier allow 

us to define a more effective algorithm based on such decision tree structures. 

The idea underlying this algorithm is to identify the strategies without explicitly building 

the tree. We start at the tree root and recursively find the partial strategies that are candidates 

to be a part of  , efficientT C    strategies. At each decision point (each decision node of the 

decision tree) we consider every possible resource and recursively find all the partial strategies 

that start by using that resource and are candidates to be a part of the set of complete strategies 

we are looking for. After finding all such strategies at a decision node, we discard those that 

are not required for a full set of  , , , , efficientT C x i     strategies and return to the previous 

level. At the root, we get a full set of  , efficientT C    strategies. Algorithm 1 shows a 

simplified description of this procedure. 

 

Algorithm 1 – Tree-based Algorithm 

 

Function  T C 0Main , , , , resources 1,...,n n    

S   

For all resources 1,...,i n  do 

 T C 0Find_Efficient_Strategies , ,1, ,S S i     

End for 

Remove from S all dominated strategies, as well as those not required for a full set of  , efficientT C    

strategies 

Return S  

End Main 

 

Function  T CFind_Efficient_Strategies , , , ,x i    

If  ix a  then 

Return   , ,i    

End if 

 , , , ,iS x B B      

For all resources 1,...,j n  do 

 T CFind_Efficient_Strategies , , , ,iB B x a j       

End for 
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If  i ix a b   then 

For all resources 1,...,j n  do 

 T CFind_Efficient_Strategies , , , ,i iB B x a b j        

End for 

Else 

 B    

End if 

For all 1 2,s B s B    do 

      1 2, , , ,i iS x S x i s s    

End for 

Remove from  ,iS x all dominated strategies, as well as those that are not required for a full set of 

 , , , , efficientT C x i     strategies, according to (11)-(12) 

Return  ,iS x  

End Find_Efficient_Strategies  

 

 

This approach allows an intuitive representation of the problem. However, its dimension 

is exponential in the average number of tree levels, making it impractical in many cases, even 

with computational support. In the next subsection we propose a different algorithm that is 

expected to have a better performance.  

 

4.2. A dynamic programming algorithm 

A full set of  , , , , efficientT C x i     strategies will be valid for all values of x belonging 

to an interval. The main idea underlying the algorithm we now present is to find the intervals 

of values of x for which the full sets of  , , , , efficientT C x i     strategies are valid, and 

calculate these sets only once. We start with small values of x, and proceed to successively 

larger values of x, until the full sets of  , , , , efficientT C x i     strategies are calculated for all 

resources and for 1x  . Note that calculating full sets of strategies for intervals of values of x 

enables us to achieve significant savings in the running time of the algorithm (in relation to the 

tree-based algorithm), and we also achieve a more compact representation and storage of 

strategies. In fact, a partial strategy may be generated and represented only once, and pointers 

can be used to reference it whenever it is necessary. Since a partial strategy may occur within 

multiple complete strategies and multiple times in the same complete strategy, this approach 

could result in very significant savings of memory space. 
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We start by presenting a useful mathematical result stating that a full set of 

 , , , , efficientT C x x i     strategies remains so for x x   as long as all strategies in the 

set are valid to undertake a fraction x  of the activity. 

 

Property 4: Assume that  ,iS x   is a full set of  , , , , efficientT C x x i     strategies. If 

x x   and    , ,is S x x s x     , then  ,iS x   is also a full set of 

 , , , , efficientT C x x i     strategies. 

 

In order to define the algorithm, we provide some additional notation. When  ,iS x  is 

a full set of  , , , , efficientT C x i     strategies for all x X , we will denote it as  ,iS X . 

Note that from step 1 of the procedure presented in Section 3, it is clear that 

     , 0, , ,i iS a i    , ,i N    . Additionally, Property 4 can be restated as: if x x   

and    , ,is S x x s x     , then     , , ,i iS x x S x    . 

The algorithm works as follows. Consider a state   and a resource i and define  ,l i  

as the largest value of x  for which  ,iS x  has already been determined. We choose the pair 

 , j   for which  ,l j   is smaller. This way we are sure that we know   , ,iS l j  , for all 

resources i N  and all states   . 

We now determine   , ,jS l j     , for 0   arbitrarily small – that is, we calculate 

the full set of  , , , , efficientT C x i j        strategies for values of x immediately after 

 ,l j  . To define such a set, we consider all sets of strategies  1 2, ,j s s  with 

  1 , , jk
s S l j a      ,   2 , , j jk

s S l j a b       , ,k k N  . From the set of 

strategies thus obtained we remove all dominated strategies, as well as those that are not 

required for a full set of  , , , , efficientT C x i     strategies, according to (11)-(12). We thus 

get   , ,jS l j     . We find the largest value of x for which all strategies of this set are 

valid, that is, the value of   min
s S

r x s


  for   , ,jS S l j     . According to Property 4, 

r is the right endpoint of an interval I for which   , ,jS l j      is a full set of
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 , , , , efficientT C x i     strategies. Therefore we can say 

     , , , , ,j jS l j r S l j            . 

We now know  ,jS x   for all x r , so  ,l j r   . We find the new pair   , j   that 

minimizes  ,l j  , and proceed in the same way. The algorithm stops when we are able to 

calculate  0 ,1iS  , for all i N . We now present the algorithm. 

 

Algorithm 2 – Dynamic programming algorithm 

 

Function  C T 0Main , , , , resources 1,...,n n  
 

For all resources 1,...,i n , states ,     do 

      , ]0, ] , , ,  ,i i iS a i l i a      

While  0 , 1l i  , for any resource i N , do 

     , state, resource  with smaller ,j l j    

 Update_Set_of_Strategies , j   

End do 

S   

For all resources 1,...,i n  do 

 ,1iS S S    

End for 

Remove from S all dominated strategies, as well as those not required for a full set of  , efficientT C    

strategies 

Return S  

End Main 

 

Procedure  Update_Set_of_Strategies , j   

,B B    

For all resources 1,...,i n  do 

  , ,i jB B S l j a        , for 0   arbitrarily small 

End for 

If   , j jl j a b     then 

For all resources 1,...,i n  do 

  , ,i j jB B S l j a b         , for 0   arbitrarily small 

End for 

Else 

 B    

End if 

S   

For all 1 2,s B s B    do 

  1 2, ,S S j s s   

End for 

Remove from S  all dominated strategies, as well as those that are not required for a full set of 

 , , , , efficientT C x i     strategies, according to (11)-(12) 
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  min
s S

r x s


  

  , , ,iS l j r S       
 ,l j r  

 
End Update_Set_of_Strategies

 

 

5. Computational tests 

Several computational tests were performed to assess the performance of the algorithms 

for identifying sets of strategies. Both algorithms were implemented in Borland Delphi. This 

section presents the results of a few of these tests.  

The tests whose results we present aimed to determine how the computational times of 

both algorithms behave when we change two characteristics of the problem: the number of 

strategies and the size of the underlying tree, as considered by the tree-based algorithm.  

A number of file sequences were generated for these tests. The first element of the 

sequence is generated by defining some parameters as constants and the rest as samples of 

given uniform distributions. The other elements of each sequence are defined through 

sequential changes in given parameters. Twenty-five sequences were generated for each set of 

parameter distributions, and such a set of sequences will be referred to as a “series”.  

In the tests presented here, the initial costs and setup times were set to 0, for all resources. 

Probabilities were set to      , 49%,51%i ip p   ,      , ,, 40%,45%T T

i ip p     

and      , ,, 55%,60%T T

i ip p    , for all resources i N . For the approximation of the 

set of efficient strategies, parameter values 0.3T C    were used. 

Test series 1 and 2 analyze the impact of an increasing number of strategies in the 

execution time of the algorithms. The increase in the number of strategies is achieved by 

reducing the setup times and costs: lower setup times and costs will usually make it more 

attractive to change the resource in use, increasing the number of efficient strategies. 

Series 1 considers two resources. Resource 1 allows the activity to proceed at a faster 

pace, but entails a higher cost. Resource parameters were set to  1 0.075,0.080a  , 

 1 1 0.095,0.100a b  ,  2 0.085,0.090a  ,  2 2 0.100,0.105a b  , 
1 1.0t  , 

1 2.0c  , 

2 2.2t   and 
2 1.1c  . Setup times and costs are reduced from 

12 12 21 21 8t c t c     to 

12 12 21 21 0t c t c    . The results are summarized in Fig. 3. 
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Series 2 considers three resources, providing different time/cost combinations. Resource 

parameters were set to    , 0.11,0.12 , 1;2;3i i ia a b i   , 
1 1t  , 

1 3c  , 
2 2t  , 

2 2c  , 
3 3t   

and 
3 1c  . Set-up times and costs are reduced from  , , 8, , 1;2;3 ,i j i jt c i j i j     to 

 , , 0, , 1;2;3 ,i j i jt c i j i j    . The results are summarized in Fig. 4. 

 

 

  

Fig. 3 Results of series 1 of computational tests. The series considers two resources, and varies the setup time 

and cost (depicted in the horizontal axis). The bars show the average number of strategies generated (values in 

the left vertical axis) and the lines depict the running times of both algorithms (values in the right vertical axis). 

 

The results of series 1 and 2 show that as the setup times and costs decrease the number 

of generated strategies increases, and the run time of both algorithms also increases. The 

dynamic programming algorithm always performs much better than the tree-based algorithm. 

The performance differences are particularly noteworthy when the number of strategies is 

larger. In fact, for the case in which all the setup costs and times are null, the average running 

time of the tree-based algorithm was left out of the charts, since it was much bigger that the 

remaining times (1155 seconds for series 1 and 969 seconds for series 2). 
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Fig. 4 Results obtained in series 2 of computational tests. The series considers three resources, and varies the 

setup times and costs (depicted in the horizontal axis). The bars show the average number of strategies 

generated (values in the left vertical axis) and the lines depict the running times of both algorithms (values in the 

right vertical axis) 

 

Series 3 considers two resources. In this series, we reduced the values , , 1,2i i ia a b i  , 

to increase the number of units of resource utilization (and the size of the tree). At the same 

time, we defined very large setup times and costs to keep the number of strategies small; 

defining high setup times and costs means the resource being used never changes, leading to 

two efficient strategies, each corresponding to using just one of the resources to complete the 

activity. Resource 1 allows the activity to proceed at a faster pace, but entails a higher cost. For 

both resources we initially defined  , 0.2000,0.2100i i ia a b  , and reduced the values 

according to a geometric progression of ratio 0.9 until we reached  , 0.0027,0.0028i i ia a b 

. Setup times and costs were fixed at 6

1,2 1,2 2,1 2,1 10t c t c    . The results are summarized in 

Fig. 5. 
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Fig. 5 Results obtained in series 3 of computational tests. The series considers two resources, and varies

andi i ia a b (depicted in the horizontal axis). The bars show the average number of strategies generated 

(values in the left vertical axis) and the lines depict the running times of both algorithms (values in the right 

vertical axis) 

 

In series 3, the tree-based algorithm could no longer be run when the values of ,i i ia a b  

reached about 0.07, due to insufficient memory. However, the dynamic programming 

algorithm could be applied to all the instances of this series, and the execution times were 

always shorter than 1 second. Note that although the number of efficient strategies is small, the 

tree-based algorithm will require very large amounts of memory space to store each strategy 

when the number of tree levels is large. The dynamic programming algorithm uses a more 

efficient approach to strategy storage and avoids multiple copies of identical partial strategies. 

Therefore, it is not surprising that this algorithm could be executed when the activity advances 

are small, whereas the first one could not. 

In the other tests that we performed (not reported here for the sake of economy of space), 

the dynamic programming algorithm was always faster than the tree-based algorithm. In 

several cases it was impossible to run the tree-based algorithm due to insufficient memory, and 

it was still possible to run the dynamic programming algorithm (the opposite never arose). 

However, the dynamic programming algorithm was unable to execute some instances of 

several series, usually when the values ,i i ia a b  were small and the number of strategies was 

large. 
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We were able to conclude that the dynamic programming algorithm is better than the 

tree-based algorithm in terms of both memory requirements and running time. We also 

concluded that reducing the number of strategies to be generated could make the calibration of 

parameters ,T C  very important, allowing the dynamic programming algorithm to be applied 

to some instances. This means that when it is impossible to run the algorithm for given values 

of ,T C  , it might be possible to run it if we increase these values. The application presented 

in the next section provides one such example. 

 

6. An application example 

We will now illustrate the application of the model with a small example. We consider a 

mechanical design activity (Zhongtu et al. 2006). We assume that it is possible to use a team 

of medium-skilled designers at low cost, or include some high-skilled designers, thereby 

increasing the cost. Using just medium-skilled designers allows the development to proceed at 

a good pace as long as no difficulties are met. However, when difficulties arise the activity 

advance slows down quite significantly and the probability of overcoming those difficulties 

(thus speeding up the activity) is small. Adding high-skilled designers increases the cost, but it 

simultaneously increases the pace of activity advance and considerably increases the 

probability of overcoming the difficulties when they arise. 

It is possible to add or remove the high-skilled designers during the course of the activity, 

but this incurs additional costs and delays. When designers are added to the activity some time 

must be spent briefing them. When they are withdrawn there is the cost of familiarizing them 

with other tasks. 

To model this example, we will consider two resources. Resource 1 consists of using just 

medium-skilled designers, and resource 2 consists of adding some highly skilled designers. We 

consider a utilization unit of 1 day for each resource, and assume that the cost of using resource 

1 is 1 unit/day and the cost of using resource 2 is 2.5 units/day. 

Resource 1 has 1 0.030a   and 1 0.015b  , meaning that when the activity is proceeding 

normally it advances by 4.5%/day ( 1 1a b ), and when difficulties arise it advances by 3.0%/day 

( 1a ). Resource 2 has 2 0.045a   and 2 0.015b  , meaning that when the activity is proceeding 

normally it advances by 6.0%/day, and when difficulties arise it advances by 4.5%/day. 
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When the activity proceeds normally on a given day, the probability of finding problems 

the next day is 25% if resource 1 is being used, and 20% if resource 2 is being used. When 

difficulties have arisen, the probability of keeping proceeding at a slower pace is 75% if 

resource 1 is used and 40% if resource 2 is used. 

When resource 1 is being used, the addition of high-skilled designers (that is, the 

transition to resource 2) implies a delay of 2 days and a cost of 5 units. When resource 2 is 

being used, the removal of high-skilled designers implies a cost of 1.5 units, but no additional 

delay. Using resource 1 at the beginning of the activity requires a starting time of 2 days, and 

a corresponding cost of 2 units. Using resource 2 at the beginning of the activity requires a 

starting time of 1 day, and a cost of 2.5 units. 

All these parameters are summarized in Table 1. We assume that certainty equivalents of 

uncertain times were elicited, leading to the time-adjusted probabilities shown in the same 

table. 

Table 1 – Parameters used in the example 

1 0.030a   12 2.0t    1 25%p     ,

1 20.0%Tp     

1 0.015b   12 5.0c    1 75%p     ,

1 27.5%Tp     

2 0.045a   21 0.0t    2 60%p     ,

1 72.5%Tp     

2 0.015b   21 1.5c    2 80%p     ,

1 80.0%Tp     

1 1.0t   01 2.0t     ,

2 57.0%Tp     

1 1.0c   01 2.0c     ,

2 64.0%Tp     

2 1.0t   02 1.0t     ,

2 78.0%Tp     

2 2.5c   02 2.5c     ,

2 85.0%Tp     

 

We started by trying to use this example with 0T   and 0C   (that is, we tried to find 

the efficient strategies). In this case, we were unable to run the algorithms, due to insufficient 

memory space. The same happened when we used 0.1T   and 0.03C  . We tried with 

0.3T   and 0.05C  , but we only used the dynamic programming algorithm since we were 

still unable to run the example with the tree-based algorithm. We obtained 759 strategies in the 

full set of  0.3, 0.05 efficientT C     strategies, and the execution time was about 2 

minutes (113 seconds). The corresponding time-cost combinations are shown in Fig. 6. 
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Fig. 6 Time/cost combinations for a full set of  0.3, 0.05 efficientT C     strategies 

 

We then increased the values of 
T  and C  once again to get an idea of the impact of 

these parameters. As these values increase, the number of strategies decreases and their quality 

tends to worsen, but the time required to generate them also decreases. For example, for 

1.20T   and 0.20C  , we got 189 strategies, and the execution of the algorithm only took 

2 seconds. Fig. 7 shows two sections of the chart with the time-cost combinations of the 

strategies generated with 0.3T   and 0.05C   (base set), and 1.20T   and 0.20C   

(second set). It can be seen that the second set has significantly fewer strategies, and that the 

strategies of the second set tend to be slightly worse (in one section of the chart, all of them are 

dominated by strategies from the base set). Once again, this provides an idea of the trade-off 

between a better approximation to the set of efficient strategies and the running time of the 

algorithm. 

Finally, looking at Fig. 6 and the left side of Fig. 7, it is possible to see that the time-cost 

combinations are almost linear in some parts, and in general show an almost piecewise linear 

shape (although the right side of Fig. 7 shows some departures from linearity). This could be 

caused by several factors specific to the example, like the existence of only two resources and 

the closeness between original probabilities and time-adjusted probabilities. Still, even in this 

simple case, a discontinuity can be found in Fig. 6, which may be of great relevance to project 

managers: in the area close to the discontinuity it is possible to gain a significant saving in 
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aggregate time with a small increase in aggregate cost. These discontinuities might make it 

quite difficult to estimate, at the outset, the shape of the time-cost combinations. Even if it were 

possible to know the shape of the time-cost combinations at the outset, the proposed algorithms 

are important because they also provide very important additional information: the strategies 

that allow managers to obtain given time-cost combinations. 

 

Time-cost combinations 
 

    
Fig. 7 Two sections of the plot showing time/cost combinations for two full sets of  , efficientT C    strategies. 

Base set with 0.30, 0.05T C   , second set with 1.20, 0.20T C   . 

 

7. Final remarks 

This paper has considered a stochastic model for the time-cost tradeoffs of project 

activities. We aimed at identifying strategies that are “near” the efficient set. We have 

rigorously defined what we mean by “near” by introducing the concept of  , efficientT C    

strategies, where the parameters ,T C   can be seen as defining a neighborhood of the set of 

efficient strategies. We have presented some mathematical properties for an effective 

identification of these strategies, and proposed two algorithms for generating them: one based 

on a tree structure and the other based on dynamic programming.  

The computational tests showed that the dynamic programming algorithm performs 

much better, both in terms of memory requirements and in terms of running time. In some 

instances, even the dynamic programming algorithm can be very demanding in memory space 
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and/or running time, particularly if the number of  , efficientT C    strategies is large. 

However, the number of strategies can be reduced by increasing the values of , ,T C   allowing 

us to obtain an approximation to the efficient frontier. We have presented an application 

example in which we had to increase the values of ,T C   in order to obtain a set of strategies. 

 In the future, we intend to integrate this model into complete project networks or real 

options models. One way to do so could be to use the model to identify a limited set of relevant 

strategies and then use the complete probability distributions of time and cost for the identified 

strategies in the project network or real options model. This way we might be able to integrate 

the detailed management of an activity into a more complex project model. 
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Appendix: Mathematical proofs 

Proof of Property 1: 

Denote by S a full set of  , efficientT C    strategies and consider a strategy s S . Assume 

there is a strategy  1s S  such that    C C CC s C s    . From part b of Definition 2, we 

know that there is a strategy 
1s S  such that    1C C CC s C s   and    1C C TT s T s   . 

This means that    1C CC s C s  and since, from part a of Definition 2, 
1s  does not dominate 
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s , it must be that    1C CT s T s , so    C C TT s T s    . Similarly, if    C C TT s T s    , it 

is possible to show that    C C CC s C s   . Therefore s is  , efficientT C   .■ 

 

Proof of Property 2: 

This proof follows the same lines of the proof of Property 1.■ 

 

Proof of Property3: 

For the sake of simplicity, we prove this property assuming that 

     , ,T T T

i i ip p p      (time-adjusted probabilities are independent of whether a large or 

small activity advance occurred before). The complete proof can be obtained by considering 

separately the different combinations of the signs that    , 1 , 2, ,i j i jT s t T s t         
   

 

and    , 1 , 2, ,i j i jT s t T s t         
   

may have in case c (defined below). The complete 

proof is available as Supplementary Material. 

Step 4 of the procedure guarantees that no dominated strategies from  ,iU x  are 

included in  ,iS x , therefore part a of Definition 4 holds. Let us now prove that part b also 

holds. To prove that part b of Definition 4 holds we should prove that for each  is S x  there 

exists  ,is S x  such that: 

   , , TT s T s x      (A1) 

   , , CC s C s x      (A2) 

Let us consider 3 cases: 

a) 0 ix a  ; 

b) 
i i ia b x a   ; 

c) 1 i ix a b   . 

In order to prove that (A1) and (A2) hold, we will show that they hold in case a), and that 

in cases b) and c) they will hold for x  if they also hold for x  such that 
ix x a   . This way 

we prove by induction that they hold in all cases. 

Let us consider case a). In this case  , ,s i   is the only strategy belonging to 

 , .iS x  s  also belongs to  iS x , and other strategies  is S x  must have the same or high 
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times and costs. So, for all  is S x ,    , ,T s T s   and    , ,C s C s  , thus proving 

(A1) and (A2) for this case. 

Let us now consider case b). Assume  , ,s i s     and that (A1) and (A2) hold for 

ix x a   , for all resources i N . Let us show that they hold for a partial strategy  , .is S x

Let j  be the first resource to be used in strategy s  . By the induction hypothesis, there is 

   , , ,is i s U x     such that  ,j is S x a    , and (A1) and (A2) hold for s   and 

s  . 

        

    

      

,

,

,

, , 1 ,

                                1 ,

                              1 , ,

                              1

T

i i i j

T

i i i j

T

i

T

i

T s T s t p T s t

t p T s t

p T s T s

p

  









  

           
  

       
  

       
 

      

 

,

                              

T i

T i

x a

x a

 



   

  

 

We would similarly show that      , , C iC s C s x a       . A strategy  ,is U x  

will be included in  ,iS x  such that    , , T iT s T s a      and 

   , , .C iC s C s a      So: 

     

     

, ,

, ,

T i T i T

C i C i T

T s T s x a a x

C s C s x a a x

    

    

       

       
 

Let us now consider case c). Assume  , ,s i s s     and that (A1) and (A2) hold for 

ix x a   , for all resources i N . Let us show that they hold for  ,is S x . Let j  and j  

be the first resources to be used in strategies s  and s  , respectively. By the induction 

hypothesis, there is    , , ,is i s s U x      such that  1 ,j is S x a    , 

 2 ,j i is S x a b     , and (A1) and (A2) hold for s  and s  , and for s   and s  . Let us 

now consider (A1). We have: 
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   

        

        

            

, ,

, ,

, ,

      1 , ,

           1 , ,

      1 , , , ,

     

T T

i i ii j i j

T T

i i ii j i j

T T

i i

T s T s

t p T s t p T s t

t p T s t p T s t

p T s T s p T s T s

 

 

 

 

 

 

 

 

   

  

               
    

              
    

                
   

        

 

  1

       

T T

i T i i T i i

T i

p x a p x a b

x a

   



         

  

 

We would similarly show that      , , C iC s C s x a       . According to step 4 of 

the procedure defining  ,iS x , a strategy  ,is U x  will be included in  ,iS x  such that 

   , ,P P T iT s T s a      and    , ,P P C iC s C s a     . So: 

     , ,

                             

P P T i T i

T

T s T s x a a

x

   



     

 
 

     , ,

                              

P P C i C i

C

C s C s x a a

x

   



     

 
 

So, for each  is S x  there exists a  ,is S x  such that (A1) and (A2) hold, 

completing the proof.■ 

 

Proof of Property 4: 

Since    , ,is S x x s x     , we know that    ,iS x S x   . Part a of Definition 4 

is independent of x, so if it holds for x it will also hold for x . As for part b, note that 

   x x S x S x      , since a strategy that completes a fraction x  of the activity will also 

allow completion of a fraction x x  . So, if part b holds for all  s S x  , it will also hold 

for all strategies    s S x S x    , thus completing the proof.■ 
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Proof of Property 3: 

Step 4 of the procedure guarantees that no dominated strategies from  ,iU x  are 

included in  ,iS x , therefore part a of Definition 4 holds. Let us now prove that part b also 

holds. To prove that part b of Definition 4 holds we will prove that for each  is S x  there 

exists  ,is S x  such that: 

   , , TT s T s x           (13) 

   , , CC s C s x         (14) 

Let us consider 3 cases: 

a) 0 ix a  ; 

b) 
i i ia b x a   ; 

c) 1 i ix a b   . 

In order to prove that (13) and (14) hold, we will prove that they hold in case a), and that 

in cases b) and c) they will hold for x  if they also hold for x  such that .ix x a    This way 

we prove by induction that they hold in all cases. 

Let us consider case a). In this case  , ,s i    is the only strategy belonging to 

 ,iS x . s  also belongs to  iS x , and other strategies  is S x  must have larger or equal 

times and costs (since a different strategy belonging to  iS x  must start by using resource i 

and then use a different resource in at least one branch, it cannot have a smaller time nor a 

smaller cost than s ). So, for all  is S x ,    , ,T s T s   and    , ,C s C s  , thus 

proving (13) and (14) for this case. 

Let us now consider case b). Assume  , ,s i s     and that (13) and (14) hold for 

ix x a   , for all resources i N . Let us prove that they will hold for a partial strategy 

 ,is S x . Let  j f s  . There is    , , ,is i s U x     such that  ,j is S x a   

, and (13) and (14) hold for s   and s  . 
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        

    

      

,
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,

,

, , 1 ,

                                1 ,
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i i i j

T

i

T s T s t p T s t

t p T s t

p T s T s
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



 

 

  

           
  

       
  

       
 

     

 

,

                              

T

i T i

T i

p x a

x a

 



   

  

 

We would similarly show that      , , C iC s C s x a       . A strategy  ,is U x  

will be included in  ,iS x  such that    , , T iT s T s a      and    , , C iC s C s a    

. So: 

     

     

, ,

, ,

T i T i T

C i C i T

T s T s x a a x

C s C s x a a x

    

    

       

       
 

 

Let us now consider case c). Assume  , ,s i s s     and that (13) and (14) hold for 

ix x a   , for all resources i N . Let us prove that they will hold for  ,is S x . Let 

 1j f s   and  2j f s  . There is    , , ,is i s s U x      such that 

 1 ,j is S x a    ,  2 ,j i is S x a b     , and (13) and (14) hold for s   and s  , and 

for s   and s  . Let us now consider (13). In order to properly handle the time-adjusted 

probabilities, we will divide case c) into four different sub-cases: 

c.i) 
   

   

, 1 , 2

, 1 , 2

, ,

, ,

i j i j

i j i j

T s t T s t

T s t T s t

 

 
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
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c.ii) 
   

   

, 1 , 2

, 1 , 2

, ,

, ,
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c.iii) 
   
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i j i j
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 
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
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c.iv) 
   
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Cases c.i) and c.ii) are handled in a similar way, and the same thing happens for c.iii) and 

c.iv). So, we will analyse    , ,T s T s    for c.i) and c.iii). 

In sub-case c.i): 
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  

 

In sub-case c.iii): 

   
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t p T s t p T s t
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 

 

   

   

 

  

               
    

              
    

           
   

   T ix a  

 

In this sub-case, notice that the first inequality comes from expressions that define the 

sub-case. 

 

In all sub-cases we get      , , T iT s T s x a       . We would similarly show that 

     , , C iC s C s x a        (there would be no need to consider the sub-cases in order to 

show it). According to step 4 of the procedure defining  ,iS x , a strategy  ,is U x  will 

be included in  ,iS x  such that    , , T iT s T s a      and    , , C iC s C s a     . So: 

     , ,
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So, for each  is S x  there exists a  ,is S x  such that (13) and (14) hold, completing 

the proof.■ 

 

 


