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Abstract

This paper considers a multi-objective reliability-redundancy allocation problem (MOR-

RAP) of a series-parallel system, where system reliability and system cost are to be opti-

mized simultaneously subject to limits on weight, volume, and redundancy level. Precise

computation of component reliability is very difficult as the estimation of a single number

for the probabilities and performance levels are not always possible, because it is affected

by many factors such as inaccuracy and insufficiency of data, manufacturing process, envi-

ronment in which the system is running, evaluation done by multiple experts, etc. To cope

with impreciseness, we model component reliabilities as interval type-2 fuzzy numbers (IT2

FNs), which is more suitable to represent uncertainties than usual or type-1 fuzzy numbers.

To solve the problem with interval type-2 fuzzy parameters, we first apply various type-

reduction and defuzzification techniques, and obtain corresponding defuzzified values. As

maximization of system reliability and minimization of system cost are conflicting to each

other, so to obtain compromise solution of the MORRAP with defuzzified parameters, we

apply five different multi-objective optimization methods, and then corresponding solutions

are analyzed. The problem is illustrated numerically for a real-world MORRAP on pharma-

ceutical plant, and solutions are obtained by standard optimization solver LINGO, which is

based on gradient-based optimization - Generalized Reduced Gradient (GRG) technique.

Keywords: Multi-objective optimization; Reliability; Redundancy allocation; Interval type-2

fuzzy set.

1 Introduction

An industrial or a mechanical system such as aircraft, nuclear plants, lighting system, material

handling systems, pharmaceutical plant, civil engineering systems, and so on is composed of

numerous complex components. The reliability, i.e., the probability that a system performs

satisfactorily over a certain period of time depends on each of its constituent components and

the system design. The study of reliability optimization relates to enhance the reliability of

a system so that the system can be operational satisfactorily for the maximum possible time.

Reliability of a system can be improved by using high reliable components and adding redun-

dant (standby) components. However, this may increase the system cost. Further designing of
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system structure also depends on various resource/engineering constraints related to cost, vol-

ume, weight, and energy consumption, etc. Reliability-redundancy allocation problem (RRAP)

(Kuo and Prasad, 2000) is the problem of maximizing system reliability through redundancy

(Caserta and Voß, 2015) and component reliability choices subject to the applicable resource

constraints. However, in addition to maximization of system reliability, if the system cost

or weight has to be minimized simultaneously, then the problem becomes the multi-objective

reliability-redundancy allocation problem (MORRAP) (Ardakan and Rezvan, 2018; Cao et al.,

2013; Garg and Sharma, 2013; Huang et al., 2009; Khalili-Damghani et al., 2013; Muhuri et al.,

2018; Rao and Dhingra, 1992; Safari, 2012). The main goal of such MORRAP is to determine

the optimal component reliabilities and number of redundant components in each of the subsys-

tems to maximize the system reliability and minimize the system cost simultaneously subject

to several resource constraints.

Practically, exact computation of reliability is challenging and is associated with uncertain-

ties due to various reasons. Notably, the estimation of a single number for the probabilities

and performance levels is very difficult (Cheng and Mon, 2008). Some reasons come from in-

accuracy and insufficiency of data, data collection from multiple sources or evaluation done

by multiple experts, etc. Some other key sources of uncertainties are uncertainty factors

in manufacturing process (like quality assurance controls, work management and execution,

maintenance activities) and environmental factors (the reliability of components depends on

the factors like temperature, voltage, humidity of the environment in which the associated

system is running). So, it is not always possible to precisely determine the reliability of a

component. Many researchers have investigated RRAP with various uncertain parameters

such as interval-valued (Sahoo et al., 2012; Garg et al., 2014; Roy et al., 2014; Xu and Liao,

2016; Zhang and Chen, 2016), and fuzzy parameters (Mahapatra and Roy, 2006; Yao et al.,

2008; Cheng and Mon, 2008; Garg et al., 2013; Kumar and Yadav, 2012; Sriramdas et al., 2014;

Muhuri et al., 2018). Most of the RRAP with fuzzy parameters considered type-1 fuzzy numbers

(T1 FNs) for modeling the uncertainties (Chen, 1994; Aliev and Kara, 2004; Yao et al., 2008;

Jamkhaneh and Nozari, 2012).

Type-2 fuzzy sets (T2 FSs) (for details see Mendel and John, 2002) are proved to be more

suitable in many instances to represent uncertainties than ordinary or type-1 fuzzy sets. A

Type-2 fuzzy set is a generalization of type-1 fuzzy set, and has an extra degree of freedom to

represent uncertainties because of its secondary membership function. Interval type-2 fuzzy set

(IT2 FS) (Mendel et al., 2006), a special case of general T2 FS has been successfully used to

model uncertain parameters in many instances like data collected from multiple sources, opinion

taken from several experts, information given by approximate intervals or linguistic terms,

etc. Specifically, it is showed by many researchers that to deal with linguistic uncertainties

(Mendel, 2003, 2007a,b; Liu and Mendel, 2008; Miller et al., 2012), approximate intervals (like

two endpoints of the intervals are not certain) (Liu and Mendel, 2008) or several membership

functions (Pagola et al., 2013), interval type-2 fuzzy set is an appropriate tool. Not only that,

Mendel (2003, 2007a,b) explained and showed that modeling linguistic information using type-1

fuzzy set is not scientific, instead one should use type-2 fuzzy set, specifically interval type-2

fuzzy set. As we mention earlier, there are several research work has been done on RRAP

2



with T1 FNs. However, there are very few research works on RRAP with type-2 fuzzy numbers

available in the literature (Muhuri et al., 2018). The significant contributions of the present

investigation are as follows:

• We formulate a MORRAP of a series-parallel system with the approximate reliability of

each component of a subsystem represented as interval type-2 fuzzy numbers (IT2 FNs).

Most of the previous research work has been investigated RRAP with interval numbers

or T1 FNs.

• We not only explain but also illustrate numerically that modeling uncertain parameters

(reliabilities) using IT2 FNs leads to the better performance than that of using T1 FNs,

i.e. our investigation suggest that we can model system with higher system reliability and

less system cost.

• We apply various type-reduction and defuzzification techniques to obtain corresponding

defuzzified values of IT2 FNs, and comparative study has been presented.

• To deal with conflicting objectives we apply five different multi-objective optimization

techniques to obtain solution of the problem. As a result a decision maker can choose

appropriate result according to his/her preference or as situation demand.

In our considered MORRAP there are two conflicting objectives, namely, maximization of

system reliability and minimization of system cost. Construction of IT2 FNs to represent im-

precise component reliabilities has been done by using a modified algorithm which was initially

proposed by Muhuri et al. (2018). To solve MORRAP with interval type-2 fuzzy parameters,

we first apply various type-reduction and defuzzification techniques to obtain corresponding

defuzzified values. To deal with two conflicting objectives we then apply five different multi-

objective optimization methods, and obtain compromise solution of the problem. The problem

is also solved by modeling component reliabilities as T1 FNs, and the obtained result is com-

pared with the result for the same problem with IT2 FNs. The rest of the paper is organized

as follows. Section 2 provides brief introduction of type-2 fuzzy set. The detail of the problem

(MORRAP) formulation is presented in Section 3. Section 4 discusses some type-reduction

and defuzzification techniques in brief. Section 5 presents some multi-objective optimization

techniques in detail. In Section 6, the problem and methods are illustrated numerically for a

real-world MORRAP on pharmaceutical plant. Finally, Section 7 concludes the paper.

2 Preliminaries

2.1 Type-2 fuzzy set

Type-2 fuzzy set (T2 FS) is an extension of usual or type-1 fuzzy set (T1 FS). It is a fuzzy set

with fuzzy membership function, i.e., membership grade of each element in the set is no longer

a precise (crisp) value but a fuzzy set.
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Definition 1 A type-2 fuzzy set ˜̃A (Mendel and John, 2002) in a space of points (objects) X

is characterized by a type-2 membership function µ ˜̃A
: X × Jx → [0, 1], and is defined as

˜̃A = {((x, u), µ ˜̃A
(x, u)) : ∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]},

where Jx ⊆ [0, 1] is the primary membership of x ∈ X, and 0 ≤ µ ˜̃A
(x, u) ≤ 1 for all x ∈ X,

u ∈ Jx.
˜̃A is also expressed as

˜̃A =

∫

x∈X

∫

u∈Jx

µ ˜̃A
(x, u)/(x, u) , Jx ⊆ [0, 1],

where
∫ ∫

denotes union over all admissible x and u. For discrete universes of discourse,
∫

is

replaced by
∑

.

For particular x = x′ ∈ X, µ ˜̃A
(x′, u) ∀u ∈ Jx′, is called secondary membership of x′. The

amplitude of a secondary membership function is called a secondary membership grade. Thus

µ ˜̃A
(x′, u′), u′ ∈ Jx′ is secondary membership grade of (x′, u′) which represents the grade of

membership that the point x′ has the primary membership u′.

Definition 2 An interval type-2 fuzzy set (IT2 FS) (Mendel et al., 2006) is a special case of T2

FS where all the secondary membership grades are 1, i.e., µ ˜̃A
(x, u) = 1 for all (x, u) ∈ X × Jx.

An IT2 FS ˜̃A can be written as

˜̃A =

∫

x∈X

∫

u∈Jx

1/(x, u) =

∫

x∈X

[
∫

u∈Jx

1/u

]/

x , Jx ⊆ [0, 1].

As the secondary membership grades are 1, an IT2 FS can be characterized by the footprint of

uncertainty (FOU) which is the union of all primary memberships Jx in a bounded region, so

that it is defined as

FOU( ˜̃A) =
⋃

x∈X

Jx.

The FOU (see Fig. 1) is bounded by an upper membership function (UMF) µ̄ ˜̃A
(·) and a lower

membership function (LMF) µ ˜̃A
(·), both of which are the membership functions of T1 FSs, and

Jx = [µ ˜̃A
(x), µ̄ ˜̃A

(x)], ∀ x ∈ X. In this view, the IT2 FS can be represented by (ÃU , ÃL), where

ÃU and ÃL are T1 FSs. The support of IT2 FS ˜̃A can written as supp( ˜̃A) = {x ∈ X : µ̄ ˜̃A
(x) >

0}.

Definition 3 Interval type-2 fuzzy number (IT2 FN): An interval type-2 fuzzy number (IT2

FN) (Hesamian, 2017) is an IT2 FS on set of real numbers R, whose upper and lower mem-

bership functions are membership functions of T1 FNs.
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Figure 1: Triangular IT2 FN ˜̃A = ((2, 4, 6), (3, 4, 5)).

For example, Fig. 1 represents a triangular IT2 FN ˜̃A = (ÃU , ÃL) = ((2, 4, 6), (3, 4, 5)), where

ÃU and ÃL are triangular fuzzy numbers having following membership functions:

µ
ÃU (x) = µ̄ ˜̃A

(x) =























x−2
2 , if 2 ≤ x ≤ 4;

1, if x = 4;
6−x
2 , if 4 ≤ x ≤ 6;

0, otherwise.

µ
ÃL(x) = µ ˜̃A

(x) =























x− 3, if 3 ≤ x ≤ 4;

1, if x = 4;

5− x, if 4 ≤ x ≤ 5;

0, otherwise.

The arithmetic operations between two triangular IT2 FNs ˜̃A1 = (ÃU
1 , Ã

L
1 ) = ((aU11, a

U
12, a

U
13), (a

L
11, a

L
12, a

L
13))

and ˜̃A2 = (ÃU
2 , Ã

L
2 ) = ((aU21, a

U
22, a

U
23), (a

L
21, a

L
22, a

L
23)) are defined as follows:

Addition operation: Ã1 ⊕ Ã2 = (ÃU
1 , Ã

L
1 )⊕ (ÃU

2 , Ã
L
2 )

= ((aU11 + aU21, a
U
12 + aU22, a

U
13 + aU23), (a

L
11 + aL21, a

L
12 + aL22, a

L
13 + aL23)),

Multiplication operation: Ã1 ⊗ Ã2 = (ÃU
1 , Ã

L
1 )⊗ (ÃU

2 , Ã
L
2 )

= ((aU11 × aU21, a
U
12 × aU22, a

U
13 × aU23), (a

L
11 × aL21, a

L
12 × aL22, a

L
13 × aL23)).

The arithmetic operations between triangular IT2 FN ˜̃A1 and a real number r are defined as

follows:

r ˜̃A1 = ((r × aU11, r × aU12, r × aU13), (r × aL11, r × aL12, r × aL13)),
˜̃A1

r = ((1r × aU11,
1
r × aU12,

1
r × aU13), (

1
r × aL11,

1
r × aL12,

1
r × aL13)), where r > 0.

3 A Multi-objective reliability-redundancy allocation problem

(MORRAP)

Generally, complex systems are composed of several subsystems (stages), each having more than

one component. In reliability context, system designing mainly concern with improvement of

overall system reliability, which may be subject to various resource/engineering constraints as-

sociated with system cost, weight, volume, and energy consumption. This may be done (i)

by incorporating more reliable components (units) and/or (ii) incorporating more redundant

components. In case of the second approach, optimal redundancy is mainly taken into consid-

eration for the economical design of systems. Again the reliability optimization concerned with
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Figure 2: Reliability block diagram of series-parallel system.

redundancy allocation is generally classified into two categories: (i) maximization of system

reliability subject to various resource constraints; and (ii) minimization of system cost subject

to the condition that the associated system reliability is required to satisfy a desired level.

However, if maximization of system reliability and minimization of the system cost have to

be done simultaneously, then the problem becomes the multi-objective reliability-redundancy

allocation problem (MORRAP). So, the main goal of MORRAP is to determine the optimal

component reliabilities and number of redundant components in each of the subsystems to

maximize the system reliability and minimize the system cost simultaneously subject to several

resource constraints.

Here, we have considered a MORRAP for a series-parallel system configuration (Huang et al.,

2009; Garg and Sharma, 2013). A series-parallel system usually has m (say) independent sub-

systems arranged in series, and in each subsystem, there are ni (say) (i = 1, 2, ...,m) compo-

nents, which are arranged in parallel. A reliability block diagram (RBD) of this series-parallel

system is depicted in Fig. 2, where small rectangular blocks represent the components in each

of the m subsystems. The reliability block diagram provides a graphical representation of the

system that can be used to analyze the relationship between component states and the suc-

cess or failure of a specified system. As seen from Fig. 2, in each subsystem the components

are arranged in parallel, so each of the subsystems can work if at least one of its components

works. Again as these subsystems are arranged in series, the whole system can work if all the

subsystems work. Obviously, reliability of the series-parallel system is the product of all the

associated subsystem reliabilities. For the considered MORRAP, the objective functions are

maximization of system reliability and minimization of system cost, subject to limits on weight,

volume, and redundancy level. Also, the problem considers the active redundancy strategy (i.e.,

all the components in each subsystem are active and arranged in parallel).

For the mathematical formulation of the problem we use the following notations:

m Number of subsystems

ni Number of components in subsystem i (i = 1, 2, ...,m)

ri Reliability of each of the components in ith subsystem

Rs System reliability

Cs System cost

6



c(ri) Cost of the each component with reliability ri at subsystem i

αi Constants representing the physical characteristic (scaling factor) of the cost-reliability

curve of each component with reliability ri at subsystem i

βi Constants representing the physical characteristic (shaping factor) of the cost-reliability

curve of each component with reliability ri at subsystem i

T Operating time during which the component must not fail

wi Weight of each component of the subsystem i

Ws System weight

W Upper limit on the weight of the system

vi Volume of each component of the subsystem i

Vs System volume

V Upper limit on the volume of the system

It is assumed that all the components for individual subsystem are identical, all redundancies

are active, failures of individual components are independent, and each component can only be

in one of two states, i.e., either working or failed. Now the mathematical formulation of the

MORRAP is as follows:

Max Rs =
m
∏

i=1

[1− (1− ri)
ni ] , (1)

Min Cs =

m
∑

i=1

c(ri)(ni + exp(ni/4)), (2)

subject to Vs =

m
∑

i=1

vin
2
i ≤ V, (3)

Ws =

m
∑

i=1

wi(ni · exp(ni/4)) ≤ W, (4)

ri,min ≤ ri ≤ ri,max, 1 ≤ ni ≤ ni,max, ri ∈ (0, 1), i = 1, 2, ...,m. (5)

For the presented model, cost of the each component is an increasing function of the component

reliability or conversely a decreasing function of the failure rate (hazard rate) of the component,

where failure times of components follow exponential distribution. So the reliability of each of

the component in subsystem i,

ri = e−λiT , λi > 0, (6)

and consequently the hazard rate is λi, where T be the operating time during which the com-

ponent will not fail. As cost of the each component in the i-th subsystem, c(ri), is a decreasing

function of the hazard rate, it is represented as

c(ri) = αiλ
−βi

i , (7)

where αi and βi are constants. Equations (6) and (7) together gives c(ri) = αi

(

−T
ln(ri)

)βi

.

Now, each subsystem is comprised of some components connected in parallel. The factor
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exp(ni/4) is incorporated due to the interconnecting hardware between the parallel compo-

nents (Rao and Dhingra, 1992; Prasad and Kuo, 2000; Wang et al., 2009; Ardakan and Rezvan,

2018). Total volume of the system (Vs) which consists of the volume of the each component

as well as space between the components and space between the subsystems, is represented in

equation (3). Here ni,max represents the maximum number of components allowed in subsystem

i arranged in parallel, and ri,min and ri,max respectively the minimum and maximum reliability

limits of each component in subsystem i.

3.1 MORRAP with interval type-2 fuzzy parameters

As discussed in the introduction, the component reliability in a system cannot be always pre-

cisely measured as crisp values, but may be determined as approximate values like “about 0.6”

or approximate intervals with imprecise end points. Some of the reasons are inaccuracy and

insufficiency of data, manufacturing uncertainty, environmental issues (like temperature, hu-

midity of the environment in which the system is running), evaluation done by multiple experts

or data collected from multiple sources, etc. So to cope with the ambiguity/approximation we

associate a degree of membership to each value of reliability. Here the approximate reliability

of each component of a subsystem is represented by IT2 fuzzy number and is denoted by ˜̃ri,

i = 1, 2, ...,m. The assumption of IT2 FN to represent uncertainty is vary reasonable when

value of a parameter is given by approximate interval (like the two end-points of the interval

are not exact), linguistic terms, etc. Now the above MORRAP (1)-(5) becomes

Max ˜̃Rs =

m
∏

i=1

[

1− (1− ˜̃ri)
ni
]

, (8)

Min ˜̃Cs =

m
∑

i=1

αi

(

−T

ln(˜̃ri)

)βi

(ni + exp(ni/4)) (9)

subject to (3)− (5). (10)

To solve this problem we use different type-reduction and corresponding defuzzification strate-

gies to convert the problem with IT2 fuzzy parameters to the problem with defuzzified param-

eters. Then we use various multi-objective techniques to solve the deterministic bi-objective

problem. To construct interval type-2 fuzzy membership function for the reliability ˜̃ri having

support supp(˜̃ri) ⊆ [a, b] ⊂ [0, 1] we use the following algorithm. To construct this algorithm

we modified the Algorithm-1 of Muhuri et al. (2018) to ensure that the support of ˜̃ri must lie

within (0, 1).

Algorithm: Generation of T1 FN (r̃i) and IT2 FN (˜̃ri)

Step 1: Take ri ∈ [a, b].

Step 2: Find the values of rli and rui as follows:

rli = a+ (ri − a) ∗ rand

rui = b− (b− ri) ∗ rand

Step 3: Construct the T1 FN r̃i = (rli, ri, r
u
i ). // This step should be skipped for generation of

IT2 FN.
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Step 4: Find the values of rli1 and rli3 as follows:

rli1 = rli + (ri − rli) ∗ rand

rli3 = rui − (rui − ri) ∗ rand

Step 5: Find the values of rui1 and rui3 as follows:

rui1 = rli − (rli − a) ∗ rand

rui3 = rui + (b− rui ) ∗ rand

Step 6: Construct the IT2 FN ˜̃ri = ((rui1, ri, r
u
i3), (r

l
i1, ri, r

l
i3)).

In the next section we have briefly introduced different type-reduction and defuzzification

strategies of interval type-2 fuzzy set.

4 Type-reduction and defuzzification strategies

Here, we discuss some type-reduction and defuzzification strategies those are investigated in

this study to obtain corresponding type-reduced set and defuzzified values of interval type-2

fuzzy parameters. These methods are given in detail in the corresponding references. However,

we present the methods briefly to provide a ready reference to readers.

4.1 Karnik-Mendel (KM) algorithm

Karnik and Mendel (2001) introduced the concept of centroid of T2 FS by which it can be

reduced to a T1 FS (Liu, 2008). The computational procedure to find centroid of an IT2 FS
˜̃A starts with discretization (if the domain is not discrete) of the continuous domain into finite

number of points xi, i = 1, 2, ..., N which are sorted in an ascending order. Then the centroid of

the IT2 FS is given by [yl, yr] and corresponding defuzzified value is C( ˜̃A) = (yl + yr)/2, where

yl =

∑L
i=1 xiµ̄ ˜̃A

(xi) +
∑N

i=L+1 xiµ ˜̃A
(xi)

∑L
i=1 µ̄ ˜̃A

(xi) +
∑N

i=L+1 µ ˜̃A
(xi)

,

yr =

∑R
i=1 xiµ ˜̃A

(xi) +
∑N

i=R+1 xiµ̄ ˜̃A
(xi)

∑R
i=1 µ ˜̃A

(xi) +
∑N

i=R+1 µ̄ ˜̃A
(xi)

.

Here L and R are switch points which are calculated by KM algorithm (Karnik and Mendel,

2001; Mendel and Liu, 2007). It is obvious that for large N , i.e. for (xi+1 − xi) → 0, the dis-

cretization of continuous domain is legitimate for computation of centroid. Also, it is observed

that (Mendel and Liu, 2007) for IT2 FS with symmetrical membership function, choice of N

has less effect on computed centroid.

4.2 Uncertainty bound (UB)

Wu and Mendel (2002) provided inner- and outer-bound sets for type-reduced set, which can

not only be used to compute left and right end points of the type-reduced set, but can also

be used to derive the defuzzified output of an IT2 FS. As compared to KM algorithm, this
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method can performed without type-reduction and xis need not be sorted, so that it removes

computational burden of type-reduction. The approximation of the type-reduced set by its

inner- and outer-bound sets is given by [yl, yr], where yl = (y
l
+ ȳl)/2 and yr = (y

r
+ ȳr)/2, and

corresponding defuzzified output is (yl + yr)/2,

ȳl = min{y(0), y(N)}

y
r
= max{y(0), y(N)}

y
l
= ȳl −





∑N
i=1

(

µ̄ ˜̃A
(xi)− µ ˜̃A

(xi)
)

∑N
i=1 µ̄ ˜̃A

(xi)
∑N

i=1 µ ˜̃A
(xi)

×

∑N
i=1 µ ˜̃A

(xi)(xi − x1)
∑N

i=1 µ̄ ˜̃A
(xi)(xN − xi)

∑N
i=1 µ ˜̃A

(xi)(xi − x1) +
∑N

i=1 µ̄ ˜̃A
(xi)(xN − xi)





ȳr = y
r
+





∑N
i=1

(

µ̄ ˜̃A
(xi)− µ ˜̃A

(xi)
)

∑N
i=1 µ̄ ˜̃A

(xi)
∑N

i=1 µ ˜̃A
(xi)

×

∑N
i=1 µ̄ ˜̃A

(xi)(xi − x1)
∑N

i=1 µ ˜̃A
(xi)(xN − xi)

∑N
i=1 µ̄ ˜̃A

(xi)(xi − x1) +
∑N

i=1 µ ˜̃A
(xi)(xN − xi)





y(0) =

∑N
i=1 xiµ ˜̃A

(xi)
∑N

i=1 µ ˜̃A
(xi)

y(N) =

∑N
i=1 xiµ̄ ˜̃A

(xi)
∑N

i=1 µ̄ ˜̃A
(xi)

.

4.3 Nie-Tan (N-T) method

Nie and Tan (2008) proposed a type-reduction method which is formulated using the vertical-

slice representation of an IT2 FS. In this method, type reduction and defuzzification are per-

formed together. As of the previous two methods, if the domain of IT2 FS is continuous then it

is discreteized into finite number of points xi, i = 1, 2, ..., N . Then the centroid (or defuzzified

value) of the IT2 FS ˜̃A can be expressed as

C( ˜̃A) =

∑N
i=1 xiµ̄ ˜̃A

(xi) +
∑N

i=1 xiµ ˜̃A
(xi)

∑N
i=1 µ̄ ˜̃A

(xi) +
∑N

i=1 µ ˜̃A
(xi)

.

The above formulation of the crisp output of an IT2 FS depends only on the lower and up-

per bounds of its FOU. The computational complexity of the N-T method is lower than the

uncertainty bounds method and the KM algorithm.

4.4 Geometric centroid

Coupland and John (2007) introduced the idea of geometric centroid of an IT2 FS by con-

verting the region bounded by upper and lower membership functions (which are piecewise

linear) to a closed polygon. The polygon consists of ordered coordinate points of the upper

bound of ˜̃A followed by the lower bound of ˜̃A in reverse order. Let the polygon is given by

((x1, y1), (x2, y2), ..., (xM , yM )), where yi is either µ̄ ˜̃A
(xi) or µ ˜̃A

(xi) according to the position

of the coordinate point. Then the defuzzified output is taken as the centroid (center of the

10



polygon) of the polygon which is given by

∑M−1
i=1 (xi + xi+1)(xiyi+1 − xi+1yi)

3
∑M−1

i=1 (xiyi+1 − xi+1yi)
.

5 Multi-objective optimization techniques

The problem (8)-(10) is a bi-objective problem with one objective as maximization and another

as minimization. To solve this problem with defuzzified parameters we apply different multi-

objective optimization techniques, namely, global criterion method, weighted sum method,

desirability function approach, fuzzy programming technique and NIMBUS which are discussed

briefly in this section. Consider a general multi-objective optimization problem with some

objectives to be maximized and some others to be minimized:

Max {f1(x), f2(x), ..., fK(x)} (11)

Min {g1(x), g2(x), ..., gM (x)} (12)

s.t. x ∈ D, (13)

where D is the set of feasible solutions.

We use the following notations in describing the methods: fmax
i = Max fi(x), f

min
i = Min fi(x),

gmax
j = Max gj(x), and gmin

j = Min gj(x), i = 1, 2, ...,K and j = 1, 2, ...,M subject to

x ∈ D in each case. We also denote the optimal solution of single objective problem (con-

sidering only one objective fi or gj ignoring all other objectives) as x∗fi and x∗gj respectively

for i = 1, 2, ...,K and j = 1, 2, ...,M . The ideal objective vector for the above problem is

(fmax
1 , fmax

2 , ..., fmax
K , gmin

1 , gmin
2 , ..., gmin

M ).

5.1 Global criteria method

By the method of global criteria (Zeleny, 1973; Miettinen, 2012) a compromise solution is

achieved by minimizing the sum of the differences between ideal objective value and the respec-

tive objective function values in the set of feasible solution. The ideal objective value may be

taken as the minimum value of the objective function for minimization problem, and maximum

value for maximization problem obtained as by solving the multi-objective problem as a single

objective problem, considering each objective individually. The method may be described by

the following steps for solving the multi-objective problem (11)-(13):

Step 1: Construct single objective problems by taking each objective function individually.

Step 2: For each single objective problem, determine the ideal objective vector (fmax
1 , fmax

2 , ..., fmax
K , gmin

1 , gmin
2 , ..., gmin

M )

and corresponding values of (fmin
1 , fmin

2 , ..., fmin
K , gmax

1 ,

gmax
2 , ..., gmax

M ).

Step 3: Formulate the following auxiliary problem using normalized Minkowski distance (Lp

norm):

Min G(x)

11



s.t. x ∈ D,

G(x) = Min







K
∑

i=1

(

fmax
i − fi(x)

fmax
i − fmin

i

)p

+
M
∑

j=1

(

gj(x)− gmin
j

gmax
j − gmin

j

)p






1

p

,

or, G(x) = Min







K
∑

i=1

(

fmax
i − fi(x)

fmax
i

)p

+

M
∑

j=1

(

gj(x)− gmin
j

gmin
j

)p






1

p

,

where 1 ≤ p ≤ ∞. An usual value of p is 2.

5.2 Weighted sum method

In weighted sum method, multiple objectives are aggregated to convert into a single objective by

employing weight to each objective. The weighting coefficients denote the relative importance of

the objectives. Now the values of different objectives may have different order of magnitude, so

it is necessary to normalize the objectives, in order to make solution consistent with the weights

as assigned to the objectives. The objective functions may be converted to their normal forms

as follows:

fnorm
i =

fi(x)− fmin
i

fmax
i − fmin

i

, (for objectives to be maximized)

gnormj =
gmax
j − gj(x)

gmax
j − gmin

j

, (for objectives to be minimized).

A weight wi is taken for every objective and then aggregated to form the following problem:

Max





K
∑

i=1

wif
norm
i +

M
∑

j=1

wK+j gnormj





s.t. x ∈ D, wi > 0, i = 1, 2, ...,K +M,
∑K+M

i=1 wi = 1.

5.3 Desirability function approach

By the desirability function approach (Akalin et al., 2010; Malenović et al., 2011; Yetilmezsoy,

2012) each objective function fi is transformed to a scale free desirability value di (0 ≤ di ≤ 1)

where di = 0 represents completely undesirable response and di = 1 represents completely

desirable or ideal response. Then individual desirability values are aggregated into a single

global desirability index through a weighted geometric mean.

For the objective function to be maximized its individual desirability function (di) is defined

by

di =















0, if fi < (fi)wt;
(

fi(x)−(fi)wt

(fi)bt−(fi)wt

)ki
, if (fi)wt ≤ fi ≤ (fi)bt;

1, if fi > (fi)bt
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where (fi)wt and (fi)bt are the minimum (worst) and the maximum (best) acceptable values

of fi, respectively. Here, ki > 0 is the user-specified exponential parameter that determines

the shape (convex for ki < 1 and concave for ki > 1) of desirability function. When ki = 1,

the desirability function increases linearly. Now for the objective function to be minimized the

individual desirability function (sj) is defined by

sj =















1, if gj < (gj)bt;
(

(gj)wt−gj(x)
(gj)wt−(gj)bt

)lj
, if (gj)bt ≤ gj ≤ (gj)wt;

0, if gj > (gj)wt

where (gj)wt and (gj)bt are the worst and the best acceptable values of gj , respectively, and

lj > 0.

The overall desirability d which combines the individual desirability values into a single response

is defined as the weighted geometric mean of all the individual desirability values:

d =
(

dw1

1 × . . . × dwK

K × s
wK+1

1 × . . .× s
wK+M

M

)1/(w1+w2+...+wK+M)
,

where wr (r = 1, 2, ...,K +M) represents relative importance (Akalin et al., 2010) that varies

from the least important a value of 1, to the most important a value of 5. The overall desirability

d (0 ≤ d ≤ 1) has to be maximized subject to the constraints of the problem to find the most

desirable solution.

Note: It is obvious that maximum (best) acceptable value for an objective should be its

optimal value as obtained by solving the problem as single objective, e.g. (fi)bt = fmax
i and

(gj)bt = gmin
j . We propose to take minimum (worst) acceptable value for an objective to be

maximized as the minimum of the values of that objective function evaluated at the optimal

solutions of all the single objective problems, i.e.

(fi)wt = Min{fi(x
∗

f1), ..., fi(x
∗

fK
), fi(x

∗

g1), ..., fi(x
∗

gM
)}

and for an objective to be minimized

(gj)wt = Max{gj(x
∗

f1), ..., gj(x
∗

fK
), gj(x

∗

g1), ..., gj(x
∗

gM
)}.

5.4 Fuzzy programming technique

Zimmermann (1978) (see also Bit et al., 1993; Kundu et al., 2014) introduced fuzzy linear pro-

gramming approach to solve multi-objective problem, and he showed that fuzzy linear program-

ming always gives efficient solutions and an optimal compromise solution. This method consists

of the following steps to solve the multi-objective problem (11)-(13):

Step 1: Solve the problem taking each objective individually (ignoring all other objectives) and

obtain the corresponding optimal solutions x∗fi , i = 1, 2, ...,K and x∗gj , j = 1, 2, ...,M .

Step 2: Calculate the values of each objective function at all these optimal solutions x∗fi and

x∗gj and find the upper and lower bound for each objective given by

Ufi = fi(x
∗

fi
) and Lfi = Min{fi(x

∗

f1
), ..., fi(x

∗

fK
), fi(x

∗

g1), ..., fi(x
∗

gM
)},
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Ugj = Max{gj(x
∗

f1
), ..., gj(x

∗

fK
), gj(x

∗

g1), ..., gj(x
∗

gM )} and Lgj = gj(x
∗

gj ), respectively.

Step 3: Construct the linear membership functions corresponding to each objective as

µfi(fi) =















0, if fi ≤ Lfi ;
fi(x)−Lfi

Ufi
−Lfi

, if Lfi ≤ fi ≤ Ufi ;

1, if fi ≥ Ufi ,

µgj(gj) =















1, if gj ≤ Lgj ;
Ugj

−gj(x)

Ugj
−Lgj

, if Lgj ≤ gj ≤ Ugj ;

0, if gj ≥ Ugj .

Step 4: Formulate fuzzy linear programming problem using max-min operator for the multi-

objective problem as

Max min
i,j

{µfi(fi), µgj (gj)}

s.t. x ∈ D,

i.e.

Max λ

subject to µfi(fi) = (fi(x)− Lfi)/(Ufi − Lfi) ≥ λ, i = 1, ...,K,

µgj(gj) = (Ugj − gj(x))/(Ugj − Lgj) ≥ λ, j = 1, ...,M,

x ∈ D, λ ≥ 0.

Step 5: Solve the reduced problem of step 4 by a linear optimization technique, and the optimum

compromise solutions are obtained.

5.5 NIMBUS

Miettinen and Mäkelä (2006) introduced a methodology known as NIMBUS method for solving

interactive multi-objective optimization problems. The solution process is based on the classifi-

cation of objective functions. In this method, several scalarizing functions are formulated based

on the objective functions and the preference information specified by the decision maker, and

they usually generate Pareto optimal (PO) solutions for the original problem. In classification,

first objective function values are calculated at the current PO decision vector, say xc, and

then every objective function is put into one of the classes based on desirable changes in the

objective function values. There are five different classes for each of the objective functions gi

(say) whose values - should be improved as much as possible (i ∈ Iimp), should be improved till

some desired aspiration level ḡi < gi(x
c) (for minimization problem) (i ∈ Iasp), is satisfactory

at the moment (i ∈ Isat), is allowed to get worse until a value εi (i ∈ Ibound), and can change

freely at the moment (i ∈ Ifree). A classification is feasible only if

Iimp ∪ Iasp 6= ∅ and Ibound ∪ Ifree 6= ∅.
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A scalarized subproblem is then formed based on the classification and the corresponding aspi-

ration levels and upper bounds as follows (for minimization problem):

Min Maxi∈Iimp,j∈Iasp

[

gi(x)− gi(x
∗

gi)

gnadi − gi(x∗gi)
,

gj(x)− ḡj

gnadj − gj(x∗gj )

]

+ ρ

M
∑

i=1

gi(x)

gnadi − gi(x∗gi)

s.t. gi(x) ≤ gi(x
c) ∀ i ∈ Iimp ∪ Iasp ∪ Isat,

gi(x) ≤ εi ∀i ∈ Ibound,

x ∈ D,

where ρ > 0 is an augmentation coefficient and is relatively a small scalar. Solution of the

scalarized problem is either weakly PO or PO according to the augmentation coefficient is

used or not used. Miettinen and Mäkelä (2006) implemented NIMBUS method as a WWW-

NIMBUS software system which is accessible at http://nimbus.mit.jyu.fi/.

Convergence indicator: To discuss the convergence of the multi-objective optimization proce-

dure or to measure the quality of the solution, we adopt a convergence indicator or measure of

performances, namely Convergence Metric or Distance Metric d to find Euclidean distance (nor-

malized) between ideal solution and compromise solution. This indicator will measure closeness

of the obtained compromise objective values with the respective ideal objective values. The

smaller this metric value, the better is the convergence towards the ideal solution.

6 Numerical Experiment

To illustrate the MORRAP (8)-(10), i.e. the problem (1)-(5) with imprecise component relia-

bilities represented as IT2 FNs, we consider a reliability-redundancy allocation problem on a

pharmaceutical plant (for details see Garg and Sharma, 2013), where two objectives are maxi-

mization of system reliability and minimization of system cost. The mathematical formulation

of the bi-objective problem is given by (14)-(18) with the input parameters given in Table 1.

Max ˜̃Rs =

10
∏

i=1

[

1− (1− ˜̃ri)
ni
]

, (14)

Min ˜̃Cs =

10
∑

i=1

αi

(

−T

ln(˜̃ri)

)βi

(ni + exp(ni/4)), (15)

subject to Vs =

10
∑

i=1

vin
2
i ≤ V, (16)

Ws =

10
∑

i=1

wi(ni · exp(ni/4)) ≤ W, (17)

1 ≤ ni ≤ 3, ni ∈ Z
+, i = 1, 2, ..., 10, (18)
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where ˜̃ri is represented by IT2 FN having support⊆ [0.5, 1−10−6 ]. The IT2 FN ˜̃ri, i = 1, 2, ..., 10

are generated using the Algorithm presented in Section 3.1 and are given in Table 2, where

approximate reliabilities are given by ‘about ri’, i = 1, 2, ..., 10, and r1 = 0.55, r2 = 0.60,

r3 = 0.65, r4 = 0.70, r5 = 0.75, r6 = 0.80, r7 = 0.85, r8 = 0.90, r9 = 0.92, r10 = 0.95. We

apply various type-reduction strategies and defuzzification techniques as discussed in Section

4 to obtain corresponding defuzzified values of IT2 FNs and are presented in Table 3. In that

table, for the KM algorithm and the UB method we also provide left and right end points of the

centroid and uncertainty bounds respectively, along with the corresponding defuzzified values.

From the defuzzified values in Table 3, it is observed that KM algorithm, uncertainty bound

approach and N-T method give more similar result as compared to the geometric centroid

approach.

Table 1: Input parameters
Components 105αi βi vi wi V W T

1 0.611360 1.5 4.0 9.0
2 4.032464 1.5 5.0 7.0
3 3.578225 1.5 3.0 5.0
4 3.654303 1.5 2.0 9.0
5 1.163718 1.5 3.0 9.0 289 483 1000
6 2.966955 1.5 4.0 10.0
7 2.045865 1.5 1.0 6.0
8 2.649522 1.5 1.0 5.0
9 1.982908 1.5 4.0 8.0
10 3.516724 1.5 4.0 6.0

Table 2: IT2 FN ˜̃ri
˜̃r1 ((0.511813,0.55,0.893671),(0.542672,0.55,0.615958))
˜̃r2 ((0.523627,0.60,0.905484),(0.585344,0.60,0.658620))
˜̃r3 ((0.535440,0.65,0.917298),(0.628017,0.65,0.701292))
˜̃r4 ((0.547254,0.70,0.929111),(0.670689,0.70,0.743965))
˜̃r5 ((0.559067,0.75,0.940925),(0.713361,0.75,0.786637))
˜̃r6 ((0.570880,0.80,0.952738),(0.756034,0.80,0.829309))
˜̃r7 ((0.582694,0.85,0.964552),(0.798706,0.85,0.871981))
˜̃r8 ((0.594508,0.90,0.976365),(0.841378,0.90,0.914654))
˜̃r9 ((0.599233,0.92,0.981091),(0.858447,0.92,0.931723))
˜̃r10 ((0.606321,0.95,0.988170),(0.884050,0.95,0.957326))

With the defuzzified values as given in Table 3, we solve the bi-objective problem (14)-(18)

by applying different multi-objective techniques as discussed in Section 5. The results are

obtained using standard optimization solver LINGO which is based on gradient based opti-

mization - Generalized Reduced Gradient (GRG) technique. Tables 4-7 provide the solution of

the problem with five different multi-objective techniques where the defuzzified values are ob-

tained by KM algorithm, uncertainty bound, N-T method and geometric centroid, respectively.

From the results (Tables 4-7) it is observed that, the subsystem comprising of components with

lower reliability (e.g. subsystem 1) is associated higher redundancy to increase the reliability

16



Table 3: Defuzzified values with different type-reduction strategies
IT2 FN Centroid value Uncertainty bound Defuzzified value Geometric centroid

(KM Algorithm) (N-T method)
˜̃r1 [0.559313,0.685104] [0.54701,0.741079]

0.622208 0.644044 0.638117 0.671368
˜̃r2 [0.594175,0.714798] [0.584012,0.761516]

0.654486 0.672764 0.666158 0.691025
˜̃r3 [0.628406,0.744975] [0.614688,0.780418]

0.686690 0.697553 0.694166 0.710682
˜̃r4 [0.661416,0.775753] [0.649731,0.798093]

0.718584 0.723912 0.722142 0.730339
˜̃r5 [0.693230,0.806764] [0.685508,0.814486]

0.749997 0.749997 0.749997 0.749996
˜̃r6 [0.724241,0.838579] [0.701899,0.850265]

0.781410 0.776082 0.777853 0.769654
˜̃r7 [0.755019,0.87159] [0.719574,0.885308]

0.813304 0.802441 0.805828 0.789311
˜̃r8 [0.785194,0.905821] [0.738475,0.919584]

0.845507 0.829029 0.833836 0.808968
˜̃r9 [0.795185,0.919755] [0.744763,0.932876]

0.857470 0.838819 0.844481 0.816831
˜̃r10 [0.814883,0.940682] [0.758908,0.952984]

0.877782 0.855946 0.861875 0.828625

of the system. To the contrary, the subsystem comprising of components with higher reliability

(e.g. subsystem 10) is associated fewer redundancy to reduce the cost of the system. Also, the

two objectives of the problem are conflicting to each other, so we can only derived compromise

solutions (as seen from the results presented in Tables 4-7). For multi-objective problem with

conflicting objectives it is not easy to compare the results as obtained by different methods.

However, different results in hand gives more flexibility to a decision maker (DM) to choose

appropriate result according to his/her preference or as situation demand. For instance if DM

emphasizes more preference on reliability maximization over cost minimization, then DM may

consider the results obtained by desirability function approach and weighted sum method. If

DM’s preference is more on cost minimization, then the results obtained by fuzzy programming

approach and NIMBUS can be chosen. Whereas, if DM’s determination not to give preference to

one objective over the other, then the results obtained by global criteria method in L2 norm can

be chosen. One can also measure the quality of the solution, by adopting a convergence indica-

tor or measure of performances. Here we choose Convergence Metric or Distance Metric to find

Euclidean distance (normalized) between compromise objective values and the respective ideal

objective values. The smaller this metric value, the better is the convergence towards the ideal

solution. For the solutions obtained by the different multi-objective optimization techniques as

presented in Table 4, the values of the corresponding normalized Euclidean distances are cal-

culated as 0.6075097, 0.7629309, 0.9145547, 0.7629310, 0.5541247, and 0.5609847 respectively.

Similar observations can be made for the solutions obtained by the different multi-objective

optimization techniques as presented in Tables 5, 6 and 7.
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Table 4: Solution with different multi-objective optimization techniques for the problem with
defuzzified values obtained using KM Algorithm

Individual optimal value Max Rs = 0.8317749, Min Cs = 181.2395

Multi-objective Method Compromise solution

Global criteria (p = 2) Rs = 0.6846485, Cs = 286.5739, n1 = 5, n2 = 3, n3 = 3, n4 = 3,
n5 = 3, n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 1.

Weighted sum Rs = 0.7683246, Cs = 318.8198, n1 = 5, n2 = 3, n3 = 3, n4 = 3,
(with equal weights) n5 = 3, n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 2.

Desirability function Rs = 0.829084, Cs = 346.9919, n1 = 4, n2 = 3, n3 = 4, n4 = 3,
(t1 = 1, t2 = 0.1, w1 = w2) n5 = 2, n6 = 2, n7 = 2, n8 = 1, n9 = 2, n10 = 1.
(t1 = 0.5, t2 = 0.1, w1 = w2) Rs = 0.768324, Cs = 318.8198, n1 = 5, n2 = 3, n3 = 3, n4 = 3,

n5 = 3, n6 = 3, n7 = 3, n8 = 2, n9 = 2, n10 = 2.

Fuzzy programming Rs = 0.5319160, Cs = 257.5089, n1 = 5, n2 = 3, n3 = 3, n4 = 2,
n5 = 3, n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 2.

NIMBUS Rs = 0.5306198, Cs = 258.901, n1 = 4, n2 = 3, n3 = 3, n4 = 2,
n5 = 2, n6 = 2, n7 = 2, n8 = 2, n9 = 1, n10 = 1.

Table 5: Solution with different multi-objective optimization techniques for the problem with
defuzzified values obtained using Uncertainty bound

Individual optimal value Max Rs = 0.8382419, Min Cs = 160.4723

Multi-objective Method Compromise solution

Global criteria (p = 2) Rs = 0.6641386, Cs = 262.7524, n1 = 5, n2 = 3, n3 = 3, n4 = 3,
n5 = 3, n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 1.

Weighted sum Rs = 0.7598104, Cs = 287.4911, n1 = 5, n2 = 3, n3 = 3, n4 = 3,
(with equal weights) n5 = 3, n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 2.

Desirability function Rs = 0.8082213, Cs = 306.3102, n1 = 4, n2 = 3, n3 = 3, n4 = 3,
(t1 = 1, t2 = 0.1, w1 = w2) n5 = 3, n6 = 3, n7 = 3, n8 = 2, n9 = 2, n10 = 2.
(t1 = 0.5, t2 = 0.1, w1 = w2) Rs = 0.7598104, Cs = 287.4911, n1 = 5, n2 = 3, n3 = 3, n4 = 3,

n5 = 3, n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 2.

Fuzzy programming Rs = 0.5160557, Cs = 234.8222, n1 = 5, n2 = 2, n3 = 2, n4 = 2,
n5 = 2, n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 1.

NIMBUS Rs = 0.5160557, Cs = 234.8222, n1 = 5, n2 = 2, n3 = 2, n4 = 2,
n5 = 2, n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 1.

In Tables 4-7, we have given single solution for different multi-objective optimization methods

by adopting suitable criteria, e.g. for weighted sum method we chose equal weights for each of

the objectives; for global criterion method we use L2 norm, etc. However, Pareto optimality can

be observed if one wishes to do so. Here we construct a Pareto front (non-dominated solutions)

considering the weighted sum approach by assigning different weights, i.e., w1 and w2 for the

objectives Rs and Cs respectively, where w1, w2 ∈ [0, 1] and w1 + w2 = 1. The Pareto front is

depicted in Fig. 3.

Next we solve the problem (1)-(5) with the component reliabilities represented as T1 FNs

having support ⊆ [0.5, 1 − 10−6], instead of IT2 FNs. The T1 FNs r̃i, i = 1, 2, ..., 10 can be

generated using the Steps 1-3 of the Algorithm presented in Section 3.1. Our intensity is to

compare the results of MORRAP with uncertain component reliabilities represented as IT2 FNs

and that of same problem if one represents uncertain component reliabilities by T1 FNs. For
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Table 6: Solution with different multi-objective optimization techniques for the problem with
defuzzified values obtained using N-T Method

Individual optimal value Max Rs = 0.8363644, Min Cs = 165.4758

Multi-objective Method Compromise solution

Global criteria (p = 2) Rs = 0.6698056, Cs = 268.3749, n1 = 5, n2 = 3, n3 = 3, n4 = 3,
n5 = 3, n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 1.

Weighted sum Rs = 0.7623225, Cs = 294.8568, n1 = 5, n2 = 3, n3 = 3, n4 = 3,
(with equal weights) n5 = 3, n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 2.

Desirability function Rs = 0.8091350, Cs = 314.1297, n1 = 4, n2 = 3, n3 = 3, n4 = 3,
(t1 = 1, t2 = 0.1, w1 = w2) n5 = 3, n6 = 3, n7 = 3, n8 = 2, n9 = 2, n10 = 2.
(t1 = 0.5, t2 = 0.1, w1 = w2) Rs = 0.7623225, Cs = 294.8568, n1 = 5, n2 = 3, n3 = 3, n4 = 3,

n5 = 3, n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 2.

Fuzzy programming Rs = 0.5180679, Cs = 240.9737, n1 = 5, n2 = 2, n3 = 2, n4 = 2,
n5 = 2, n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 1.

NIMBUS Rs = 0.5191948, Cs = 242.3131, n1 = 3, n2 = 3, n3 = 3, n4 = 2,
n5 = 3, n6 = 2, n7 = 2, n8 = 1, n9 = 2, n10 = 1.

Table 7: Solution with different multi-objective optimization techniques for the problem with
defuzzified values obtained using geometric centroid

Individual optimal value Max Rs = 0.8470077, Min Cs = 143.4406

Multi-objective Method Compromise solution

Global criteria (p = 2) Rs = 0.6561468, Cs = 243.3404, n1 = 4, n2 = 3, n3 = 2, n4 = 2,
n5 = 3, n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 2.

Weighted sum Rs = 0.7446174, Cs = 262.6584, n1 = 5, n2 = 3, n3 = 3, n4 = 3,
(with equal weights) n5 = 3, n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 2.

Desirability function Rs = 0.8215322, Cs = 289.9504, n1 = 4, n2 = 3, n3 = 3, n4 = 3,
(t1 = 1, t2 = 0.1, w1 = w2) n5 = 3, n6 = 3, n7 = 3, n8 = 2, n9 = 3, n10 = 2.
(t1 = 0.5, t2 = 0.1, w1 = w2) Rs = 0.7719188, Cs = 270.9126, n1 = 5, n2 = 3, n3 = 3, n4 = 3,

n5 = 3, n6 = 2, n7 = 3, n8 = 2, n9 = 2, n10 = 2.

Fuzzy programming Rs = 0.5220752, Cs = 216.3870, n1 = 4, n2 = 2, n3 = 2, n4 = 2,
n5 =, n6 = 3, n7 = 2, n8 = 2, n9 = 2, n10 = 1.

NIMBUS Rs = 0.5008404, Cs = 221.3302, n1 = 4, n2 = 3, n3 = 3, n4 = 2,
n5 = 3, n6 = 2, n7 = 2, n8 = 1, n9 = 2, n10 = 1.

this purpose, in Table 8, we present the solution of MORRAP with T1 FNs where defuzzified

values are obtained using centroid value of T1 FN. It is to be noted that the centroid of a T1

FN (rl, r, ru) is given by (rl + r + ru)/3. For comparison, in the Table 8, we also display the

solution of the problem with IT2 FNs where defuzzified (centroid) values are obtained using

KM Algorithm. To avoid biasedness in the comparative study we obtain the solutions using

five different multi-objective optimization techniques. The results are also display in the Fig.

4 for better realization. From the Table 8 and Fig. 4, it is observed that modeling uncertain

parameters (reliabilities) using IT2 FNs leads to the better performance than that of using T1

FNs, i.e. we can model system with higher system reliability and less system cost. It is to be

noted here that for the result obtained using global criteria method, system reliability for the

problem with IT2 FNs is slightly lower than that of with T1 FNs, but in this case system cost

is also much lower than the problem with T1 FNs.
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Table 8: Solution of MORRAP with IT2 FNs and T1 FNs
MORRAP with IT2 FNs MORRAP with T1 FNs

Individual optimal value Max Rs = 0.8317749, Max Rs = 0.8241383,
Min Cs = 181.2395 Min Cs = 203.9562

Multi-objective Method Compromise solution Compromise solution

Global criteria (p = 2) Rs = 0.6846485, Cs = 286.5739, Rs = 0.6974577, Cs = 309.8418,
n1 = 5, n2 = 3, n3 = 3, n4 = 3, n5 = 3, n1 = 5, n2 = 3, n3 = 3, n4 = 3, n5 = 3,
n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 1. n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 1.

Weighted sum Rs = 0.7683246, Cs = 318.8198, Rs = 0.7349505, Cs = 327.4596,
n1 = 5, n2 = 3, n3 = 3, n4 = 3, n5 = 3, n1 = 4, n2 = 4, n3 = 3, n4 = 3, n5 = 3,

(with equal weights) n6 = 2, n7 = 2, n8 = 2, n9 = 2, n10 = 2. n6 = 3, n7 = 2, n8 = 2, n9 = 2, n10 = 1.

Desirability function Rs = 0.829084, Cs = 346.9919, Rs = 0.7542184, Cs = 338.6593,
(t1 = 1, t2 = 0.1, n1 = 4, n2 = 3, n3 = 4, n4 = 3, n5 = 3, n1 = 4, n2 = 4, n3 = 3, n4 = 3, n5 = 3,

w1 = w2) n6 = 3, n7 = 3, n8 = 2, n9 = 2, n10 = 2. n6 = 3, n7 = 3, n8 = 2, n9 = 2, n10 = 1.

Fuzzy programming Rs = 0.5319160, Cs = 257.5089, Rs = 0.5321748, Cs = 275.6192,
n1 = 5, n2 = 3, n3 = 3, n4 = 2, n5 = 2, n1 = 4, n2 = 3, n3 = 2, n4 = 2, n5 = 3,
n6 = 2, n7 = 2, n8 = 1, n9 = 2, n10 = 1. n6 = 2, n7 = 2, n8 = 2, n9 = 1, n10 = 1.

NIMBUS Rs = 0.5306198, Cs = 258.901, Rs = 0.5040566, Cs = 280.0497,
n1 = 4, n2 = 3, n3 = 3, n4 = 2, n5 = 2, n1 = 4, n2 = 3, n3 = 3, n4 = 3, n5 = 4,
n6 = 2, n7 = 2, n8 = 2, n9 = 1, n10 = 1. n6 = 1, n7 = 2, n8 = 2, n9 = 1, n10 = 1.

7 Conclusion

In this paper, we consider a multi-objective reliability-redundancy allocation problem (MOR-

RAP) of a series-parallel system. Here, system reliability has to be maximized, and system cost

has to be minimized simultaneously subject to limits on weight, volume, and redundancy level.

Use of redundant components is commonly adapted approach to increase reliability of a system.

However, incorporation of more redundant components may increase the cost of the system, for

which optimal redundancy is mainly concerned for the economical design of system. Also, the

component reliabilities in a system cannot always be precisely measured as crisp values, but

may be determined as approximate values or approximate intervals with imprecise endpoints.

To deal with impreciseness, the presented problem is formulated with the component reliabil-

ities represented as IT2 FNs which are more flexible and appropriate to model impreciseness

over usual or T1 FNs.

To solve MORRAP with interval type-2 fuzzy parameters, we first apply various type-

reduction and corresponding defuzzification techniques, and obtain corresponding defuzzified

values to observe the effect of different type-reduction strategies. We illustrate the problem with

a real-world MORRAP on pharmaceutical plant. The objectives of the problem are conflicting

with each other, and so one can obtain compromise solution in the sense that individual optimal

solution can not be reached together. To deal with this, we apply five different multi-objective

optimization techniques in the view that different results in hand give more flexibility to a deci-

sion maker to choose appropriate result according to his/her preference or as situation demand.

We also solve the MORRAP with the uncertain (imprecise) component reliabilities represented

as T1 FNs, and observe that modeling impreciseness using IT2 FNs leads to better performance

than that of using T1 FNs. The present investigation has been done by modeling impreciseness

using IT2 FNs. Therefore the present study can be extended by representing impreciseness

using general T2 FNs. Also, we have used conventional multi-objective optimization techniques
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to deal with conflicting objectives. So it is also a matter of further investigation to deal with

multiple objectives of the problem using evolutionary algorithms like Multi-Objective Genetic

Algorithm (MOGA) and Non-dominated Sorting Genetic Algorithm (NSGA).
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