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Abstract

A power market with non-convexities may not have an equilibrium price for power that
provides economic stability of the centralized dispatch outcome. In this case, the market players
are entitled to receive the uplift payments that compensate the economic profit lost when following
the centralized dispatch. We consider a special class of the (possibly non-linear) redundant
constraints that are redundant not only on the feasible set of the centralized dispatch optimization
problem (and, therefore, do not change the centralized dispatch outcome) but also on the larger set
obtained when the power balance constraint is relaxed. We show that the Lagrangian relaxation of
these redundant constraints may reduce the uplift payments without changing the duality gap. For
any given market price (or a pricing algorithm that sets the producer revenue as a function of its
output volume) in a uninode multi-period power market with fixed load, we explicitly construct a
family of the redundant constraints that do not change the maximum profit of the producer and
result in zero uplift payment. We show that the introduction and subsequent Lagrangian relaxation
of just one redundant constraint in the centralized dispatch problem suffice to eliminate the uplift
payments for all the producers. In the case of the convex hull pricing method, the introduction of
these redundant constraints affects neither the duality gap nor the market price for power. The
results can be straightforwardly generalized to a power market with the price-sensitive load.

l. Introduction

Many deregulated electric power markets are centrally coordinated with generating
unit dispatch and load schedule obtained from a bid-based security-constrained
centralized dispatch optimization problem. The solution of this problem also produces
the system marginal price (or locational marginal prices) for power [1]-[3]. If the
optimization problem is convex, then the marginal price is an equilibrium price for
power and no market player (acting as a price-taker) has the economic incentives to
deviate from the centralized dispatch outcome. However, if the optimization problem
is not convex, then the marginal price may fail to ensure the economic equilibrium of
the centralized dispatch outcome since the non-convex components of the generator
and consumer bids are not affecting the value of the marginal price. The non-
convexities usually originate both from the supply side (due to the no-load cost, start-
up cost, non-zero minimum output limits, integral commitment decision variables,
minimum up/down times, etc.) and from the flexible demand side due to discrete and
minimum power consumption levels [5]. In fact, in case of the non-convex centralized
dispatch optimization problem, an equilibrium market price may not exist at all and
some other pricing approach has to be implemented to ensure the economic stability
of the centralized dispatch outcome [4]. Recently, a number of pricing methods for the
centrally coordinated markets with non-convexities have been developed, [6]-[24].
The new service (a unit being online) and the corresponding unit specific prices were
introduced in [6] by constraining the integral status variables to their optimal values
obtained from the centralized dispatch. However, these new prices can be negative for
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some units and the method is similar to pay-as-bid pricing. If only the positive prices
are applied to allow generators to retain their profits, then the competitive equilibrium
Is not achieved. In [7], [8] this method was further improved to generate more stable
prices by adding extra constraints to the reformulated optimization problem that also
set certain continuous variables to their optimal values. The nonlinear (discriminatory)
pricing methods for power with market player specific prices were developed in [9]-
[12]. The nonlinear pricing in the form of the generalized uplift functions that
includes generators as well as consumers in the lost profit compensation and ensures
zero net uplift at the market was proposed in [13]-[15]. The minimum zero-sum uplift
pricing approach that increases the price above marginal cost and transfers all the
additional payments (that the profitable suppliers receive as a result of the price
increase) to the unprofitable suppliers to make them whole in the form of internal
zero-sum uplifts was introduced in [16]. In [17] a primal-dual approach was proposed
to find the market prices that minimize the social welfare reduction due to schedules
inconsistency and ensure non-negative generator profits. However, in this approach,
some of the lost profit may not be compensated to generators and the competitive
equilibrium at the centralized dispatch solution is not achieved. In [18] a semi-
Lagrangian relaxation approach was developed to find a uniform market price that
produces the same solution as the original centralized dispatch problem while
ensuring the non-confiscatory pricing for generators. A zero-sum uplift pricing
scheme that minimizes the maximum contribution to the uplift financing in a market
with price-sensitive load was suggested in [19]. In the case of no price-sensitive load,
this approach produces the market price equal the maximum average cost of the
generators. The minimum-uplift pricing (also known as the convex hull pricing) was
proposed in [20]-[22] and yields a uniform market price that minimizes the total uplift
payment needed to ensure the economic stability of the centralized dispatch outcome.
In this approach, at a given market price each market player is compensated the lost
profit calculated as the difference between the maximum value of its profit function
on the market player private feasible set and its profit received when following the
centralized dispatch. Since the uplift payments distort the uniform market pricing and
decrease the transparency of the market pricing method, it is critical to reduce these
payments. In [23], [24] it was proposed to modify the minimum-uplift pricing method
by excluding the power volumes that are not attainable in a decentralized market from
the lost profit calculation since the opportunities to supply these volumes are not
forgone by a market player when accepting the centralized dispatch outcome. This
approach results in the lower (or equal) total uplift payment compared to the
minimum-uplift pricing algorithm.

For the convex hull pricing method, in [25] it was suggested to reduce the total
uplift payment, which compensates the lost profit of the market players, at the
expense of having one affine redundant constraint introduced in the centralized
dispatch optimization problem. This new constraint depends on the unit status
variables of all generators and leads to the introduction of the new service (a unit
being online) and the associated price in addition to the market price for power, which
can be viewed as the producer revenue function amendments. The linearity of the
redundant constraint ensures that the duality gap, introduced by the Lagrangian
relaxation of both the power balance constraint and the new constraint, is equal to that
in the absence of the redundant constraint [26]. However, introduction and subsequent
dualization of the new constraint entails that the duality gap may no longer coincide
with the total uplift, which is potentially reduced but generally still non-zero.



In this paper, we study the problem of the total uplift (lost profit) reduction in
a general pricing setting, which fixes the producer (consumer) revenue (cost) as a
function of its status-output (consumption) variables, by introduction of the redundant
constraints and the corresponding non-negative amendments to the revenue (cost)
functions. Thus, our study is also applicable to the cases with uniform pricing for
power (such as marginal pricing, convex hull pricing) and discriminatory (non-linear)
pricing with the uplift payments. For simplicity, we consider a multi-period uninode
power market with the fixed load. The analysis and the results can be easily translated
to markets with price-sensitive demand. To simplify the notations, we assume that
each producer operates just one generating unit.

We consider a special type of the redundant constraints — the constraints that
hold not only on the feasible set of the centralized dispatch optimization problem but
also on the larger set obtained by relaxing the power balance constraint. The
redundant constraints under consideration are introduced in the market player
individual profit optimization problems. Therefore, we require that each constraint
depends on just one producer status-output variable. We show that it suffices to
consider only this class of the redundant constraints to fully absorb the uplift payment
of a producer (thus, resulting in zero uplift payment) and find the general form
expression for the corresponding revenue amendment function for the producer. This
function satisfies the following three properties: it is non-negative on the producer
private feasible set, makes no contribution to the producer maximum profit, and yields
zero uplift payment for the producer. For the uniform market price, we show that just
one redundant constraint, which is the sum (over all the producers) of these properly
rescaled redundant constraints) introduced directly in the centralized dispatch
optimization problem suffices to produce zero total uplift. If the uniform market price
for power is set by the convex hull pricing method, the dualization of both the power
balance constraint and the new (redundant) constraint results in the same set of the
market prices and the same maximum profit for each producer but gives zero total
uplift.

The paper is organized as follows. In Section 2 we formulate the conditions on
the revenue amendment function that is non-negative on the producer private feasible
set, leaves the producer maximum profit unaffected, and fully absorbs the uplift
payment. In Section 3 we introduce the redundant constraints and study their relations
with the revenue amendment functions and the uplift reduction problem. In Section 4
we formulate the necessary and sufficient conditions for a given set of the redundant
constraints and the associated multipliers to produce zero uplift. The general form
expression for the revenue amendment function that satisfies the three
abovementioned properties is obtained in Section 5. In Section 6 we apply the
proposal to power markets with marginal pricing, while the application of the method
to a producer with linear cost function is given in Section 7. In Section 8 we construct
the revenue amendment functions and the corresponding redundant constraints in a
numerical example. The results are summarized in Section 9. Some mathematical
aspects of the redundant constraints are summarized in the Appendix.

Il.  The problem formulation
Consider T -period uninode power market with the fixed load d, deR!,, with |I]

>0 7
producers, where |e| denotes cardinality of a set. For each producer iel at time
period te{l..,T}, let u; and g; denote the commitment and output variables,

respectively. Introduce g =(g}...97), u =@U-..u'), x=(@U,9), X =(,.x),
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X=X ,,..X). Let X, be the producer i private feasible set (which is assumed to be

nonempty and compact) and C,(x;) be the offer cost function of the producer i. The
centralized dispatch problem has the form

f * - X,er)r(]li,giel ZCI (XI ) (1)
Zgl d iel

The feasible set of (1) is assumed to be nonempty and compact. Let X <X ,...X,)
denote an optimal point of (1). Although we consider a centrally coordinated power
market with a fixed load, it is straightforward to include the price-sensitive demand in
our analyses. For a given price p, peR’", the standard expression for the producer i
profit function is given by z*(p,x;)=R"(p,x,)-C(x;) with the revenue function
R*(p,x;) usually expressed as R*(p,x;)=p'g,. However, our analysis is performed
for the most general form? of the function R*(p,X;), unless explicitly stated
otherwise. The generator status-output value determined by the centralized dispatch
optimization problem results in the profit 7" (p) =R™(p,x;)-C.(X;). Given the price p,
the maximum producer’s profit is ;rf"*(p):)r(ngi; zt(.x;). If 72" (p)> 7" (p), then

the producer has economic incentives to adjust its output volumes to attain the
maximum profit and deviate from the centralized dispatch outcome. The standard
procedure utilized to eliminate such incentives is to pay the producer the uplift in the
amount of z**(p)—~""(p) if it follows the centralized dispatch outcome within a set

tolerance band. In this case, the producer receives the profit z**(p) when supplying
the output g;. (We make the usual assumption that a generator decides to deviate
from x; only if it receives a higher profit when having a different output volume. This
means that if both x; and x; maximize the generator profit, then it will not deviate
from x; to x!.) The uplift payment z**(p)—~""(p) can be viewed as the cost of the

commitment ticket payable to the generator i for following the centralized dispatch
[20]-[22]. If the price-sensitive demand is present in the system, then such a
compensation mechanism should be applied to the demand side as well. (We note that
for some R*(p,x,), in particular R*(p,x,)=p'g,, if the total uplift payment is non-zero

and all the consumers submit only the price-sensitive bids, then this leads to the
budget-balancing problem as the total uplift payment (if non-zero) exceeds the
amount that can be collected from the market players provided that no consumer
(producer) can be charged (paid) above (below) its bid cost. In the present paper, we
do not address this problem.) The uplift payment in the amount of z**(p)—~""(p)

can be expressed as the generator revenue function amendment of the form
5 [r(p)-~"(p)] with a function & . defined as 6 .=1 for x,=x", and
X X X; X X; X i

8 . =0, otherwise®. Clearly, 5 .=6 .5 ..
X X X X Ul GG

21f R (P, X; ) is some general function of p and X; , then p denotes a set of parameters utilized in
a given pricing method.
% If the unit status is uniquely set by its output, then instead of 5X_ o Itis sufficient to use 0

Likewise, if the unit output is uniquely set by its status, it suffices to use 5u o instead of §x < The
i i
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Let us amend the revenue term in the expression for the profit function by
adding some real-valued function N,(p,x,) defined on R xX;. This results in the
profit function of the form
7, (P.X;) = RiSt'(vai )+ Ni(p, %) —Ci(Xx;) = ”iSt' (P.X;)+ N;(p.X;) - Hence, the
generator’s profit, obtained when it follows the centralized dispatch outcome, is
7, (p)=7"(p,X;)+N.(p,X;), while the maximum value of the generator profit function

equals 7' (p) = maX 1, (p.x;) . In this case, the uplift is expressed as ;" (p) -7, (p) . We

impose the following three conditions on N, (p,x;). First, the introduction of N.(p,x;)

should not change the maximum generator profit in the decentralized dispatch
problem:

7" (p) = max, (p,X;) - )
Second, we impose zero uplift condition:
7 ()= (P)- ©)

We also require that the new term in the generator revenue function is a rewarding,
not penalizing, addition to the standard revenue function R™ (p,x.):

Ni(p.X;) 20, VX; € X;, (4)
We observe that if the uplift payment is not needed (i.e. z**(p) =z (p)), then (2) —
(4) generally do not yield N;(p,x,)=0, Vx, € X;, as the profit function may still be
amended with no effect on its maximum value and its value at x This suggests
imposing an additional condition
N,(p.x,) =0, vx; e X;, if 77" (p)=7""(p) . (5)

However, this condition can be easily satisfied since given any N/(p,x,) that satisfies
(2) — (4) for N(p.x,), the function N;(p,x,)=6[z" (p)- 7" (P)IN/(p.x;), With the
step-function &(z) defined as #(z) =1 for z>0 and 8(z) =0 for z<0, satisfies

(2) — (5). Therefore, in what follows, we focus on (2) — (4). Since the total profit
(including the uplift payment) received by each generator still equals > (p), it is

not affected by N.(p,x;). Thus, the introduction of N.(p,x,) does not address the

abovementioned issue of revenue adequacy problem relevant for systems with no
fixed load. Also, (2) and (4) entail

N(p,x**)=0, fot'*eargrlgx ™ p.x), (6)
which gives arg max 7t (p,X;)carg max 7, (;la,;(i). Also, (2) is equivalent to
| lﬂi (P.x;) < ﬂiS“(pl) ,l VX, € X;, @)
7, (P, X)) =z (p) , for some x! € X, . (8)
The obvious choice for x' is X :xf, which means that the set of (2) and (3) is
equivalent to a set of (3) and (7). Another natural choice for x' is x’ :xf"*, thus (2)

is equivalent to a set of (6) and (7). The conditions (2) and (3) imply
X eargmax 7, (p,X;), which has the following implication.
! X;eX;

latter possibility is realized, for example, for a block-loaded unit with the output rate uniquely set by
the unit’s status.



Proposition 1 Let peR" and R*(p,x,)=p'g,, Viel. If X’ cagmax 7 (p.x;), Viel,

then x” is an optimal point of the following amended centralized dispatch problem
min £, (x) )

X;eX;,Viel
Zgi =d
il

with the objective function f, (x)=>"[C,(x;)—N,(p.x;)]. Where p is treated as the
iel
fixed external parameter. Moreover, there is a strong duality between (9) and its dual
obtained from the Lagrangian relaxation of the power balance constraint with p
being an optimal value of the dual variable.
Proof. Consider the Lagrangian function L(q,x)=q"(d- ) g;)+ f,(x) With a vector
iel

of multipliers geR" and define the dual function f!(q)= min  L(q,x). For q=p,

X;eX;,Viel

we have fg(p):pTd_zmaxxﬁi (p,x,)- The condition xfeargmaxx 7. (P.Xx), Viel,
iel Xi<hi ' XieX;

entails . (p)=L(p,x"). From L(p,x") = f,(x") we conclude that f, (p)= f,(x") - the
value of the dual function at q=p, which is feasible in the dual problem, equals the
value of the primal problem objective function at x=x", which is feasible in the
primal problem (9). Consequently, we have a strong duality, and (x”,p) is an optimal
primal-dual pair. Proposition is proved.

If conditions of Proposition 1 hold, then p is a uniform equilibrium price for

each generator. Proposition 1 can be straightforwardly generalized to a power
market with the price-sensitive consumer bids. In this case, the existence of an
equilibrium price does not eliminate the abovementioned budget-balancing problem
since (due to the amendments of the consumer cost functions/producer revenue

functions) the sum of the consumer payments is at most p'd, while the sum of the
generator revenues is at least p'd.

In the next section, we study the relation between N.(p,x,) satisfying (2) — (4)
and the uplift minimization problem.

I11.  Utilizing the redundant constraints for the uplift payment reduction
Let us consider some real-valued functions p'(p,x,), L eL, L={L2..|L[},
that are defined on R"x X, -»R and satisfy pl(p,x,)<0, ¥x, e X,, VpeR', vl eL,.
Introduce a vector function p(p.x,)=(o (@ X ).. 2" (.X;)). Thus, p(p.,x,)<0,
vx; € X;, YpeR", where we adopt a convention that a vector is non-negative (non-
positive) if all of its components are non-negative (non-positive). Clearly, with
regard to the centralized dispatch problem (1), the constraints p,(p,x;)<0, VX, € X;,

are redundant since they are satisfied on Q. However, we emphasize that these
constraints also hold on a set X X,, which contains Q as a subset. This means that

they belong to a special type of the redundant constraints that hold even if the power
balance constraint is removed from the constraint set of (1). (We note that the
introduction of the extra copies of generator private equality and/or inequality
constraints, which define its private feasible set, also produces this type of redundant
constraints.) Among the redundant constraints introduced above there could be the



constraints that hold on X X, as equalities (such as 0<0, ui‘(uit —1)3 0) or as strong

inequalities (for example, —1<0,-g,'g,—1<0) - below we show that these kinds

of the redundant constraints can be discarded as they do not affect the uplift
payment. Consider the optimization problem

max 7 (P, (10)

£i(pX;)<0
which is equivalent to max 7, (p.x;), therefore, ”iSt'+(P)=xi£Q?X 7, (p,x;)- Let us

£ (p.X; )<0
apply the Lagrangian relaxation procedure to the constraints p,(p,x,)<0 and define
the Lagrangian function 7z, (p,4,X;)=7"(P,X;)- 4 p;(p.X;) with the associated |L, |-
dimensional vector of the non-negative multipliers x4 >0. Clearly, z, (p,x,x;) is the
profit function amended by the non-negative term -z p(p,X,). Define
”Y(P’ﬂi)ﬂl‘f‘x?‘ 7 (P, 4, X, ). Since r, (p,u,x,) is linear in g, the function z’(p,s) is
convex in yli . IThe problem that is dual to (10) reads:
min 7 (p,44) - (11)
Proposition 2. There is a strong duélity between (10) and (11):
7 () =minz e.u).  (12)

Proof.  Since P,%,) <7 (P44, X)), VX, € X, Vi >0, we  have
= max (P X ) S max (Pt X, ) = 7 (Puss) Vs 20 Hence,  z <minz (pos).
Applying Ti?n;(p,yi)s;ﬁ(pp)=7z§”, we obtain nis"*zrﬂign;(p,yi). Proposition is
proved.

If R*(p,x,)=p'g;, Viel, with amarket price p obtained using the convex hull

pricing method, the same reasoning used to prove Proposition 2 can be applied to the
dual problem obtained from (1) by the Lagrangian relaxation of the power balance
constraint. Since the redundant constraints under consideration are redundant not
only on Q but also on X X,, the subsequent dualization of these redundant

le

constraints do not affect the duality gap already introduced by dualization of the
power balance constraint. Dependence of p,(p,x;) on p implies that these constraints

can be introduced in the dual to the centralized dispatch problem (1) in two different
ways. First, p.(p,x;)<0 can be added to the constraint set of (1) with some fixed

value of p, which is treated as constant in both the primal (1) and the dual problems.
Second, the set of constraints p,(p,x,)<0 can be introduced after the power balance
constraint is relaxed with p in p(p,x;) being identified as the multiplier to the

power balance constraint in the dual problem (in this case, the dual function to be
optimized over p and g is generally non-convex in p, but the convexity is restored

after optimization over ). In either way, the introduction and subsequent
dualization of p (p,x;)<0 (together with the power balance constraint) do not affect

the duality gap between (1) and its dual.
In [26] it has been shown that dualization of the affine redundant constraints
together with the set of the original constraints of a primal problem results in the



same value of the duality gap that emerges from dualization of the original
constraints of the primal problem (in our case, this is the power balance constraint),
while introduction and dualization of the non-affine redundant constraints may
change the value of the dual problem and, hence, affect the duality gap. Although
the redundant constraints studied in the present paper are generally non-affine, they
do not change the duality gap. The reason is that we deal with a special type of
redundant constraints: these constraints hold on X X., not just on Q, and Proposition

2 implies that these (possible non-affine) redundant constraints also do not change
the duality gap. Thus, the dualization of the redundant constraints, which belong to
the specified type, do not affect the value of the dual problem and the duality gap.

Let us define a set M. (p) =arg D!Lrl 7 (p,4). Clearly, the set M/ (p) generally
depends on both the choice of p (p,xil) Z;nd the price p. Since 7 (p,) is a convex
function, the set M (p) is a closed convex set. Also, (12) entails that {0}e M (p),
which gives that the set M, (p) is nonempty. Due to p,(p,x;)<0, VX, € X,, and g >0,
we have M (p) ={u; | 4 20, 41 p,(P. %) 2 7" (P X, ) — 77 (), VX; € X }-

Proposition 2 implies that if 4 eM/(p), then the expression — ' p, (P, X;)
satisfies conditions (2) and (4) for N.(p,x,). From (12) we also have a condition on
&7 p.(p,X;) that is equivalent to (6):

4 (P.X) =0, vx* eargmax 7 (px,), VI, e L. (13)

Clearly, if for some <L we have p'(p,X,)=0, vx, eX,, (i.e. the constraint
,oi'i (p.X;) <0 is satisfied as equality on X,), then the set of optimal values of ' in
(11) is given by R,,. The converse is also true: if the set of optimal values of 4 is
given by R, then p/'(p,X;)=0, vx, € X,. Indeed, p!'(p,X;)=0 for some x, e X,
would imply that the minimum value of =" (p,s) in (11) can be made arbitrary
large, which is impossible for finite 7" (p). Likewise, from (13) it follows that if for
some | cL we have p(p,Xx;)<0, vx, eX,, (i.e. the constraint p(p,X;)<0 is
satisfied as a strong inequality on X ), then the optimal value of 4 in (11) is unique
and given by 4" =0. We note that if either p!' (p,X;)=0, vx, €X,, or p (p,X;)<0,
vx; € X;, then such a constraint makes no contribution to the producer i uplift
payment since it does not affect the producer profit.

Clearly, (4) is equivalent to N,(p,X;)=-4 p(p.X;) with some p (p,x,)<0,
vx, e X,, and some g >0 (for example, just one constraint p,(p,X;)=-N,;(p,X;) with
the multiplier 4 =1). The set of equations (2) and (3) for N,(p,x;) can be transformed

to have the form of the optimization problem. Define the producer i uplift payment
as U;(p,u) = max 7, (P, 4, %) — 7, (pnui'XT)' We have U;(p,4)>0, VpeR", Vg 20.
Consider the optimization problem

min - Ui(p.s)- (14)

max 7; (P, X )=x"" (p).
XjeXi

Using the definition of M, (p), (14) is expressed as:



min U,(p,4)=7"(p)- ”iw (p)+ rrr\]ai*n(p) 'LtiT PP XT) - 19

HieM; (p) 1EM;
The immediate consequence of (15) is that if p(p,X;)#0, then
arg min( )Ui(p,yi)caM((p), where oM, (p) denotes the boundary of M/ (p). Thus, the
HEM{ (p

minimum uplift problem for the given price p and constraint vector function
p2.(P.X,), p.(p,X) =0, is reduced to the problem of finding a point on the boundary
of M/ (p) such that the hyperplane containing this point and having the normal

vector —p,(p,X;) supports M(p), or, equivalently, finding an element of the
nonempty closed convex set M. (p) with the largest projection into the direction

specified by the vector — p,(p,X;) . We note that for a case of one function p, (p,X;)

with p.(p,X;) #0, the optimal point of (15) is unique and given by the maximum

element of M (p), i.e. 1™ . We also note that rr“1A|n( ),uiTpi (p.x;) <0, which entails
jeM; (P

Hi

min U, (p,u) <7 (p)-7z"(p). Thus, addition of - p(p,X;) to the revenue

1M (p)
function results in the lower (or equal) uplift. Clearly, the magnitude of the uplift
reduction due to the introduction of - p,(p,X;) in the producer revenue function
essentially depends on the choice of p.(p,x;), which subsequently specifies the set
M, (p). For example, only the redundant constraints that satisfy p(p,x;)<0,
VX, € X, p.(p,X;) #0, M (p)%{0} may reduce the uplift. The necessary condition for a
given vector function p,(p,x;) to yield zero uplift payment for the producer i is
formulated in the Appendix.

Since ,,imirn(p)ui(p’ﬂ‘)zo’ we conclude that U (p,zz)=0 for some z eM; (p) iff

min U,(p,x)=0 and z earg min U (p,). Now we establish a relation between
weM; (o) weM; (p)

N.(p,x,), Which satisfies the conditions (2) - (3), and solutions to (14) with some
2(P.X;)<0, VX, € X;,and g >0.

Proposition 3. Let p(p,x;)<0, Vvx,eX;, and x2>0. The function
N,(.X;)=—u p,(p,X;) satisfies the conditions (2) and (3) iff U,(p,;z)=0 and
# €M (p)-

Proof. Let the conditions (2) and (3) hold for N,(p,x;) =z p.(p,X;), then (2) implies
& €M/ (p), while (3) yields U, (p,z)=0. Likewise, 1 eM/(p) yields (2). Also, both
Ui(p,)=0 and x4 eM; (p) entail min )Ui(p,ﬁi)zo and g eargﬁirersﬁiin(p)ui(p,ﬁi), which

#eM{ (p

gives (3) for N,(p,X;)=-x/ p.(p,X;). Proposition is proved.

IV.  Attaining zero uplift payment
Now we formulate different forms of the necessary and sufficient conditions

for a given vector function p.(p,x;)<0, Vvx; € X;, and a multiplier x4 >0 to produce
zero uplift for generator i, i.e. for the corresponding N.(p,X,)=—x p.(p,X,) to satisfy
the conditions (2) and (3). We note that (4) automatically holds for
Ni(pnxi):_ﬂiTpi(vai ).



Proposition 4. A function N.(p,x;) satisfies the conditions (2) - (4) iff
N.(p.X,)=—x p,(p.x;) for with some real-valued vector function p(p,x,): X, =»R"!
and some multiplier g >0 that satisfy

° piP.X)<0, vX; € X;; (16)
* ,uiT (P, Xl*) = ”iSt'* P)-7" (0); 17)
° :uiTpi P.x) 27 (p.x) -7 (p), VX € X;. (18)

Proof. Obviously, for a given N;(p,X;)=-x p;(p.X;) with g >0, the conditions (3) and

(4) are equivalent to (17) and (16), respectively. Now we show that (2) holds iff (18)
is satisfied, given the validity of (16) and (17). On one hand, if (2) holds with

N.(p.X,)=—x p,(p.X;), then (18) is clearly satisfied. On the other hand, if (18) holds,

then 7" (p) >max [z™(p,X;)— 4 p,(p,x;)] and (17) implies that this weak inequality
X;eX;

is satisfied as equality resulting in (2). Proposition is proved.

Example 1
For a uninode single-period power market with a market price p, let us

consider a generator that is offline in a given time interval according to the centralized
dispatch solution, i.e. u; =g; =0. Since 7" =0 for the offline unit, the generator uplift

payment equals z*(p), which is expressed as the generator revenue function
amendment of the form & .z (p) with &_. =4, (0, ;. Using &, 6, , =,
0,

U

0 % €X;, and
o =1-u;, the amendment function is expressed as N,(p,x)=({1-u;)z""(p), which can

be obtained from the redundant constraint u,-1<0 with the multiplier x4 =7z""(p). It

can be easily verified that these constraint function and multiplier satisfy (16) — (18).
Combining Propositions 3 and 4 we conclude that the following three
statements are equivalent for p,(p,x;)<0, vx; € X;, and z >0: p,(p,x;) and g, satisfy

(17) and (18); Ni(p.x,)=-4 p(p.x;) satisfies (2) - (3); fT'JA"} )Ui(phui)zo and

# €arg yigﬂwii*r}p)ui (P.4) -

We have proved that (16) - (18) are necessary and sufficient conditions for
N;(p,X,)=-4 p,(p.X;) with 1 >0 to satisfy (2) - (4). Obviously, the choice for N, (p,x,)
(and, therefore, for p,(p,x;) satisfying (16) and g >0) is not unique. Moreover, both
the function p,(p,x;) and the multiplier x4 that satisfy (16) — (18) may depend on p.
(We note that it is always possible to redefine p,(p,x;) so that the resulting  is
independent of p.) Also, it is the scalar product u p(p,X;), not the individual
components x', pl(p,x,), what matters for the uplift calculation.

We note the three important corollaries of Proposition 4. First, if (17) and (18) hold
for p.(p,x,)<0, ¥x, e X,,and x>0, and for some |, L, we have p! (p,X;)=0, then the
same p (p,x;) with x modified by setting . =0 also satisfies (17) and (18). Thus,
components of p(p,x;) that vanish at x, =x; can be excluded from consideration.
Second, if (17) and (18) are satisfied by two different pairs {o (p.X;). 4}
Pis(P.X;) <0, VX e X, 14,=0, s=12, then so does {p,;(p.X;), 14z} With x4, =1 and
pi|3(plxi )=a(p.X; ),UiT|1pi|1(p’Xi ) +a, (P, X; ),UiT|2pi|2(p1Xi ), for any functions o, (pP.X;):
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R"xX; >R that satisfy «, (p,x;)>0, Y a.(p.X;)=1, vx, €X,. Clearly, p,(p,x,)<0,

s=1,2
vx, € X,. In short, any convex combination of such z/ p,(p,X;) produces another
solution for p,(p,x;) with y =
Third, if for some set of the redundant constraints p/(p,x,)<0,vx, € X,, we have
found 4 eM; (p), (i.e. the conditions (16) and (18) hold for p/(p,x;) and ), and

4 pl(p,X;) =0, then the uplift payment is reduced but is non-zero unless (17) holds.
Formally, this can be seen as follows. Let us add to p/(p,x;) an uplift term (i.e. a term
proportional to & ,xi‘) that results in (17) while retaining (16) and (18). It is
straightforward to vlerify that (16) - (18) hold for the same 4 >0 and
pi(pixi):pi,(plxi)+5xi 'Xi*[”iSt'*(p) 7 P) - 1 PP X )14 /H;UiH- (19)
In this case, the function N;(p,X;) is  expressed  as
N-(p,X-):—,uiTpi'(p,X-)+5 [ns‘*(p) (P)+ 4 pl(p,X;)] with the second term having

the form of the uplift payment in the amount of 7 (p)-7""(p)+4 p/(p.X;). Clearly,

@) -7 @) <z P) - (P),
which reflects the uplift payment reduction from adding — z' p/(p,X;) to the producer

st.+

for u p/(p.X)#0 we have 0<u p/(p,X;)+7

revenue function. (Note that addition of - p,(p,X;), with p.(p,X;) given by (19),
reduces the uplift to zero.) As an illustration, let us observe that p/(p,x;)=0, Vx, € X,,
trivially ~satisfies (16) and (18) with any 4 >0. Utilization of (19)

yields p;(p.x;) =0, *[ﬂft'(P,Xi*) 4
N.(p,X;) =6 [7zs”(p)—7zft'(p,xi )], which is the revenue function amendment describing

()7 resulting in

the origlnal upllft payment.

Let us denote as L a subset of L, with pl(p,x;)#0: T ={, |l eL,, p! (p.X]) %0}
This implies that only p'(p,X;) with | e" may contribute to the uplift. Clearly,
L <L . Motivated by Proposition 7, given in Appendix, we have the following
statement.
Proposition 5. Let z*(p,x])<z*(p), x>0, and Vlel we have p'(p,x;)<0
VX, € X,, then (17) and (18) hold iff

° E #0; (20)

° # < x!gf 7 0x) -7 )= D un @x) ol Px), v eL\L (22)
1€y 0 el i,

e demn ERx)-r B SAA A px), Vel (22
i€X g0 e i,

® Xi* cargmin [z (p.x,) -7 (p) - ,Ui”/)il{ (pvxi)]/lgili P.x), vl el (23)
Xi€X 20 el i,

Proof. First, we show that, given the assumptions of the proposition, (17) and (18)
imply (20) - (23). Indeed, 7™ (p,x;) <z (p) and (17) entail (20). Also, (18) implies

ﬂili— 'nf [z (X)) -7 (p) - ﬂil{pil{(paxi)]/pili(p:Xi)v vl el;, which entails (21)

Koy o0 Ieltel bl
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vIl.eC\L. For vl eLl, (17) states that the infimum is attainable at x =x and,
therefore, (29) and (30) hold. Second, we prove that under the stated assumptions (20)

- (23) entail (17) - (18). Clearly, (21) and (22) qgive
,uili s iQf [7" (p.x)~ 7" (p) - ﬂil{pil; (plxi)]/pili (P.x),  VheL, which implies
Xi€A 20 I47eL, 1,
,U,Tp. (p,xi)Zﬂist.(p,xi)_ﬂ_istﬁr(p)’ in € Ulielfi Xpi|'==0 . S|nce ,uITpI (p,Xi ) = 0,
VX, € X, \Ul_eE X o0 WE conclude that (18) holds. Due to (20) and (22), for some
value of I we have
,uili = ﬂ}(in [z “(p, X;) - StJr(p)_ ,uili,pili, (plxi)]/pili(pvxi)v
KR Ilely 1,
X eargmin [7@.X)-7"@)- Y4 @x)]/ e (P.Xx), which entails  (17).
X;eX " li:l el i £l

Proposition is proved.
We note that to derive (17) from (20), (22), and (23) we needed validity of

(22) and (23) for just one I, € L. This is because the set (21) — (23) is equivalent to the
set of the following statements: (21) is valid for VI €L , (22) and (23) hold for some
el .

Thus, Propositions 4, 5 give the necessary and sufficient conditions for a given
p2.(p.X,) <0, ¥x, € X,, and g >0 to yield zero uplift payment for the producer i.

We also note that the different formulations of the redundant constraints
generally result in the non-equivalent amendments of the generator revenue function.
For example, the constraint set p'(p,x,)<0, p*(p,X;)<0 is equivalent to
max{ o' (P, X,), o7 (P.X;)] < 0. However, the function —zmax o' (p,X,), o’ (P,X;)] With
some multiplier >0 generally cannot be expressed as — ‘o (p,X;) — 1 o7 (P, X;)
with some multipliers z'>0, #*>0. In certain cases, the redundant constraint
max o' (P, X,), o7 (P.X;)] <0 satisfies (16) — (18) with some x>0, while the
constraints p'(p,x;)<0, p’(p,x,)<0 do not satisfy (16) — (18) for any '>0,
#?>0. This is because the transition from a set of the constraints o'(p,x,) <0,
p2(p,x;) <0 to the equivalent constraint max{ o/ (p,X;), 2>(P,X;)]<0 is a nonlinear

operation, while the considered amendment functions are linear in the redundant
constraints.

Clearly, just one appropriate redundant constraint is sufficient to obtain zero
uplift payment for the generator i: for example, p.(p,x;)=-N.(p,X;) with the associated

multiplier equal 1. Likewise, given a vector function p.(p,x;) and the associated
vector of the non-negative multipliers y >0 that satisfy (16) — (18), just one
redundant constraint of the form — ' p.(p,x;) <0 vyields zero uplift payment for the

producer.
Moreover, in case of the uniform market price peR" (which implies

R*(p,x;)=p'g,, Viel), it suffices to introduce only one redundant constraint in (1) to
obtain zero total uplift payment. Indeed, for a given set of N.(p,x;), iel, each
satisfying (2) — (4), let us introduce the redundant constraint —ziel N.(p,x;) <0 in the

12



centralized dispatch optimization problem (1). Clearly, this constraint affects neither
the value of (1) nor the set of its optimal points. Let us apply the Lagrangian
relaxation procedure to both this constraint and the power balance constraint with the
multipliers v>0 and qeR’, respectively. This yields
L(q,v.x)=q"(d->.g,)+ > Ci(x;)-vD__ N(p,x;), which entails

iel iel

min  L(qv,x)=q"d- Zmax [ (@) + N, P.x)1< 7 =vd . Ni(p.X])-

X;eX;,Viel icl X;eX;
For agiven geR"and v >0, the total uplift payment is
Z[E(ngz( [7 Q%)+ W, (P.x )] -7 (p.x7) =N, (p. X)) = f*_ min. o L(p,v,X)—VZI Ni(p.x; BE
iel T

For q=p and v=1, (2) implies xierQi,Qieu L(p.1x) = pTd ;;ﬁ”(p)— rylgl L(p,0,X) -

Consequently, the total uplift payment equals
2 E) =7 (X)) = Ni(p,x))] = 7~ Jin

eX;,Viel
iel

which is zero due to (3).
If the uniform market price p is obtained using the convex hull pricing method,

then f"— min  L(p,0,X) is the original duality gap, but the total uplift payment

x;eX;,Viel
no longer equals the duality gap and can be reduced to zero by utilizing the proper
functions N.(p,x;), iel. We also note the following relation to the dual problem.

L(P.0,x)- > Ni(p.X}).

From (4) it follows that mln max[n (q,xi)+M\li(p,xi)]:maXx;zft'(q,xi), vqeR',

e | . Therefore,
L(q,0,x)<max min  L(q,v,x)=q"d- min Zmaxx [z(q.x;)+ W, (p.x,)]<q'd

v20 X;eX; Viel

Zmlnmax [7(q,%;) + W, (p.X,)] = L(q.,0,X)

v20 Xx;eX;

Thus, maxmax min L(q,v,x)=max min L(q,0,x), and neither the value
qeRT v20 Xx;eX;,Viel qeRT X;eX;,Viel

of the dual problem that is obtained from (1) by dualizing the power balance
constraint nor the set of the optimal dual variables q is affected by the introduction of

the redundant constraint. Consequently, if the market price is set by the convex hull
pricing method, then the redundant constraint _Ziel N.(p,x;) <0 vyields the same

optimal set of the market prices and maximum values of the producer profit z* (p,x;),
Viel, and results in zero total uplift payment.

V. General form expression for N.(p,x;)

We note that for a given p the function N.(p,x;) that satisfies (2) and (4) takes
values between zero and the non-negative function z**(p)-7~"(p,X;), while (3)
fixes its value at x; by N,(p,x;)=7""(p)—~>"(p). Motivated by this observation
we have the following general form expression for N.(p,X,)=-u p.(p,X;).

Proposition 6. The conditions (2) - (4) hold for N;(p,x;) iff N,(p,x;) satisfies

Ni(P.x;) =min[z" (0) - 7" (P.x,); 6, [ @) -7 @) +7 X)), vx e X, (24)
with some non-negative real-valued function 7 (p,x,): R"xX, >R, 7(p,x;)=0,
VX, € X;.
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Proof. It is straightforward to verify that (24) satisfies (2) — (4). Now we show that (2)
— (4) entail (24) with some function y,(p,X;): R"xX, >R, 7(p,X,)>0, VX €X;.
Consider a function ;/i(p,xi)=Ni(p,xi)—chiYx;[frft'*(p)—nf"*(p)], VX, € X;. Since
N;(p,x;) satisfies (3) and (4), we have y.(p,x;)>0, Vx eX,. From (2) we have
N.(p.x,) <7z (p) -7 (P, X;) VX € X, which gives
N; (P,x;) = min[z" (p) - 7" (P, X, ); N; (P, X, )], vX; € X;. Using
N:P. %) =7 P.X)+3, . [z (p) — 7" (p)], we obtain (24). Proposition is proved.
From (24) we hlave the following general expression for the amended profit
function
7 (P,X;) =min[z" (p); 7" (P, X;) +§Xi X [z ) -7 )]+ 7. (P.X,)] (25)
parameterized by the function y,(p,x;), which is non-negative on X,. From (25) it
follows that the resulting amended profit function on X, majorizes the function
7zf"(p,xi)+5Xi 'x;[ﬂf”(p)—;zft'*(p)] and is bounded by 7™*(p). The converse is also

true: any function on X; that majorizes 7z (p,X;)+3, XT[;rf"*(p)—7zf"*(p)] and is

bounded by =" (p) satisfies (25) with some y (p,x,)>0, Vx,eX;. It is worth
mentioning that (24) implies (6). Now we study some forms of N,(p,x;,) generated by
various choices of the parameter function y(p,x;).
Example 2

Setting y;(p,x;)=0, Vx €X;, in (24) gives Ni(p’xi):5Xi'Xi*[”iSt'Jr(p)_”iSt‘(p’X:)],
which is the original uplift payment of 7**(p)-z"(p,x;) recast in the form of the
revenue function amendment.

This expression for N,(p,x;) can be easily obtained from the redundant
constraint pi(p,xi)=—5Xi’X;, which satisfies p(p,x;)<0, Vx, eX,. Application of

+ max

Proposition 7 gives x"™ =z*"(p)-z"(p,x;). Clearly, these p.(p,x,) and ™ satisfy
(16) — (18). Hence, Ni(p,xi)=§X.'X_*[ﬂf“(p)—ﬂis"(p,xf)] satisfies (2) — (4).
Example 3 -

Setting P.x;)=(@1-5, ’Xr)[ﬂf“(p)—ﬂiSt'(p,xi)] in  (24) results in
N,(P.x,)=7z""(p)- =" (p,x;), which implies 7, (p,x,)=7z""(p), VX, € X,. In this case, the

profit function becomes a constant independent of x, and the producer is indifferent
to its output volume. (If unacceptable, such a solution can be easily excluded by
adding a condition that N.(p,x,) <z (p)- " (p,x;) for some x, €X;.)
Example 4

Let us utilize the freedom to choose an arbitrary (non-negative on X.) function
7:(p,Xx;) In (25) to smooth the possible discontinuity of z, (p,x;), as a function of x; ,

introduced by the discontinuous term & .[7"*(p)— 7" (p)]. Consider the extended
value function 7z (p,x;) on Conv{X,} defined as 7z (p,x;)=7x"(p,x;) for x, X,

and 7z (p,x,) = —oo for x, e Conv{X }\ X;. Let us choose
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71 (P, X;) = CONCoonix {7 (P, %) +6, [ (P) = (P)I}— 7" (P X )
=3, L Im @) -7 )] |
where conc,, , denotes the concave hull of a function on the set Cony{X;}. Clearly,
7:(P,x;) >0, Vx, € X;. Therefore, (25) entails
7 (p,X;) = min[z™* (p);conCcOm{xi}{rz'iSt' (P.Xx;)+ 6Xi x; [z (P) -7 (P)]}].
From (P, X, ) + S [z (P) -7 (P)]1 < =™ (p), VX, € X,, and
yg{niSt' ®.x)+5, [7"(P) -~ (P)]}= max CONCoonex {77 (P %) +6, [ (P) -7 (P)]}
we obtain conCe,,x {7 0. %) +6, 7" @)~z P)}I<7" (P), VX, eX. This
results in -
7 (P.X;)= ConCCOn\{Xi}{ESL(p’Xi )+ 5Xi X [z (P) - " (P)1}, VX, € X;.
Clearly, since the function 7z, (p,x;) is concave on Con/{X,}, it is continuous in x; in
the interior of Conv{X}. For R*(p,x,)=p'g,, it is straightforward to verify that
VX, e Conv{X;} we have
CONCeonx, {7 (0. %) + 8, [ (P) = 77 (P)I}=P'G; — CONVop g1 {Ci (X;)
-5, @) -2 P |
where C.(x,) is the extended value function defined on Con\{X.} as C.(x,)=C,(x;)
for x; eX; and C(x;) =+ for x; eCony{X}\X;, and conv,,,, denotes the convex
hull of a function on the set Conv{X}. Therefore, in case of R*(p,x,)=p'g,, We have
7 (PX)=P'g, - ConVCOnv{Xi}{C_:i (xi)— §Xi x [z (P) - =" (P)I}, vx; € X;,  (26)
which gives the following expression for N.(p,x;):

N;(P,Xx;)=Ci(x;) - ConVCon\{Xi}{c_:i (x;)- 5X_ X [7" (p)- ”iSt'* P} vx e X;. (27)
Clearly, (27) can be realized | using one redundant  constraint
00NV 1{Ci (X ) =8, p [ () -7 E)}-C/(x;)<0, vx, eX,, with the associated
multiplier z =1. |

VI.  Application to power markets with marginal pricing
In the case of a power market with marginal pricing, p is identified as the marginal

price faced by the generator i (the system marginal price or the locational marginal
price at the generator node), and R™(p,x,)=p'g,. Let us assume that for each fixed
value of u, both the generator private feasible set and the cost function are convex.
For the market price p and a given fixed vector of statuses u/ e{0,}', let us introduce

the maximum value of the generator i profit 7™ (p,u!):

7™ (p,u)=max  z"(p,x;). (28)
st
XX,

The marginal pricing method entails
7 @) =5 (p.u;). (29)
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As it was mentioned above, the choice for N, (p,x;) satisfying (2) — (4) is not unique.
Below we provide two different expressions for N, (p,x;), which originate from the

two different sets of the redundant constraints.
For each time instance te{l,.., T}, we have the redundant inequality constraints

on the status binary variable: uf >0 and 1-u/>0. Let us choose the constraint
1-uf >0 if u* =0, and the constraint uf >0 if u* =1. Such a choice can be written
as (u)" (1-u)®%" > 0. Consider the redundant constraint that results from the product
of these constraints for all the time instances: p(u)<0, Vx,eX;, with

pu)=—TTw) C(1-uh)®¥Y It is straightforward to check that p(u)=0 if u =u,
te{l,. T}

and p.(u)=-1 if u =u;. Therefore, p (u,) :—5u .. Proposition 7 gives the value of

the associated multiplier ™ =7z (p)- Slmax(pu) Using (29), we arrive at

+Mmax

w™ =7 (p)-7" (p). Consequently, the redundant constraint p,(u,) =-0, . and the

associated multiplier x4 ™ satisfy (16) — (18). Thus, the conditions (2) — (4) hold for
N,(P.x;) =6, .[7"" (P)—=""(p)]. Indeed, N,(p,x;) is non-negative, has the right

value at x, = x; and has no effect on the maximum value of the profit function:
max [z (p.x;)+ Ni(p.x)] =mamax 7" (p.x,); 7" (p) -7 (p) + max 7" (p,x;)} =" (p)

St St
XEX XeX

U u=u;.

We note that this expression for N.(p,x;) can be obtained from (24) with

Px)=0, 6, Nzt E)-7 PN
An alternative choice for a function N, (p,x,) originates from a set of 2" redundant
constraints parameterized by the vector of statuses w,=(w',..,w ) with w' {01},
te{l..T}. Let p, (u)=- [JW)"@-u)*". Clearly, p"u)<0, vx,eX,, vw, {01

tefl,.T}
These functions have the following properties, vu,,w, e{0,3} :
plu)=-1 ow =u; p"U)=0 < w =u, (30)

which implies that p"(u) can be expressed as p"(u)=-4,, . Define
={x,|x, € X,,u; =w,}. We note that if for some w, e{0,}' all the points with

‘”':ﬁO
u, =w, are |nfeaS|bIe in the generator private feasible set X, (for example, due to
initial conditions combined with minimum up/down time constraints), then X =0

Let us denote as W, the set of all w, {05}’ with nonempty X .o FOr YW, €W,

Proposition 7 yields

+W; max

H;

= min [m"
X;eX

Ai20

(p)_”iﬁ'(pvxi)]Zﬂisu(p) maX 77 (pixi)'

Using (28), we arrive at
w ™ = P)-m ™ (p,w), Yw, eW . (31)
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Obviously, we have "™ >0, vw, eW,. From (30) it follows that p" (u)p" (u) =0,
vu,w, W {05, w, #w,, which entails X owoOX =0, vw,w {0}, w, =w, .
Therefore, the conditions of Proposition 9 are met and we have

M+(p):(x,[o,ugwim])ijg-W'. Hence, vw, eW,, the functions p“(u) with the

associated non-negative multipliers ™™ satisfy (16) and (18). It is straightforward
to check that (17) is satisfied as well. Indeed, we have

_ zerw mx W (U )= z LS .,Wi :ﬂi+u'imax 75 (p) — ﬂ_stmaX(p1u’i’),

W; eW; W; eW; !

which, using (29), is transformed to — " ™™ p" (u") = 7™ (p) — 7" (p) - Therefore,

w; eW

(17) holds, and Proposition 4 entails that the introduction of the redundant constraints
p¥i(u)<0, w, eW , with p"(u)= , and the associated multipliers ™™ given

by (31) results in zero uplift payment. (We note that only the constraint p" (u,) with
w, =u; contributes to the uplift reduction, while the rest of p"(u) make no
contribution to the uplift payment.) These constraints result in

N@.x)==2, "™ p" W) =m""(p) -7 (P,u)), (32)
and the amended profit function has the form
m(PX)=x (px )+ (p) - Stmax(pu) It is straightforward to check that the

expression (32) for N, (p,x;) can be expressed in terms of (24) with
nPX)=m" )= ™ (P )=, [ (P)-" ().

We note that for the given market price p and statuses of the unit, the new terms in
the profit function are constant. In the case of one-period market model with no
intertemporal constraints (ramp, minimum up/down time constraints, etc.), we have
=(-uy;), 9, ,=U;, which entails
St max(p U) = (-7 ™ (p,0) +uz ™ (p.l) =z ™ (pL),
where we used z™(p,0)=0. This allows expressing (32) as
N.(p,%)=7z""(p)—urz""™(p2) . Thus, if the generator has the lost profit (i.e. it is
offline in the centralized dispatch solution, but operation at the given market price p
would result in the profit z**(p) >0), then N,(p,x ) compensates the generator for
the lost profit 7™ (p) if it complies with the centralized dispatch solution. Likewise,

if the generator operates at a loss (i.e. the generator is online in the centralized
dispatch solution, but it is not recovering its cost at the given market price p and,

hence, would prefer to be offline), then z**(p)=0, =™ (p)<0. In this case,
N.(p,x ) ensures that the generator receives zero profit and, as a result, fully recovers
it cost if it follows the centralized dispatch.

VII. Application to a producer with constant marginal cost of output in a
single-period power market
Consider a producer operating a generating unit without intertemporal constraints in
a single-period power market. The producer is assumed to have the constant marginal
cost of output a, start-up cost w, minimum/maximum capacity limit g™/ g™ with
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0<g™ < g™. Thus, the producer cost function has the form C(x)=wu+ag defined on
the producer private feasible set X ={(u,g)|ue{0,} gecR,ug™ <g<ug™3}. We
consider the standard revenue function of the form R*(p,x)= pg with the market price
p, which is considered as being fixed by some pricing principle. Initially, the unit is
assumed to be offline. Let x"=(u",g") denote the value of the producer status

variable/output volume according to the centralized dispatch solution. We show that
to construct the amendment function N(p,x) that satisfies (2) - (4) it is sufficient to

consider the following redundant constraints: ug™ -g<0, g-ug™ <0, u-1<0. (We

note that this list of the redundant constraints is not exhaustive since there are the
redundant constraints that are not expressed as some linear combination of these

constraints, e.g. max{ug™ —g,g-ug™]<0.) Thus, we have
N(p,x) = g (g -ug™) + > (ug™ —g) + 4’ (1-u). (33)

If g"=0, then for p<a+w/g™ the uplift payment is zero and we set
W= =p4=0. For p>a+w/g™, from (13) we have 4'=0. Also, the constraint
g-ug™ <0 is satisfied as equality at g" =0 and, therefore, does not contribute to the
uplift. Consequently, we set x*=0. Thus, we are left with u-1<0. Proposition 7 gives
1™ =7 (p). It is straightforward to check that the redundant constraint and the
multiplier satisfy (16) — (18), which results in N(p,x)=7""(p)(l-u). In this case, the
amended profit function is z(p,x)=(p-a)g -wu+7z"*(p)(L-u).

If g°=g™, then we set 4'=,°=0 as the corresponding constraints do not
affect the uplift at x". Proposition 7 entails ™ =[z""(p)-z""(p)]/(g™ -g’), which
gives N(p,x)=[z""(p)-7*"(p)l(ug™ —g) /(g™ —g") with the redundant constraint and
the multiplier satisfying (16) — (18). The amended profit function is given
by
2(p.x) = (p-a)g —wu [z (p) -7 (P9 (9™ - 9") +[#"" (p) ~ =™ (PIg™u/(g™ ~7").

If g™ <g"<g™, then for p<a+w/g™ we have ,*=0 as a consequence of
(13). The conditions (17) - (18) give ' =-z"(p,Lg™)/(g™ —g™),
1 =—7"(pL,g™) /(g™ —g™). The resulting expression for the amendment
function is N(p,x)=-7"(p,x), which corresponds to the redundant constraint
(p—a)g-wu<0 and yields the identically zero amended profit function on X. In the
case of p>a+w/g™, from (13) we have 4'=0, while the constraint u-1<0 is
satisfied as equality at x” and makes no contribution to the uplift. Therefore, we set
1 =0. Proposition 7 gives ™ =(p-a). These redundant constraints and the
corresponding multipliers satisfy (16) — (18) and give N(p,x)=(p-a)(ug™ —g), which
produces the amended profit function z(p,x)=7""*(p)u.

Likewise, if g"=g™, then for p>a+w/g™ the uplift is zero and no revenue
function amendment is needed. For p<a+w/g™, we have x*=0 from (13) and we
also set 4*=0 since g-ug™ <0 is satisfied as equality at x". Proposition 7 gives
™ =— (p) (g™ —g™) with 7 (p)=(p-a)g™ —w resulting in

18



N(p,x)=-7""(p)(g—-ug™) /(g™ —g™). It is straightforward to verify that the
conditions (16) — (18) hold, and the amended profit function is expressed
asz(p,x)=(p-a)g-wu-z""(p)(g-g™u) (g™ ~g™).

Let us construct the profit function amendments resulting from the application
of (27). We define the extended value cost function C(x) on Conv{X} as C(x)=C(x) if

xeX, and C(X)=+x if x e Con{X}\ X . We have
Conv{X}={(u,9)|ue[01],9 €[0,g™],g/g™ <u<g/g™}. Let us introduce a function
f(x) =conchm{X}{(_I(x)—5XYX*[7r‘°‘”(p)—ﬂS"*(p)]} on xeConv{X}. For xeCon{X},
the function f(x) defines a surface in R* with coordinates (u,g, f). It can be shown
that (27) yields the same expressions for N(p,x) as above except for the case
g™ <g <g™. In this instance, for xeCony{X} the function f(x) corresponds to the
highest of two planes in R* defined below. We have f (x) =max] f,(x), f,(x)] with
f,(x) corresponding to the plane that contains the points (0,0,0), (Lg™,w+ag™),
Lo, w+ag —[7z"(p)-~""(p)]) and f,(x) corresponding to the plane that
contains the points (0,0,0), (Lg ,w+ag —[7z""(p)—7""(P)]), (L g™ w+ag™).
The straightforward computation gives

f,(x) =wu+ag +[z**(p) -7 (p)l(ug™ - 9)(g"~g™),

f,(x) =wu+ag +[z""(p) - 7" (P)I(g —ug™) (g™ ~g’) .

This entails

N(p,X) =[z""(p) - 7" (p)Imin[(g —ug™) /(9" - g™); (ug™ - ) (g™ -g")], (34)
which can be obtained from the redundant constraint
maq(ug™ —g) /(g —9™):(g-ug™) (g™ —g")]<0 with the multiplier

u=r""(p)-="*"(p). For p>a+w/g™, the resulting amended profit function has the
form  z(p,x) =uz™* (p)+min[g—-ug”;0](p-a)(g™ -g™) /(g -g™). For p<a+w/g™,
we have 7(p,x)=min[(ug” - g)z* (1 p,g™) (g —9™);(g—ug)z™ (L p,g™) (g™ - g)].

It is illustrative to repeat the analysis when the status variable u is expressed in
terms of the output volume g as u=6(g) and is excluded from the consideration. In

this case, the private feasible set of the generator is expressed as
G={g|g<{0yu[g™, g™ ]}, while the cost function is C(p,g) =ag+wéa(g). We also have

Con{G}={g|0< g <g™}. The analysis above implies that to construct the amendment
function N(p,g) that yields zero uplift payment it is sufficient to consider the
redundant constraints #(g)g™ -g<0, g-6(g)g™ <0, #(g)-1<0. Such an approach
gives N(p,x) = £'[g-60(9)g™ 1+ £°[6(9)g™ - 9]+ #°[1-6(g)] with the same values of the
multipliers u*, 4?, 4* asin (33).

Application of (27) results in the following expressions for the functions

N(p.g) and z(p,g).

If g"=0, then for p<a+w/g™ the uplift payment is not needed. For p>a-+w/g™,
we have N(p,g)=7z""(p)-="(p,g), which can be obtained from the redundant
constraint 7*(p,g)<7"*(p). The resulting amended profit function has the form
z(p,g) =7""(p) and is constant.
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If g"=g™, then for p>a+w/g™ we have N(p,g)=7""(p)d(g)-~"(p,q), which is
associated with the redundant constraint z*(p,g)<z"*(p)d(g). For the amended
profit function we have 7z(p,g)=7z""(p)@(g). In the case of p<a+w/g™, the
calculation gives N(p,g)=-0(9)(g™ —g)z*(p,g™) /(g™ —g™), which can be obtained
from the redundant constraint g<#(g)g™ . (We note that the presence of 4(g) is

critical in this constraint since the redundant constraint g < g™ makes no contribution
to the uplift payment as the associated multiplier is zero due to (13).) In this case, we

have z(p,g) =min{(g —g™)z"(p,g™) /(g™ - g™);0}.
If g™<g'<g™, then in the case of p>a+w/g™ we have

N(p,g) =min[{g[z*"(p) -7 (p)]+W6(9)9 ~gI} 9" 7™ (p) =" (p,g)], which
corresponds to the redundant constraint
max{{glz""(p)-7"" (P)]+Wg-0(9)g T}/ 977" (p,g)-~""(p)]<0. This constraint is
equivalent to the set of the redundant constraints

{9[7*" (p) -7 (p)]+WMg-0(9)g’ T} g <0, which can be transformed to g—g™ <0, and
7(p,9)-7""(p)<0. (However, as we noted in Section IV, the equivalent set of
constraints may result in the different amendment function.) The amended profit
function is z(p,g)=7""(p)min[g;g’]/g . For p<a+w/g™, we have
N(p,g)=min[-z* (p,9):{g 7" (p.9) - 7" (p, g™ )]+W{A(9)g™ —gI}/(g™ -g")]. (35)

which is associated with the redundant constraint —N(p,g)<0. (We note that the
constraint —N(p,g) <0 is equivalent to the set of the redundant constraints z*(p,g) <0
and g'[7z*(p,g™)-7"(p,9)]+Wg-6(g)g™]<0.) The amended profit function is given
by 7(p,g)=min[z*"(p,g™)(9-9") (g™ ~g"):0].

If ¢g"=g™, then for p>a+w/g™ the uplift payment is not needed. For
p<a+w/g™, we have N(p,g)=-7"(p,g), which corresponds to the redundant
constraint z*(p,g) <0. The resulting amended profit function is identically zero.

VIII. Numerical example
In this section we apply the amended profit function expressions (27) and (33) for
the Scarf example [5] (adapted according to [22]), which describes the uninode single-
period power market with fixed demand and three types of the power plants
(“Smokestack”, “High Tech”, and “Med Tech”) with the constant marginal costs of
output. The unit parameters are given below.
Table 1. Characteristics of the generating units

Minimum Maximum Marginal Start-up
capacity capacity cost of cost, $
limit, MW limit, MW output,
$IMW
Smokestack 0 16 3 53
High Tech 0 7 2 30
Med Tech 2 6 7 0

It is assumed that the power system has 6, 5, and 5 units of each type, respectively.
Initially, all the units are offline. We consider two scenarios with demand equal 10
MWh and 40 MWh, respectively, with the standard revenue function of the form
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R*(p,X) = pg . We apply the convex hull pricing mechanism [20]-[22] to set the market
price. The centralized dispatch outcomes and the market prices are given below, [22].

Table 2. Dispatch and pricing outcome
Smokestack High Tech Med Tech Market Total
Demand, | Number Each Number Each Number Each price uplift, $
MWh of units unit of units unit of units unit Perp -
online output, online output, online output, $/MWh
MWh MWh MWh
10 0 0 1 7 1 3 6.2857 2.143
40 1 16 3 7 1 3 6.3125 2.438

If demand is 10 MWh, then the online High Tech unit sets the market price, and the
uplift payment is made only to the operating Med Tech unit to compensate its output

cost. Thus, Uyr =1, Gyr =3, 7 (Pore) =—$2.143, Uy =gy =0, 7357 (Pep) = $0.

The application of (27) gives the following. From (34) we obtain the
amendment function

Nyt (Pepp s Xur ) = 2.143min[ g, —2Uy1;2Uyr — Gy /3],
which reaches its maximum value (equal the uplift payment of $2.143) at u,, =1,
9yr =3, and vanishes at u,,; = g,,; =0, which is the optimal point of 75 (Pepe Xyr) - It
is straightforward to check that N, (Peues Xur) 20, ¥X,; € Xy, @nd such a choice for
Ny (Pepes Xyr) Can be realized by the introduction of the redundant constraint
min[g,; — 2Uy;;2Uyr — Oyr /31> 0 with the associated multiplier »=2.143. The
resulting amended profit function is
Tt (Perps Xur ) =1.429Min[ gy — Uy i3Uyr — Gur ] =—-1.429] gy —3Uyr |-

It is illustrative to consider the outcome of (27) if the private feasible set of a
Med Tech unit is described using the output variable only. From (35) we
obtain Ny (Peyes Oyr) =0.714min[g,::6-0,;]. This expression for N (PeeGur)

corresponds to the redundant constraint min[g,,;;6—g,,;]1=>0, which is equivalent to
the set of the redundant constraints 0<g,,;, gy; <6. The resulting amended profit
function is given by 7z, (Peyes Gy ) = 2.143min[3-g,,;0].

The alternative amendment function can be obtained from (33), which yields
the redundant constraints 2u,,; —g,, <0 and g,,; —6u,,; <0 with the multipliers
equal 1.071 and 0.357, respectively. The resulting amendment function equals
— 7o (Penps Xy ) @nd produces identically zero amended profit function.

Now, we consider a scenario with demand equal 40 MWh. Without the uplift
payment, the online Med Tech unit has a loss of $2.063 and each of the two offline
High Tech units has the lost profit in the amount of $0.188. First, let us consider the
online Med Tech. The application of (27) for the formulation involving the private
feasible set Xt IS given by (34), which yields

Nyt (Perps Xur ) = 2.063min[ g, —2U,7;2uy; — 97 /3]. (This expression for the amendment
function Ny (PeesXyr) Can  be obtained from the redundant constraint
min[g,; — 2Uyr;2Uyr — 9, /3]120.) The corresponding amended profit function is
expressed as 7y; (Pepps Xur) =—1.375| gy —3U,, |- In case of the private feasible set
Gur» (27) gives N, (Peyes 9yr) = 0.688min[g,,.:6—g,,]. We note that this expression
for Ny;(Peer Oyr) Can be obtained from the redundant constraint min[g,;6-d,;]20,
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which is equivalent to the redundant constraints 0<g,,, g,; <6 belonging to the
private feasible set of the Med Tech unit. The amended profit function is expressed as
Tyt (Pepps Oyr ) = Min[0;4.126 -1.3759,,;]. Another choice for the amendment function is

given by (33), which entails N (Peps Xyr) =1.031(g,,; — 2, ) +0.344(6u,,; —Q,,;) With

identically zero amended profit function.
For the High Tech unit, the application of both (27) and (33) for the producer

private feasible set formulated as X, yields N (Pep: Xr)=0188(1-u,;)
and z,; (Pepp, X7 ) = 0188+ 4.313g,,; —30.188u,,; . An alternative choice for the amendment
function is given by (27) for the case of the private feasible set G,,. We have
Ny (Pees 947 ) =0.188+306(9,,; ) —4.313g,; , Which can be deduced from the redundant
constraint 75 (Pewes 9ur ) — 7o (Poe) <0. The resulting amended profit function is
constant on G,,; and equals 0.188.

IX.  Conclusion

We considered the possibly non-linear redundant constraints that stay redundant
if the power balance constraint is excluded from the constraint set of the centralized
dispatch optimization problem and showed that the introduction of this type of the
redundant constraints leaves the duality gap unaffected. For each producer, we studied
the redundant constraints that are satisfied on its private feasible set and proved that
any set of the redundant constraints, which belong to this special type, corresponds to
the producer revenue function amendment that is non-negative (on the producer
private feasible set) and leaves the maximum profit of the producer unaffected.
Likewise, for any such amendment function, one can indicate (generally non-unique)
set of the redundant constraints. Consequently, the uplift payment is potentially
lowered by the introduction of these constraints.

We studied the properties of the redundant constraints and formulated necessary
and sufficient conditions for a given set of the redundant constraints and the
associated multipliers to yield zero uplift payment. For each producer, we explicitly
construct the general expression for the producer revenue function amendment that is
non-negative on the producer private feasible set, leaves the maximum profit of the
producer unaffected, and results in zero uplift payment for the market player. This
allows identifying the family of the redundant constraints that corresponds to the
revenue function amendment of the producer and yields zero uplift payment for this
market player. In case of the uniform price for power, we constructed one universal
redundant constraint (given by the sum of these properly rescaled individual
redundant constraints) that could be introduced directly in the centralized dispatch
optimization problem to yield zero total uplift payment after the Lagrangian relaxation
procedure is applied to both this constraint and the power balance constraint.

Thus, in the case of a uniform market price, it suffices to introduce just one
redundant constraint in the centralized dispatch optimization problem to eliminate all
the uplift payments. If the uniform market price is set using the convex hull pricing
method, the set of the market prices and each producer maximum profit are unaffected
by the redundant constraint.

Appendix
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In this section we study the properties of the redundant constraints and
establish a necessary condition for a given set of the redundant constraints to yield
zero uplift payment for the producer i. For vi, eL,, consider an optimization problem

7 P)=minmax [ (pX) 4ol PN (36)
Let us define the corresponding set of minimizers
M. (p) =arg rr|_1ir01 max [7(p,x,)— 1 p (p,x,)]. Clearly, M™(p) is a closed convex set
420, X;eX;

and {0}eM" (p). Since M (p)eR,, we have the following three possibilities for the
set M (p): M"(P)={0}, or M (p)=[0,a] with some acR,, or M (p)=R,.
Obviously, if pi'i (P,x;) <0, vx, € X,, then |V|i+|' (p) ={0}, while pi" (P.%x;)=0, vx, eX,,
entails M (p)=R,,. Let us denote by L the subset of L, with bounded M.™ (p). Thus,
vl e, we have p!'(p,x;)<0, ¥x. eX,, and p'(p,x,)#0 for some x! e X, which

+l; max

means that a set X b0 ={x, |X, € X, p"(p,x;) # 0} is nonempty. For vl eL, let u

denote the maximum element of M. (p). The following statement gives a

+l; max

straightforward way to calculate u. under some simplifying technical assumption.

Proposition 7. If for | eL, the function [z*(p,x,)-7" (p)]/ o' (p,X;) has a minimum
valueon X, then

g = min [z p.x) -7 @) ol px).  (37)

X;eX |i “

+

Proof. Let x"eM™(p), then (36) implies " p (0. %) 27" (0. X) -7 (), VX €X,,

which entails < _n;ln [z (0, %) -7 (P)]/ P (P, X,) . Let
g=min [z px) -7 @) ol (p.x). Thus, > 4", V" €M™ (p). Now, we show
that Z'eM™(p). For x cag mn [z(@.x)-7"@E)]/pl(@.X), we have

X;eX '
7 (p)=7" (p.x )_Iljillpill (p.x; ). Since 7" (p) Z77i5t'(p’xi)_/_lillpill (P.X)), vx eX, we
conclude that 7" (p) = Mmax [z (p.x) - 44 pi (Px;)]  and ' €M (p). Therefore,

+1; max

o :ﬁ" Proposition is proved.

We note that if p(p,x™)#0, | eL;, then (37) yields x'™ =0, which agrees
with (13).  Also, if P (p,x*i) #0, lel, then (37) implies
w <[ ) -7 P P pX),  which entails 1™ ol (p.X]) 2 7 (p) - 7 (p).
Therefore, if 4" eM™(p), then 1 and pi'i(px) satisfy (16) and (18). However, if
(17) holds for " eM(p) and p'(p.x), I eL;, then x"=x"™. The following
statement gives a relation between M " (p) and the sets M, (p).

Proposition 8. M*(p) X M (p).
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Proof: For a given keL,, define a projection operation P* to a hyperplane in R
defined by 4 =0: P*u=(u,.., <0, ™., ") . For V' e M (p), we have
”iSt'(vai) < ”iSt'(plXi) —(Pkﬂf)TPi(p,Xi) < ”iSt'(plXi) _/Ui+Tpi(p!Xi)! Vkel;, VX eX;.
Therefore, 7zft'+(p)s[(ri13X>i< [z @ %) - (P'u) pe.x)]<7*"(p).  This  implies
m ) =max [z (p.x)=(P'u) p(px)]- As aresult, if 4 <M;(p), then P s M/ (p).
The sequential application of the projection operation to various hyperplanes yields
that if 4 =(u",.,4™)eM (p), then (0..0,1"0,.0)eM’(p), which is equivalent to
4" €M (p). This implies M*(p) X M." (p) . Proposition is proved.

Therefore, a set M*(p) is a subset of an | L, |-dimensional box X M (p). We

note that some facets of this box can be degenerate or unbounded if M. (p)={0} or
M, (p) R,, for some I, < L, . Now we identify a special case when M (p) =X M (p).

Proposition 9. If X , nX

pii#0 pi#0

=0, VI, I eL;, I, =1/, then Mf(p):leiMi”‘(p).
Proof: Proposition 8 entails that M " (p) <X M (p). Therefore, we need to show that
A M (P)=M"(p). Let us choose an arbitrary =(,ul+,..,,ulf||)ele‘ M (p) with

1" eM™(p), VI eL,, and partition X, into the subsets with the elements belonging to
one of X hel and the rest of X,. We have X =[u XWXV U X T,

lieLj ili =0 lieLj
therefore
Max [z (.x) - 11" p, (P X,)] =
max{max - max [z (px) - o X max (e}
Using
max [z (X)) = " pl (Px)]I < max [z (p.x) - 4™ i (p.X)] =7 (P) and
st. st. __st+ :
Xiexirpgxxp“%0 T} (p,xi)égig)i( 7 (P, X;) =" (p), we arrive at

max [z (0.x) -4 A X< ). However,  z(p.Xx) <z (PX) -4 A(PX),
VX, € X, . Therefore, 7 (p) < max [z (p,x,) - 7 p. (P, X,)] - Consequently,
zf"*(p)z)r(ri@f [z (. x,) - 1" p.(p,x;)], Which yields g €M/ (p). Since 4 is an arbitrary
element of X M, (p) , we conclude that M*(p) = X M " (p). Proposition is proved.

We also note that if XX 0 =0, VhIiel, =L, then at most one of the

i 0 1

redundant constraints contributes to the uplift (i.e. satisfies p(p,X])#0) and the

other redundant constraints from L, can be excluded from the consideration.
Motivated by an observation that if " eM™(p), then (0...0,4™0..0)eM/(p),

we may indicate an nonempty subset of M*(p). For bounded M*(p), let us denote by
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A.(p) the convex hull of the points (0,...,0,4"™0..,0), I €L, and (0,..,0). In this case,
since M"(p) is a convex set, we have A,(p)cM"(p). For example, if all p "(p.x,) are
, then M " (p) is bounded and A,(p)=M"(p).

P20 i i
Now we are ready to formulate the necessary condition that holds if a vector
function p,(p,x;) produces zero uplift.

Proposition  10. Let p(p,x)<0, Wvx,eX;. I min U(p,4)=0, then

LM (p)

identical with nonempty X

u™ ol (p. X)) <7t (p) -7 (p) -
|1€L|

Proof. Due to M’(p)c x M;*(p), we have min H To.(p,X;) < m|n o (p.X7)-

: liel; ,ue X M ( HEM] (p)

Consequently, mm()”‘ (P, X)) = Z m|n ,u, o (px) > min ﬂ. P (p,X;), where
e x M (p

el lieL; # Il M (p)
we have used the fact that if M,™ (p) is not bounded, then u'p'(p,x))=0. We also
have 4™ pl(p,x) < Inh1A|n wotex), vleL. If min Ui(p,/,zi):O, then (15)

+Imax +I

implies min_up,(p.X;)=" (p)-x""(p), which gives Zﬂ (p.X) <7 (P) -7 (p).
#EM; el
Proposition is proved.
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