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Abstract
We consider the multi-server, single-channel queue, i.e., a G/G/k queue with k iden-
tical servers in parallel, under the first-come-first-served discipline in which the 
inter-arrival process is non-Poisson, the service time has any given distribution, and 
traffic is of medium intensity. Such queues are common in factories, airports, and 
hospitals, where the inter-arrival times and service times are typically not exponen-
tially distributed, but rather have double-tapering distributions whose probability 
density functions taper on both sides, e.g., gamma, triangular etc. For these condi-
tions, a new closed-form approximation based on only the mean and variance of the 
two inputs, the inter-arrival and service times, is presented. Determining distribu-
tions of inputs typically requires additional human effort in terms of histogram-fit-
ting and running a goodness-of-fit test, which is avoided here. The new approxima-
tion is tested on a variety of scenarios and its performance is benchmarked against 
simulation. Further, the new approximation is also implemented on a ventilator case 
study from the recent COVID-19 pandemic to demonstrate its utility in optimizing 
server capacity. The approximation provides errors typically in the range 1–15% and 
31% in the worst case. In systems where data change rapidly and decisions must be 
made quickly, this approximation will be particularly useful.
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1  Introduction

Multi-server queues appear in a variety of systems such as airports, factories, and 
hospitals. There is naturally significant research interest in analyzing such queues 
and quantifying their behavior. Two popular approaches for their performance evalu-
ation are closed-form approximations and discrete-event simulation. An advantage 
of closed-form approximations is that one can plug in values of inputs into their 
formulas for performance evaluation. In contrast, for discrete-event simulations, one 
needs expensive software and exact distributions, and, as we shall discuss below, 
simulations can become very slow as the number of servers increases. Therefore, 
closed-form evaluation of multi-server queues remains an important problem.

The most general version of this problem is referred to as the GI/G/k or G/G/k 
queue (see “Appendix” for basic queueing notations), which is typically studied 
under the following assumptions: 

A1.	� The inter-arrival time and the service time are allowed to have any given dis-
tribution (i.e., are generally distributed) and k, which exceeds 1, denotes the 
number of servers in parallel.

A2.	� There is only one waiting line, i.e., the queue has a single channel.
A3.	� Customers are served on a first come first served basis.
A4.	� The waiting line capacity is infinite.

We make two additional assumptions about the G/G/k queue for this paper: 

A5.	� The traffic intensity, i.e., the proportion of busy time for the servers, lies 
between 0.5 and 0.8. This condition is often described as medium traffic.

A6.	� The service time has a double-tapering distribution, which is defined herein 
as one whose probability density function is an increasing function from the 
minimum value to the mode and a decreasing one from the mode to the max-
imum value. Such a double-tapering distribution is hence clearly unimodal. 
Examples of such distributions are triangular, gamma, Erlang, Weibull, and 
beta, among others.

Exact or approximate procedures (or formulas) have generally eluded the 
G/G/k queue. In general, non-Poisson arrivals make the analysis of queues far 
more complicated than the case of Poisson arrivals, but they have been considered 
more recently in the literature (Jain et  al. 2020; Chydzinski 2020) due to the fact 
that non-Poisson arrivals are common in real-world settings. See Kimura (1994), 
Kimura (1995), Whitt (1993), Medhi (2003), Azadeh and Salehi (2018), and Yang 
et al. (2021) for analysis of such queues. For more recent examples of analysis and 
applications of multi-server queueing models, see Brandwajn and Begin (2016), 
Tadakamalla and Menascé (2017), and Khayyati and Tan (2021). Specific examples 
of G/G/k queues with non-Poisson arrivals in the real world include the following: 
flow shops in manufacturing systems (Altiok 2012), where there are multiple paral-
lel machines (see Fig. 1), airport queues (Mao and Wu 2017), where Identification 
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Documents (IDs) of travelers are checked by Transportation Security Administration 
(TSA) agents (see Fig. 2), and hospitals (Raffensperger et  al. 2020) with multiple 
beds in Intensive Care Units (ICUs) that are equipped with ventilators (see Fig. 3). 
Other examples include packet switching in electronic communication (Hluchyj and 
Karol 1988; Zhang and Baillieul 2013; Roy et al. 2021). Under the so-called heavy 
traffic condition, i.e., when the traffic intensity exceeds 0.8, the approximation in 
Sakasegawa (1977) for G/G/k queues is known to be fairly accurate (Robinson and 
Chen 2011). However, its performance under medium traffic (Assumption A5) is 
known to be unsatisfactory (Hubing 1984).

Fig. 1   The queue that forms in 
front of a parallel set of griding 
machines for jobs that arrive 
from heat treatment in a manu-
facturing plant

Fig. 2   An airport queueing 
system in which in the first stage 
where agents check identifica-
tion documents of the customers 
is a multi-server queue
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For the so-called M/G/k queue, which is a well-studied multi-server queue with 
k servers, the arrival process is Poisson and the service time can have any given 
distribution. Existing approximations from the literature have been known to work 
well for M/G/k queues (Whitt 1993), regardless of the traffic intensity. However, the 
M/G/k model is not applicable when the exponential distribution does not hold for 
the inter-arrival time.

The following evidence points to real-world systems where the M/G/k model does 
not work. In manufacturing systems, the inter-arrival time for a job is often gamma 
distributed (Benjaafar et  al. 2004), while the service time (production time) can 
have the gamma distribution in case the machine is failure-prone that leads to high 
variability (Das and Sarkar 1999). The material in the “Appendix” of the book of 
Baker and Trietsch (2013) clearly states that the production time on machines is not 
likely to have the exponential distribution. See also Burgin (1975), Muralidhar et al. 
(1992), and Savsar and Choueiki (2000), which provide extensive evidence of the 
inter-arrival times and service (production) times carrying the gamma distribution in 
manufacturing systems, rather than the exponential distribution. For airports, empir-
ical evidence suggests that inter-arrival times commonly have the gamma distribu-
tion (Khadgi 2009; Suryani et al. 2010). For the ID checking queue at a TSA secu-
rity line or at other service counters in an airport, one typically encounters a human 
server, whose service time is often modeled via the triangular distribution that 
approximates the beta distribution (Johnson 1997). Finally, Williford et  al. (2020) 
make the case for using the gamma distribution rather than the exponential for the 
length of stay in a hospital during a serious illness. Thus, clearly, there is a need 
for studying multi-server queues where the inter-arrival time is not exponentially 
distributed and the service time is either gamma or triangular (i.e., Assumption A6).

Need for approximations When distributions of inter-arrival and service times 
are available, under restrictive assumptions on the nature of the system, tedi-
ous analytical procedures leading to closed-form approaches, involving Laplace 

Fig. 3   The queue in a hospital 
that needs ICU beds is typically 
virtual within the computer 
system, but arriving patients 
assemble in the waiting areas 
while they are triaged by a nurse
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transforms (Langaris 1986; Eckberg 1977), embedded Markov chains (Nadara-
jah 2008), or phase-type distributions (Altiok 2012), can also be used for per-
formance evaluation. When distributions are available, an alternative route is to 
use discrete-event simulation software (Law 2014), although the latter requires 
expensive software and becomes sluggish as k increases beyond 10. After simu-
lation became a popular approach in the 1980s, research interest in closed-form 
approaches waned.

When the analyst is able to derive the distributions of the inputs and has access to 
a simulation software, or is able to use exact analytical procedures, the approxima-
tion suggested in this paper will not be necessary. However, in the real world, means 
and variances of inter-arrival and service times (inputs) can be estimated with less 
effort; it is in those circumstances that an approximation based on the mean and 
variance of the inputs, such as the one proposed here, has great practical value. Fur-
thermore, simulation software are expensive, while a closed-form formula within 
a spreadsheet software is cheaper and easier to use. Several specific scenarios in 
which such approximations are useful are described below.

First, to meet the needs of automated decision-making within the so-called Cyber-
Physical System (CPS) in the era of Industry 4.0 (Tao et al. 2018), methods based on 
two moments are likely to be more attractive, as fitting distributions requires addi-
tional computational effort in terms of histogram fitting, analyzing different distri-
butions, and finally employing a goodness-of-fit test, e.g., the Chi-square test and 
the Kolmogorov-Smirnov test, to select the best fit. In a CPS, decision-making and 
controls for hardware are exercised automatically through software written within 
so-called digital twins. In such systems, the requirement of using queueing models 
remains critical (Sinha and Roy 2019), and therefore models rooted in means and 
variances will remain attractive because they can be encoded into in-built functions 
within the hardware of digital twins for rapid computations and control.

Second, in traditional, computerized MRP (Materials Requirements Planning) 
systems, the proposed approximation based on means and variances of inputs will 
be useful in estimating lead times approximately. Since production data change 
frequently, determining distributions is typically ruled out and queueing estimates 
based on means and variances are popular (Askin and Goldberg 2002). Further, 
rough estimates of lead times are needed for determining the number of kanbans 
(Monden 1983), as well as for designing machine capacity (Heragu 2018); sub-opti-
mally designed machine capacity leads to long lead times and increased operational 
costs (De Treville et al. 2004).

Third, large airports that witness major fluctuations in their demand-arrival pat-
terns during the day use queueing models to determine server capacities—inte-
grating queueing-performance formulas into numerical optimization techniques 
(Hafizogullari et al. 2003; Manataki and Zografos 2009) to minimize queue waiting 
times. Finally, hospitals serving critical patients in need of ventilators, e.g., during a 
pandemic where conditions can alter dramatically every hour, contain G/G/k queues. 
The ongoing COVID-19 pandemic is making it critical to determine the optimal 
number of ICU beds equipped with ventilators to save lives; for optimization, these 
systems need to be modeled as multi-server queuing systems (Raffensperger et al. 
2020).
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In summary, simple closed-form approximations based on only the mean and 
variance of inputs (inter-arrival and service times), which can be executed in 
spreadsheet software or digital twins, continue to hold a special appeal in perfor-
mance evaluation. Furthermore, even when exact techniques are available, sim-
ple approximations with a “back-of-the-envelope” nature (Whitt 1993) and the 
ability to perform “rough-cut optimization” (Papadopoulos and Heavey 1996) 
are attractive in practical, real-world settings. Such approximations are generally 
not very accurate; however, they can be used for rough-cut capacity optimization 
of machines. As such, even if the approximations are not very accurate, they rap-
idly provide usable estimates of lead times that help in quick decision-making.

Contributions of this Paper The new approximation in this paper deviates 
from the literature as follows. It is based on an aggregation procedure of a G/G/1 
queue and not on the M/M/k formula, unlike the trend in much of the litera-
ture (Lee and Longton 1957; Kimura 1986; Shore 1988; Page 1982; Sakasegawa 
1977); see “Appendix” for definitions of various multi-server queues, including 
M/M/k. It is shown through extensive numerical testing that the new approxi-
mation exhibits more accurate behavior than that of existing G/G/k approxima-
tions from the literature (Marchal 1985; Kraemer and Langenbach-Belz 1976). 
The new approximation is also benchmarked against simulation, as the latter has 
been commonly used in the literature for that purpose (Altiok 2012; Rabta 2013). 
The aggregation procedure within our proposed approximation first condenses a 
multi-server queue into a fictitious single-server queue, via a correction factor 
for the squared coefficient of variation of the service time, and then retrieves the 
original single-server queue via another correction factor. Furthermore, the new 
approximation is developed for Assumptions A5 and A6, which are commonly 
true of conditions found in many real-world systems, but not studied as widely 
in the literature. Finally, the new approximation is based on only the mean and 
variance of two key queueing inputs, the inter-arrival time and the service time, 
which makes it suitable for automatic computations in manufacturing systems 
and in airports and hospitals where conditions can change rapidly.

The rest of this article is organized as follows. Theoretical background mate-
rial and notations for the research in this paper are provided in Sect. 2. Section 3 
details the methodology underlying the new approximation. Section 4 presents 
numerical results obtained from using the new methodology and the benchmark-
ing exercises. Finally, Sect. 5 presents the conclusions drawn from this research, 
as well as directions for future research.

2 � Theoretical background

The section begins with mathematical notation and then discusses two bench-
marking models.
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2.1 � Notation

–	 k: Number of servers in the single-channel queue
–	 � = 1∕ E[inter-arrival time] : Mean rate of arrival
–	 � = 1∕ E[service time] : Mean service rate
–	 � = �∕(k�) : Overall server utilization
–	 L

G∕G∕k
q  : Mean number of customers in a G/G/k queue

–	 W
G∕G∕k
q  : Mean waiting time in a G/G/k queue

–	 �2
a
 : Variance of the inter-arrival time

–	 �2
s
 : Variance of the service time of any server

–	 C2
a
= (�2

a
)∕(1∕�)2 : Squared coefficient of variation in the inter-arrival time

–	 C2
s
= (�2

s
)∕(1∕�)2 : Squared coefficient of variation in the service time of any 

server

From Little’s law:

Two approximations, described in the following two subsections, have been selected 
for benchmarking of the new approximation. The reason for selecting them is: they 
also rely on only the mean and variance of the inter-arrival and service times, mak-
ing them comparable. Further, both of these approximations are rooted in the so-
called M/M/k model, which has been used widely in the literature to develop approx-
imations for multi-server queues.

2.2 � Marchal approximation

Marchal (1976) developed an approximation for G/G/1 queues that was combined 
with the exact M/M/k formula to develop an approximation for G/G/k queues (Mar-
chal 1985). His G/G/1 approximation, which holds under Assumptions A1: A4, is 
shown below:

The existing exact formula for an M/M/k queue (Ross 2014) is:

where

(1)Lq = �Wq.

(2)LG∕G∕1
q

=
�2(1 + C2

s
)(C2

a
+ �2C2

s
)

2(1 − �)(1 + �2C2
s
)

.

(3)LM∕M∕k
q

=
P0

(
�

�

)k

�

k!(1 − �)2

(4)P0 =
1

(k�)k

k!(1−�)
+
∑k−1

m=0

(k�)m

m!

.



5212	 C. Chaves, A. Gosavi 

1 3

Note that P0 above denotes the probability that there are zero customers in the sys-
tem. Based on his G/G/1 approximation (given in Eq. (2)), Marchal (1985) devel-
oped a correction factor, denoted by CF, that when applied to the M/M/k formula 
works as an approximation for the G/G/k queue. The correction factor is given by:

Combining Eqs. (3) and (5), one has the following approximation (Marchal 1985) 
for the G/G/k queue:

where P0 is as defined in Eq. (4). The above approximation will be referred to as the 
MAR (short for Marchal) approximation.

2.3 � Kraemer and Langenbach‑Belz approximation

Kraemer and Langenbach-Belz (1976) developed the following approximation for 
the G/G/1 queue, which holds under Assumptions A1: A4:

where

For benchmarking his own approximation, Marchal (1985) suggested an alternative 
correction factor from the single-server approximation in Kraemer and Langenbach-
Belz (1976), which was:

in which g is as defined in Eqs. (8)–(9). This leads to the following approximation 
for the G/G/k queue:

(5)CF =
(1 + C2

s
)(C2

a
+ �2C2

s
)

2(1 + �2C2
s
)

.

(6)LG∕G∕k
q

= CF ⋅ LM∕M∕k
q

=
(1 + C2

s
)(C2

a
+ �2C2

s
)

2(1 + �2C2
s
)

⋅

P0(�∕�)
k�

k!(1 − �)2
,

(7)LG∕G∕1
q

=
�2(C2

a
+ C2

s
)

2(1 − �)
g

(8)g = exp

(
−2(1 − �)(1 − C2

a
)2

3�(C2
a
+ C2

s
)

)
when C2

a
≤ 1;

(9)g = exp

(
(1 − 𝜌)(1 − C2

a
)

C2
a
+ 4C2

s

)
when C2

a
> 1.

(10)CF =
g(C2

a
+ C2

s
)

2
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where P0 is as defined in Eq. (4). The above G/G/k approximation will be referred to 
as the K-L-B (short for Kraemer and Langenbach-Belz) approximation in this paper.

3 � Multi‑server aggregation procedure (M‑SAP)

The underlying principle in the new multi-server aggregation procedure, referred to 
as M-SAP for short, is to aggregate (or transform) a single-channel, multi-server 
queue into a hypothetical single-server queue with the same utilization, develop an 
estimate for the squared coefficient of variation in the hypothetical single-server 
queue, and then employ this estimate within an existing approximation for G/G/1 
queues to evaluate the original multi-server queue’s key performance metrics, i.e., 
the expected waiting time and the expected number in the queue. This last step is 
performed via a correction factor that retrieves the original multi-server queue. 
Steps in M-SAP are outlined as follows in order to first provide an overview of this 
procedure: 

Step 1:	� (Aggregation) The G/G/k will be aggregated into a hypothetical G/G/1 
queue, i.e., the mean and variance of the service time of this hypotheti-
cal G/G/1 queue will be computed via an aggregation procedure, whose 
details are provided below in Sect. 3.1.

Step 2:	� (Single-Server Approximation) The expected queue length of the hypo-
thetical G/G/1 queue, denoted by L̂q , will be computed using either the 
MAR or the K-L-B approximation and the aggregation procedure of Step 
1; the details are provided below in Sect. 3.2.

Step 3:	� (Retrieval) The expected queue length ( Lq) of the original G/G/k queue 
will be obtained via details shown in Sect. 3.3.

 Fig.  4 depicts the main idea underlying the M-SAP approximation procedure. In 
what follows, the three steps in the procedure are described in detail.

3.1 � Step 1

The objective here is for the service process in the aggregated single-server queue 
to behave in a manner similar to that in the original multi-server queue. To this 
end, a new squared coefficient of variation for the service time of the aggregated 
queue, Ĉ2

s
 , is proposed. The intuition underlying the aggregation is that approxi-

mations in queueing networks are often handled via modifications of the squared 
coefficients of variation of either the service time or inter-arrival time (Buza-
cott and Shanthikumar 1993), which should ideally lead to balanced behavior 
in the final result. By “balanced behavior,” one refers to behavior in the middle 

(11)LG∕G∕k
q

= CF ⋅ LM∕M∕k
q

=
g(C2

a
+ C2

s
)

2
⋅

P0

(
�

�

)k

�

k!(1 − �)2
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of the spectrum of values obtained of the mean queue length, rather than at the 
extremes. For instance with the two variables, the squared coefficients of varia-
tion of inter-arrival and service times, both variables at the same level (high or 
low) would represent the middle of the spectrum. On the other hand, when the 
two variables are at conflicting levels, one would obtain behavior at the two ends 
of the spectrum: one variable at a high level and the other at a low level would 
represent one extreme of the spectrum, while one at a low level and the other at a 
high level would represent the other extreme of the spectrum. Hence, the balance 
here is rooted in the notion that when the variability in one of the inputs (inter-
arrival and service times) is high (low), that in the other inputs should also be 
high (low) to obtain reliable estimates. Although the intuition suggests this kind 
of behavior, the exact thresholds for what is considered “high” and “low” and the 
precise expression for modifying the squared coefficient of variation are deter-
mined empirically in this paper, i.e., via computational experiments to determine 
which threshold and which modification leads to the best results vis-á-vis the 
results from simulations. This entails trial-and-error based experimentation with 
different combinations of high and low values and benchmarking against simula-
tion to determine which combination delivers the best performance.

Performing computational experiments to identify a suitable replacement for 
an existing term is common in queueing approximations, although this is a tedi-
ous process. For instance, see Sakasegawa (1977), where WD∕M∕1

q  is replaced 
by (WM∕D∕1

q −
�

3
) in which D denotes deterministic (constant); the reason for this 

replacement is justified there on grounds of empirically satisfactory results. Also, 
finding thresholds for determining fields of satisfactory behavior is also common in 
queueing literature. For instance, the classical heavy-traffic threshold, 𝜌 > 0.8 , above 
which heavy-traffic approximations rooted in the normal distribution are known to 

Fig. 4   Schematic showing the 
aggregation scheme in M-SAP 
that aggregates the k serv-
ers of a G/G/k queue into one 
server to generate an aggre-
gated single-server queue with 
modified mean and variance of 
the service time, as well as the 
retrieval to obtain the original 
G/G/k queue
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work in a satisfactory manner, has been determined via computational experiments 
(Whitt 1993).

From our extensive experimentation, the following thresholds and approximate 
formulas are proposed herein:

–	 When the variability in the inter-arrival time is low, i.e., C2
a
< 0.3 : the effect of 

the variability in the service time should be lower to maintain balance and hence 
the variance is reduced by the number of servers, k: 

–	 When the variability in the inter-arrival time is high, i.e., when C2
a
>= 0.3 : the 

effect of the variability in the service time should be magnified, again to main-
tain balance, and hence the variance is multiplied by the number of servers, k: 

The two formulas above will be combined as for convenience of representation:

Since we consider one server to replace a multi-server queueing system, it is neces-
sary to divide the arrival process into k equal parts, and therefore the arrival rate to 
the aggregated queue will be �∕k ; otherwise, one will have an unstable system. The 
service rate of the aggregated single server will be � . Taken together, this implies 
that in the aggregated queue:

The above is a necessary condition for consistency with the value of utilization in 
any multi-server queue (Whitt 1993) which should be less than one for stability.

3.2 � Step 2

Step 2 will employ a G/G/1 approximation for the aggregated single-server queue. 
Within the approximation, the squared coefficient of service will be used as defined 
above by Eq. (12) and � as defined above by Eq. (13); the value of C2

a
 will not be altered. 

A regime, defined herein as a well-defined area on the graph of which the x-axis is C2
a
 

and the y-axis is C2
s
 , is constructed for estimating the value of L̂q , i.e., the estimated 

mean length of the aggregated queue. The regime is described via four sub-areas or 
scenarios that have been identified on the graph. See Fig. 5 for the geometric structure 

Ĉ2
s
≡

1

k

𝜎2
s

(1∕𝜇)2
.

Ĉ2
s
≡ k

𝜎2
s

(1∕𝜇)2
.

(12)Ĉ2
s
=

⎧⎪⎨⎪⎩

1

k

𝜎2
s

(1∕𝜇)2
, if C2

a
< 0.3.

k𝜎2
s

(1∕𝜇)2
, if C2

a
>= 0.3.

(13)� =
�

k�
.
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of this regime. As stated above, extensive computational experimentation involving 
trial and error was conducted that led us to conclude that if the K-L-B rule is used 
within M-SAP for the hypothetical single-server queue, Eq. (9) works more accurately 
than Eq. (8) for calculating g.

The approximation formula needed in each scenario within the regime is presented 
below. 

Scenario 1:	� Conditions: C2
a
< 0.30;C2

s
≤ 0.15 : Use the MAR G/G/1 approximation 

given in Eq. (2) to compute L̂q.
Scenario 2:	� Conditions: C2

a
> 0.3;C2

s
≤ 0.15 : Use MAR G/G/1 approximation pro-

vided in Eq. (2) to compute L̂q.
Scenario 3:	� Conditions: C2

a
< 0.3;0.15 < C2

s
≤ 1 : Use the K-L-B G/G/1 approxi-

mation found in Eq. (7) using the value of g computed via Eq. (9) to 
compute L̂q.

Scenario 4:	� Conditions: C2
a
> 0.3;0.15 < C2

s
≤ 1 : Use the MAR G/G/1 approxima-

tion given via Eq. (2) to compute L̂q.

3.3 � Step 3

In this retrieval step, the value of the mean queue length of the original queue is 
obtained via the following equation that seeks to compress the elongated hypothetical 
queue by k:

(14)Lq =
L̂q

k
.

Fig. 5   The number in each box represents the Scenario number
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The mean wait in the queue can now be computed via Little’s law, i.e., Eq. (1). The 
intuition underlying the proposed approximation for the mean queue length, i.e., Eq. 
(14), is as follows: Since k servers are aggregated, the resulting variability in the 
aggregated (fictitious) server is artificially higher, which must be adjusted for in the 
final calculation. This adjustment is performed by dividing the queue length of the 
single-server, aggregated queue obtained from the previous two steps by k.

4 � Numerical results

The numerical testing with M-SAP as well as that for the benchmarking techniques 
was performed under the condition: C2

a
< 1 . This condition is standard for most 

manufacturing, airport, and hospital systems; also when the variance is so high that 
C2
a
 exceeds 1, higher-order moments are often needed (Buzacott and Shanthikumar 

1993; Shore 1988; Marchal 1985), which is beyond the scope of this work.
Computer programs for implementing M-SAP were run on a personal computer 

in a university setting that used an Intel Pentium Processor with a speed of 2.66 GHz 
on a 64-bit operating system. The simulation programs used the software ARENA. 
The M-SAP, MAR, and K-L-B approximations were implemented within the soft-
ware MATLAB because it provided great flexibility in programming; however, this 
task can just as easily be carried out in spreadsheet software. The MATLAB pro-
gram required no more than 5 seconds for any given scenario, while the simulations 
with ARENA used 10 replications each and needed about 55 seconds per scenario. 
In addition, every scenario required benchmarking via the two G/G/k models based 
on MAR and K-L-B; this also needed no more than 5 seconds per scenario. In all, 
for the four scenarios, a total of 91 cases were tested.

4.1 � Numerical evaluation with M‑SAP

The approximation was tested under the following conditions: (i) gamma distribu-
tion for inter-arrival times, (ii) � = 1∕5 , and (iii) � = �∕(k�) was approximately 
0.67 (medium traffic); the value for � was varied as follows. For k = 2 , � = 0.15 ; 
for k = 3 , � = 0.1 ; for k = 4 , � = 0.075 ; for k = 5 , � = 0.06 ; for k = 6, � = 0.05; for 
k = 7, � = 0.043 ; and for k = 8 , � = 0.0375 . The different parameters for the inter-
arrival times are shown in Table  1. Other double-tapering distributions were not 
chosen for the inter-arrival time as no evidence was found for them in the literature 
as suitable choices for the inter-arrival time.

Figure 6 shows a screenshot of the computer program written in ARENA. Key 
details of this program are as follows: The main computer program is comprised 
of three modules, CREATE, PROCESS, and DISPOSE. Customers (entities) enter 
the system through the CREATE module, where the parameters of the inter-arrival 
time distribution are specified using the following ARENA format: GAMM (scale, 
shape), where GAMM denotes the gamma distribution. Within the PROCESS mod-
ule, the parameters of the service time are specified from one of the following three 
choices for the model studied here: GAMM (scale, shape) for the gamma distribution 
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Fig. 6   A screenshot of the simulation computer program written in ARENA: The main window shows 
the panel where the main code is written, and the window below it shows the panel in which the number 
of servers, i.e., the value of k, is assigned, which is 2 for Case 1 in Table 2

Table 1   Parameters in the inter-
arrival time gamma distribution 
for the different values of C2

a

C2

a
Ga(scale, shape)

0.05 Ga (0.25, 20)
0.10 Ga (0.5, 10)
0.15 Ga (0.75, 6.67)
0.20 Ga (1, 5)
0.25 Ga (1.25, 4)
0.30 Ga (1.5, 3.333)
0.35 Ga (1.75, 2.8571)
0.40 Ga (2, 2.5)
0.45 Ga (2.25, 2.2)
0.50 Ga (2.5, 2)
0.55 Ga (2.75, 1.8182)
0.60 Ga (3, 1.67)
0.65 Ga (3.25, 1.5385)
0.70 Ga (3.5, 1.4286)
0.75 Ga (3.75, 1.33)
0.80 Ga (4, 1.25)
0.85 Ga (4.25, 1.1765)
0.90 Ga (4.5, 1.1111)
0.95 Ga (4.75, 1.0526)
1.0 Ga (5, 1)
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and TRIA(minimum, mode, maximum) for the triangular distribution. The DISPOSE 
module allows entities to leave the system. The capacity of the server is specified in 
the bottom window and it equals k. The time for which the computer program is run 
and the number of replications is set within the execution panel (not shown in the 
figure).

Results from the computational work are provided in Tables 2, 3, 4, 5, 6, 7, 8, 9. 
In these tables, SERT is used to denote service times, and the following acronyms 
are used for three distributions: Ga (scale, shape) for the gamma distribution and T 
(minimum, mode, maximum) for the triangular distribution. The error against simu-
lation for the approximation was defined as follows, following the literature (Rabta 
2013):

Error(%) =

||||||
W

Approx
q −WSim

q

WSim
q

||||||
× 100

Table 2   Results from Scenario 1 for k < 5 : Entries under M-SAP, MAR, and K-L-B columns denote 
errors in %

Case k C2

a
SERT C2

s
WSim

q
M-SAP MAR K-L-B

1 2 0.10 T (1.6, 6, 12.4) 0.11 0.2122 0.06 95.68 29.70
2 2 0.15 T (1.6, 6, 12.4) 0.11 0.3203 6.55 73.61 16.41
3 2 0.20 T (1.6, 6, 12.4) 0.11 0.4362 11.71 59.79 6.50
4 2 0.25 T (1.6, 6, 12.4) 0.11 0.5632 16.36 48.78 0.17
5 2 0.10 Ga (1, 6.6667) 0.15 0.2901 20.287 65.22 21.93
6 2 0.15 Ga (1, 6.6667) 0.15 0.4057 21.65 53.54 11.64
7 2 0.10 Ga (1, 6.6667) 0.15 0.5259 23.05 45.81 3.51
8 2 0.10 Ga (0.8333, 8) 0.125 0.2579 14.63 71.42 29.92
9 2 0.15 Ga (0.8333, 8) 0.125 0.3601 14.91 62.28 15.14

Table 3   Results for Scenario 1 for k ≥ 5 : Entries under M-SAP, MAR, and K-L-B columns denote errors 
in %

Case k C2

a
SERT C2

s
WSim

q
M-SAP MAR K-L-B

1 5 0.05 T (4, 15, 31) 0.11 0.0380 5.42 341.93 1.41
2 5 0.10 T (4, 15, 31) 0.11 0.0777 4.97 227.59 17.69
3 5 0.15 T (4, 15, 31) 0.11 0.1263 14.77 169.86 29.90
4 6 0.20 Ga (1, 20) 0.05 0.0979 16.14 231.96 54.85
5 6 0.25 Ga (1, 20) 0.05 0.1497 5.40 165.97 52.72
6 6 0.30 Ga (1, 20) 0.05 0.2133 20.54 120.91 46.51
7 6 0.35 Ga (1, 20) 0.05 0.2638 25.18 106.35 51.81
8 7 0.15 Ga (2.3256, 10) 0.10 0.0636 16.35 293.01 81.65
9 8 0.15 Ga (4, 6.6667) 0.15 0.0586 7.85 289.76 123.00
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Table 4   Results from Scenario 2 for k < 5 : Entries under M-SAP, MAR, and K-L-B columns denote 
errors in %

Case k C2

a
SERT C2

s
WSim

q
M-SAP MAR K-L-B

1 2 0.35 Ga (4, 6.6667) 0.15 0.7235 27.72 37.99 15.89
2 2 0.40 Ga (4, 6.6667) 0.15 0.8672 16.57 28.93 13.30
3 2 0.45 Ga (4, 6.6667) 0.15 0.9831 13.44 25.91 14.65
4 2 0.50 Ga (4, 6.6667) 0.15 1.1203 8.08 21.18 13.41
5 2 0.55 Ga (4, 6.6667) 0.15 1.2752 2.44 15.85 10.77
6 2 0.4 T (1.6, 6, 12.4) 0.11 1.0204 6.645 24.31 5.33
7 2 0.5 T (1.6, 6, 12.4) 0.11 1.2914 14.26 19.94 9.878
8 3 0.4 T (2.4, 9, 18.6) 0.11 0.9923 16.02 30.07 19.16
9 3 0.60 T (2.4, 9, 18.6) 0.11 1.2923 25.54 17.63 12.69

Table 5   Results for Scenario 2 for k > 5 : Entries under M-SAP, MAR, and K-L-B columns denote errors 
in %

Case k C2

a
SERT C2

s
WSim

q
M-SAP MAR K-L-B

1 6 0.4 Ga (2, 10) 0.1 0.4132 13.16 61.21 35.45
2 6 0.4 Ga (1, 20) 0.05 0.3295 3.13 87.38 48.9
3 7 0.4 Ga (1.86, 12.5) 0.08 0.3125 21.73 77.60 45.84
4 7 0.4 Ga (1.63, 14.29) 0.07 0.2960 21.07 87.67 52.63
5 7 0.45 T (5.6, 21, 43.4) 0.11 0.4224 15.61 55.57 37.48
6 7 0.50 T (5.6, 21, 43.4) 0.11 0.4969 4.54 45.52 33.06
7 7 0.55 T (5.6, 21, 43.4) 0.11 0.5720 3.73 37.96 29.50
8 7 0.60 T (5.6, 21, 43.4) 0.11 0.6793 14.34 25.90 20.61
9 7 0.65 T (5.6, 21, 43.4) 0.11 0.7631 19.65 20.72 17.46

Table 6   Results from Scenario 3 for k < 5 : Entries under M-SAP, MAR, and K-L-B columns denote 
errors in %

Case k C2

a
SERT C2

s
WSim

q
M-SAP MAR K-L-B

1 3 0.10 Ga (2, 5) 0.20 0.2878 10.22 60.76 5.82
2 3 0.15 Ga (2, 5) 0.20 0.3741 13.29 56.37 4.49
3 3 0.20 Ga (2, 5) 0.20 0.4726 18.15 49.71 10.35
4 3 0.25 Ga (2, 5) 0.20 0.5723 22.00 45.01 15.19
5 3 0.1 T (4, 6, 20) 0.13 0.1901 28.94 95.00 19.41
6 3 0.15 T (4, 6, 20) 0.13 0.2708 29.15 80.58 4.90
7 3 0.05 T (2, 18, 20) 0.13 0.1000 21.83 151.99 28.44
8 4 0.10 T (2, 18, 20) 0.09 0.0804 15.42 45.31 7.96
9 4 0.15 T (2, 18, 20) 0.09 0.143 5.61 163.49 16.42
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where Approx represents M-SAP, MAR, or K-L-B and Sim denotes simulation. 
M-SAP delivers good performance with the error in the range of 1–15% in most 
cases; occasionally the error exceeds 30%, but this is rare compared to MAR and 
K-L-B. In fact, MAR and K-L-B deliver large errors frequently with their errors, 
exceeding even 150% in many cases. What is important to note is that the perfor-
mance of M-SAP is consistently reliable, whereas it is difficult to predict where 
MAR and/or K-L-B perform well. It should also be reiterated here that errors are 
unavoidable with these approximations, as they do not use distributions of the 
inter-arrival and service times (Whitt 1993; Sakasegawa 1977). However, this 

Table 7   Results for Scenario 3 for k ≥ 5 : Entries under M-SAP, MAR, and K-L-B columns denote errors 
in %

Case k C2

a
SERT C2

s
WSim

q
M-SAP MAR K-L-B

1 6 0.05 Ga (4, 5) 0.20 0.0766 12.29 184.39 39.52
2 6 0.10 Ga (4, 5) 0.20 0.1169 11.51 153.65 48.65
3 6 0.15 Ga (4, 5) 0.20 0.1698 19.19 120.75 47.48
4 6 0.20 Ga (4, 5) 0.20 0.2212 23.50 104.96 51.06
5 6 0.25 Ga (4, 5) 0.20 0.2830 29.42 87.91 49.28
6 8 0.05 T (6, 12, 62) 0.22 0.0431 5.45 67.68 93.84
7 8 0.10 T (6, 12, 62) 0.22 0.0650 10.89 62.5 131.80
8 8 0.15 T (6, 12, 62) 0.22 0.0968 1.64 68.1 84.7
9 8 0.20 T (6, 12, 62) 0.22 0.1403 13.57 161.26 100.01
10 8 0.25 T (6, 12, 62) 0.22 0.1837 2.76 205.03 149.12

Table 8   Results from Scenario 4 for k < 5 : Entries under M-SAP, MAR, and K-L-B columns denote 
errors in %

Case k C2

a
SERT C2

s
WSim

q
M-SAP MAR K-L-B

1 3 0.30 Ga (2, 5) 0.20 0.7097 29.03 34.20 12.94
2 3 0.35 Ga (2, 5) 0.20 0.8143 6.29 31.98 16.18
3 3 0.40 Ga (2, 5) 0.20 0.9456 1.05 26.61 15.44
4 3 0.45 Ga (2, 5) 0.20 1.0877 7.53 21.32 13.71
5 3 0.50 Ga (2, 5) 0.20 1.2331 12.74 16.96 12.00
6 3 0.55 Ga (2, 5) 0.20 1.3490 15.03 15.98 12.91
7 3 0.60 Ga (2, 5) 0.20 1.4591 16.63 15.63 13.98
8 3 0.65 Ga (2, 5) 0.20 1.6832 23.57 7.50 6.96
9 3 0.35 Ga (2.5, 4) 0.25 0.9029 10.37 27.68 16.78
10 3 0.40 Ga (2.5, 4) 0.25 1.0420 2.63 22.63 15.25
11 3 0.60 T (2.25, 4.5, 23.25) 0.22 1.4900 14.18 15.84 14.83
12 3 0.65 T (2.25, 4.5, 23.25) 0.22 1.5900 15.09 16.73 16.29
13 4 0.60 T (3, 6, 31) 0.22 1.0525 6.49 38.42 39.04
14 4 0.65 T (3, 6, 31) 0.22 1.2183 3.37 29.16 29.27
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approximation delivers reasonable results in settings where distribution fitting is 
ruled out, as discussed in Sect. 1.

There are cases where MAR or K-L-B perform well, but no pattern can be found 
for that except for the following condition: 0.7 < C2

a
≤ 1 . Under this specific condi-

tion, K-L-B and MAR perform extremely well because as C2
a
 approaches 1, the inter-

arrival time distribution starts approximating the exponential distribution; approxi-
mations rooted in the M/M/k formula used by MAR and K-L-B are then naturally 
appropriate, leading to good performance. While this specific condition is not com-
mon in the systems studied in this paper, computational results are provided within 
the “Appendix” to demonstrate the good performance of approximations from the 
literature under this condition.

4.2 � Optimization results with M‑SAP

Finally, optimization was performed to illustrate how the M-SAP model is useful 
for optimizing server capacity. The goal here is to determine the minimum server 
capacity at which the mean waiting time is lower than a pre-set upper threshold. 
Mathematically, this implies:

The optimal value of k obtained from the optimization exercise is denoted by k∗ , 
while the minimum server capacity needed to obtain a stable system is denoted by k̂ . 
Note that k̂ can be obtained for any queue by finding the minimum integer at which 
𝜆

k𝜇
< 1 . It should also be mentioned that at a server capacity of k̂ , the mean wait 

times are expected to be very long, although finite.
Two cases from the COVID-19 pandemic were used for optimization using avail-

able data. The first case is representative of an urban area where the arrival rate is 

Minimize k such thatWq < T where T is a pre-set threshold.

Table 9   Results for Scenario 4 for k ≥ 5 : Entries under M-SAP, MAR, and K-L-B columns denote errors 
in %

Case k C2

a
SERT C2

s
WSim

q
M-SAP MAR K-L-B

1 5 0.45 T (3.75, 7.5, 38.75) 0.22 0.7411 19.75 24.43 27.38
2 5 0.50 T (3.75, 7.5, 38.75) 0.22 0.7610 22.80 42.85 37.99
3 5 0.55 T (3.75, 7.5, 38.75) 0.22 0.8914 10.18 32.34 29.54
4 5 0.60 T (3.75, 7.5, 38.75) 0.22 0.9660 6.49 31.34 30.18
5 5 0.65 T (3.75, 7.5, 38.75) 0.22 1.1763 8.34 15.58 15.48
6 6 0.45 Ga (4, 5) 0.20 0.7274 7.75 44.02 34.97
7 6 0.50 Ga (4, 5) 0.20 0.7663 7.49 30.10 24.58
8 6 0.55 Ga (4, 5) 0.20 0.7821 10.40 28.17 24.77
9 6 0.60 Ga (4, 5) 0.20 0.8913 1.36 21.27 19.56
10 6 0.65 Ga (4, 5) 0.20 1.0130 6.89 14.45 13.86
11 7 0.60 T (5.25, 10.5, 54.25) 0.22 0.6934 31.84 36.87 35.63
12 7 0.65 T (5.25, 10.5, 54.25) 0.22 0.7515 26.38 35.33 35.20
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likely to be higher, while the second one is representative of a rural area where the 
arrival rate is likely to be lower.

Urban Area Hospital from NHS Data Data from the National Health Service 
(NHS), UK, from the peak of the pandemic in 2020 were gathered from the website 
(Data 2020), where NHS has made data available. The raw data are provided in the 
“Appendix” for the reader’s convenience. This data led to the following estimates 
for the length of stay: 13.1972 days with a variance of 4.5456 days-squared. This 
implies � = 1∕(13.1972) and C2

s
= 0.1186 . The variance in the inter-arrival time is 

not provided at the NHS website, but will clearly vary from place to place and hence 
was estimated from other sources. It must be noted, however, that the model used 
(M-SAP) is general and should be applicable for any given dataset, provided one 
has access to the mean and variance of the inter-arrival and service times. The inter-
arrival time in an urban area was assumed to be 1 per week, i.e., � = 1∕7 per day 
with a gamma distribution whose C2

a
= 0.15 , from existing data (Raffensperger et al. 

2020). The optimization was performed via performance evaluation at each value 
of k using T = 0.025 day or 36 min. Since the M-SAP approach carries out per-
formance evaluation in a very short time period on a computer (requiring no more 
than 5 seconds), no optimization algorithm was used, but rather the performance 
was evaluated at all feasible values of k. For this case, k̂ = 93 and k∗ = 118 . Fig-
ure 7 plots the mean waiting time versus the number of ventilators (k) for these data. 
When k = k̂ = 93 , i.e., k satisfies the stability condition, the mean wait is 1.296 days, 
which exceeds the threshold, T.

Rural Area Hospital from United States The inter-arrival time in an urban area 
from the United States was assumed to be 1 per week, i.e., � = 1∕7 per day with 
a gamma distribution whose C2

a
= 0.15 . The service time was assumed to have a 

gamma distribution with a mean of 9.1 days, i.e., � = 1∕9.1 per day, and C2
s
= 1∕2 ; 

both the inter-arrival time and service times in this case were based on data from 

Fig. 7   Plot of mean waiting time (unit of time is day) versus number of ventilators for an urban hospital
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Raffensperger et al. (2020). T was set to 0.025 day as in the urban area case. The 
stability value of ventilator capacity, k̂ , here is 2 while the optimal value, k∗ equals 5. 
The resulting plot of the mean wait against ventilator capacity is shown in Fig. 8. At 
the stability condition, i.e., k = k̂ = 2 , the mean waiting time is 1.1165 days, which 
exceeds the reasonable threshold of 36 min, as in the urban case.

5 � Conclusions

A motivating factor for this research was the need to develop closed-form multi-
server queueing approximations under the following conditions: (a) traffic intensity 
is medium, (b) the inter-arrival time is not exponentially distributed but carries a 
double-tapering distribution, and (c) the service time also has a double-tapering 
distribution. In particular, in many real-world settings, e.g., airports, hospitals, and 
manufacturing systems, all three conditions apply, which rule out the usage of the 
fairly accurate, existing M/G/k models or the heavy traffic approximation for G/G/k 
queues. The non-Poisson arrivals and non-Poisson service rates make these sys-
tems difficult to approximate in closed form (Gupta et al. 2010). In the context of 
a hospital, it must be noted, inaccuracies often lead to under-designed systems with 
lengthened waits, and waiting beyond acceptable thresholds can cause the patient’s 
death. In airports and factories also, poorly designed systems can cause long, harm-
ful delays. While discrete-event simulation does provide a reliable mechanism to 
solve problems of this nature, it requires (a) expensive software and (b) distribution 
fitting. Further, simulations of G/G/k systems can become unacceptably sluggish for 
large values of k. Therefore, in the real-world, closed-form approximations based on 
only the mean and variance that are usable within spreadsheet software continue to 
remain of practical importance.

Fig. 8   Plot of mean waiting time (unit of time is day) versus number of ventilators for a rural hospital
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The novelty of this work lies in developing a new scheme to aggregate a sin-
gle-channel, multi-server queue into a fictitious single-channel, single-server queue 
with the same utilization. The scheme allows one to exploit existing, accurate G/G/1 
approximations to develop formulas for mean waiting times, rather than the M/M/k 
formula used extensively in the literature. A conclusion from this study is that for 
medium-traffic, multi-server queues in manufacturing and service systems, where 
the inter-arrival time density function and the service time density function are dou-
ble tapering, M-SAP performs well consistently in comparison to the existing MAR 
and K-L-B approaches from the literature. The research also leads to new insights 
about the performance of MAR and K-L-B in systems where the performance grad-
ually improves as the inter-arrival time’s distribution starts approaching the expo-
nential distribution. Future research in this topic should be directed toward using 
higher-order moments to address the condition k ≥ 10 and developing approxima-
tions for variance of the waiting times in G/G/k queues.

Appendix

Queueing Notation Glossary: We provide a glossary of terms commonly used in 
queueing theory for the convenience of the reader:

–	 Generally Distributed Random Variable: This is a random variable that can have 
any given distribution.

–	 C2 : Squared coefficient of variation of a random variable: This the variance of a 
random variable divided by the square of its mean.

–	 Double-Tapering Distribution: This is a continuous random variable who prob-
ability density function tapers on both sides to zero.

–	 M/M/k Queue: This is a queue with infinite waiting capacity in which there are k 
servers in parallel, and both inter-arrival and service times have the exponential 
distribution. M denotes Markovian, which means exponential distribution here, 
and the first and second letters in this notation denote the distributions of the 
inter-arrival and service times, respectively. The mean length of this queue can 
be computed using the well-known, exact formula given via Eqs. (3) and (4).

–	 M/G/k Queue: This a queue with infinite waiting capacity in which there are k 
servers, the inter-arrival time has the exponential distribution, and the service 
time has any given distribution. The latter is also often described as the service 
time being generally distributed.

–	 G/G/k Queue: This a queue with infinite waiting capacity in which there are k 
servers, and both the inter-arrival and service times have any given distribution.

–	 Poisson Arrival and Service Processes: A Poisson arrival process to a system 
implies that the inter-arrival time is exponentially distributed. Similarly, a Pois-
son service process implies that the service time is exponentially distributed.

–	 � : This is the traffic intensity of the queue (which equals the proportion of time the 
servers are busy). This is a positive number and it has to be less than 1 for a queue 
to be stable. In general, only stable queues can be analyzed for steady-state (long-
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term) behavior. The condition 0 < 𝜌 < 0.5 is defined as low traffic, 0.5 < 𝜌 ≤ 0.8 as 
medium traffic, and 0.8 < 𝜌 < 1 as high traffic.

–	 Queuing Discipline: This is the order in which customers are served. First come 
first served implies that within a pool of customers waiting in line, the customer 
who enters first is served first. Other queuing disciplines include last in first out and 
shortest time first etc.

–	 Correction Factor: This is a scalar quantity often used in queueing approximations 
to multiply the performance metric of a class of queues (e.g., M/M/k) to obtain the 
corresponding metric for another class of queues (M/G/k).

Compact Representation of Approximation The approximation proposed in this 
paper can be presented in the following user-friendly format for programming as fol-
lows: If C2

a
>= 0.7 , use MAR or K-L-B. Otherwise:

–	 First compute Ĉ2
s
 via Eq. (12) and � via Eq. (13).

–	 Then, compute the mean length in the G/G/k queue as (Tables 10, 11, 12): 

Table 10   Scenario 2 when 
C2

a
> 0.7 : Entries under MAR 

and K-L-B columns denote 
errors in %

Case k C2

a
SERT C2

s
WSim

q
MAR K-L-B

1 5 0.90 T (4, 15, 31) 0.11 1.6689 2.03 1.8
2 5 0.95 T (4, 15, 31) 0.11 1.8533 7.12 6.95
3 5 1.00 T (4, 15, 31) 0.11 1.9310 6.39 6.35
4 6 0.75 T (4.8, 18, 37.2) 0.11 1.2314 2.58 3.33
5 6 0.80 T (4.8, 18, 37.2) 0.11 1.3244 3.74 3.95
6 6 0.85 T (4.8, 18, 37.2) 0.11 1.4304 5.62 5.52
7 6 0.90 T (4.8, 18, 37.2) 0.11 1.5065 5.39 5.17
8 6 0.95 T (4.8, 18, 37.2) 0.11 1.5953 5.94 5.77
9 6 1.00 T (4.8, 18, 37.2) 0.11 1.7946 12.20 12.20
10 9 0.75 Ga (3.0303, 10) 0.10 0.8444 2.9 3.74
11 9 0.80 Ga (3.0303, 10) 0.10 0.8558 1.83 1.53
12 9 0.85 Ga (3.0303, 10) 0.10 0.9666 4.5 4.45
13 9 0.90 Ga (3.0303, 10) 0.10 1.0481 7.00 6.82
14 9 0.95 Ga (3.0303, 10) 0.10 1.1746 12.63 12.47
15 9 1.00 Ga (3.0303, 10) 0.10 1.2403 13.09 13.09
16 9 0.75 Ga (4.5455, 6.667) 0.15 0.8398 2.74 2.61
17 9 0.80 Ga (4.5455, 6.667) 0.15 0.9137 0.21 0.46
18 9 0.85 Ga (4.5455, 6.667) 0.15 1.0522 7.97 7.57
19 9 0.90 Ga (4.5455, 6.667) 0.15 1.0935 6.61 6.21
20 9 0.95 Ga (4.5455, 6.667) 0.15 1.2343 12.98 12.73
21 9 1.00 Ga (4.5455, 6.667) 0.15 1.2689 11.19 11.19
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Table 11   Inputs for Scenario 4 
when C2

a
> 0.7 : Entries under 

MAR and K-L-B columns 
denote errors in %

Case k C2

a
SERT C2

s
WSim

q
MAR K-L-B

1 5 0.80 T (3.75, 7.5, 38.75) 0.22 1.6383 0.98 0.13
2 5 0.85 T (3.75, 7.5, 38.75) 0.22 1.7878 4.19 3.38
3 5 0.90 T (3.75, 7.5, 38.75) 0.22 1.9530 7.66 7.03
4 5 0.95 T (3.75, 7.5, 38.75) 0.22 2.1008 9.85 9.49
5 5 1.00 T (3.75, 7.5, 38.75) 0.22 2.1481 7.61 7.61
6 7 0.80 T (5.25, 10.5, 54.25) 0.22 1.2467 0.39 0.46
7 7 0.85 T (5.25, 10.5, 54.25) 0.22 1.3959 6.07 5.28
8 7 0.90 T (5.25, 10.5, 54.25) 0.22 1.4735 6.32 5.28
9 7 0.95 T (5.25, 10.5, 54.25) 0.22 1.5865 8.62 8.25
10 7 1.00 T (5.25, 10.5, 54.25) 0.22 1.6418 7.47 7.47
11 5 0.8 Ga (2.5, 6.67) 0.15 1.5601 2.17 1.92
12 5 0.9 Ga (2.5, 6.67) 0.15 1.4700 9.81 9.81
13 5 0.9 Ga (2.5, 6.67) 0.15 1.89 9.93 9.54
14 7 0.95 Ga (4.6512, 5) 0.20 1.5110 7.33 6.99
15 7 1 Ga (5.814, 4) 0.25 1.67 8.51 8.51

Table 12   Data for length of stay 
(service time) from March to 
September, 2020 (Data 2020)

Length of Stay (days) Frequency

6 10,594
9 3,964
11 55,896
17 23,588
19 1,961
21 9,783
23 3,905
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