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Abstract This paper presents a framework that allows
users to interact with and navigate a humanoid robot using
body gestures. The first part of the paper describes a study to
define intuitive gestures for eleven navigational commands
based on analyzing 385 gestures performed by 35 partici-
pants. From the study results, we present a taxonomy of the
user-defined gesture sets, agreement scores for the gesture
sets, and time performances of the gesture motions. The sec-
ond part of the paper presents a full body interaction system
for recognizing the user-defined gestures. We evaluate the
system by recruiting 22 participants to test for the accuracy
of the proposed system. The results show that most of the
defined gestures can be successfully recognized with a preci-
sion between 86−100 % and an accuracy between 73−96 %.
We discuss the limitations of the system and present future
work improvements.

Keywords Humanoid robot · Robot · Nao · Gesture ·
User-defined · User-defined gestures · Robot navigation ·
Gesture recognition

1 Introduction

Markerless body tracking technologies based on depth sen-
sors allowed researchers to have an easy-to-use platform for
developing algorithms for recognizing full body gestures and
postures in real time [1,2]. Recently, researchers are increas-
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ingly addressing the use of algorithms to recognize full body
gestures and postures, in real time, to teleoperate and guide
robots and hence enhance the user’s natural experience and
engagement with the robot, such as the work by [3,4]. The key
to their approaches is to define intuitive and natural human-
robot interaction (HRI) using non-verbal communications,
such as body gestures. Generally, most of the algorithms
that use body gestures to control robots are based on gesture
design paradigms that are defined by their developers. How-
ever, as the user is not involved in the process, the designed
gestures may not be the most intuitive and may not repre-
sent their natural behavior. More recently, several researchers
have addressed the same problem with the design of gesture
based interaction methods in several other domains includ-
ing surface computing [5] and public displays [6]. However,
a user-defined set of gestures for the control of a humanoid
robot has not been defined to this date. In order to support
the control of robots using true natural full body interac-
tion, we need to collect data on the basis of the users body
behavior.

We present the design of a framework based on the users
natural behavior to navigate a humanoid robot. We collect
data from both Technical1 (T) and Non-Technical (NT) users
when performing gesture motions to navigate a humanoid
robot (Nao by Aldebaran Robotics2). We contribute to the
field of HRI the following: (1) the establishment of user-
defined gesture sets for both (T and NT users) to navigate a
humanoid robot, (2) the analysis of qualitative and quan-
titative data that includes gesture taxonomy, performance
data measures, observations, and subjective responses, (3) an
understanding of the implications for humanoid robot control

1 We term a user that is experienced with robots and/or gesture tracking
as Technical
2 http://www.aldebaran-robotics.com.
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using human gestures, and (4) the development of a system
that can be used to recognize the user-defined gestures to
navigate a robot.

2 Background

Alongside verbal communications, the non-verbal commu-
nication channels in the human-humanoid robot interaction
have been recognized by researchers as one of the important
aspects to interact with a robot in an intuitive and a flaunt way
[7–11]. Moreover, scientists recently presented the use of
human body gestures as one of the main non-verbal commu-
nicative cues to serve as a tool in signalling actions to social
robots. The following sections explore related literature on
human gestures, designing gestures, and gesture controlled
robots.

2.1 Human Gesture Categories

Kinesics is the study of human gestures and body pos-
tures in the field of non-verbal communication behaviors.
Researchers have conducted a vast number of studies to
understand gestural interactions between individuals and
how gestures can be categorized based on the information
communicated. There is no universal categorization standard
for body gestures and postures, however, researchers used
different taxonomies for categorization. Efron [12] was one
of the first to classify gestures into five categories: physio-
graphics, kinetographics, ideographics, deictics, and batons.
While, Ekman and Friesen [13] specified four categories of
the human gestures and postures based on the communi-
cation function: emblems, illustrators, regulators and adap-
tors. McNeill [14] presented five types of gestures: cohesive,
beat, deictic, iconic, and metaphoric gestures. Beat gestures
are rhythmic movements that point out particular parts of a
speech, while cohesive try to keep up the continuity. Deic-
tic gestures can be defined as a pointing reference in space.
Iconic gestures or illustrators are gestures that relate to speech
to help describe the speech content. The metaphoric ges-
tures shape abstract concepts to explain an idea. Moreover,
McNeil [15] defined four phases that construct a gesture:
preparation, stroke, hold, and retraction. The preparation is
the phase that brings the body from its rest to a position that
is suitable for executing the gesture. The stroke phase is the
real information contained in the gesture, while the retraction
is the phase where the body goes to its rest position again.
Some gestures, especially pointing gestures, also have an
extended hold phase after the actual stroke in which the arms
remain in their position for a while. In this paper, we use the
phases defined by McNeil as we found his work to have a
well defined construct of gesture phases and a well defined
annotation practice scheme [16].

2.2 Designing Gestural Input

The basic rule when designing an interface is to initially
define the needs of its users and gestural interfaces are no
exception [17]. Therefore, several domain areas employ the
design of appropriate gestures for a system by allowing users
to intuitively define how they would use it. Recently, the
work presented by Wobbrock et al. [5] described the design
of appropriate gestures for surface tabletop interfaces. They
define gestures by employing NT users to observe the effect
of a gesture and then asked them to perform a gesture to
match its cause. The work by Wobbrock et al. was a motive
for many researchers to follow a similar design paradigm in
their fields. For example, Ruiz et al. [18] presented results
of a user-defined motion gesture set for smartphone interac-
tions. Kray et al. [19] identified user-defined gestures that
can be used to communicate a mobile phone with public dis-
play, tabletops, and other devices. Their results also revealed
which phone sensors can be used to achieve a better recog-
nition of common user-defined gestures. Kurdyukova et al.
[6] presented a study for identifying a user-defined set to
transfer data using an iPad in a multi-display environment.
Kistler et al. [1] investigated user-defined full body gestures
for an interactive storytelling scenario. They identified ges-
tures that are an intuitive representation for a specific set of
in-game actions. These in-game actions triggered navigation
and dialogs within the virtual scenario. In this research, we
follow a similar approach to Wobbrock et al., with a focus
on gestural controls for humanoid robots.

2.3 Gesture Controlled Robots

In general, navigational control of a humanoid robot are done
using traditional input computer devices, such as a keyboard
and mouse [20,21] or a joystick [22]. However, the fact that
humanoid robots are machines that look like humans and pre-
serve some human functionalities has motivated researchers
to look for intuitive interaction ways that are similar to the
human-human communications. Thus, several researchers
looked at how to interpret and classify the human body poses
and gestures to improve the HRI, such as the work presented
in [23–28]. Among the efforts for intuitive gestural com-
munications in HRI is controlling humanoid robots using
human gestures and a natural input method. Waldherr et al.
[29] presented a gesture based robot control interface to ease
interaction with a mobile robot. Their work instructs a robot
to follow gestural commands to clean-up an office. They
used a vision-based approach to detect users and recognise
their gestures (both static and motion gestures). They pre-
defined multiple prototypes for each gesture (stop, follow,
pointing vertical and pointing low) and trained their sys-
tem to recognise them. Nhan Nguyen-Duc-Thanh et al. [30]
demonstrates a new approach to control a humanoid robot
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(Nao) using human body language. Their method is based
on a Semaphore alphabetical system, where the human body
poses and gestures are recognized, with the help of Kinect
sensors, as alphabetical characters that can be interpreted by
the robot. Broccia et al. [31] use Kinect to recognize the users
upper body movements, which are mimicked by a humanoid
robot based on a mathematical mapping of the human move-
ments to the robots joints. For navigational purposes they
use full body gestures like stepping forward, stepping back-
ward and turning the body. On the other hand, Cabibihan et
al. [32], conducted a study to investigate the recognition of
15 human-like gestures that are performed by a human actor
and an anthropomorphic robot. Their results revealed that
8 gestures were recognized from the human-actor’s video
and six gestures are recognized from the robot’s video. Their
work address what robot gestures are understood by humans,
which is the opposite to defining gestures to control a robot.
Strobel et al. [33] presented a system architecture to iden-
tify six human gestures to interact with a cleaning assistant
robot in a domestic environment. Their focus is to recognise
the users intent behind six predefined gestural actions by
training a hidden Markov model with a set of gestural exam-
ples. Moreover, Stiefelhagen et al. [3] employed multimodal
approaches by combining speech with gesture commands,
while other work efforts are put towards controlling robots
using pointing gestures [34,35], but such methods are limited
to a certain range of commands. Hu et al. [36] developed sim-
ple hand gestures for robot navigational actions, while, the
recent work of Konda et al. [37] employ full body postures
to navigate their robots. However, none of the above have
considered the design of user-defined gestures to control a
robot and produce an intuitive gesture set based on the users’
preferences, which is the core part of the work presented in
this paper.

Previous work, in this field, relied on the developers of the
system to define commands and gestural instructions while
approaches that follow a user-centered design approach are
rare. An example includes the work by Dillmann et al. [38]
(which is in line with the overview given by Breazeal and
Scassellati [39]) proposed a system to teach a humanoid robot
assistive tasks through observing a human user. Barattini et al.
[40] who defined a gesture set for the control of industrial col-
laborative robots based on user-centered design criteria, such
as physical and mental effort. Ende et al. [41] as well as Glee-
son et al. [42] defined gesture sets for robot control based on
observations of human-human collaboration. The underlying
assumption is that gestures inspired by human-human inter-
action are easy to remember and to perform. An approach
to gesture design similar to our own approach has been pre-
sented by Bodiroa et al. [43]. They conducted an experi-
ment in which they asked users to perform gestures they
associated with a given task that was described with verb-
noun keywords, such as “bring check”. While the approach

served to identify appropriate gestures for human-robot con-
trol, the resulting gestures have not yet been evaluated in
such a scenario. Our approach distinguishes from their work
by presenting users with videos of robots performing a task
as opposed to describing the task verbally. The advantage of
our experimental setting for acquiring gestures is the greater
similarity that it bears to the setting in which the gestures
will be eventually employed.

3 User Study: Defined Gestures to Control Humanoid
Robots

The main objective of this study is to define a set of control
body gestures derived from the users actions when intuitively
instructing a humanoid robot. In particular, in this study, we
focus on navigational control of the humanoid robot Nao. We
use eleven actions (Move forward, Move backward, Move
left, Move right, Turn left, Turn right, Stop movement, Speed
up, Slow down, Stand up, Sit down) for which users, of the
presented study, chose gestures.

The motions of all navigational actions are implemented
from the perspective of the robot using the built in motion
module of the Nao system (Academic Edition V3.2). We tele-
operate the robot through a WiFi connection by implement-
ing several python scripts that use the native API delivered by
Aldebaran Robotics. We adopt the Wizard-of-Oz technique
to teleoperate the robot throughout each session.

In this section we describe a study to identify a set of com-
mon intuitive gestures to control a humanoid robot. Addi-
tionally, we want to see whether users with a technical back-
ground with a better understanding of gesture recognition
hardware, like Kinect, and knowledge about robots and their
abilities, use different gestures than participants without a
technical background.

3.1 Participants

To define a set of intuitive gestures to control a humanoid
robot, we consider two types of user groups, Technical (T)
and Non-Technical (NT): The first are users that have some
experience with humanoid robots and are aware of gesture
tracking systems (such as Microsoft Kinect). The second are
users that do not have much experience with such technolo-
gies. We consider the two groups as it is apparent when a user
is aware of the limitation of the technologies they can define
their gestures based on those limitations; hence, including the
two groups (T and NT) allows system designers to consider
the characteristics of both groups.

We elicit performed gestural actions from 35 participants
(17 T, 18 NT), all from Germany. Initially, we asked partic-
ipants, on a 5-point Likert scale (ranging from one to five),
about their experience with the Microsoft Kinect and with a
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Table 1 Taxonomy for full
body gestures used to control a
humanoid robot based on 385
gestures

Taxonomy of full body gestures for controlling a humanoid robot

Form Static gesture A static body gesture is held after a preparation phase

Dynamic gesture The gesture contains movement of one or more body parts
during the stroke phase

Body Parts One hand The gesture is performed with one hand

Two hands The gesture is performed with two hands

Full body The gesture is performed with at least one other body part
than the hands

View-Point Independent The gesture is independent from the view point

User-centric The gesture is performed from the user’s point of view

Robot-centric The gesture is performed from the robot’s point of view

Nature Deictic The gesture is indicating a position or direction

Iconic The gesture visually depicts an icon

Niming The used gesture is equal to the meant action

humanoid robot. The 17 T participants (6 female, 11 male)
have an average experience with MS Kinect = 2.71 and with
a humanoid robot = 2.41. The 17 T participants have an
average age of 29 (SD = 5.2) and are mainly from the
Computer Science background. While the 18 NT participants
(10 female, 8 male) have an average experience with MS
Kinect = 1.11 and with a humanoid robot = 1.06. Most of
the 18 NT participants are students from several disciplines,
such as education, languages or economics, and have an aver-
age age of 27 (SD = 7.8). All participants except one were
right-handed.

3.2 Apparatus

The experiment is arranged in a room that is 3 meters wide
and 6.5 meters deep. The room is equipped with a 50 inch
plasma display and two cameras. The first camera records
the front view of the user, while the other camera is setup as
a side camera. The user has a designated region that he/she
is allowed to freely move in during the study. This region is
defined from the user’s initial position and a distance of about
1 meter around that point. The humanoid robot is placed 2
meters away from the user and is facing them.

3.3 Procedure

At the beginning of the experiment, each participant is given
a description of the study and are told to stay within their
designated region in the room. The following are the steps
each participant is asked to follow: (1) on the screen, watch a
video that demonstrates how Nao performs one of the naviga-
tional actions. (2) Upon the completion of the video, perform
a gesture that can command Nao to repeat the demonstrated
action. (3) Watch Nao performing the corresponding action
(this is remotely activated by an instructor). (4) Answer a
questionnaire corresponding to the action.

The eleven actions are presented to each participant in a
randomized order. For the actions Speed up, Slow down and
Stop movement, Nao will be in motion when the gesture is
to be preformed by the participant. In this case, participants
are asked to state when they are ready, after watching the
video on the screen, and Nao is immediately activated then.
Subjective and objective measures are explained further in
Sect. 4.

4 Results

The results of our study presents a gesture taxonomy, a user-
defined gesture set, performance data measures, qualitative
observations, and subjective responses.

4.1 Gesture Taxonomy

We manually classify all gestures according to four dimen-
sions: form, (involved) body parts, view-point, and nature.
Each dimension consists of multiple items, shown in Table
1. They are partly based on the Taxonomy used by Wobbrock
et al. [5] and adapted to match full body gestures. Moreover,
nature was inspired by gesture categories defined by Salem
et al. [8].

Form distinguishes between static and dynamic gestures
(without and with movement respectively). Static gestures
have a preparation phase at the beginning, in which the user
moves into the gesture space, but the core part of gesture is
after the preparation phase. Therefore, the gesture is kept for
a certain amount of time before the user releases it again in
the retraction phase. In opposite, dynamic gestures have a
clear stroke phase including the movement of specific body
parts between the preparation and retraction phases.

The body parts dimension is self-explanatory. It distin-
guishes between one hand, two hands, and full body gestures
that involve at least one other body part.
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Fig. 1 Taxonomy distribution (a) and (b) and gesture agreement levels (c) and (d) for technical and non-technical users

The view-point dimension can be explained best with
pointing gestures in a scenario where the robot is facing the
user. Thus, a user-centric view-point means that when the
user is pointing to his/her right, the robot should move in the
pointing direction and, therefore, to the left from the robot’s
view. The opposite is a robot-centric view-point, i.e. when the
user is pointing to his/her right, the robot moves in opposite
to the pointing direction (to the right from the robot’s view).
Other gestures are view-point independent, for example, an
open front-facing hand for stop which does not include any
directional information.

The nature of our gesture is divided in three categories:
The most common gestures we found for HRI are deictic
gestures, that indicate a position or direction. These gestures
can be either static, e.g. pointing to the right, or dynamic, e.g.
waving to the right. They can be performed with one hand,
two hands, or even other body parts, e.g. tilting the head.
They can be performed from a user-centric or robot-centric
view-point. Iconic gestures are visual depictions, e.g. an open
front-facing hand for stop, or drawing a circle in the air for
turning. Miming gestures realize the idea that the user shows
the robot how to perform the action by actually performing
it, e.g. if the action is sitting down, the user actually sits

down. Depending on the view-point, miming gestures can be
mirrored as well.

Figure 1 depicts the taxonomy distributions for T and NT
users. The two most visible differences between the two kinds
of users can be seen in the nature dimension (χ2 (2) = 26.36,
p < 0.001) and the involved body parts dimension (χ2 (2)
= 25.46, p < 0.001). While T users clearly prefer deictic
gestures and mainly use their hands for gesturing, NT users
more often use full body and miming gestures. Therefore, one
can say that T users prefer more abstract and less exhausting
gestures. This is emphasized by the fact that the T users also
tend to use more static postures than the NT, however, we
found no significant differences for the form dimension (χ2

(1) = 1.75, p = 0.186).

4.2 A User-Defined Gesture Set

The gestural data collected from the participants of the study,
to control the Humanoid Robot Nao, is used to define a set
of user-defined gestures that can be used for the specified
control actions. The process of selecting a suitable gesture
for a control action is as follows:
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– For each control action t we identify a set Pt that contains
all proposed gestures.

– The proposed gestures in Pt are then grouped into subsets
of identical gestures Pi1..N , where i is a subset that contains
identical gestures and N is the total number identified
subsets.

– The representative gesture for t is identified by selecting
the subset Pi with the largest size, i.e. M AX (Pi )

To further evaluate the degree of agreement among par-
ticipants towards the selected user-defined sets, we employ a
process that computes an agreement score based on the work
defined and used by Wobbrock et al. [5], [44]. An agreement
score St corresponding to a selected user-defined gesture for
action t is represented by a number in the range [1/|Pt |, 1]
that defines the general agreement among participants. Wob-
brock et al [44] presented the following equation to calculate
the agreement score:

St =
∑

Pi

( |Pi |
|Pt |

)2

(1)

The results of evaluating the degree of agreement for the
eleven control actions of our study are presented in Fig. 1
(c) and (d). The overall agreement levels for the T and NT
participants are the same, S = 0.23.

Figure 2 depicts the representing gestures for the eleven
actions for both T and NT users. In some cases, two repre-
sentative gestures are present for one action as there were
two large size gestural subsets (Pi ) with an equal number of
identical gestures, e.g. Action 1 for NT.

4.3 Gestural Phases and Timing

The video recordings of all participants, from the camera
videotaping the frontal view, were annotated using the ELan
annotation tools.3 The annotations segmented each video into
11 actions and each action into 4 phases (Start-up, Prepara-
tion, Stroke, and Retraction). The start-up phase represents
the time it takes the participants to start their gestural instruc-
tion, after watching the action on the screen. The others are
the times for the gestural phases defined by McNeill [15].
Using the annotation tool, the times for the 4 phases are
extracted for the 11 actions of each participant. Figure 2
shows the average times (for T and NT) for each of the phases
of each gesture representing an action.

4.4 Subjective Ratings

After each action, participants are asked to rate the goodness
and easiness of their performed gesture on 7-point Likert

3 Max Planck Institute for Psycholinguistics, Nijmegen, The Nether-
lands (http://www.lat-mpi.eu/tools/elan/).

scales. The results reveal that the goodness of the gestures
and the easiness to think of them correlated significantly for
the T group (r = 0.54, p < 0.01) as well as for the NT
group (r = 0.40, p < 0.01). As expected, gestures that
are considered as good matches for an action are usually
easy to think of and produce. Beside the direct correlation
between goodness and easiness, we checked for their corre-
lation with the level of agreement and the timings (especially
the Start Up and Stroke phase) but nothing significant was
found.

4.5 Implication for Gesture Recognition

Most user-defined gestures for navigational control of a
humanoid robot are deictic gestures, which indicate a posi-
tion or direction. Therefore, the main focus of the gesture
recognition should lay on these type of gestures. However,
we notice that the gesture view-point may vary especially
in these cases. This poses a great challenge for the gesture
recognition: if mirrored gestures should be allowed, how
does the robot know if it should move to the left-hand or
right-hand side, when the user is pointing to his/her right?
A solution could be to offer different modes for the nav-
igational control: one in robot-view and one in user-view.
Nevertheless, the interaction designer should think carefully
of which gestures are influenced by the control mode. For
example, gestures for linear movements are usually all influ-
enced depending on the chosen view-point, while gestures for
rotating the robot remain the same. Another interesting point
is, that one-hand gestures are still the most important ones,
however two-hand gestures are also used quite often, and NT
users also performed quite a lot of gestures that involve other
body parts. The usage of the second hand mostly results in
symmetrical gestures, for which the information from the
second hand is, more or less, redundant, but could be used to
increase the confidence of a recognition system. The use of
full body gestures raises a different issue: they can only be
included when implementing additional gesture recognizers,
and in opposite to the hand gestures, they really need the full
body tracking information which justifies the usage of a depth
sensor with corresponding tracking technology. Users gener-
ally preformed dynamic gestures, therefore, simple posture
recognition would often be not enough. Moreover, the usual
statically labeled pointing gesture should not be optimized
for a certain amount of dwell-time as a lot of users included
a single or repeated waving motion into pointing to indicate
direction.

In the following section, we present a system for recogniz-
ing the user-defined gestures for the purpose of controlling
a humanoid robot using eleven navigational actions in real-
time.
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Fig. 2 User-defined gesture sets for the technical (T) and non-technical (NT) participants to navigate a humanoid robot. Values: Mean and SD in
seconds
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Fig. 2 continued
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5 A Full Body Interaction Framework

The user-defined gestures to control a humanoid robot
(described in Sect. 4.2) require a recognition system that is
able to classify distinct features of a performed gesture in
real-time. In this section, we therefore, present a full body
recognition system that can be customized to classify ges-
tures for the purpose of controlling a humanoid robot. We
present the system setup, implementations, followed by an
evaluation and a discussion of the system. To demonstrate
the different feature of the system and its recognition accu-
racy, we use a subset of the user-defined gestures presented
in Sect. 4.2, in particular, we use the defined gestures by the
NT users4 (as shown in Fig. 2).

5.1 Recognition System

The recognition system was developed on the basis of our
work on the Full Body Interaction framework (FUBI),5 of
which an earlier version is described in [1]. FUBI can use
OpenNI/NiTE6 or the Kinect for Windows SDK7 for apply-
ing full body user tracking on the data of a depth sensor. For
evaluating our system we decided to use the Kinect SDK with
a Kinect sensor. In this way, we get positions and orientations
for 20 different user joints. The joint data is analyzed in the
recognition framework for detecting gestures that are defined
via XML files. Those XML files first can contain four types
of basic gesture recognizers:

1. Joint orientation recognizers are defined by a minimum
and/ or a maximum angle for a specific joint.

2. Joint relation recognizers looks at the position of a joint
in relation to another. For example, whether a joint is
above other joints and how far is a joint above another
joint.

3. Linear movement recognizers are defined by a specific
direction and a minimum and/or a maximum speed.

4. Finger count recognizer attempts to detect a minimum
and/ or maximum number of displayed fingers.

In addition, those three types of basic recognizers can be
combined in a sequence to form a combination recognizer. A
combination recognizer describes a deterministic linear state
machine and consists of several states that contain sets of the
above mentioned basic recognizers. For each state and the
recognizer it references, several attributes can be set to define

4 It is important to note that the NT user-defined gesture set is used to
demonstrate the various parts of the recognition system and its accuracy;
thus, the system is not limited to the NT gesture set only.
5 http://hcm-lab.de/fubi.html.
6 http://www.openni.org.
7 http://www.kinectforwindows.org.

Fig. 3 The XML definition to recognize the Stop movement action

the properties of a gesture. The most important attributes are a
minimum and a maximum duration, which recognizers have
to fulfill in the recognition process to get into and stay in
the that state. Another important attribute is the maximum
allowed duration for the transition to the next state. Figure 3
depicts the XML definition for a combination recognizer we
implemented to recognize the gesture most NT users chose
for the action Stop movement. The FUBI framework allows
us to implemented the user-defined gestures in our system
very quickly, and to test whether it is feasible to recognize
them using the tracking data provided by OpenNI/NiTE or
the Kinect for Windows SDK.

5.2 User-Defined Gesture Classification

In this section, we describe the process used to classify the
user-defined gestures (from Sect. 4.2). To demonstrate, we
present the implementation aspects for a test set of eleven
gesture candidates of the NT users (illustrated in Fig. 2). Con-
sidering the implications for gesture recognition (Sect. 4.5),
we eliminated any duplicate or similar gestures in the set; for
example, there are two NT gesture candidates for the action
Move forward, one deictic and one miming gesture, on the
other hand, there are only miming gestures for Move back-
ward/ left/ right. Therefore, we chose the miming gesture for
the Move forward action to stay consistent with the other
Move actions.

Furthermore, there are near identical NT gesture candi-
dates for the actions Slow down (NT (b)) and Sit down (NT
(a)), thus, we decided to use the NT (b) of the Sit down action.
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Table 2 Confusion Matrix for the recognition of the 11 implemented gesture candidates

Action Gesture (cf. Fig. 2) True Positives False Positives False Negatives Precision Accuracy Recall

Move forward NT (b) 42 2 0 95 % 95 % 100 %

Move backward NT 43 2 0 96 % 96 % 100 %

Move right NT (a) 39 0 5 100 % 89 % 89 %

Move left NT (b) 42 1 1 98 % 95 % 98 %

Turn left T/NT 20 4 21 83 % 44 % 49 %

Turn right T/NT 18 3 23 86 % 41 % 44 %

Stop movement NT 32 5 7 86 % 73 % 82 %

Speed up NT 5 21 16 19 % 12 % 24 %

Slow down NT (b) 43 0 2 100 % 96 % 96 %

Stand up T/NT 39 1 3 98 % 91 % 93 %

Sit down NT (b) modified 37 5 2 88 % 84 % 95 %

Overall 360 44 80 89 % 74 % 82 %

Overall w/o Speed up 355 25 64 93 % 80 % 85 %

Overall w/o Speed up, Turn left/right 317 18 20 95 % 89 % 94 %

The gestures we chose for all actions can be seen in the second
column of Table 2. Moreover, gestures that include repeated
movements within the stroke phase are implemented to be
classified from a single performance of that movement.

According to the timings displayed in Fig. 2 and the video
recordings of the gesture performances, we tried to imple-
ment the gesture classifications as close as possible to how
the users actually performed them for each action. However,
there are some restrictions of the depth sensor based tracking
system that we needed to take into account as well. The most
obvious modification was for the action Sit down, in which
we adopted the sitting position. However, when a user is
really sitting down on the ground, the tracking becomes very
unstable, looses several joints, and sometimes even fails com-
pletely. Therefore, we chose to modify this motion, so that
the user should not completely sit down on the ground, but
only adopt to a squatting position with the knees bent about
90 degrees. The recognizer for this gesture was accordingly
looking at the orientation of both knee joints, and waiting for
a high rotation around the x-axis that needs to be kept for at
least 0.5 seconds.

The recognizers for the actions Move forward/ backward/
right/ left, were all implemented in a similar way. At first,
they all require at least a short period with no body movement
to avoid multiple detections within one performance. After
that, they expect a movement in the corresponding direction,
which lasts long enough to be able to perform at least one step
in that direction. The time constraint was adjusted according
to the minimum time it took participants to perform one step
during the gesture performances, which was between 0.4 and
0.7 s depending on the direction.

For the actions Turn right/ left there was only one gesture
candidate, i.e. drawing a circle with one hand in the x-z-plane.

The recognizers separated this movement into 6 parts, so the
Turn right recognizer waited for the hand sequence move-
ments directed right-forward, right, right-backward, back-
ward, left-backward, and left. The Turn left recognizer was
implemented symmetrically. As the users performed this ges-
ture with quite different movement speeds, the recognizer
was quite tolerant to different speeds. However, it required
the circle to be drawn smoothly to cover all of the six
required directions with a recognizable long enough period of
time.

The Stop movement action was implemented with a recog-
nizer for one hand to be stretched to the front with open fin-
gers. Therefore, it looked at the relation between the shoulder
and the hand joint to ensure the correct hand position and,
in addition, it applied a finger count recognizer for recog-
nizing an open hand. The finger count recognizers in FUBI
works directly on the depth data around the hand joint and
attempts to separate displayed fingers from the rest of the
hand by applying a morphological opening operation simi-
lar to the process described by [45]. A visualisation of the
extracted finger shapes during the gesture for the Stop move-
ment action can be seen in Fig. 4d. The recognizer for the
gesture required a minimum of three recognized displayed
fingers as can be seen in the XML definition depicted by
Fig. 3. This was found to be robust enough to ignore the fin-
gers pointing to the front or forming a fist and to detect an
open hand in which some fingers are relatively close to each
other. For the timing, a minimum of one second was required
for the hand to stay in front, and, at the end of that phase,
the detection for an open hand needed to be fulfilled for at
least half a second. The last period is a bit shorter than the
timings we extracted from the video performances. It was
chosen this way, as the finger count recognizer often suffers
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Fig. 4 Tracking image for the different recognition steps of the actions Speed up (a−c) and Stop movement (d)

from noise in the depth or tracking data and we got a more
reliable recognition in this way.

The recognizers for the actions Speed up, Slow down,
and Stand up were implemented in a similar way. They all
required one or both hand/s in a specific starting position.
Then waited for a movement in backward (Speed up), down-
ward (Slow down), or upward (Stand up) directions. After
that they expected a specific end position of the hand/s. For
example, the action Speed up requires a starting position
of both hands at least one shoulder width in front of the
body (Fig. 4a). After a short movement in backward direc-
tion (Fig. 4b), the hands should be closer than one hip width
to the body (Fig. 4c). The timings were chosen in a way that
the whole gestures took at least 0.5–0.7 s as a lot of study
participants performed the movement quite fast.

5.3 Results

We conducted an evaluation to test for the accuracy perfor-
mances of the proposed recognition system. Eleven gestural
commands were implemented in the recognition system as
described in Sect. 5.2. We recruited 22 participants (7 female
and 15 male) with an average age of 26 (SD = 4.7) and they
are all right handed. As we are testing for the accuracy of clas-
sifying predefined gestures in the system, the participants first
practiced each gesture, thus, their background did not matter
when selected for participation.

The experiment was arranged in a room about 3 meters
wide and 6.5 meters in depth. It is equipped with a 50 inch
plasma display and a Kinect device was placed in the centre,
directly below the display. The following were the steps each
participant is asked to follow:

1. When the participants enter the room, they are instructed
by the administrator to stand at a point about 2 meters
away from the Kinect device and a description of the

study is given to them. All tests are performed from the 2
meters mark, except for the gesture of the Stop movement
action, where the user is asked to stand about 1.5 meters
away from the screen.

2. The participants are asked to watch a video demonstrat-
ing one of the body gestures of the eleven actions. The
participant practiced the gesture and they were allowed
to watch the video as many times as they want.

3. When the participants say that they are ready and
understand the gesture they watched, the administrator
instructs them to perform that gesture.

4. After the first performance, the participants are asked to
return to their starting point (if necessary), and repeat the
gesture one more time.

5. All participants continues with step 2 until the gestures
for all actions have been performed twice.

6. When completing the experiment, the participant is asked
to fill out a short questionnaire

The eleven actions are presented to each participant in a
weak counter-balanced order (Latin Square order) and data
is collected by the system automatically using the recogni-
tion system, described in Sect. 5.2. The recognition system
therefor run in real-time on a standard notebook computer,
however, there was no robot present that would have reacted
on the gestures directly, but the recognition results were only
logged for the evaluation. This was done to not distract the
users from their gesture performance and to avoid having
them repeat a failed gesture until the robots reacts.

In total, 484 body gestures/ body motions were analyzed
by our system and the overall results are summarized in Table
2. For each action, it lists the implemented gesture candidate
and the recognition results. Those include the number of cor-
rectly classified gestures = true positives (TP), the number
of falsely classified gestures = false positives (FP), and the
gestures our system did not recognize at all = false nega-
tives (FN). From these three values, we further calculated the
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precision
(
= T P

T P+F P

)
, accuracy

(
= T P

T P+F P+F N

)
, and

recall
(
= T P

T P+F N

)
.

The results show that the overall recognition accuracy of
the system for all actions was 74 %, with the highest recogni-
tion rate of the Slow down action (96 %) and the lowest rate
of the Speed up action (12 %). A similar result can be seen
for the recall of our system. The problem with the Speed up
action was that we accidentally used the recognizer imple-
mented for recognition with tracking data by NiTE instead
of the Kinect SDK tracking. The gesture for Slow Down was
defined by both arms stretched to the front and then coming
close to the body as visualized in Fig. 4, first three images
from the left. For recognizing that the hands are close, we
compared the distance along the z-axis between the hands
and the torso joint (called spine in the Kinect SDK). The max-
imum for that distance was defined as the hip width, which is
unfortunately much smaller for the Kinect SDK (see Fig. 4)
compared to NiTE. In addition, the torso joint in the Kinect
SDK is positioned a bit more backwards. Finally, when the
hands are close to the body, the Kinect SDK usually reports a
reduced tracking confidence, but we requested a higher confi-
dence in our recognizer as it would be reported by the NiTE
tracking. Therefore, the recognizer failed in most times to
detect that the hands are close to the body.

The recognition of the Turn left/right actions showed a
much lower accuracy than the other actions. It seems that the
recognizers were defined in a strict way, which caused the
high number of false negatives.

The average accuracy of the system improves to 80 % by
omitting the Speed up action, and to 89 % by additionally
omitting the actions Turn right and left.

Regarding the remaining actions, Stop movement was
recognized with a slightly lower accuracy (73 %) than the
others. This was due to the fact that it was the only action
including finger count recognizers that are in general less
accurate then the other recognizers as they suffer more heav-
ily from the distortions in the depth stream. This caused a
slightly higher number of false negatives for this action.

The precision of our system was 89 % on average (93 %
without Speed up) and herein, also the gestures for the actions
Turn right and left get an acceptable number. Therefore, if our
system detected a gesture performance, it usually detected
the correct one. Only the Speed up action provides a low
precision for the same reasons a mentioned above, all other
actions have at least a precision of 83 %, with some of them
even reaching 100 %.

6 Conclusion and Future Work

In this paper, we have presented the results of a study to
produce a user-defined gesture set to navigate a humanoid

robot intuitively. The study yield to the development of a
full body recognition system that can be used to classify the
defined gestures.

To define the users’ preferences in navigating a humanoid
robot using gestural commands, we conducted a study
on 35 participants that belong to two groups: technology
aware users (i.e. gesture recognition and robots), and non-
experienced users. The analysis of the data revealed (1) a
user-defined gesture set to control a humanoid robot, (2) a
taxonomy of the human-robot navigational gestures, (3) user
agreement scores for each of the gestures representing a nav-
igational commands, (4) time performances of the gesture
motions, and (5) design implications for gesture recognition.

Based on the results of the study, we developed a recog-
nition system for classifying the user-defined gestures using
our open source Full Body Interaction Framework (FUBI).8

The presented recognition system was evaluated by 22 par-
ticipants to achieve an average classification rate of 74 %.
However, the accuracy of the system improved up to 89 %
when omitting gestures with systematic errors. This achieved
accuracy clearly shows encouraging results and can lead to
effectively using the system in navigating a humanoid robot.

To have a complete framework for the gestural control
of humanoid robots, we will need to improve some of the
recognizers and integrate the rest of our user-defined gesture
set, so that users are able to configure which gestures they
want to use for a specific command. As the FUBI frame-
work provides an easy way to define own gestures, users
could further completely customize the gesture set to their
preferences. By editing the XML gesture definitions, present
gestures can be modified and new ones can be added as well.
Another option to personalize the gesture set would be to let
users record their own gestures to train the system directly,
or to adapt and refine the gestures while the users already
interact with the robot to improve the recognition. We will
further investigate other recognition techniques to compare
them with FUBI.

The presented work covers gestures presented by partici-
pants with a German cultural background. However, Kita et
al. [46] gives a review of cross-cultural variations of gestures
and outlines factors for those variations. Moreover, Bartneck
et al. [47,48] and Nomura et al. [49], discuss how culture
does have an impact on the how we perceived robots. This
indeed opens up future research work in the area of designing
universal gestures to control humanoid robots. This requires
several collaborations from different countries in several con-
tinents. Thus, our work can serve to be the bases of such future
research.

In the presented study, we focused on navigational com-
mands, however, a humanoid robot can do more functions
that can be also investigated in future work. In addition, the

8 http://www.hcm-lab.de/fubi.html.
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subjective study revealed that a combination between gesture
and speech commands is important and will be investigated
in future work.
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