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Abstract In this paper we consider the detection of a

decrease of engagement by users spontaneously inter-

acting with a socially assistive robot in a public space.

We first describe the UE-HRI dataset that collects spon-

taneous Human-Robot Interactions following the guide-

lines provided by the Affective Computing research com-

munity to collect data “in-the-wild”. We then analyze

the users’ behaviors, focusing on proxemics, gaze, head

motion, facial expressions and speech during interac-

tions with the robot. Finally, we investigate the use of

deep leaning techniques (Recurrent and Deep Neural

Networks) to detect user engagement decrease in real-

time. The results of this work highlight, in particular,

the relevance of taking into account the temporal dy-

namics of a user’s behavior. Allowing 1 to 2 seconds

as buffer delay improves the performance of taking a

decision on user engagement.
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1 Introduction

Socially assistive robots (SAR) should be able to com-

municate and cooperate with humans in order to pro-

vide assistance, coaching, companionship, support for

convalescence, rehabilitation, learning, or therapeutic

aid, etc. (e.g.[25,50]). SAR deployed in public spaces

have considerable potential for providing the humans

with whom they engage, with a multitude of services:

welcoming them, giving them recommendations or in-

teracting in a personalized way [1,26,13,12]. These types

of robot employ short-term adaptation in order to keep

the user’s attention and achieve their goal of assist-

ing them through social interaction. They are equipped

with sensors combined with software modules to track

humans and inform the interaction process. These mod-

ules can for instance track faces, recognize speech, and

synthesize speech synchronized with animation. Extract-

ing basic information such as facial expressions, gaze,

and head motions allows the robots to better under-

stand the person. Processing this information serves

more sophisticated modules that analyze emotions, mood,

affective state, and user’s engagement in order to give

appropriate responses.

This study focuses on real-time detection of user’s

engagement decrease during a social interaction with a

robot in a public space. In public space settings, it is

not easy for the robot to achieve its goal in spontaneous

social interaction, where participants are free to treat

the robot as they like and leave the interaction when

they wish [8]. Recognizing user’s engagement state rep-

resents a key issue in socially assistive robotics.

For this study, we recorded a multimodal dataset of

spontaneous interactions with the humanoid robot Pep-

per1 [9]. In keeping with the current emerging trend

1 https://www.softbankrobotics.com/emea/en/pepper
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in Affective Computing, this dataset consists of data

collected in-the-wild [47]. It comprises 278 interactions

where the users were free to participate in the interac-

tion if they wished to and free to leave it when they

wanted to, and where they were left to behave with-

out unconstraints. Multimodal information describing

the user’s behavior (i.e. distance to the robot, gaze and

head motion as well as facial expressions and speech fea-

tures) was thus synchronously recorded. We analyze the

dataset, focusing on the non-verbal behavior displayed

by the users. We then make use of data-driven methods

for detecting engagement decrease. Such methods rely

on a ground-truth obtained by manual annotation of

the engagement. Perceived engagement can be a sub-

jective observation. For this reason, each interaction

was annotated independently by two annotators: a re-

searcher who knew the purpose of the work and an un-

informed one who did not.

This paper is organized as follows. Section 2 presents

the related work on user engagement in Human-Robot

interaction (HRI). Section 3 describes the dataset of

spontaneous HRI. Section 4 focuses on the analysis of

user engagement decrease. Section 5 describes our ap-

proach to detect the decrease of user engagement. A

discussion is presented in Section 6. Finally, conclusions

are drawn in Section 7.

2 Related Work

2.1 Socially Assistive Robots in Public Space

SAR are robots providing assistance to human users

through social interaction [50]. These robots are de-

signed e assist users by creating effective interactions

[25]. SAR deployed in real world settings need to se-

cure and maintain the users engagement. Pitsch et al.

[43] analyzed interactions between a robot deployed as

a guide in a museum, and visitors. They found that the

first five seconds of the interaction had a relevant im-

pact on the user’s engagement during the interaction

(e.g. leaving/staying, responsiveness, exchanging ritu-

als). Gehle et al. [28] likewise analyzed the interaction

opening strategies of a robot playing the role of a mu-

seum’s guide, in its interaction with visitors. Hayashi et

al. [31] proposed to use robots in train stations to assist

passengers. Their goal was to identify the best way to

provide users with travel information. They compared

the use of one vs two robots. The findings of this study

showed that the most effective way of attracting peo-

ple’s interest was by presenting information using two

humanoid robots rather than one. They reported also

that the interactivity was useful in giving the feeling

of talking with robots. Another interesting scenario is

the use of SAR to provide shopping information to cus-

tomers [26,35]. The MuMMER project aims to develop

a socially intelligent humanoid robot that is able to op-

erate in a public shopping mall [26]. In [35], SAR were

designed to naturally interact with customers and to

provide shopping information. In public spaces, SAR

could inspire the design of hotel-assistive robots [25].

In such application contexts, robots are expected to

respond appropriately to the users’ behavior and engage

them in stimulating experiences [20,23]. In particular,

they should be able to monitor a users state of engage-

ment in order to be able to react to possible signs of

disengagement in such a way as to maintain their in-

terest. In real world settings, one of the challenges is

to deal with the dynamic and flexible nature of human

behavior in order to secure and maintain users’ engage-

ment in their interaction with SAR.

Tackling these challenges, our research aims to de-

tect user engagement states in real-time in order to

assist humans for the purpose of providing such pub-

lic services. The proposed detection model integrates

data on the temporal dynamics of engagement behav-

ior, with the multimodal data collected in-the-wild.

2.2 Engagement and Disengagement in HRI

The engagement was defined in human-computer in-

teraction by Sidner [49] as “the process by which indi-

viduals in an interaction start, maintain and end their

perceived connection to one another”; and by Poggi

[44] as “the value that a participant in an interaction

attributes to the goal of being together with the other

participant(s) and of continuing the interaction”. This

concept of engagement has been explored from differ-

ent perspectives with regard to humans interacting with

social robots or virtual agents [21]. More specifically, a

focus has been put on user engagement prediction [27,

16], the analysis of the emergence of engagement [52,

43], the identification of the addressees to interact with

[38], and the study of the relationship between person-

ality and engagement [17,33] and engagement percep-

tion [30]. Similarly, disengagement has been tackled in

many studies by analyzing interaction problems, the

time of their occurrence and their causes [4,51], the dy-

namics of affective states [22,15] and the prediction of

disengagement [14,37]. The most crucial causes of in-

teraction problems are found to be the limitations of

the systems used to detect social signals and of the

interaction models. For example, it was reported that

the most frequent causes were the engagement model,

face tracker, turn-taking model, or speech recognition

issues, misunderstanding, lack of adaptation, repetition
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and long pauses, over-fragmentation, over-clarity, over-

coordination, over-directedness, insufficient or exagger-

ated state-of-mind updates and repair requests [14,4,

40].

Humans behave differently during social norm viola-

tions and technical errors in HRI [51]. It was shown that

the automatic detection of these errors based on human

behavior works to some extent. The performance of er-

ror detection is better when the robot knows the human

with whom it is interacting . Detecting social norm vi-

olation is harder than detecting technical failures. We

conclude from the work of Trung et al. [51] that detect-

ing disengagement in social interaction with a robot is

difficult.

The most common features used in these studies

to asses engagement and disengagement were, among

others, gaze [5,33,46,49,37], head motion [5,37], face

[14,37,39], posture [5,37], speech [33,37], and distance

[52]. Other, more subtle, features were also included:

semantics, attention, emotions and affects [14,37,22,

15]. In a previous study, we show that the use of com-

bined multimodal features effectively improves the per-

formance of a user engagement breakdown system [8].

Combining features from two or more modalities al-

lows one to achieve better results in engagement detec-

tion/prediction, compared to the use of features from

only one modality. Kendon [36] analyzed gaze and speech.

He found that the speakers looks at each other during

fluent speech and at the end of sentences, but look away

during hesitations or unfluent speech. This type of so-

cial signal is probably relevant information to evaluate

the engagement level during the interaction. Prosody,

articulation, voice-quality related features, linguistic anal-

ysis as well as facial expressions and gaze were used to

detect interest in [48].

To model user engagement in HRI, researchers have

considered a subset of systems going from rule-based to

machine-learning-based. Machine learning approaches

have been compared to rule-based approaches in [27].

It has been shown that the rule-based classifiers have

a competitive performance compared to the set of su-

pervised classifiers trained on a small labeled corpus.

The authors found that Conditional Random Fields

(CRF), which give an accuracy of 61.5% and F1-score

of 0.61, is a much more stable classifier than others.

Machine learning approaches are the most commonly

used for automatically predicting engagement in HRI.

By comparing logistic regression and boosted decision

tree models in [14], the logistic regression model was

selected for managing disengagement decisions. In [11],

Bohus et al. used a frame-by-frame binary classification

scheme using a maximum entropy model to predict en-

gagement intentions. Leave-one-out cross-validation us-

ing Support Vector Machines (SVMs) was used in [16,

48,37]. SVMs with a polynomial kernel were success-

fully used to recognize the interest in [48]. The problem

to address the engagement of only one user or more

than one in interaction was studied by Leite et al. [37].

They found that the disengagement model trained in

the single-user condition might not be appropriate for

the group condition, but the group condition model

generalizes better to the single-user condition. A mixed

model combining both conditions is a good compromise,

but it does not achieve the performance levels of the

models trained for a specific type of interaction. Their

best models give an accuracy of 63% and AUC of 0.61

for the single-user condition and an accuracy of 73%

and AUC of 0.62 for the group condition. This finding

has encouraged us to work with mixed conditions. Liu

et al. applied the Echo State Networks (ESNs) archi-

tecture, a variant of Recurrent Neural Networks, to a

real-world dataset and showed that these networks are

able to predict engagement breakdown behavior using

30 seconds of facial expression features [39].

Our positioning in relation to these previous stud-

ies is as follows. First, our collected dataset targets the

diverse social signals that are involved in user engage-

ment, considering a wide range of heterogeneous sen-

sors: microphone array, cameras, sonars, lasers, along

with user tracked variables (i.e. face features, head an-

gles, eye gaze and position toward the robot). To the

best of our knowledge, none of the existing datasets

provide such a thorough coverage of signals amenable

to exploitation for user engagement analysis. This is

also the first significant dataset offering a large amount
of data collected by the robot “Pepper”. Pepper offers

a large combination of features compared to the other

robots used in the literature (NAO, iCub, MyKeepon,

and so on). Second, the use of such a large and real-

world dataset allows us to investigate deep learning ap-

proaches such as recurrent neural networks for the mul-

timodal detection of user engagement decrease. This

“into-the wild” dataset is here used to model the tem-

poral user behavior in order to make decision in real-

time about engagement decrease. It follows the work

of : i) [39] that uses such neural networks with facial

expression alone on a reduced set of our dataset that

has already been made public; ii)[8] that shows the su-

periority of multimodality for a related but close task

which is the prediction of engagement breakdown using

task-designed logistic regression. This could lead to the

development of lifelike humanoid SAR that could better

understand the behavior of the humans they are inter-

acting with, and therefore respond more appropriately

in order to increase their engagement.
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3 Spontaneous Human-Humanoid Interactions

3.1 Experimental Design

The experiments were conducted in a public space at

Telecom ParisTech over 17 months. The recordings con-

sisted of interactions between humans and the robot

Pepper (see Fig. 1). The collected data constitute the

UE-HRI dataset2 described in [9]. It includes all data

streams available on Pepper, packaged in the open-

source Robot Operating System (ROS) framework3. Each

stream is translated into a message (called ROS topic)

and packaged together into a ROSbag file. In order to

keep all the streams synchronized, they were indexed

using the robot timestamps. The recorded data is split

into ROSbag files of 100 Mb in order to quickly move

them from the robot to a storage server over Ethernet.

ROSbag files are then merged together into one ROS-

bag file in order to get one file per interaction. Fig. 2

shows the experimental setup of the interaction.

Pepper automatically starts the interaction when it

detects movement, and focuses on the participant in

front of it, who is in the interaction zone (i.e. a distance

of less than 1.5-meters from the robot, indicated by

means of black tape stuck on the floor in Fig. 1).

First, the robot asks the user to sign the agreement

form displayed on its embedded tablet, authorizing re-

searchers to use her collected data for further analy-

sis. After validation of the agreement, the robot enters

the welcome phase by introducing itself through very

lively animations and providing the user with the fol-

lowing instructions: “speak loud and be alone in the

1st engagement zone”. It then enters the dialog phase.

This includes a set of open-ended questions where the

robot asks the participant to introduce herself and to

talk about her favorite restaurants and films. The next

phase is the cucumber phase, when the robot presents

its vision technology to the user in a humoristic way by

showing that, from its viewpoint, the difference between

a cucumber and a human is the face. Finally, the robot

enters the survey phase, during which the user is asked

to assess her satisfaction with the interaction with Pep-

per, by answering 15 questions on a 5-level Likert scale

(from disagree “1” to agree “5”) [29,17] (see Appendix

A).

3.2 Participants

The recordings involved 278 users (182 males, 96 fe-

males), whose average age was 25 (±9.5) years. This

2 https://www.tsi.telecom-paristech.fr/aao/en/2017/

05/18/ue-hri-dataset/
3 http://wiki.ros.org/naoqi\_driver

Fig. 1 Participant in the first engagement zone (less than
1.5 meters from the robot) interacting with Pepper.

was estimated using an ad hoc software module embed-

ded in Pepper [2]. The users were students, teachers,

researchers, visitors and other staff of Telecom Paris-

Tech. A poster on the wall warned users that they were

being recorded during the interaction with the robot.

The contact information of the main researcher was also

made available on the poster. This was done to allow

the users to contact the researcher, should they have

concerns about the exploitation of their data, and to

be able to ask to have it deleted if they so wished. No

instructions were given to the user except those pro-

vided by the robot in the welcome phase. Users were

free to participate in the interaction and free to leave

when they wished. The interaction was unsupervised,

so the number of users simultaneously involved in it

was not controlled. Even though the robot warned that

only one user was to be in the first engagement zone at

a time, the collected data included 209 interactions fea-

turing a single user, and 69 multiparty interactions (32

started as multiparty and ended as single-user). Note

that only 46 users stayed until the end of the scenario

and the remaining 72, 84, 70 and 6 users left the inter-

action at the welcome, dialogue, cucumber and survey

phase, respectively.

3.3 Social Signals on the Robot Pepper

Pepper can record a large variety of data streams rang-

ing from raw signals (audio, video, sonar and laser) to

face tracking and estimation of gaze direction, head mo-

tion and facial expression. In this work, features were

extracted by using the available trackers of NAOqi-SDK

as they are integrated in the robot.
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Interaction zone

Storage

Server

Transfer over Ethernet

Fig. 2 Technical setup.

Table 1 Extracted stream feature

Stream Feature Description
Distance Front sonar 1 feature (in meter)

Face distance 1 feature (in meter)
3D head position 3 features [x, y, z] (in torso frame)
Engagement zone 1 feature ∈ {0, 1, 2, 3}

Gaze Gaze direction 2 features [yaw, pitch] (in radians)
Is looking at robot 1 feature ∈ {0, 1}

Head Head angles 3 features [yaw, pitch, roll]
(in radian)

Face Action Unit 17 features ∈ [0, 1]
Speech Voicing probability 1 feature

F0 1 feature
Loudness 1 feature
Log(energy) 1 feature
12 MFCCs 12 Features
Is Robot Speaking 1 feature ∈ {0, 1}
Robot speech duration 1 feature (in second)
User speech duration 1 feature (in second)

Distance: The distance between the user and the

robot was computed using measured raw signals (i.e.

sonar) and tracked variables as described below. More

specifically, the front sonar4 (i.e. ultrasonic sensor) was

used. The NAOqi People Perception5 module was also

used to extract the distance of the participant’s face

from the robot camera as well as her 3D head position

in relation to the robots torso reference. The space in

front of the robot was divided into three configurable

zones using the ALEngagementZones module. The de-

fault configuration was used here. The first engagement

zone is the area about 1.5m away from the robot. In this

work, this was used as the interaction zone. The second

zone is the area between 1.5m and 2.5m away. The third

zone is the area more than 2.5m away from the robot.

The participant’s position was classified to be in one

of these three spaces (or 0 if unknown) using the 3D

coordinates of the user’s head in the robot frame6.

4 http://doc.aldebaran.com/2-7/family/pepper_

technical/sonar_pep.html
5 http://doc.aldebaran.com/2-7/naoqi/

peopleperception/
6 http://doc.aldebaran.com/2-7/glossary.html#

term-frame-robot

Gaze: Pepper’s ALGazeAnalysis module gives in-

formation about the user face orientation in order to

detect whether the user is looking at the robot or not.

OpenFace 2.0 [7] was used to compute gaze direction in

relation to the plane of the face [54].

Head and Face: OpenFace 2.0 [7] was also used

to compute the head pose of the user along the three

axes (yaw, pitch, roll). Moreover, it was also used to

recognize the occurrence and intensity of each facial

Action Unit (AU) [6].

Speech: The audio signal was recorded at a sam-

pling frequency of 48KHz using 4 microphones that are

available inside the head of the robot. The audio sig-

nal contains the speech of both the participant and the

robot as well as noise in the environment. In order to

simplify the analysis of the audio, we selected the first

channel (i.e. first microphone) to extract speech fea-

tures7. Speech features included: the fundamental fre-

quency (F0) (extracted via an autocorrelation and cep-

strum based method), log-energy, loudness contours,

voicing probability and the first 12 MFCCs excluding

the 0th MFCC. All these features were computed from

the audio signal over 50-ms windows at a frame rate of

100 Hz with openSMILE [24]. Features indicating if the

robot is speaking or not, as well as the robot’s and the

user’s speech duration, were computed from the dialog

(Text-To-Speech and Automatic Speech Recognition)

ROSbag topics.

3.4 Annotation of Engagement

We developed a script that extracts synchronized front
and bottom images8 and audio from the correspond-

ing ROSbag topics and merges them into a video using

ffmpeg9. Two annotators with different scientific back-

grounds annotated the dataset: a researcher who knew

the purpose of the work and an uninformed one who

did not. The ELAN annotation tool [53] was used to

annotate the videos. On all recordings, the annotator

indicates the start and the end of the interaction as well

as the number of participants (i.e. mono-user or multi-

users). In order to characterize engagement, annotators

were asked to annotate the interaction video segment

by segment based on verbal and non-verbal behaviors

expressed by the user that exhibits an engagement de-

crease, with the following label “Sign of Engagement

Decrease (SED)”.

7 Beamforming would be a better alternative that will be
considered in future work
8 http://doc.aldebaran.com/2-7/family/pepper_

technical/video_2D_pep.html
9 https://www.ffmpeg.org/
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Video segment
* start-end

Engagement
decrease?

* SED

* Causes

Observed
Cues

Negative
affect

* Frustration
* Boredom
* Nervousness
* Disappointment
* Anger
* Submission
* Other

* Eyes gaze
* Head motion
* Facial expression
* Gestures (Body language)
* Acoustic
* Linguistic

No, next segment

Yes

Fig. 3 Flow-chart of the different annotation levels. The ’*’
shows what the annotator has to select.

A sign of engagement decrease (SED) reflects any

cue exhibited by the user showing any form of disin-

terest in the robot. It could occur any time during the

interaction. This cue may correspond to verbal or non-

verbal behaviors of the participant. SED could repre-

sent an early sign of future engagement breakdown, that

is, a sign that leaving the interaction will occur in the

near future and before the end of the scenario.

Fig. 3 shows a flow-chart that summarizes the an-

notation process described above. A video tutorial was

created to explain the annotation process and how to

annotate the interaction using ELAN. The annotator

defines the start and the end segment as well as the

corresponding label, observed cues and negative affect

of that segment. For each defined segment, the annota-

tor assigns the corresponding observed cues of that de-

crease, in order of importance. This part could be sub-

segmented. For example, if the participant says:“I’m

bored”, with a corresponding facial expression, the an-

notator indicates in the “Cues 1” track: “speech lin-

guistic” and in “Cues 2” track: “face”. The annota-

tor decides which one is more visible in the segment

to appear in “Cues 1”. If these two cues are succes-

sive in time, both should appear in “Cues 1” with a

sub-segmentation of the start and end of each one. The

annotator also assigns the corresponding negative af-

fect of that segment (if relevant) of that decrease. Neg-

ative affects (frustration, boredom, nervousness, disap-

pointment, anger, submission) are based on verbal and

nonverbal behavior while interacting with Pepper. An-

notators are free to add more information concerning

this segment. We recommend that they add informa-

tion about the causes in the “Causes” track.

#
O

cc
u

rr
en

ce
s

(a) Cues

#
O

cc
u

rr
en

ce
s

(b) Negative affects. The meaning of B: Boredom, F: Frustra-
tion, D: Disappointment , N: Nervousness, A: Anger, S: Submis-
sion, O: Other

Fig. 4 Cues and affects distribution of signs of engagement
decrease (SED) by each annotator. A1: denotes the first an-
notator 1, A2: denotes the second annotator.

The overall Cohen kappa agreement score on anno-

tated recordings for SED annotation is κ = 0.73 (sub-

stantial agreement) (see Fig. 9 in Appendix B). If we

automatically correct the annotations by merging to-

gether the “engaged” segment located between 2 SED

segments and inferior to 1 second in duration, to get

1 large SED segment instead of 2 separated by 1 or

2 frames of “engaged”, the Kappa increases slighty to

κ = 0.74 (see Fig. 9).

4 User Engagement Decrease Analysis

According to both annotators, the average duration

of the interaction is 7 (±5) minutes. During interac-

tions, users displayed SED in around 6 segments lasting

in average 6 (±9) seconds. Note that for participants

who left the interaction by the second phase, the inter-

vals between SED were shorter compared to those who

stayed till the end of the interaction. Note also that the

last segment where SED were shown is generally longer.

In average, its duration is around 9 (±15) seconds. In

90% of the interaction duration, the users are engaged.

For the reaming 10%, the users exhibit SED.



On-the-fly Detection of User Engagement Decrease in Spontaneous Human-Robot Interaction 7

(a) Distance (b) Gaze (c) Head motion variation

(d) Facial expression (e) Looking and listening (f) Speech duration

Fig. 5 Selected features of users’ behavior when the two annotators (A1 and A2) agreed on their engagement as well as when
they disagreed. Paired T-tests were calculated: red was used when the annotators agreed, **** means p < 0.0001, *** means
p < 0.001, ** means p < 0.01, * means p < 0.05 and green “-” means p >= 0.05.

Table 2 Engagement decrease causes

Causes of SED Rate (%)

User interrupted by another person 39%
Robot error (long pauses, misunderstood) 17%
User uses his phone 10%
Robot focus on another person 5%
User time constraint 2%
User missed robot’s request 2%

Fig. 4 displays the number of occurrences of the be-

havior exhibited by the users when their engagement

decreases, as perceived by the annotators. Fig. 4a con-

firms that the non-verbal behaviors play a special role

to point the engagement level. Head motion, gesture

(i.e. posture, hand waving, and so on) and eye gaze are

the most recurrent features to identify a decrease of en-

gagement in our dataset. Fig. 4b shows that annotators

disagreed on selecting the appropriate affects related to

the SED segments. This showed that the annotation of

affects was more subjective here than the annotations

of the SED category and their cues.

Due to the wide variety of possible factors that can

cause engagement decrease in spontaneous interactions,

it is difficult to determine the exact cause for each SED

segment. However, we asked the annotators to try to

mention any information related to the cause of that

decrease. Table 2 presents the main causes of the en-

gagement decrease detected by the two annotators, with

their percentage of occurrence. We individuated two

principal sources that lead to the decrease of engage-

ment: the first is due to a social norm violation (e.g. an-

other person interrupts the interaction while the robot

is talking; user time constraint; user is using her phone);

the second cause is due to robot’s technical issues (e.g.

robot makes long pauses or misunderstands the user).

We compared users’ behaviors when they were en-

gaged with the robot vs. when they showed signs of

engagement decrease based on the annotations. Fig-

ure 5 presents the results of the comparison for the dif-

ferent configurations: when both annotators perceived

the user as being engaged (denoted by “Engagement

agreed”), when both annotators agreed about the user

engagement decrease (denoted by “SED agreed”) and

when both annotators disagreed about the engagement

state (denoted by “SED: Ax” when a decrease of en-

gagement is perceived by one annotator x and not by

the other one). Figure 5a shows the average distance be-
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tween the user and the robot. The users were closer to

the robot when they were fully engaged than when their

engagement decreased. Regarding gaze, when users were

engaged they looked more at the robot than when their

engagement decreased (Figure 5e “1” when the user

looks at the robot, “0” otherwise). This could be con-

firmed with vertical gaze direction around pitch axis

(i.e. angle x) in Figure 5b. Head motion (i.e. shaking,

tilting and nodding) were displayed in Figure 5c. Users

move their head more when their engagement decreases.

Concerning action units (AU) [45] (see Figure 5d), we

found that users have the appearance of being happier

(where happiness involves AU06 and AU12) when they

are engaged, compared to when their engagement de-

creases. Similarly, for sadness, which is the combina-

tion of AU01, AU04, AU15, anger (the combination of

AU04, AU05, AU07, AU23) and disgust (the combina-

tion of AU09, AU15, AU16), it appears that users ex-

press these negative emotions when their engagement

decreases, compared to when they are engaged. Fig-

ure 5f shows that the users are more engaged when the

robot is speaking. This could be confirmed with Fig-

ure 5e (i.e. “1” when the robot is speaking, “0” when

the robot is listening).

In the next section, for training and testing of en-

gagement decrease detection, we consider only the seg-

ments where both annotators agreed on the engagement

category.

5 Detection of User Engagement Decrease

5.1 User Engagement Modeling

We modeled the task of user engagement decrease de-

tection as a binary classification, where the goal is to

predict, in real-time, whether the user is engaged or not

with the robot, based on the user’s behavior analysis.

Our SED detection approach is illustrated in Fig-

ure 6. We define observation window as a window of

[t − τ, t], that is, a window that ends at time t and

takes into account the last τ seconds of user behavior.

We use [xt−τ , . . . , xt−1, xt] as a feature vector computed

over the frames of the observation window as input for

the classifier. As for the output, each observation win-

dow is labeled as either engaged or not.

At running time t, we build a model that classifies

the observed behavior over [t− τ, t] as user engaged or

user not engaged. Let X = [x1, x2, . . . , xT ] denote the

sequence of multimodal user-behavior feature vectors

and Y η = [yη1 , y
η
2 , ..., y

η
T ] denote the corresponding se-

quence of (binary valued) output labels, where η is the

duration of the buffer for holding more observations and

yηt = C([xt−τ , . . . , xt−1, xt]) with τ ≥ η (1)

where C(.) is the classifier decision function and{
yηt = 1, SED perceived at time t− η
yηt = 0, otherwise

5.2 Deep Networks

In this study, a sequential modeling approach is pro-

posed to detect SED using deep learning techniques

[10].

Remembering information for long periods of time

is the default behavior of Long-Short Term Memory

(LSTM) [32]. LSTM uses a memory unit that can re-

member information/context from the beginning of the

input sequence (i.e. t−τ). Gated Recurrent Unit (GRU)

networks [18] are similar to the LSTM, but use a sim-

plified structure. Both LSTM and GRU can be used for

modeling temporal sequences. However, GRU involves

less computation units than LSTM, since they do not

have an output gate. Therefore LSTM are usually pre-

ferred if trained on very large datasets (big data).

5.3 Experiments

The data streams of different sampling frequencies were

indexed using the robot’s timestamps. To obtain syn-

chronized feature vectors, temporal integration [34] (a.k.a

temporal pooling), is performed over all feature streams

using common integration windows. The integrated fea-

tures are obtained by applying an integration function f

over sliding (possibly overlapping) integration windows

of length L seconds. The functions f used in this study

are statistics, namely the mean and variance. Also, we

fix the integration window length L to 500 ms. No over-

lapping was used. It was shown that combining multi-

ple features gives the highest performance in disengage-

ment prediction (c.f. Section 2.2). Therefore, the syn-

chronized texture-window level feature vectors of Dis-

tance, Gaze, Head, Face and Speech Streams shown in

Table 1 were concatenated together to describe users’

behavior and were employed as the input features for

the SED detection model. Further details are given in

our previous work [8]

Our dataset contains missing values. For example,

we have missing values on the face features (i.e. head

motion, gaze, AU) when some occlusion occur. This

happens for instance when the robot’s head is mov-

ing, causing the user’s face to go out of the cameras’

field of view. We chose to replace the missing values by

means of the corresponding feature from the training

data. We then normalized the data by subtracting the

mean value and dividing by the standard deviation of

each feature, using the training data.
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Time

Stream s1

Stream sn
y1 = 0 y2 = 0 yt−1 = 0 yt = 1 yt+1 = 1 yt+2 = 0 yT = 1

x1

x2
xTxt−1

xt
xt+1

Observation window of τ seconds
[xt−τ , . . . , xt−1, xt]

C

t− τ t
yt−0

yt−η

Fig. 6 Illustration of the detection approach. Input: observation window of user behavior is shown in green. Output: buffer
duration is shown in violet.

Output

Output layer
(Softmax)

Hidden Layer 2
(2 units - ReLU)

Hidden Layer 1
(32 units - ReLU)

Input

h0 ht−τ ht−1 ht

h0 ht−τ ht−1 ht

σ

yt−η

xt−τ xt−1 xt

. . .

. . .

. . .

Fig. 7 Many-to-One deep architecture with 2 layers.

The whole dataset using both single user and mul-

tiparty interactions was used, since this was reported

to be a good compromise in [37]. We used 3-fold cross-

validation to train and test a set of SED classifiers. The

split of train and test sets was done at the interaction-

level. Hence, the users of the test set (i.e. all obser-

vations of the user) were not seen during the training

phase, which resulted in a user-independent detection

model.

We used scikit-learn’s [42] implementation of logistic

regression as a baseline and Keras’s [19] implementation

for DNN, GRU and LSTM. We leave the further opti-

mization of the classifiers’ hyper-parameters for future

work and focus here on the validation of the usefulness

of the recurrent network architectures considered.

Following preliminary experiments, we used 2 lay-

ers with 32 units followed by 2 units, ReLU activation,

dropout with probability of 0.1 and the RMSprop al-

gorithm as optimizer to train the deep networks (see

Fig. 7). We used 10% of the training data as a valida-

tion set. We trained each model with 100 epochs, using

an early stopping callback to stop the training once

the validation accuracy started to decrease. In general,

the models converge after a maximum of 35 epochs.

For logistic regression, we used `2 regularization and

the inverse of the regularization strength C set to 1. To

deal with the imbalanced data distribution, the weights

for each class were computed and used for training the

models.

5.4 Evaluation criteria

Traditionally, the accuracy rate and F1-score have been

the most commonly used evaluation criteria. However,

they are not well suited to our study because the dataset

is unbalanced. We have around 90% of the data labeled

as engaged and only 10% of SED. In case of imbal-

anced data, the accuracy reflects only the underlying

class distribution, not the prediction performance of

the minority class. In order to compute meaningful ac-

curacy and F1-score, the test set should represent the

true distribution of both classes. Therefore, the test set

is resampled to be the average over all the samples of

the minority class and the n-differing samples of the

majority class selected from the available samples. We

also computed the area under the receiver operating

characteristic curve (AUC) in order to determine which

of the models used predicts the classes best. The AUC

corresponds to the probability of correctly identifying

the SED class [3]. The closer the AUC comes to 1, the

more accurate it is.

5.5 Results

The performance of the different sets of classifiers was

compared (see Fig. 8). We found that deep learning

techniques are better than conventional machine learn-

ing techniques (i.e. Logistic Regression). With the cho-

sen hyper-parameter values the best results were ob-

tained with LSTM for all tested buffer durations η. This
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Fig. 8 Performance of a set of classifiers using an observation
window of τ = 5 sec and a buffer of η ∈ [0, 5] sec, respectively.

is because they better model the temporal dynamics

through connections between hidden units in the same

layer.

When we use a buffer delay in the range of [1, 3]

seconds, the performance of all the classifiers increases.

This could be explained by the fact that using more

information about the users behavior plays an impor-

tant role in inferring the state of their engagement. A

buffer longer than 3 seconds does not give a better per-

formance. In addition, a buffer of 3 seconds is already
large for real-time detection [41].

To better understand how performance is affected

by the size τ of the observation window of the user be-

havior, we varied it from 0 to 6 seconds. Table 3 shows

this variation for each buffer η. For real-time operation

using η = 0, the best results were found using short ob-

servation windows of τ = 1 seconds for detecting SED.

Increasing the buffer duration up to 3 seconds improves

the performance of the SED detector. The best perfor-

mance was found using an observation window of τ = 5

seconds for a buffer η of 3 seconds and at approximately

the same performance for a buffer of 2 seconds. We note

that taking a buffer duration to make a decision approx-

imately in the middle of the observation window is the

best strategy to detect SED, and the optimal size of the

observation window is inferior to the average duration

of SED segments (i.e. 6 seconds). Table 4 shows that

logistic regression presents 30% more false alerts than

LSTM and 7% fewer undetected engagement decreases.

6 Discussion

In order to develop lifelike humanoid robots that un-

derstand better the behavior of the humans with whom

they interact and can respond appropriately to increase

user engagement, we investigated the use of deep net-

works to successfully detect SED. We achieved good

performance: 78% of accuracy, 0.78 of F1-score and 0.87

of AUC. Note that in other related studies, the perfor-

mances of engagement detection systems, using differ-

ent datasets, were 62% accuracy and 0.61 F1-score in

[27] and 73% accuracy and 0.62 AUC in [37]. Thus we

are using a bigger data-set with different annotation

schema. But, we achieve promising results that could

be improved and integrated in the robot architecture

to detect SED with real-time capability.

The classifiers provide not only the class of user en-

gagement, but also the estimated confidence that could

be used as additional information, representing the sys-

tem’s uncertainty, in real-world human-robot applica-

tions.

In preliminary experiments using less data (e.g. 195

interactions), the best performances for GRU/LSTM

using a buffer of η = 1 second and an observation

widow of τ = 2 seconds were 76%/75%, 0.75/0.75 and

0.84/0.84 for accuracy, F1-score and AUC, respectively.

Thus, the GRU gives a slightly better performance.

We evaluate the impact of two different extractors:

OpenFace [7], and Pepper’s OKAOTM Vision software

[2] tracker of gaze direction, head motion and facial

expression/AU. Table 5 compares the performance of

these extractors on the task of detecting SED using

LSTM with an observation window of τ = 5 seconds

and a buffer of η = 2 seconds. We found that Open-

Face performs better than Pepper’s tracker. Note that

when features are missing (e.g. when the robot’s head

is moving and user’s facial features cannot be deter-

mined), we focus on the other modality (i.e. distance,

speech) to detect SED.

In spontaneous HRI, finding the exact moment of

SED is a hard decision. It depends on the head mo-

tion, the looking away, the spoken word, getting away

from the robot, etc. The annotated start and end of

this segment is flexible and could vary by ±n frames

(see Fig. 9b in Appendix B). It would be interesting

to take into account this flexibility both in the training

and in the testing phases instead of using it only when

the annotators agree and ignoring the parts where they

disagree.

Future work should also investigate whether the SED

detection model generalizes well to other interaction

settings (i.e. other scenarios, multiparty).
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Table 3 LSTM performance for different observation windows τ (sec) for each buffer η (sec) with τ ≥ η.

Accuracy F1-score AUC

τ
η

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 73.42 - - - - - 0.732 - - - - - 0.820 - - - - -
1 74.03 76.97 - - - - 0.738 0.768 - - - - 0.827 0.851 - - - -
2 73.70 76.73 77.26 - - - 0.734 0.765 0.771 - - - 0.823 0.850 0.849 - - -
3 73.74 77.25 78.06 78.32 - - 0.734 0.770 0.779 0.782 - - 0.826 0.860 0.863 0.862 - -
4 72.11 75.60 77.43 77.97 77.02 - 0.716 0.752 0.772 0.777 0.767 - 0.815 0.844 0.860 0.861 0.850 -
5 72.62 76.88 78.56 78.83 77.65 76.07 0.721 0.766 0.784 0.787 0.774 0.739 0.817 0.859 0.869 0.865 0.859 0.863
6 71.52 76.28 74.95 78.23 77.67 75.75 0.708 0.759 0.744 0.780 0.774 0.732 0.818 0.847 0.847 0.865 0.861 0.856

Table 4 Confusion matrix of LSTM versus logistic regression
using an observation window of τ = 5 sec and a buffer of η = 2
sec.

LSTM Logistic Regression
Classes Engaged SED Engaged SED

Engaged 17745 2656 16479 3922
SED 6072 14329 5616 14785

Table 5 Results using LSTM with an observation window
τ = 5 seconds and a buffer of η = 2 second with gaze di-
rection, head motion, and facial expression extracted using
OpenFace versus Pepper’s OKAOTM Vision software, com-
bined with speech and distance streams.

Tracker Accuracy F1-score AUC
OpenFace [7] 78.56 0.784 0.869
Pepper OKAO software [2] 76.33 0.762 0.849

7 Conclusion

We analyzed users’ behavior in two engagement states

where they exhibited engaged behavior or, alternatively,

signs of engagement decrease. We found significant dif-

ferences in their behavior that allowed us to develop

a real-time detector of engagement decrease during a

spontaneous interaction with a humanoid robot.

We then studied the use of deep learning techniques

with multimodal data for real-time detection of user

engagement decrease. Our engagement classification re-

sults show that the real-time detector taking into ac-

count the past user behavior without any buffer per-

forms well. Using the temporal dynamics of user be-

havior improves the results as well. The optimal size of

the observation window of user behavior is found to be

smaller than the average duration of SED segments (i.e.

6 seconds). Moreover, by using a delay of 1 or 2 seconds,

we improved the performance of the detector. Depend-

ing on the application context, these delays could be

reasonably suitable to improve the experience quality

of interacting with the robot in-the-wild.

Finally, we believe that the publicly available dataset

that we have collected [9], presents a high potential for

other tasks in human-robot interaction (e.g. analysis of

the social relationship between the user and the robot).

8 Appendix A

Survey of Satisfaction presented as the final phase of

the scenario. The participant was asked to indicate:

1. his satisfaction with the interaction,

2. his involvement in the interaction,

3. his desire to leave the interaction,

4. his desire to continue the interaction during the wel-

come phase,

5. his desire to continue the interaction during the di-

alog phase,

6. his desire to continue the interaction during the cu-

cumber phase,

7. his desire to continue the interaction during the sur-

vey phase,

8. his desire to stay during the interaction,

9. if he believes that the robot wanted to stay during

the interaction,

10. his desire to continue the conversation,

11. if he believes that the robot wanted to continue the

conversation,

12. his feeling about his involvement in the interaction,

13. if he finds that the interaction was boring or fun,

14. if he finds that the information was interesting,

15. if he liked the interaction.

9 Appendix B
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(a) Annotation of the whole interaction κ = 0.73

(b) Zoom on the last 2 min of the interaction (κ = 0.73)

(c) Zoom on the last 2 min of the interaction with ignoring
the “Engaged” segment less than 1 second located between 2
SED segments. κ = 0.74

Fig. 9 Example of annotation. BD: Engagement BreakDown
i.e. leaving before the end of the interaction scenario. EBD:
early sign of engagement breakdown (EBD) (i.e. the last SED
of the interaction that BD will occur just after).
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