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Abstract Many telepresence robots are equipped with

a forward-facing camera for video communication and a

downward-facing camera for navigation. In this paper,

we propose to stitch videos from the FF-camera with a

wide-angle lens and the DF-camera with a fisheye lens

for telepresence robots. We aim at providing more com-

pact and efficient visual feedback for the user interface

of telepresence robots with user-friendly interactive ex-

periences. To this end, we present a multi-homography-

based video stitching method which stitches videos from

a wide-angle camera and a fisheye camera. The method

consists of video image alignment, seam cutting, and

image blending. We directly align the wide-angle video

image and the fisheye video image based on the multi-

homography alignment without calibration, distortion

correction, and unwarping procedures. Thus, we can ob-
tain a stitched video with shape preservation in the

non-overlapping regions and alignment in the overlap-

ping area for telepresence. To alleviate ghosting effects

caused by moving objects and/or moving cameras dur-

ing telepresence robot driving, an optimal seam is found

for aligned video composition, and the optimal seam

will be updated in subsequent frames, considering spa-

tial and temporal coherence. The final stitched video is

created by image blending based on the optimal seam.

We conducted a user study to demonstrate the effective-

ness of our method and the superiority of telepresence

robots with a stitched video as visual feedback.
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1 Introduction

A telepresence robot is a form of a video conferenc-

ing device mounted on a mobile robot, which allows a

remote operator to teleoperate the robot as his/her em-

bodiment to actively telecommunicate with local per-

sons [21]. In recent years, telepresence robots are in-

creasingly common in various everyday contexts, such

as office environments [39], remote education [38], tech-

nical mediation [1], elderly people support [6], and res-

idential care [42]. Many existing telepresence robots

[11, 27, 50] are equipped with a forward-facing camera

(FF-camera) for video communication and a downward-

facing camera (DF-camera) for navigation. The two

cameras provide two live videos displayed on two corre-

sponding windows in the GUI as visual feedback. How-

ever, in testing visual feedback with these two video

windows, we found that two video windows could in-

troduce some confusion over a local environment [21].

For example, an operator often feels missing some views

and context of the local environment, and distracts the

attention due to frequently switching the two video win-

dows. Fortunately, there is a great deal of overlap be-

tween two live videos owing to the wide-angle lens of

cameras. Therefore, we propose to stitch the two live

videos from the FF-camera and the DF-camera into

one stitched video, and we aim at providing more com-

pact and efficient visual feedback for the user interface

of telepresence robots with user-friendly interactive ex-

periences.
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Video stitching has been widely used in video surveil-

lance [37], virtual reality (VR) [30], and digital enter-

tainment [46]. Existing methods mainly address two

challenging issues: very high computational cost and vi-

sual artifacts (e.g., jitters, causing by the lack of a spa-

tial and temporal coherence stitching model between

successive frames). In our robotic telepresence applica-

tion scenario, the FF-camera uses a wide-angle lens for

video communication, and the DF-camera uses a fisheye

lens to obtain a full view of the telepresence robot and

its surroundings for navigation. So we have to face the

strong distortion of fisheye videos and non-ideal inputs

(e.g., the optical centers of the cameras are not exactly

at the same location, the scene is non-planar, and/or

dominant foreground objects move across cameras).

A straightforward scheme to handle these challeng-

ing issues is to perform image stitching on each pair of

video images. There are some works on stitching wide-

angle images [5, 25] and fisheye images [20, 52], which

stitch the distorted images by correcting the distortion

or unwarping the distorted images with the equirect-

angular projection. However, the distortion correction

and the unwarping process may produce unnatural ef-

fects on regions near image edges. And if being designed

to improve stitching quality, these methods often suf-

fer from a high computational cost. Directly employing

image stitching algorithms for video stitching also in-

troduces noticeable visual artifacts (e.g., jitters).

In this paper, we develop and implement a multi-

homography-based video stitching algorithm to create

the stitched video from a wide-angle camera and a fish-

eye camera for telepresence robots. Our method con-

sists of video image alignment, seam cutting, and video

image blending. To provide a visual feedback without

shape distortion caused by stitching, we directly align

the wide-angle video image and the fisheye video im-

age based on the multi-homography alignment without

distortion correction, unwarping with equirectangular

projection, or other pre-processes. To alleviate ghost-

ing effects caused by moving objects and/or moving

cameras during telepresence robots driving, we use an

enhanced dynamic programming algorithm to find an

optimal seam for warped video image composition. The

selected optimal seam will be updated in subsequent

video images, considering spatial and temporal coher-

ence. The final stitched video is created through image

blending on the basis of the optimal seam. We con-

ducted a user study on a telepresence robot equipped

with a wide-angle lens camera and a fisheye lens camera

to demonstrate the effectiveness of our method.

Our contributions are three-fold:

– We propose to stitch videos captured from a FF-

camera and a DF-camera to provide more compact

and efficient visual feedback for the user interface

of telepresence robots, and provide the users with

user-friendly interactive experiences.

– We present a multi-homography-based video stitch-

ing method to stitch videos from a wide-angle cam-

era and a fisheye camera. Without calibration, dis-

tortion correction, and unwarping procedures, we

can obtain a stitched video with shape preservation

in the non-overlapping regions and alignment in the

overlapping area.

– The user study results demonstrate the effectiveness

of our method and the superiority of the telepres-

ence robots with a stitched video as visual feedback.

The remainder of this paper is organized as fol-

lows. Section 2 briefly reviews the related work. Section

3 describes the multi-homography-based video stitch-

ing algorithm for telepresence. The user study settings,

procedures, results, and corresponding analyses are dis-

cussed in Section 4, and we conclude this work in Sec-

tion 5.

2 Related Work

In this section, we make a review on image alignment

and video stitching.

2.1 Image Alignment

Image alignment is essential for video stitching, and

has attracted a lot of attentions in the past decades

[48]. Conventional methods typically estimate a global

transformation to bring an image pair into alignment

[3, 32, 49], making an assumption that the scene is a

roughly planar, or images are captured by purely rotat-

ing the camera about its optical center. Such imaging

conditions are rarely met in practice, resulting in mis-

alignments and ghosting effects in alignment results.

To address these problems, many efforts have been

devoted to estimating multiple transformation. Gao et

al. [15] estimated dual-homography for the image align-

ment when the scene can be divided into a distant

plane and a ground plane. Lin et al. [34] proposed a

smoothly varying affine transformation, according to

the smoothly varying depth of the scene. Similarly, Zaragoza

et al. [53] presented an as-projective-as-possible method

(APAP) to estimate multiple homographies for better

alignment. Lou and Gevers [35] described a piecewise

planar region matching method to calculate multiple

affine transformations, and they used multiple planes

to approximate the image. These methods improve the
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alignment quality but heavily depend on keypoint de-

tection and feature matching algorithms to offer suf-

ficient and uniformly distributed keypoint correspon-

dences. Additionally, keypoint detection, feature match-

ing, and transformation estimation are time-consuming

for real-time applications.

More recently, deep convolutional neural networks

have been exploited to handle the problems of low ef-

ficiency and sparse keypoint correspondences for im-

age alignment. DeTone et al. [10] designed a Homog-

raphyNet to directly estimate a homography between

two images in an end-to-end manner. With the suc-

cess of the HomographyNet, several deep learning-based

homography estimation networks have been presented.

Nowruzi et al. [13] proposed a hierarchy network us-

ing a twin convolutional network, while Chang et al. [8]

presented a cascade Lucas-Kanade network by combin-

ing the Lucas-Kanade algorithm with the convolutional

neural network. Apart from these supervised learning-

based methods, an unsupervised homography estima-

tion network was introduced by Nguyen et al. [40] for

UAV image alignment.

The alignment of wide-angle images and/or fisheye

images is more challenging, and suffers from heavy ra-

dial distortion [52]. In order for bringing wide-angle im-

ages into alignment, Jin [23] and Byröd et al. [5] es-

timated jointly the lens distortion and the alignment

transformation, assuming that all images share the same

distortion factors. For cameras in different radial distor-

tions, Ju and Kang [24] estimated the lens distortion

factor for each image, and then computed a homog-

raphy for the alignment of synthetic images, whereas

Kukelova et al. [28] estimated a homography and dif-

ferent distortion factors to bring images of real scene

into alignment. In addition, Ho and Budagavi [20] pro-

posed to align two images captured by a dual-fisheye

lens camera. They unwarped the fisheye images into

spherical 2-Dimensional space, and then employed a

two-step alignment to register the unwarped images.

Due to the unwarping process, the regions near edges

of original images are stretched, leading to shape dis-

tortions in alignment results.

In our application scenario, we need to bring a wide-

angle video image and a fisheye video image into align-

ment. To obtain an alignment with shape preservation

in both the fisheye video image and the wide-angle

video image for telepresence, we also need to bring the

image pair into alignment without any distortion cor-

rection and unwarping processes.

2.2 Video Stitching

There are several commercial video stitching softwares,

such as VideoStitch Studio1 and AutoPano2. These soft-

wares usually compute a 2D transformation relating

two cameras, and then bring all pairs of video images

into alignment for the post-production of stitched videos.

To improve the quality of the stitched video, Li et al.

[31] found double-seam to eliminate intensity misalign-

ment, and similar work has been presented for design-

ing a content-aware adaptive blending [26]. Some works

were presented to obtain better alignment results. Lee

and Sim [29] stitched videos by projecting the back-

ground plane and the foreground objects separately,

while Jiang and Gu [22] stitched videos using spatial-

temporal content-preserving warps. For videos captured

by handheld cameras, Su et al. [41, 47] and Guo et

al. [17] combined the stitching and stabilization tech-

niques together into a unified optimization framework

for video stitching, whereas Lin et al. [33] stitched videos

by reconstructing the 3D scene using the recovered 3D

camera paths and the 3D scene points. These methods

stitched videos in an iterative manner with low compu-

tational efficiency.

Besides, some work was designed for real-time pro-

cessing or time-critical applications. For video surveil-

lance applications, He and Yu [19] employed a back-

ground modeling algorithm and a change-detection-based

optimal seam selection approach to stitch videos cap-

tured by fixed cameras. A Multi-UAV-based video surveil-

lance system, SkyStitch [37], was designed and imple-

mented for real-time aerial surveillance, employing flight

information (e.g., the UAV attitude and GPS location)

got from the flight controller as assistance. Okumura et

al. [43] introduced a real-time video stitching method

by implementing and improving a feature-based algo-

rithm on a field-programable gate array (FPGA). Apart

from hardware acceleration, EI-Saban et al. [12] devel-

oped a real-time method to stitch independent videos

streamed by different mobile phones, while Silva et al.

[46] stitched several live videos into a 360o field of view

and spread the stitched video based on GPU.

Since most existing approaches are designed for stitch-

ing videos from conventional cameras, they can not han-

dle videos with heavy lens distortions captured by the

wide-angle lens camera or fisheye lens camera. Con-

sidering the distortion, a simple method is to undis-

tort the video images through a rectilinear projection,

and then stitch the undistorted videos frame-by-frame

[45]. Nevertheless, the undistortion may incur unnatu-

ral stretches on the regions near the borders of video

1 https://www.orah.co/software/videostitch-studio/
2 http://www.kolor.com/autopano/
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images, particularly in video images captured by fisheye

lens cameras.

Different from the existing methods, we stitch two

live videos captured by a wide-angle lens camera and

a fisheye lens camera mounted on a telepresence robot,

and provide more compact and efficient visual feedback

for the users to obtain friendly interactive experience.

Without calibration, distortion correction, and unwarp-

ing procedures, we can obtain a stitched video with

shape preservation in the non-overlapping regions and

alignment in the overlapping area for telepresence.

3 Video Stitching for Telepresence

In this section, we describe the algorithm that used to

stitch the videos captured from a wide-angle camera

and a fisheye camera mounted on a telepresence. We

combine video image alignment, seam cutting and up-

dating, image blending together to stitch the videos for

telepresence, considering spatial and temporal coher-

ence to alleviate the jitters. The pipeline of the video

stitching algorithm is depicted in Fig. 1.

3.1 Video Image Alignment

Without calibration, distortion correction, and unwarp-

ing procedures, we align the wide-angle video image and

the fisheye video image using the multi-homography

alignment method proposed in our previous work [52].

A keypoint detector and descriptor (e.g., SUFT [2]) is

used to obtain feature points from the two video images.

After feature matching, inliers can be selected from the

point correspondences by using a multi-homography

inlier selection method. A global projective transfor-

mation and multiple local homographies are then es-

timated from the inliers. The final multi-homography

warps are constructed by weighting between the global

homoggraphy and local homography, in which local ho-

mographies are exploited for local region alignment. As

a result, we can achieve a good alignment accuracy in

the overlapping area and shape preservation in non-

overlapping regions.

3.1.1 Multi-Homography Inlier Selection

Feature matching can produce point correspondences

from all the feature points, and there may include many

mismatched points (i.e., outliers). To remove outliers

from the point correspondence set, an inlier selection

method can be employed. The Random Sample Con-

sensus (RANSAC) [14] is popularly used to select inliers

by generating multiple hypotheses for homography es-

timation.

In our work, the heavy lens distortion of the wide-

angle video image I and the fisheye video image I ′

should be taken into consideration, since the homog-

raphy is a plane transformation. We employ a multi-

homography inlier selection method which can select

more inliers for the alignment. A conditional sampling

strategy [9] is used to generate multiple homography

hypotheses. Given a set of point correspondences F =

{(fi, f ′i)}N̂i=1, we generate M homography hypotheses

{h1, . . . , hM} by randomly sampling M minimal sub-

sets of point correspondences from F , where (fi, f
′
i)

(denoted as Fi) is a point correspondence between the

wide-angle video image and the fisheye video image.

For each point correspondence Fi, its corresponding

residuals to all homography hypotheses are calculated

and ranked in a nondescending order. According to the

residual order, a new list of homography hypotheses for

Fi can be acquired by hi = {hi1, . . . , hiM}. Fi is more

likely to be an inlier of the hypothesis with a lower

residual.

There may be many common hypotheses shared by

hi and hj at the top place of the list, especially when

Fi and Fj are in the same local area. A conditional in-

lier probability is computed to guide the inlier selection

after selecting Fi as an inlier:

f(Fi, Fj) =
1

m
|hi1:m ∩ h

j
1:m|, (1)

where h1:m specifies the first-m hypotheses in the list,

| · | is the counting operator, and ∩ is the intersection

operator. Given the first selected inlier, the probability

of that inlier with the rest point correspondences of F

is used to select the second inlier.

In the experiment, the size of the minimal subset s,

the outlier threshold εo and εr, the number of homog-

raphy hypotheses M0 and M are set to 4, 1, 0.01, 10,

and 500, respectively.

3.1.2 Global Homography Estimation

Given an inlier set P = {pi, p′i}Ni=1 between I and I ′,

the global homography Hg ∈ R3×3 is defined by

p′ ∼ Hgp, (2)

where ∼ denotes an equality up to a scale. p and p′ are

represented in 2D homogenous coordinates, and Hg is

also in homogeneous. Omitting the scale term, Eq.(2)

can be rewritten asx′y′
1

 =

h1 h2 h3h4 h5 h6
h7 h8 h9

xy
1

 . (3)
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Fig. 1 Pipeline of the video stitching of a wide-angle video and a fisheye video.

Through a cross product on both side, Eq.(3) be-

comes 03×1 = p′ ×Hgp, and can be linearized as

03×1 =

 01×3 −p> y′p>

p> 01×3 −x′p>
−y′p> x′p> 01×3

 [h1, . . . , h9]> = Ah, (4)

and only two rows of A are linearly independent. Using

the Direct Linear Transformation (DLT) [18], a global

homography to fit all inliers can be solved by

h∗ = arg min
h

N∑
i=1

‖Ãih‖2 = arg min
h

‖Ãh‖2, (5)

s.t. ‖h‖2 = 1,

where Ãi is the first two rows of A for the i-th inlier,

and Ã ∈ R2N×9 is the stack of all Ãi.

Eq.(5) can be solved through singular value decom-

position (SVD), and global homography Hg is obtained

by reshaping h∗ into a 3× 3 matrix.

3.1.3 Multi-Homography Estimation

Due to strong distortions, wide-angle video image and

fisheye video image alignment with a global homograhy

will introduce large misalignment [52]. To increase the

alignment quality, multiple local homographies are es-

timated by performing Moving DLT [53] on the inlier

set P through

h∗ = arg min
h

N∑
i=1

‖wiÃih‖2 = arg min
h

‖WÃh‖2, (6)

s.t. ‖h‖2 = 1,

for each position p∗ in image I, and W ∈ R2N×2N

takes the form asW = diag ([w1, w1, . . . , wN , wN ]). The

scalar weight wi is defined as

wi = max

(
exp

(
−‖p∗ − pi‖2

σ2

)
, γ

)
, (7)

where σ is a scale parameter, and γ ∈ [0, 1] is used to

avoid numerical issues. The inlier closer to p∗ is given

a higher weight, assuming that pixels in a local area

share a homography.

Due to a lack of point correspondences, local homo-

graphies in non-overlapping regions are also calculated

by inliers (i.e., some point correspondences in the over-

lapping region). To alleviate the artifact, we integrate

the local homography h∗ and the global homography

Hg into a new homography, taking advantage of both

homographies for local alignment and shape preserva-

tion. The integration formulation is given by

H = wHl + (1− w)Hg, (8)

where w is the integration parameter, and Hl is the

3× 3 matrix form of the local homography h∗.
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Since the deformation caused by the global homog-

raphy increases along the positive u-axis from the over-

lapping region to the non-overlapping regions [7], H is

smoothed from local homography to global homogra-

phy along u-axis using w,

w = (u− um)/(uM − um), (9)

where (u, v) is a new coordinate obtained by rotating

the original coordinate (x, y) of the warped image of I.

um and uM are the minimum and the maximum u co-

ordinate of all pixels, respectively. The rotation angel is

θ = arctan(h8/h7). Note that image I ′ is warped by us-

ing R = H(Hl)
−1 to compensate the local homography

warping effects on the overlapping region.

3.2 Optimal Seam Cutting and Updating

To alleviate ghosting effects caused by moving objects

and/or moving cameras, an optimal seam is found for

aligned video composition, and the optimal seam will

be updated in subsequent frames, considering spatial

and temporal coherence. The final stitched video image,

called forward-downward-facing video image (FDF-video

image), is created by using the multi-band blending

to provide a smooth transition of lighting from the

downward-facing video image (DF-video image) to the

forward-facing video image (FF-video image).

3.2.1 Seam Cutting

Seam cutting is utilized to select an optimal pixel-based

continuous curve (seam) for image blending, which can

alleviate ghosting effects caused by moving objects and/or

moving cameras. As demonstrated in Fig. 2, the seam

cutting task is to find an optimal seam, e.g., the red

line from point A to point B over the overlapping area.

We use an enhanced dynamic programming approach

[16] that holds search directions as shown in Fig. 3 to

find the optimal seam.

The enhanced seam is defined as

Ci,j = ei,j +

min (Ci−1,j−1, Ci−1,j , Ci−1,j+1, Ci,j−1, Ci,j+1) , (10)

where (i, j) is a pixel coordinate, C and e indicate the

cumulative cost and the gradient cost, respectively. To

find a seam without gradient difference and visible ar-

tifacts, we define the gradient cost by gradient smooth-

ness Sm and gradient similarity Sd:

e = Sm + Sd. (11)

A B A B A B

+

Fig. 2 Seam Cutting. The task is to find an optimal seam
from point A to point B, such as the red line.

Fig. 3 Search directions of the enhanced dynamic program-
ming algorithm.

Given the overlapping areas Is and It of the two warped

images, Sm and Sd are defined as

Sm = ‖∇(Is + It)‖/mean(‖∇(Is + It)‖), (12)

Sd = ‖∇(Is − It)‖/mean(‖∇(Is − It)‖), (13)

where ‖ · ‖ and ∇ are the L2-norm and the gradient

operator, respectively.

3.2.2 Selected Seam Updating

The selected seam will be dynamically updated in suc-

cessive video images. Avoiding to introduce noticeable

artifacts caused by large drift of the optimal seams

between successive video images, we employ a seam

updating method based on temporal propagation con-

straint [44] to gain stable seams.

The temporal propagation constraint is constructed

based on location information of the optimal seam in

the previous video image. It is represented by a ma-

trix Dt−1
w×h, where t is the index of the video image.

Each element of Dt−1
w×h is a penalty for each point in

the overlapping area, which equals to horizontal dis-

tance between the corresponding point and the optimal

seam of the previous video image. In other words, the

penalty increases with the distance.

For the current video image, we can get a cost ma-

trix Ct
w×h using Eq. (10). Combining with the temporal

propagation constraint, the final cost matrix C̃t
w×h is

calculated using

C̃t
w×h = Ct

w×h + Dt−1
w×h. (14)

We can update the selected seam by performing the

enhanced dynamic programming algorithm again.
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(a)

(b)

Stitching results

(c)

Fig. 4 Stitching results on wide-angle images and fisheye im-
ages of different scenes. (a) Original wide-angle video images
captured by the FF-camera. (b) Original fisheye video im-
ages captured by the DF-camera, corresponding to the origi-
nal wide-angle video images in (a). (c) Stitching results (the
FDF-video images).

3.3 Video Image Blending

Due to the distinct orientations of the DF-camera and

the FF-camera, there exist lighting inconsistencies be-

tween the same scenes of the DF-video image and the

FF-video image. Video image blending can be used to

achieve a smooth transition of lighting from one im-

age to the other. We utilize the multi-band blending [4]

which is widely used and relatively insensitive to mis-

alignment [54], for warped video image composition.

We build a Laplacian pyramid on each warped video

image, and the blending becomes a solution of feather

blending on each pyramid level. To obtain the weights

used to perform feather blending, each weight image

built on the optimal seam is converted into a Gaussian

pyramid, and each Gaussian pyramid level is a weight

map for corresponding level of the Laplacian pyramid.

The FDF-video image is reconstructed by interpolating

and merging all the blended pyramid levels.

3.4 Stitching results

In general, each image pair should be aligned using the

alignment algorithm. However, alignment on every new-

come image pair will make the stitching slow due to

the low computational efficiency of keypoint detection,

feature matching, and inlier selection. Fortunately, the

DF-camera and the FF-camera are fixed on the verti-

cal post of the telepresence robot. We can assume that

the configuration of the cameras are not changed in a

matter of seconds, so we do not need to estimate the

alignment model on every image pair.

Some stitched video images and the corresponding

original wide-angle video images captured by the FF-

camera and fisheye video images captured by the DF-

camera are shown in Fig. 4. These images consists of

complex scenes and simple scenes, and are captured by

a telepresence robot with a wide-angle lens camera and

a fisheye lens camera.

4 User Study

We conducted a user study to compare visual feedback

of a stitched video (the FDF-video) with traditional

two separate videos (the DF-video and the FF-video)

for telepresence robots.

4.1 Experimental Platform

The experimental platform consists of a telepresence

robot in a local environment, user interfaces used by an

operator in a remote environment, and wireless commu-

nication networks for connecting the two environments.

An operator can use a smart pad in a remote environ-

ment to drive a telepresence robot to acquire the live

video of a local environment as visual feedback.

The telepresence robot used in our user study was

developed in our lab, called Mcisbot [21], as depicted in

Fig. 5. It uses the Pioneer 3-AT as a mobile robot base

equipped with a special designed robot head for telep-

resence. The robot head contains a light LCD screen, a

forward-facing camera (FF-camera), a downward-facing

camera (DF-camera), and a speaker & microphone, and

all together are mounted on a pan-tilt platform hold up

by a vertical post. The FF-camera with a wide-angle

lens can provide a live video for clear watching of tar-

gets or persons in front. The DF-camera with a fisheye

lens provides a complete watching of the ground around

the robot for navigation.

The Mcisbot was specifically designed to evaluate

the usability of the Touchable live Video image based

User Interface (TVUI). The most notable feature of the

TVUI is that there are no explicit graphical buttons, ar-

row keys, and/or menus, compared to traditional touch-

screen GUIs. The TVUI allows operators to drive the

robot by directly touching the live video images with
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Screen

Microphone
& Speaker

Pan-Tilt
Actuator
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Lifting Post

Computer

Pioneer P3-AT
Robot

Fig. 5 The Mcisbot robot.

finger touch gestures. Naturally, we use the TVUI to

test the effectiveness of the stitched video for conve-

nience. Moreover, since traditional touchscreen GUIs

are widely used to support pilot operators to teleop-

erate telepresence robots [11, 36, 50, 51], we also con-

ducted the user study on the GUIs to evaluate the ef-

fectiveness of the proposed method. Fig. 6 (a) shows

the TVUI containing two separate videos (the FF-video

and the DF-video) and the one with a stitched video

(the FDF-video). The GUIs used in our experiments

are shown in Fig. 6 (b).

During the experiment, we resized both the wide-

angle video image and the fisheye video image to 640×480

for stitching. Using a laptop computer with an I5-2410M

Intel 2.30 GHz CPU and 4 GB RAM, we achieved a rate

of video stitching up to 15 fps (frames per second). Con-

sidering system delay and video stitching efficiency, we

directly show the stitching result in the user interfaces

as visual feedback without any post-processing.

4.2 Participants

We recruited 18 participants from the local university

for the user study, whose ages vary from 17 to 28 years

(M=21.28, SD=2.803), where M and SD indicate the

mean value and the standard deviation, respectively.

All participants use computers in their daily life. With

a five-point scale for familiarity, ranging from “1 =

not at all familiar” to “5 = very familiar”, all par-

ticipants reported their familiarity with telepresence

robots (M=1.72, SD=0.752). A few of them heard of

telepresence robots, but had no experience in telepres-

ence robot operation. The others expressed that they

had no idea about telepresence robots. Similarly, all

the participants reported how familiar they were with

video chat on the same five-point scale, and most of

them had video chat experiences (M=3.83, SD=1.200).

(a) TVUIs

(b) GUIs

Fig. 6 Two kinds of user interfaces used in our user study.
(a) The GUI with two separate videos (left) and the GUI with
a FDF-video (right). (b) The TVUI with two separate videos
(left) and the TVUI with a FDF-video (right).

4.3 Environment Setup

We constructed an experimental room in our lab as a

local environment to simulate a complex environment,

such as a museum or a meeting room that contains some

obstacles, pictures, and chairs. The physical arrange-

ment of the local environment is shown in Fig. 7(a).

The obstacles and chairs offered participants the direc-

tion to drive the robot to walk around the local envi-

ronment, and also played roles as anti-collision objects

for safely driving. Operators were located in another

room, specified as a remote environment, to remotely

drive the robot using the user interface, and a picture

of an operator driving the robot to walk around the

experimental room is shown in Fig. 7(b).
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Wall EntranceObstacle Exit

Chair

Chair

Chair

Chair

(a)

(b)

Fig. 7 The local environment. (a) The physical arrangement
of the local environment. (b) The robot was driven to walk
around the local environment.

4.4 Tasks

Providing video(s) as visual feedback, telepresence robots

are typically used for telecommunication and teleoper-

ation. We designed a task of animal picture recognition

and robot driving for comparison between the visual

feedback with a stitched video and traditional two sep-

arate videos.

For one kind of the visual feedback, a participant

was required to drive the Mcisbot robot to walk through

the local environment in safe. Meanwhile, he/she should

recognize all the animal pictures on walls and tell the

experimenter what animal he/she has saw. There were

8 animal pictures on walls and with different recogni-

tion difficulty, e.g., different contrast between the fore-

ground and the background.

The two cameras are designed for different purposes,

the DF-camera for navigation and the FF-camera for

communication. To keep the robot safe from collision

with other objects, operators needed to focus on the

DF-video (or the lower part of the FDF-video) all the

time when they were driving the robot. However, to rec-

ognize pictures on walls, participants needed to watch

the FF-video (or the upper part of the FDF-video). For

safely driving, participants may stop driving when they

could not watch the ground around the robot.

4.5 Measurements and Analyses

We investigated objective and subjective measurements

for visual feedback with a stitched video and two sepa-

rate videos.

The objective measurements include task performance

and situation awareness ability through the user in-

terface. We measured task performance using the task

completion time, timing from the robot entering the

entrance to it coming out from the exit. The situation

awareness ability was measured by the number of pic-

tures that the participant had saw, and the number of

correctly recognized pictures.

The subjective measurements were gained through

three questionnaires, and consists of the situation aware-

ness ability, perceived task success, and the partici-

pants’ preference between the user interface with the

stitched video and the traditional two separate videos.

For the participants’ preference, we compared the num-

ber of persons for each option. There was a five-point

scale for other questions, and the larger was the better.

A one-way fixed-effects analysis of variance (ANOVA)

was conducted to test the effects of the two cases upon

measurements of task completion time, situation aware-

ness ability, and perceived task success. For tests of sta-

tistical significance, we used a cut-off value of p < 0.05.

4.6 Procedure

A mixed between- and within-subject user study was

conducted. The user interface type (the TVUI and the

GUI) was the between-subject variable, and all partici-

pants were divided into two groups, one group using the
TVUI and the other group using the GUI. The visual

feedback (the FDF-video and the two separate videos)

was the within-subject variable such that a better com-

parison between the two manners can be obtained. To

counterbalance the possible ordering effects, we per-

muted the order of visual feedback manner used be-

tween the participants. We changed the locations of an-

imal pictures and furniture after the first trial, and told

the participants that the physical layout of the environ-

ment may have been changed, such that they need to

re-explore the environment to complete the task again.

In preparation, a participant was given an overview

of the experimental task, and then an experimenter pro-

vided the instructions on how to use the TVUI or the

GUI to drive the Mcisbot robot. All participants were

given 10 minutes to practice remotely driving the robot

with the help of an experimenter in the training room.

This training environment contained several different

animal pictures for participants to practice the recog-

nition task. Most of participants completed the prac-
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tices in less than 10 minutes. And most of participants

spent practice time with the TVUI exceeding the GUI

because the GUI is simple and intuitive while skilled

operation with touchscreen gestures on the TVUI need

to be obtained. But using the TVUI to remotely drive

the robot is more flexible than the GUI, particularly

changing the direction and speed of the robot.

After the experimenter drove the robot to entrance

of the local environment, a participant started to op-

erate through the user interface with one manner, and

the timer was started until the robot came out from

the exit. The number of the correctly recognized pic-

tures and the total number of the saw pictures were

accounted by the experimenter. The participant was

asked to fill in the first questionnaire and prepared

to using the user interface with the other manner to

start the task again. Before the task, the experimenter

changed the locations of the pictures and furniture, and

told the participant that the layout of the environment

may have been changed. Then, the participant started

to re-explore the local environment again to complete

the task. After the task, the participant was required

to fill in the second questionnaire, and the same ob-

jective measurements were recorded. Finally, the third

questionnaire designed for capturing the participant’s

preference on the stitched video and traditional two

separate videos was also required to be filled in.

4.7 Results

Fig. 8 and Fig. 9 show the results of the user study using

the TVUI and the GUI, respectively. For simplicity, we

denote the user interface with the FDF-video as ‘FDF’,

while the user interface with the FF-video and the DF-

video as ‘FF+DF’. The objective measurements include

mean task completion time (Task-completion time), the

total number of pictures that had been seen (Total

number), and the number of correctly recognized pic-

tures (Correct number). The subjective measurements

are composed of situation awareness ability, perceived

task success, and the participants’ preference between

the FDF and the FF+DF.

The average task completion time using the TVUI

with the FDF was 186.78 seconds (SD=51.082), and

213.44 minutes (SD=39.928) for the FF+DF, as shown

in Fig. 8. The effect on the task completion time was

not significant, F(1,16)=0.611, p=0.251, possibly be-

cause participants were not skilled in changing the mov-

ing speed of the robot. For the pictures that had been

seen, the average number was 7.78 (SD=0.441) and

7.11 (SD=1.269) for the FDF and the FF+DF, respec-

tively. We found a significant effect of video stitching

on this measurement, F(1,16)=8.286, p=0.004. Besides,
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(b) Subjective measurements

Fig. 8 Evaluations on the TVUI.

the average number of correctly recognized pictures us-

ing the FDF (M=7.67, SD=0.707) was larger than using

the FF+DF (M=7.11, SD=1.269), and F(1,16)=3.222,

p=0.059. The situation awareness ability with the FDF

(M=3.44, SD=1.014) was reported to be better than

the FF+DF (M=2.22, SD=1.394). There was a signifi-

cant effect on perceived task success with F(1,16)=5.778,

p=0.011, (M=4.67, SD=0.5) for the FDF and (M=3.78,

SD=1.202) for the FF+DF. Additionally, almost all

participants preferred using the FDF than the FF+DF.

For the GUI, the average task completion time of us-

ing the FDF (M=212.89, SD=44.563) was similar with

the FF+DF (M=260.67, SD=70.109), and F(1,16)=2.475,

p=0.111. The average number of pictures that had been

seen using the FDF (M=7.89, SD=0.333) and the FF+DF

(M=7.67, SD=0.5) were almost the same. A similar re-

sult was achieved on the average number of correctly

recognized pictures, (M=7.89, SD=0.333) for the FDF

and (M=7.44, SD=0.527) for the FF+DF. The situa-

tion awareness ability with the FDF (M=3.778, SD=0.441)

was better than the FF+DF (M=3, SD=1.118), F(1,16)=6.429,

p=0.008. We also found a significant effect on perceived

task success, F(1,16)=3.538, p=0.046, and the FDF had

a mean value of 4.11 (SD=0.600) while the FF+DF was

3.44 (SD=1.130). Similar to the user study using the

TVUI, almost all participants preferred to using the

GUI with the FDF rather than the FF+DF.
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Fig. 9 Evaluations on the GUI.

Several participants reported that the FDF-video

can provide a more compact and high efficient visual

feedback than the FF+DF. Using the GUI, six partic-

ipants said that the user interface with the FDF-video

was more convenient in spatial awareness, and they felt

easier in distance perception because the scene is con-

tinuous. Five participants using the TVUI also gave us

the same opinion. Additionally, five participants using

the GUI with two separate videos described that they

had to frequently switch the two videos, and three oper-

ators using the TVUI with two videos noticed the same

problem. This problem was not existing on the FDF-

video, since the scenes of the upper and the lower part

of the FDF-video were continuous.

In summary, both the user study results on the

TVUI and the GUI have demonstrated the effective-

ness of our method. The telepresence robot incorporat-

ing with our video stitching algorithm is able to pro-

vide more friendly interactive experiences. Herein, our

work focused on visual feedback with two manners (the

stitched video and the two separate videos), instead of

the comparison of user interface types (the TVUI and

the GUI). The comparison of the TVUI and the GUI

can be found in [21].

5 Conclusions

This paper has proposed to stitch two live videos to

provide more compact and high efficient visual feedback

for the users of telepresence robots with friendly inter-

active experiences. The two live videos can be captured

by a forward-facing camera with wide-angle lens and

a downward-facing camera with fisheye lens for video

communication and navigation in robotic telepresence

systems, respectively. A multi-homography-based video

stitching algorithm, consisting of video image align-

ment, seam cutting, and image blending, can stitch

these videos without calibration, distortion correction,

and unwarping procedures. The user study on a telep-

resence robot was conducted and results demonstrated

the effectiveness of our method and the superiority of

the telepresence robots with a stitched video as visual

feedback.
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