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ABSTRACT

We present a new neuro-inspired reinforcement learning architecture for robot online learning and1

decision-making during both social and non-social scenarios. The goal is to take inspiration from the2

way humans dynamically and autonomously adapt their behavior according to variations in their own3

performance while minimizing cognitive effort. Following computational neuroscience principles,4

the architecture combines model-based (MB) and model-free (MF) reinforcement learning (RL). The5

main novelty here consists in arbitrating with a meta-controller which selects the current learning6

strategy according to a trade-off between efficiency and computational cost. The MB strategy, which7

builds a model of the long-term effects of actions and uses this model to decide through dynamic8

programming, enables flexible adaptation to task changes at the expense of high computation costs.9

The MF strategy is less flexible but also 1000 times less costly, and learns by observation of MB10

decisions. We test the architecture in three experiments: a navigation task in a real environment with11

task changes (wall configuration changes, goal location changes); a simulated object manipulation12

task under human teaching signals; and a simulated human-robot cooperation task to tidy up objects13

on a table. We show that our human-inspired strategy coordination method enables the robot to14

maintain an optimal performance in terms of reward and computational cost compared to an MB15

expert alone, which achieves the best performance but has the highest computational cost. We also16

show that the method makes it possible to cope with sudden changes in the environment, goal changes17

or changes in the behavior of the human partner during interaction tasks. The robots that performed18

these experiments, whether real or virtual, all used the same set of parameters, thus showing the19

generality of the method.20
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1 Introduction23

The field of robot reinforcement learning (RL) has seen a fast growth in the last decade [Kober et al., 2013, Khamassi24

et al., 2018, Ibarz et al., 2021]. In particular, notable progresses have been made with the use of deep RL algorithms25

[Mnih et al., 2015], which enable to deal with large continuous state and action spaces. Nevertheless, these methods26

are computationally very costly, requiring millions of iterations before convergence [Justus et al., 2018, Strubell et al.,27

2019]. Moreover, they are most of the time designed specifically for a given scenario, thus preventing generalization.28

More precisely, the human designer either goes for a model-based (MB) RL, when it seems feasible for the robot to try29

and estimate a model of the effect of its actions, or for a model-free (MF) RL one, when it does not seem feasible [Wang30

et al., 2019]. Overall, a wide variety of algorithmic solutions exist (some being value-based, other being policy-based),31

each being more appropriate to specific experimental scenarios [Kober et al., 2013]. While recent hybrid MB/MF robot32

learning methods have been proposed [Caluwaerts et al., 2012b, Chebotar et al., 2017], it is not clear if they could cope33

on-the-fly with the high degree of variability and non-stationarity of human-robot interaction (HRI), and at the same34

time minimize computational cost. To our knowledge, no generic solution exists that enable robots to automatically35

choose the most efficient and least costly learning algorithm in a variety of contexts depending on the characteristics of36

the task at hand.37

In contrast, humans, and more generally mammals, are endowed with behavioral flexibility which enable them to38

adapt to a variety of contexts and situations. One of the key ingredients of this behavioral flexibility is thought to39

be a certain degree of modularity within their cognitive architecture, so that learning and decision-making processes40

rely on the alternation and sometimes combination of different learning strategies [Hikosaka et al., 1999, Daw et al.,41

2005, Dollé et al., 2008, 2010, Khamassi et al., 2011, Khamassi and Humphries, 2012, Van Der Meer et al., 2012,42

O’Doherty et al., 2017]. In other words, humans have different cognitive tools within their mental toolbox, and can43

reuse the tools they think are appropriate in new situations while minimizing cognitive effort [Shenhav et al., 2013,44

Zenon et al., 2019]. More precisely, it has been shown that humans rely on a mixture of MB and MF RL processes when45

facing contexts requiring repeated decisions [Daw et al., 2011, Lee et al., 2014, Viejo et al., 2015]. They are moreover46

able to recognize the degrees of stability and familiarity of a given task to decide when to shift between these two47

behavioral modes. Importantly, these human cognitive abilities have recently been modeled with the deep reinforcement48

learning framework [Wang et al., 2018]. However, these approaches still rely on task-specific parameterization and49

computationally heavy pretraining, and do not explicitly address genericity nor cost reduction.50

The idea of taking inspiration from how the brain coordinates multiple learning systems to enable more flexibility51

in robots has received increased attention in the robotics community during the last couple of decades [Girard et al.,52

2005, Meyer and Guillot, 2008, Caluwaerts et al., 2012b, Zambelli and Demiris, 2016, Banquet et al., 2016, Lowrey53

et al., 2019]. Furthermore, robot cognitive architectures combining both MB and MF learning processes have started54

to be studied in recent years [Caluwaerts et al., 2012b, Jauffret et al., 2013, Renaudo et al., 2014, 2015b, Llofriu55

et al., 2015, Maffei et al., 2015, Chatila et al., 2018, Sheikhnezhad Fard and Trappenberg, 2019, Hafez et al., 2019,56

Rojas-Castro et al., 2020, Hangl et al., 2020]. Among these proposals, we have previously proposed a way to implement57

these principles within a classical three-layered robot cognitive architecture, to facilitate integration with other sensing58

and control components, as well as to permit future transfer to different robotic platforms [Renaudo et al., 2015c].59

Nevertheless, to our knowledge, none of these recent projects have studied (1) the extent to which combining MB60

and MF RL can provide behavioral flexibility and simultaneously reduce computational cost, by enabling robots to61

autonomously determine when to avoid the high cost of MB planning when an MF strategy is considered sufficient;62

and (2) the extent to which such a multi-strategy architecture is effective in a variety of tasks, including social and63

non-social ones, and thus can be generalized to different scenarios and situations.64

Here, we present a novel robot reinforcement learning architecture which display behavioral flexibility by dynamically65

shifting between MB and MF RL through the arbitration of a trade-off between performance and computation cost.66

We test the new algorithm during simulated and real robot experiments, and test its generalizability without parameter67

re-tuning in three different scenarios: a navigation task involving paths of different lengths to the goal, dead-ends, and68

non-stationarity; a human-robot interaction task where the robot learns to put objects in the rights containers under69

human teaching signals; a human-robot cooperation task where both human and robot have to hand-over some objects70

to the other agent in order to put them in their respective containers. We find that the proposed architecture flexibly and71

consistently switches to MB control after environmental changes in any of the three scenarios. It moreover efficiently72

switches to MF control when the task is recognized as stationary. Overall, the robot achieves the same performance as73

optimal MB control in the three scenarios, while dividing computation time by more than two.74
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Part of the results in the navigation scenario (Experiment 1), those with change in reward location, but not those with75

change in the wall configuration, have been published in a conference paper [Dromnelle et al., 2020b]. Part of the results76

in the HRI scenario (Experiment 2) have been published in a second conference paper [Dromnelle et al., 2020a]. We77

present new unpublished results in both experiments, new extended analyses of the properties of the robotic architecture78

which explain these results, and a thorougher description of the methods. Experiment 3 is completely new.79

In summary, we propose an original and efficient human-inspired mechanism for the coordination of robot learning80

systems in a variety of scenarios. To our knowledge, this is the first robotic implementation of a hybrid MB/MF81

algorithm that efficiently reduces computation cost while maintaining performance, and which can cope with human82

behavioral variability during HRI. This feature can be a key advantage from an ecological point of view and for robots83

that can only rely only on their limited internal computational and energetic resources to achieve their objectives.84

2 Material and Methods85

2.1 Markov Decision Problem86

In the three scenarios considered in this work, we systematically consider the robot as an RL agent facing a Markov87

decision problem (MDP) [Sutton and Barto, 1998]. This means that the robot will experience a series of discrete states88

s ∈ S , choosing what to do at each iteration t (i.e., timestep) within a finite set of discrete actions a ∈ A, with the goal89

of maximizing the sum of cumulative reward r ∈ R over a potentially infinite horizon (the robot does not know in90

advance how long the task will last): f(t) =
∑∞

t=0 γ
trt with 0 ≤ γ ≤ 1.91

The MDP can be described by the n-uplet (S,A, T,R, γ) where T : (S,A) → S is the transition function, which92

represents the probability P (s′|s, a) of arriving in state s′ after executing action a in state s, and R : S → R is the93

reward function, which represents the scalar reward r that the robot can get after reaching state s′.94

It is important to note that using a discrete state space does not necessarily mean that the human designer always95

has to pre-define in advance the decomposition of the task into discrete states. As we will see in the navigation96

scenario (Experiment 1), we propose a method for the autonomous decomposition of states from the data acquired97

through a Simultaneous Localization and Mapping Algorithm (SLAM, Grisetti et al. [2007]) by the real robot during98

initial random navigation within the environment. In that case, the states will represent unique locations in space,99

and the actions allowed to the robot represent moves in eight cardinal directions: north, north-east, east, etc. In the100

Human-Robot Interaction (HRI) scenarios (Experiments 2 and 3), the states will represent the configuration of cubes on101

a table and the possible actions will be: pick a cube, place a cube in a container, hand-over a cube to the human, take102

the cube that the human is handing over. Moreover, we will present our method for the robot to autonomously learn a103

world model from the data it collects during initial exploration, this model consisting in the estimations T̂ and R̂ of the104

transition and reward functions T and R, respectively. The robot will then use this learned world model to perform105

mental simulations through Dynamic Programming [Sutton and Barto, 1998], and hence bootstrap learning within a106

few hundreds of iterations, thanks to such an MB strategy.107

The rationale here for using discrete state and action spaces, and addressing them with a hybrid MB/MF learning108

strategy, is to test in a robot the performance, computational cost and generalizability of a human-inspired model. We109

thus want to evaluate to which extent it enables robot fast adaptation and quick (in the order of thousands of iterations)110

reaching of an optimal performance at a low computational cost, inspired by human ability to quickly adapt in new111

situations. This human ability is currently thought to rely on the combination of MB and MF RL applied to such112

discrete representations of the task at hand [Daw et al., 2011, Lee et al., 2014, Viejo et al., 2015]. In contrast, current113

deep RL methods are computationally heavy and cannot achieve an optimal performance in these simple tasks within a114

few thousands of iterations (we will even show cases of adaptations to task changes within a few hundreds of iterations),115

but rather require millions of iterations [Wang et al., 2019]. We will illustrate in the navigation scenario that at the end116

of the experiment, after the robot has performed 6400 actions, that a Deep Q-Network (DQN) [Mnih et al., 2015] barely117

had time to slightly improve its performance, compared to the other tested algorithms.118

2.2 A robot cognitive architecture with a dual decision-making process119

The present work implements a classical three-layer robot cognitive architecture [Gat, 1998, Alami et al., 1998]120

composed of a decision, an executive and a functional layer. The decision layer of the proposed architecture (Fig. 1) is121

composed of two competing experts which generate action propositions, each with its own method and with its own122

advantages and disadvantages. These two experts are directly inspired by current computational neuroscience models123

which combine MB and MF RL strategies for navigation [Khamassi and Humphries, 2012], and more generally for124

decision-making tasks [Daw et al., 2005, 2011]. Hereafter, we follow the decomposition of the computations of each125

3
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Action(t1) Send data to Meta-Controller to arbitrate
between Model-Free and Model-Based Experts

(t2) Send the signal to execute inference and
decision processes according to arbitration

(t3) IF the decision process is executed, send the
proposed action to the Meta-Controller

(t4) Send the chosen action to the Executive Layer

Model-Free expert
(Qlearning)

Model-Based Expert
(Value iteration)

Meta-Controller
(Criterion-based

arbitration)

Action executionState Construction

Environment
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Decision layer

Stimuli

Reward

State &
Reward

(t1)

(t1)

(t2)

(t2)

(t3)

(t3)
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Figure 1: General structure of the architecture. Two experts having different properties are computing the next action
to do in the current state s. They each send monitoring data to the meta-controller (MC) about their learning status
and inference process (t1). The MC chooses an expert according to a criterion that uses this data and authorizes it to
carry out its inference and decision processes (t2). After the decision, the chosen expert sends its proposition to the MC
(t3), which sends the action to the Executive Layer (t4). The effect of the executed action generates a new perception,
transformed into an abstract Markovian state, and eventually a non null reward r, that are sent to the experts. Each expert
learns according to the action chosen by the MC, the new state reached and the reward. Figure by Dromnelle, Renaudo,
Khamassi and Girard (2022); available under a CC-BY4.0 licence (https://doi.org/10.6084/m9.figshare.21031723).

expert into three processes, namely learning, inference and decision [Cazé et al., 2018], in order to more clearly identify126

what is the respective computational cost of each of these processes.127

The decision layer is also equipped with a meta-controller (MC) in charge of arbitrating between experts. The MC128

determines which expert will perform inference and decision steps in the current state, according to an arbitration129

criterion. After that, the decision layer sends the chosen action to the executive layer, who ensures its accomplishment130

by recruiting robot’s skills from the functional layer. The latter consists of a set of reactive sensorimotor loops that131

control actuators during interaction with the environment. The robot reaches a new state and obtains or not a reward.132

The two experts use the new state and the reward information to update their knowledge about the executed action. This133

allows MB and MF experts to cooperate by learning from each others’ decision.134

4
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Compared to our previous architecture [Renaudo et al., 2015b], several changes have been made: The overall organiza-135

tion of the decision-making layer and the prioritization of communication between modules have been changed; The136

MF expert is no longer built as a neural network but as a tabular algorithm; The MC chooses which expert is the most137

suitable at a given time and in a given state, and no longer simply at a given time; And above all, we have defined a138

novel arbitration criterion that not only compares experts’ performance, but also their estimated computational cost.139

2.3 The decision layer140

2.3.1 Model-based (MB) expert141

The MB expert learns a transition model T and a reward model R of the problem, and uses them to compute the142

values of actions in each state. These models allow to simulate over several steps the consequences of following a143

given behavior and to look for desirable states to reach. Consequently, when the task changes, the robot can use this144

knowledge to find the new relevant behavior with little actual interactions with the world. However, this search process145

is costly in terms of computation time as it needs to simulate several value iterations [Sutton and Barto, 1998] in each146

state to find the correct solution.147

Learning process. The learning process of the MB consists in updating the reward and the transition models by148

interacting with the world. The transition model T is learnt by counting occurrences of transitions (s, a, s′). A149

pretraining phase can take place to improve the robot’s transition model before the beginning of task. Nevertheless, the150

transition model is updated all along the experiment, so that the robot can adapt to task changes.151

The transition model T is updated using the number of visits VN (s, a) of state s and action a. VN (s, a) has a maximum152

value of N and VN (s, a, s′) is the number of visits of the transition (s, a, s′) in the last N visits of (s, a). The transition153

probability T (s, a, s′) is defined in Eq. 1. This leads to an estimation of the probability to the closest multiple of 1/N :154

T (s, a, s′) =
VN (s, a, s′)
VN (s, a)

(1)

The reward model R stores the most recent reward value rt received for performing action a in state s and reaching the155

current state s′, multiplied by the probability of the transition (s,a,s’).156

Inference process. Performing the process of inference consists in planning using a tabular Value Iteration algorithm157

[Sutton and Barto, 1998]:158

Q(s, a)←
∑

s′

T (s, a, s′) [R(s′) + γmaxk∈AQ(s′, k)] (2)

Q(s, a) is the action-value estimated by the agent for performing the action a in the state s, R(s′) the probabilistic159

reward of the reward model R associated with the state (s′) and γ the decay rate of future rewards.160

Decision process. Performing the decision process consists in converting the estimation of action-values into a161

distribution of action probabilities using a Boltzmann softmax function, and drawing the action proposal from this dis-162

tribution. We moreover introduce the possibility of human interventions under the form of a bias QH(s, a) representing163

the human’s preferences for action (these will be used for HRI tasks in Experiments 2 and 3, but not in the navigation164

task of Experiment 1):165

P (a|s) = exp((Q(s, a) + αH ∗QH(s, a))/τ)∑
b∈A exp((Q(s, b) + αH ∗QH(s, b))/τ)

(3)

where τ is the exploration/exploitation trade-off parameter, and where the human-predicted preference (bias) QH(s, a)166

equals 1 if the human praised the robot the last time it performed the action a in state s, and 0 otherwise. For the sake167

of parsimony, the weight of the human bias αH is identical to the learning rate of the robot α.168

2.3.2 Model-free (MF) expert169

The MF algorithm does not use models of the problem to decide which action to do in each state, but directly learns170

the state-action associations by caching in each state the earned rewards in the value of each action (action-values).171

Because updating the action-values is local to the visited state, the learning process is slow and the robot cannot learn172

5
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the topological relationships between states. Consequently, when the task changes, the robot takes many actions to173

adopt the new relevant behavior. On the other hand, this method is less expensive in terms of inference duration.174

Learning process. Performing the learning process consists in estimating the action-value Q(s, a) using a tabular175

Q-learning algorithm:176

Q(s, a)← Q(s, a) + α[R(s) + γmax
k

Q(s′, k)−Q(s, a)] (4)

where α is the learning rate, R(s) is the scalar reward received for reaching the state s, γ is the decay rate of future177

rewards (same as γ used by MB in Eq. 2), and s′ is the state reached after executing a.178

Inference process. Since the MF expert does not use planning, its inference process consists only in reading from the179

table that contains all the action-values the one that corresponds to performing the action a in the state s.180

Decision process. The decision process is the same as for the MB expert (Eq. 3).181

2.3.3 Meta-controller and arbitration method.182

The MC is in charge of selecting which expert will generate the behavior. For each state s, it computes the entropy183

of the action probability distribution H(s, E) of expert E [Viejo et al., 2015], which is close to the notion of trust in184

[Rutard et al., 2020]:185

H(s, E, t) = −
|A|∑

a=0

g(P (a|s, E, t)) · log2 (g(P (a|s, E, t))) (5)

where g(P (a|s, E, t)) is a low-pass filtered action probability distribution, estimated from the past inferences performed186

by expert E, with time constant τ = 0.67, which has previously been found to reflect the quality of learning in humans187

[Viejo et al., 2015]. The lower the entropy, the lower the uncertainty of the agent about the action to choose. So the188

lower the entropy, the higher the quality of learning. The action selection probabilities used to compute the entropy are189

averaged over time, per state, using an exponential moving average.190

For each state, the MC also computes the low-pass filtered duration of the previous inference processes CT (s, E, t) of191

expert E, measured in actual simulation time. The novel arbitration criterion that we propose here is a trade-off between192

the quality of learning and the cost of inference. By using it, the MC can decide between favouring the most certain193

expert (the most efficient) and the cheapest expert in terms of computations. Note that the inference process of an expert194

does need to be run before the meta-controller’s arbitration since it relies on a low-pass filtered memory of the past195

costs of each expert in each state. The meta-controller computes the expert-value Q(s, E) for each expert as following:196

Q(s, E, t) = − [H(s, E, t) + exp(−κH(s,MF, t))CT (s, E, t)] (6)

where the term exp(−κH(s,MF, t)) allows to weight the impact of computation costs in the criterion: The lower the197

entropy of the MF distribution of action probabilities, the more the computation cost of the inference process weights in198

the equation. We have chosen the value (here κ = 7) of the weighting of −H(s,MF, t) according to a Pareto front199

analysis [Powell and Sammut-Bonnici, 2015] (Figure 2, left). We were looking for a κ that minimizes the cost of200

inference, while maximizing the agent’s ability to accumulate reward over time (here we tried to loose less than 1%201

of the maximum, dashed line on fig. 2, left), in the two non-stationary navigation tasks detailed in the next section.202

Figure 2, right, illustrates this process by showing the way exp(−κH(s,MF, t)) evolves as a function of the value of203

the entropy H(s,MF, t) and parameter κ.204

Finally, the MC converts the estimation of expert-values Q(s, E) into a distribution of expert probabilities using a205

softmax function (Eq. 3), and samples the activated expert from this distribution. The inference process of the unchosen206

expert is inhibited, which thus allows the system to save the corresponding computation time.207

2.4 World-model building208

In this work, we alternate experiments in simulation and with the real robot. This is to enable the robot to learn a world209

model of the task in reality, then use this world model for simulations permitting to tune the parameters and evaluate the210

6
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Figure 2: Selection of the value of the κ parameter in simulations of the navigation task (Experiment 1). A. Indoor
arena used for the navigation task with the real robot. State 18 depicts the initial reward location. The robot
learned a discrete map of the environment which was then used for parameter optimization in simulation. B. Shape
of the exp(−κH(s, E, t)) function for various values of the κ parameter. C,D. Cumulated reward and cumulated
computational cost obtained with various values of κ (Eq. 6) in the MC-EC architecture (purple), versus the MF-only
(red), MB-only (blue) and MC-Rnd (green) controls. The dashed line represents 0.99% of the maximal cumulated
reward measured. The analysis was performed on data collected in the two non-stationary navigation scenarios (top:
displace reward scenario; bottom: added wall scenario). Figure by Dromnelle, Renaudo, Khamassi and Girard (2022);
available under a CC-BY4.0 licence (https://doi.org/10.6084/m9.figshare.21031723).

proposed robot cognitive architecture. And finally perform the learning experiments with the real robot under various211

conditions: Change in the reward function R of the MDP, change in the transition function T of the MDP.212

Figure 3 illustrates the method. The robot first learns a world model from real data collected during initial exploration.213

Then the world model is used as a new approximate but realistic MDP to perform offline simulations. These simulations214

serve to evaluate the robot cognitive architecture, measure its performance and cost in different conditions, and optimize215

its parameters in simulation, thus more quickly than with a real robot. Finally, the parameterized architecture can be216

tested again on the real robot, where MB and MF RL strategies can learn in parallel the new task conditions imposed to217

the robot.218

The method is here illustrated with a navigation scenario, easy to conceptualize and visualize. But it is a generic method219

which can be used in other scenarios, such as MDPs for HRI with humans.220

2.5 General information221

Similarly to the Rmax algorithm [Sutton and Barto, 1998], we initialized the action values to non-zero values so to222

help exploration of non-previously selected actions, since the action values are updated according to the previous ones.223

Thus, in any non-rewarded states, having previously selected at least one action results in a non-flat action probability224

distribution, and thus more chances to select another one (exploration). More precisely, the initial action values are set225

to 1 for both experts.226

For the MF expert, we conducted a grid search to find the best parameter-set, i.e., parameters maximizing the total227

accumulated reward over a fixed duration of 1600 timesteps (which is the duration of the first phase of the navigation228

phase, before task changes occur). As this expert is very slow to learn compared to the MB expert, it is important to229

ensure that it can display a beginning of performance improvement within this duration. We found α = 0.6, γ = 0.9 and230

7
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Figure 3: The different phases of the method used for world model building and offline usage. We illustrate the method
with a navigation scenario, easy to conceptualize and visualize, but the method is generic and can be used in other
scenarios, such as MDPs for HRI. Figure by Dromnelle, Renaudo, Khamassi and Girard (2022); available under a
CC-BY4.0 licence (https://doi.org/10.6084/m9.figshare.21031723).

τ = 0.02. For the MB expert, we chose γ = 0.95. For the MB expert and the MC, we chose the same value of τ as the231

MF expert. Finally, for the MC, we choose a gating parameter κ = 7.232

3 Experiment 1: Navigation task233

The work described in this section presents extended analyses of the results of Dromnelle et al. [2020b], plus unpublished234

results in a new condition of the task (changes in wall configuration). Finally, we also provide more details about235

the world model building method, because it will also be used in Experiments 2 and 3. We will refer to Dromnelle236

et al. [2020b] for previously published results, which can be accessed from: https://hal.archives-ouvertes.237

fr/hal-02883717v3/document.238

3.1 Methods239

We first evaluated our cognitive architecture in a navigation task. Since running 1600 actions on the robot takes about240

six hours, we have created a simulation of the task where the probabilities of transitions are derived from a world model241

learned by the real robot during a 13 hours exploration of the real arena (Section 2.4). This simulation allowed us to242

quickly test multiple coordination criteria and parameterizations, before evaluating them on a real robot.243

We used a 2.6 m x 9.5 m arena containing obstacles (Fig 2A), and a turtlebot. The computer uses ROS [Quigley et al.,244

2009] to process the signals from its sensors, controls the mobile base and interfaces with our architecture. A Kinect-1245

sensor returns an estimate of distance to obstacles in its field of view, completed by contact sensors at the front and sides246

of the mobile base. The robot localizes itself using the gmapping Simultaneous Localization and Mapping Algorithm247

(SLAM, [Grisetti et al., 2007]). During a preliminary environmental exploration phase, the robot incrementally builds a248
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discretized map by creating a new nodes every time its minimal distance with all existing nodes is larger than 35 cm, and249

thus autonomously creating new Markovian states (Fig. 4). The current state (of the corresponding MDP) is the closest250

node from the robot when its previous action is completed and it evaluates the consequences. We chose to build this251

map beforehand and to reuse it for each of the learning experiments, so as to reduce the sources of behavioral variability.252

However, note that with the present method the system could start with an empty map and build it incrementally, and253

that a new map could be used for each experiment.254

In this experiment, the robot must learn to reach a specific state of the environment (state 18 – see Fig. 2A). When255

it succeeds, it receives a unitary reward and is randomly returned to one of the two initial positions, located in the256

extremities of the arena (states 0 and 32), to start over. The goal of the robot is first to reach state 18. Thus the reward257

used here could represent the energy that the robot gets when it reaches its battery recharging station, or it could258

represent the success for achieving the instruction given by a human to the robot to go to its home base.259

Performing an action consists of moving in a certain direction and changing state. The robot can move along 8 equally260

distributed allocentric directions (Fig. 4). When the contact sensors are activated, the robot moves back 0.15 meters.261

Finally, according to the exact position in which the robot is located within a state, the arrival state will not necessarily262

be identical for the same action performed. The environment is therefore probabilistic, which multiplies the possibilities263

for the robot. For the MB expert, this specificity implies that the transitions T (s, a, s′) and the rewards R(s, a) are264

stored respectively in the model of transition T and the model of reward R as probability distributions.265

Figure 4: Configurations of the navigation task. A. Starting condition: The rewarding state is state #18 (red), the
departure states are #0 and #32 (blue), all other states are in green. B. Goal-location change condition (after 1600
actions) used in [Dromnelle et al., 2020b]: The reward location is moved to state #34. The inset figure shows the eight
actions available to the robot. C&D. Wall configuration change conditions (after 1600 actions): Obstacles are added
that forbid the transitions between state #16 and states #15 and #37 (C&D), and either between states #20 and #21 (C)
or states #6 and #7 (D).

The experiment involves a stable period during which the environment and reward do not change (Fig. 4A). Then, after266

the 1600th action a task change is imposed where the reward is moved from state 18 to state 34 (Fig. 4B). We also made267

a second series of experiments where the reward is fixed but some wall configurations are changed in the environment,268

either in the lower corridor (Fig. 4C) or in the middle corridor (Fig. 4D) depending which of these is preferentially used269

by the robot, when starting from state 0, so as to maximize the induced perturbation. We chose this duration of 1600270

actions (in the order of a few hours with the real robot, as mentioned above), so as to represent a realistic scenario in the271

context of HRI. In this situation, the human’s instructions to the robot may change during the day: the robot may have272

to complete a task with a specific configuration of the environment in the morning, and then in the afternoon it has to273

learn a new goal location, or the configuration of the environment changes (e.g., one of the corridors is obstructed while274

a human is repairing a light in the ceiling). Under these conditions, we cannot afford to use a learning algorithm which275

requires millions of actions before converging.276

To evaluate the performance of the virtual robot, we studied four combinations of experts : (1) a MF-only robot using277

only the MF expert to decide, (2) an MB-only robot using only the MB expert to decide, (3) a random coordination278

robot which coordinates the two experts randomly and (4) an Entropy and Cost robot which coordinates the two experts279
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using the model of arbitration presented in 2.3.3. In Dromnelle et al. [2020b], we also compared our algorithm to a280

reference learning algorithm in the literature, a DQN deep neural network [Mnih et al., 2015], to show that our method281

outperforms it in terms of cumulated reward with very limited computational cost.282

We define the “optimal behaviour” as the behaviour that allows the robot to accumulate the most reward over time.283

The navigation task does not involve any human intervention, in contrast to the HRI tasks of Experiments 2 and 3. Thus,284

all the results of Experiment 1 were obtained with αH = 0 in the robot’s decision-making equation through softmax285

(Eq. (3)).286

3.2 Results287

Overall, the navigation experiment (Experiment 1) consists of two conditions:288

• Condition 1 (simulation + real robot): initial learning followed by changes in goal location (published in289

Dromnelle et al. [2020b]).290

• Condition 2 (simulation + real robot): initial learning followed by changes in wall configuration (unpublished).291

We mainly focus on the presentation of the new results in Condition 2, while referring to Dromnelle et al. [2020b] and292

to the supplementary material to show that the global pattern of the results is similar between the two conditions. We293

moreover show replications of the simulated results in the real environment with a Turtlebot.294

3.2.1 Trade-off between learning flexibility and computational cost295

The first important result that we illustrate here with the wall configuration change condition (Fig. 5A,B) is that the MB296

and MF expert show complementarity in the trade-off between learning flexibility and computational cost:297

• The MF-only robot (red) takes longer to reach the optimal behaviour during initial learning, is even slower298

to adapt to the task change after the 1600th action (Fig. 5A), but achieves this performance at a negligible299

computational cost (Fig. 5B). This is because its inference process simply consists in reading from the table300

that contains all the actions-values.301

• In contrast, the MB-only robot (blue) has the best performance (Fig. 5A), but also the highest computational302

cost due to the planning process (about 1000 times higher than the MF-only robot) (Fig. 5B).303

The Entropy and Cost (EC) robot (purple), which combines MB and MF experts through the meta-controller proposed304

in the present cognitive architecture (Fig. 1), manages to reach a non-significantly different performance from the305

MB-only robot (Mann-Whitney test, df = 1, p = 0.171), showing that our coordination method does not penalize the306

robot in terms of cumulated reward. This good performance is obtained despite the fact that the EC robot chooses307

the MF strategy more than 50% of the time after the 800th action (Fig. 5.C). This means that the MF strategy in the308

EC robot has learned faster than in the MF-only robot, taking advantage of the demonstrations provided by the MB309

expert. The activation of the MB expert is thus limited, which drastically reduces the computation cost (more than two310

times smaller than the MB-only robot at the end of the experiment, Fig. 5B). In addition, the EC robot performs better311

than the random coordination robot (green) suggesting that our coordination method is more efficient than randomly312

alternating between MB and MF control.313

Thus in this task, the proposed architecture enables to benefit from the high learning flexibility of the MB-RL expert,314

with a limited computational cost thanks to the cheap MF-RL expert. These results replicate what we previously315

obtained in the change in goal location condition [Dromnelle et al., 2020b], and show similar properties when tested in316

the real robot (Online Resource Suppl. Fig. S4).317

3.2.2 Emergent temporal pattern of expert selection318

The second important result is the consistent temporal pattern of expert selection that emerges from the meta-controller’s319

expert selection rule (Equation 6). This pattern was observed (1) in the change in goal location condition [Dromnelle320

et al., 2020b], (2) in the simulated version of the change in wall configuration condition (Fig. 5.C), and (3) in the version321

with the real robot (Fig. 5.D), thus showing the robustness of the pattern. This pattern consists in:322

• The MF exploring phase (1 on Fig. 5.C): Before the discovery of the position of the reward, the robot uses323

mainly the MF expert. This is due to the difference in the method for updating action-values between the324

two experts. With the same initial values and the set of parameters we have defined, the action-values of the325

MF expert decrease slightly more than those of the MB expert, which drives a more pronounced decrease of326
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Figure 5: Simulation results of the wall configuration change condition of the navigation experiment: A. Mean
performance for 100 simulated runs of the task. The performance is measured as the cumulative reward obtained over
the duration of the experiment. The duration is represented as the number of actions performed by the robot. We use
standard deviation as dispersion indicator. At the 1600th action, new walls are introduced in the arena, as illustrated in
Fig. 4C-D. B. Mean computational cost for 100 simulated runs of the task. The computational cost is measured as the
cumulative time of the inference process over the duration of the experiment in seconds. The duration is represented
as the number of actions performed by the robot. C. Mean probabilities of selection of experts by the MC using the
Entropy and Cost criterion for 100 simulated runs of the task. These probabilities are defined by the softmax function
of each expert. The duration is represented as the number of actions performed by the robot. We use standard deviation
as dispersion indicator. D. Mean probabilities of selection of experts by the MC-EC robot for 10 runs of the wall
configuration change task with the real robot.

the entropy of the action probability distribution. In addition, since we do not have an expert specialized in327

exploration, it makes sense to use the computationally cheapest expert until the position of the reward has328

been discovered.329

• The MB driving phase (2 on Fig. 5.C): After finding the first reward the MB expert progressively takes the330

lead on the decisions because its inference process needs only to find the reward once to spread action-values331

to all states of the environment thanks to its transition model. It can thus find the reward more easily than the332

MF expert, and so, its performance increases.333

• The MF driving phase (3 on Fig. 5.C): The MF expert learns by demonstration from the MB expert, and thus334

spreads action-values from state to state and eventually, towards the 800th action, it reaches the performance335

of the MB expert. Because the MF expert is less expensive, the arbitration criterion (Eq. 6) gives it the lead336

over decisions.337

• Interestingly, when a change in the task occurs (At the 1600th action on Fig. 5.C), the sequence of three phases338

appears again.339
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The large standard deviation shown in the figures is explained by the fact that for each experiment, the robot’s strategy340

and behaviour can be very different, notably due to the large number of states and possible actions, but also to the341

probabilistic nature of the environment. As a result, the time of the switches from one phase to another varied a lot342

from one individual to another. Nevertheless the individual behavior of each run is consistent with the average behavior343

presented here (Online Resource Suppl. Fig. S1.B). Importantly, experiments with the real robot replicated the expert344

selection pattern obtained in simulation (Fig. 5D).345

Figure 6: Evolution of the expert spatial preferences in the wall configuration change condition of the navigation
experiment. Expert selection maps of the MC-EC robot for one of the hundred simulations: in red, states where the MF
was the last chosen expert, in blue, where the MB was last chosen. after 1600 actions, new walls are introduced that,
here, forbid the transitions between states between state #16 and states #16 and #37, and between states #20 and #21.
The MF driving phase and the MB driving phase correspond to the behavioral phases identified in Fig. 5C.

3.2.3 Spatial pattern of expert selection346

The last important result is the spatial pattern of expert selection: The MB and MF selection probabilities reported347

earlier were not the same in all states of the environment; The meta-controller (MC) turned out to stably prefer the MB348

expert in specific parts of the environment at different stages of learning, and preferred the MF expert in other parts or349

at different stages.350

Figure 6 illustrates the expert selection map by the MC of the EC robot at different periods of the experiment. These351

maps show the relative dominance of MB and MF experts over the robot’s decisions in different parts of the environment.352

They enable us to shed a different light on the emergence of the temporal pattern of expert selection reported in the353

previous subsection. During the MB driving phase, the map is mainly colored in blue, indicating a dominance of MB354

decisions, while during the MF driving phase, it is the opposite and the states are mostly colored in red. Interestingly,355

we can see with these maps how a spatial coordination pattern of MB and MF experts evolves with time: during the MF356

driving phase, paths composed of mostly red states start to appear. These paths approximately end up connecting the357

departure states to the rewarding state, although the states at the extremities of this path (states 0, 1, 2 and 32) are still358

preferentially controlled by the MB expert at the 1250th iteration in the example shown in Fig. 6. After the 1600th359

action, where a change in the wall configuration along the south corridor occurs in the example shown in the figure, the360

extremities of the red path vanish progressively, before re-forming themselves along the central corridor. This illustrates361

the new preference of the robot for the central corridor instead of the south one, because it is now the optimal path to362

the reward.363

This leads to the distinction between two types of states: (1) states located on the optimal path, where the MF expert is364

well trained, and where the robot often goes; (2) states located at the border of the optimal path, where the MF expert365

received little training, and thus where the MB expert remains dominant. Because the robot does not often go outside366

the optimal paths after learning, the MF expert remains the most often selected. Nevertheless, when occasionally the367

robot gets outside the optimal path, the MC reacts by giving the lead to the MB expert which will bring the robot back368
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on track. This illustrates another important aspect of the behavioral flexibility produced by the architecture, which could369

contribute in explaining flexibility in humans, while neuroscience experiments usually cannot tell whether the biological370

“MB expert” is completely deactivated after learning or whether it remains potentially reactive to similar situations. This371

leads to a model-driven prediction which could be tested with future human experiments: An MB process should guide372

humans back to their familiar sequence of states and actions, after they got out of their optimal path in a given task.373

Similar results were obtained in the change in goal location condition of the task (Online Resource Suppl. Fig. S2).374

Finally, Online Resource Suppl. Figures S5 and S6 show that the same pattern of spatial coordination of experts that we375

observed previously in simulation, also emerged over time with the real robot in the two types of experiments. However,376

one can note that the red paths are less complete than they were in the simulation results. This is a sign of a reality gap377

[Koos et al., 2012], meaning that the experiments with the real robot were more difficult, which impacted the robot’s378

ability to achieve the task.379

Another interesting prediction for neuroscience from these results is that a situation with more difficulty, more volatility380

and uncertainty, could involve a more intertwined contribution of both MB and MF experts, even after a long training.381

In such cases, rather than observing a continuous activation, from departure until reward, of a putative MF expert in the382

brain, one would expect to observe intermittent activations of a putative MB expert along the robot’s trajectory.383

Overall, the important thing to note is that the proposed robot architecture enables to adapt to different situations384

(different types of task changes), with different degrees of difficulty and uncertainty (simulation versus reality), with the385

same principle for expert coordination by the meta-controller. This enables to achieve a performance in these simple386

navigation tasks which is not different from optimality, at a drastically reduced computational cost.387

4 Experiment 2: Human-robot interaction with human as teacher388

In this section, we evaluate our robotic architecture and coordination system in a human-robot interaction task. First,389

we present the simulated task, consisting in putting colored cubes in colored containers on a table. Then we present the390

two types of simulated humans that we defined to interact with the robot. In the second part, we present the results391

obtained and show how our coordination system allows the robot, in a task with more states, and without major change392

in our architecture, to maintain again a high level of performance while decreasing greatly its computational cost, but393

also to deal with the volatility of human behavior. The work presented in this section is an extended version of the394

publication Dromnelle et al. [2020a], to which we will refer when mentioning previously published results. The pdf of395

the publication can be accessed from: https://hal.archives-ouvertes.fr/hal-02899767v2/document.396

4.1 Material and Methods397

4.2 Simulated environment and robot398

Unlike Experiment 1, this experiment was performed only in simulation. Here, a robot having at least one mobile399

arm, a visual sensor and a sound sensor faces a table. On the table, three containers and three cubes of different colors400

are placed. The robot is able to distinguish the colors of cubes and containers, and to manipulate each of the cubes.401

On the other side of the table, a human can interact verbally with the robot, but can also take control of the robot’s402

arm. We consider that the robot is able to interpret the very simple human messages consisting in either congratulating403

it, thus constituting a reward signal for the robot, or telling it to observe human demonstrations, thus constituting an404

observation of action by the robot. Figure 7 illustrates the experiment.405

As for the navigation task, we represent the environment by a model of transitions between Markovian states. The406

transition model representing the simulated environment is not generated by a robot in the real world, since there is no407

real experience, but predefined by the experimenter. This model is deterministic: Each action carried out in each state408

by the robot leads to a single terminal state. It would undoubtedly be more complex if it had been generated by a robot409

carrying out this task in the real world, as for the navigation task of Experiment 1 (Section 3). Initially, we had planned410

to carry out the task with real human subjects and a Baxter robot, but the various lockdowns and the sanitary conditions411

in 2020 made us abandon this project and stick to simulations [Feil-Seifer et al., 2020]. Nevertheless, this HRI task412

model is in a sense already more complex than the navigation environment, as we will see in the next two subsections.413

In this HRI task, the robot’s objective is to learn how to put each of the cubes, initially placed on the table, in the414

container of the corresponding color. When this is done, the robot gets a scalar reward, and the cubes are automatically415

put back on the table. Because real naive humans playing with the robot could have wanted the robot to achieve any416

possible configuration (i.e., not always simply to put the red cube into the red container, and so on, as required here,417

but also sometimes to put the red cube into the blue container, the blue one into the green container, etc., or to put all418

cubes into the red container), the robot will have to learn by trial and error the configuration desired by the human.419
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Figure 7: Human-Robot interaction task teaching signals. A. Human provides the robot with evaluative feedback
(Human intervention type: Congratulation). B. Human provides the robot with demonstrations (Human intervention
type: Takeover). Adapted from Dromnelle et al. [2020a], with permission from IEEE.

Importantly, the robot will have to learn this quickly, and to maintain a correct performance throughout the trials, in420

order to make the duration of the experiment consistent with real human-robot interactions, and to prevent humans421

from getting bored. Thus, even if the task is simple, we want the robot to quickly achieve an optimal performance at a422

low computational cost. This is the reason why we are interested in testing whether the same generic robot cognitive423

architecture can produce human-inspired behavioral flexibility also in this HRI task.424

4.3 State and action spaces425

As for the navigation experiment, the robot state space is discrete. Here, a state represents the position of the three426

colored cubes: In the red container, in the green container, in the blue container, on the table, in the robot’s hand, or427

in the human’s hand. If we remove the states where the robot and the human hold several cubes at the same time,428

there remains a total of 112 states, i.e., three times as many states as in the navigation experiment. These 112 states429

correspond to 5x5x5-13, because the 3 cubes can be put in 5 different positions (hand, table, red container, blue430

container, green container), from which we subtract the 13 configurations corresponding to the robot’s hand having431

several cubes simultaneously.432

Regarding the action space, the robot can perform 7 different actions: Take the red cube, take the green cube, take the433

blue cube, put the cube held in its hand into the red container, into the green container, into the blue container and onto434

the table.435

While other ways of modeling the task would have been possible, such as with relational RL [Džeroski et al., 2001], we436

chose this state decomposition for several reasons: To remain in line with the representation used in the navigation437

experiment; For its ease of use; As a proof of concept of the interest of combining MF and MB learning strategies also438

in the field of human-robot interaction.439

4.4 Pre-experimental babbling phase440

A babbling phase precedes the experiment, where the robot can manipulate the cubes without getting rewarded. We441

defined this pre-experimental phase because in this task, the robot explores its environment much less than in the442

navigation task (at an equivalent exploration parameter τ ), which may have significant repercussions on the performance443

of the robot. The reasons for this less extensive exploration are as follows:444

• The environment of this HRI task is defined by approximately three times as many states as in the navigation445

task (112 states for the former, 38 for the latter),446

• Only 6 actions must be performed from the initial state to reach the final state (i.e., approximately 5% of the447

total number of states), against 9 in the navigation task (i.e., approximately 24% of the total).448
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• The environment is not probabilistic, each action performed by the robot in each state of this task leads to a449

single terminal state. If the probabilistic environment in the navigation task made it more complicated for the450

robot to traverse, it also allowed it to discover unexplored states by chance.451

First, we evaluated the performances of the robot in the HRI task after several babbling durations, using our arbitration452

criterion (MC-EC) and without human intervention (Fig. 8). We found an optimal babbling duration of 1200 iterations.453

Beyond that, babbling no longer improved the performance of the robot. Of course, we could also choose to give the454

robot a more or less complete transition model before the start of the experiment. We consider here the case where the455

robot has no a priori knowledge about the environment, apart from predefined state and action spaces. In the same way,456

we could very well imagine that the transition model built by the robot before the first experiment could be reused for457

all the following experiments. This would be particularly useful in the case of real experiments, where pretraining the458

robot can accelerate its performance for the next interactions with human participants. Nevertheless, in the present459

simulations, including a babbling phase enables to estimate how many iterations are required by the robot to learn a460

correct transition model.461

Figure 8: Results in the HRI teaching task. A. Average performance of the MC-EC robot for different babbling
durations. For each duration, 50 simulated experiments were performed. Performance is defined as the robot’s ability to
accumulate reward over the duration of the experiment that follows the babbling phase. The duration is represented by
the number of actions performed by the robot. B. Costs of the inference processes accumulated at the 10000th iteration
by the different robots and for the different types of intervention. The colored dots represent the unit performances
of the different experiments and the black dots the average performances for all the experiments and all durations of
interventions combined, that is to say 600 experiments per type of robot.

4.5 Simulated humans462

A simulated human able to interact with the robot faces the table. We have defined two ways for the robot to learn463

from humans, drawing inspiration from the concepts of learning by evaluative feedback and learning by demonstration464

[Knox and Stone, 2009, Judah et al., 2010, Griffith et al., 2013]. We name respectively the two types of underlying465

interventions: Intervention of the type congratulation and intervention of the type takeover. More precisely:466

• In the case of the congratulation type intervention, the human can congratulate the robot after it has put a cube467

in the correct container, for example the red cube in the red container (Fig. 7A). The effect of the intervention468

will be effective the next time the robot is again in the same situation (when it holds the red cube again). Knox469

and Stone [2012] have previously shown that the more human praise directly affects the robot’s action selection470

process, the better the robot. Conversely, the more human praise affects the update of state-action values for471

each experienced transition, the worse it is. Thus, in our work, we model the human’s congratulation, and472

therefore his/her preference, as a positive bias (a bonus) of an state-action value valid only during the decision473

process, rather than as a direct modification direct of state-action values. Concretely, we are inspired by the474

policy shaping method named Action Biasing [Knox and Stone, 2012], and thus use a non-null parameter αH475

to weight the human-predicted preference (bias) QH(s, a) in the softmax function (Eq. (3)).476

• In the case of the takeover type intervention, the human can override the choice of the robot, when a cube is477

held by it, by choosing the place where it will be placed (Fig. 7B). As for the congratulation, the demonstration478

of the human is associated with a single state-action pair (s0, a0). Note that compared to the congratulation,479
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the demonstration has an instantaneous effect on the robot. And even if it cannot act during these moments,480

the robot still learns from observing the consequences of the actions chosen by the human.481

We note that in both cases, no human intervention memorization process was modeled. By interacting with the robot482

to influence its decisions, the human biases the updating of its action-state values. Therefore, the consequence of the483

intervention is incorporated into the robot’s state-action value model, which illustrates both the robot’s choices and the484

human’s preference, even if it is not possible to separate them.485

4.6 Expert parameters486

In order to show the generic and task-independent nature of our learning and meta-control system, we reused the same487

set of parameters as the one used in the navigation task for each of the experts and for the meta-controller (Table 1).488

Table 1: Chosen values of experts and meta-controller parameters in the cube ordering task.
Param MB MF MC
α n.a. 0.6 n.a.
τ 0.02 0.02 0.02
γ 0.9 0.9 n.a.
κ n.a. n.a. 7.0

In contrast to the navigation task, the state-action values of the experts are not initialized to a positive value, and are489

worth 0.0 at the start of the experiment.490

4.7 Results of the experiments without human intervention491

To evaluate the performance of the simulated robots, we reuse the color code of the navigation experiment: Red for the492

MF-only robot, blue for the MB-only robot, green for the random coordination robot (MC-Rnd) and purple for the493

robot that coordinates the two experts using the arbitration criterion that we have proposed (MC-EC).494

The interest of this experiment is to evaluate the contribution of meta-control in a task where a robot can interact with a495

human. We will start by evaluating the performance of the robots without human intervention, then with the two types496

of human intervention defined above.497

In Dromnelle et al. [2020a] we studied the evolution of the average performance of the different robots when the498

human does not interact with them. As in the navigation experiments, the MF-only robot was the one with the499

worst performance. Interestingly and in contrast with the navigation experiment, we had observed that the maximum500

performance was achieved by robots doing meta-control (MC-EC and MC-Rnd) rather than by the MB-only robot.501

Importantly, the MC-EC robot displayed a much lower computational cost than that of the MC-Rnd robot. Finally, we502

found that these properties where obtained through a different temporal pattern of expert selection: We observed a very503

short guidance phase by the MB expert, followed by the guidance phase of the MF expert. Because the state-action504

values were initialized to 0.0 at the beginning of the experiment, we did not observe the exploratory phase of the MF505

expert that we observed during the navigation experiment.506

These results thus constituted a first step of validation of the genericity of the proposed method in a simple HRI task. In507

such a case, when the robot has to learn on its own without human intervention, it can be useful to combine MB and508

MF RL to get an optimal performance while minimizing the computational cost.509

4.8 Meta-control provides robustness to errors in humans’ teaching signals510

Next, we evaluate the architecture when the human intervenes in the form of two possible types of teaching signals:511

Congratulations or Takeover. The main messages from the analyses that will be presented hereafter are that:512

• The meta-controller of MC-EC robots enables them to get a robust performance in the task independent from513

whether the human intervenes or not. Only MF-only robots require human intervention to bootstrap their514

learning performance in this task, while all robots with an MB expert can already learn fast (but note that515

human interventions are still beneficial in the Takeover case, see Fig. S10).516

• The meta-controller of MC-EC robots provides them with robustness with respect to errors that humans can517

make during their interventions (Fig. 9): We tested different percentages of errors made by the humans when518

congratulating the robot or when taking-over to show the robot was is the right action to perform; We also519

tested different omission rates in human’s teaching signals. The deterioration of performance caused by520
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omitted (Fig. 9C) or misleading (Fig. 9B) interventions was mostly penalizing the MF-only robot, while being521

mitigated in the MB-only, MC-Rnd and MC-EC robots, thanks to the MB expert.522

• The meta-controller of MC-EC robots minimizes computational cost: Its cost was more than four times lower523

that of the MC-Rnd, and ten times lower than the one of the MB-only. (Fig. 8B).524

• Finally, overall the takeover human interventions were more efficient than the congratulation ones (compare525

Online Resource Suppl. Fig. S10 with Online Resource Suppl. Fig. S8), as they allowed to reach larger526

cumulated reward levels for all the configurations of the architecture (MF-only, MB-only, MC-Rnd and527

MC-EC). This required 300 iterations in the worse case (MF-only) but was faster for robots incorporating528

a MB expert (150 interactions). Quite naturally, increasing the number of such interventions increased the529

cumulated reward up to a ceiling value (Online Resource Suppl. Fig. S10).530

In the next subsections, we present more detailed analyses of these results to illustrate the task-independent nature of531

our coordination model, its generalization to an environment composed of about three times more states than for the532

navigation task (Section 3), as well as its ability to cope with the volatility of human behavior. Despite these many533

differences, we reused the same parameters that were optimized for the navigation task, in order to show the generic534

and task-independent nature of our learning and meta-control system.535

4.8.1 Results with human intervention of the Congratulation type536

Cumulative reward. In Online Resource Suppl. Fig. S8, we can visualize the performance of the different robots537

at the last iteration (the 10000th) for different durations of human interventions of Congratulation type. The human538

begins to intervene directly after the end of the babbling period. We notice that only the MF-only robot seems to539

be strongly impacted by human intervention. The other robots have their performance slightly improved for long540

human interventions, but not for null and short human interventions. A Krustal-Wallis test determined that, for the541

MB-only and MC-Rnd robots, at least some performances for different intervention durations were significantly542

different (Kruskal-Wallis test, p-value MB-only = 5.66 × 10−5 and p-value MC-Rnd = 0.002). In order to identify543

which performances were significantly different from the others, we performed multiple comparison procedures through544

the Dunn test [Dunn, 1964] with Bonferroni corrections (Online Resource Suppl. Fig. S7). If four performance545

comparison tests for the MB-only and MC-Rnd robots indeed had a p-value below the significance threshold of 0.05,546

we note that the effect seems above all to be due to the variability of the data. This is evidenced by the proximity of547

these p-values to the threshold of 0.05 compared to those of the MF-only robot. For example, for the MB-only robot,548

the performance relative to the duration of 10 interventions stands out, for no specific reason. Conversely, the effect of549

the Congratulation type intervention on the performance of the MF-only robot had an effect proportional to the duration550

of the intervention, which makes sense.551

We then compared the performance between MF-only, MB-only, MC-EC and MC-Rnd robots. A Krustal-Wallis test552

between the performances of the four robots for an intervention duration of 500 iterations confirms that at least one of553

the performances was significantly different from the others (p-value = 2.99× 10−7). Finally, a Dunn test allows us554

to see that the performance of the MC-EC robot at an intervention time of 500 iterations was significantly different555

from the performance of the MC-Rnd robots (p-value = 0.0408), MB-only (p-value = 9× 10−5) and MF-only (p-value556

= 3.94 × 10−7) at the same duration of intervention. The performance of the MC-Rnd robot was also significantly557

different from the performance of the MF-only robot (p-value = 0.042) while the MF-only and MB-only robots had558

indistinguishable performances (p-value = 1.0).559

For the moment, we have therefore shown that human intervention of the Congratulation type seems to be useful560

only to the MF-only robot, which only embeds a model-free expert. In contrast, only the MC-EC robot achieves561

maximal performance. Importantly, the MB-only, MC-Rnd and MC-EC robots, which all embed a model-based expert,562

do not need human intervention to improve their performance. In other words, the interest of the hybrid MB-MF563

architecture that we propose here is to be more robust to short human teaching interventions, and thus to produce564

optimal performance in this simple cube tidying task even for cases where real human participants were bored to provide565

the robot with a long supervision.566

Computational cost. Next, we examine the advantages of the proposed architecture in terms of computational cost567

reduction. Figure 8B allows us to compare the cumulative costs of the inference processes of the different robots at the568

end of the experiment in the case where the human does not interact with the robot, and in the case where the human569

congratulates the robot or takes over. Overall, we can say that the help provided by the human seems to slightly offload570

the robot in computational cost. This is especially observable for the MB-only robot (which in fact performs more571

expensive computations than the other robots). In any case, the displayed cost of the MC-EC robot is again extremely572

low compared to those of the MB-only and MC-Rnd robots.573
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Overall, we can conclude that the MC-EC robot is capable, at minimal cost, of compensating for the absence of human574

intervention. When the human is present and interacts with the robot, the cost of the MB expert decreases, a sign that it575

performs less expensive computation. When the duration of the intervention is long, the MF-only robot is fully capable576

of performing the task efficiently at a very low computational cost. However, as soon as the duration of the intervention577

decreases, its performance drops. This is when the MB expert behaves like a “backup expert”, which allows the robot578

not to be dependent on the human. In a situation where the presence of the human is uncertain, the MC-EC robot is579

therefore the ideal robot.580

Humans that make omissions. In order to confirm this reasoning, we performed another set of simulations where581

the simulated humans had a tendency to omit to congratulate the robot from time to time. In other words, the human582

behavior is now simulated with a certain degree of stochasticity, so that the robot is rewarded by the human only a583

proportion of the required feedback (from 0%, 10%, .. up to 100% of the time). If omitting has a clear effect on the584

performance of the MF-only robot (Online Resource Suppl. Fig. S9, first row), bringing it back to the performance of585

non-intervention, the other robots deal with it without much concern (Online Resource Suppl. Fig. S9, three bottom586

rows). This is because, as we have previously seen, their performance is already high without intervention, and remains587

here largely unaffected by the intermittent absence of human feedback.588

Humans that make mistakes. Finally, to test the adaptability of these different robots to slightly more realistic589

humans, we made a last series of simulations where humans could make errors. Within the framework of the590

Congratulation type intervention, an error consists in congratulating a bad action of the robot (for example putting591

the red cube into the green container). All the system configurations suffer a performance degradation (Fig. 9A), the592

MF-only configuration is the most affected one. This corroborates our previous observations regarding the dependence593

of the MF-only robot, and therefore that of the MF expert, on human intervention. Again, using an MB expert is very594

beneficial for the robot. In all four cases, and even if the performance degradation of the other robots is minimal, we595

observe that at very high human error rates, the quantity of cumulative rewards at the end of the experiment remains596

lower than when the human never makes mistakes or never interacts with the robot. This is because during this 500597

iterations period of interventions, all the system configurations struggle to accumulate the reward despite human598

detrimental interventions, which therefore creates a performance delay compared to the robots not interacting with the599

human or with a human not making mistakes.600

Figure 9: Reward accumulation results in the HRI teaching task. A. Case where humans provide erroneous congratula-
tion feedback with increasing error rates. B. Case where humans provide erroneous takeover feedback with increasing
error rates. C. Case where humans omit to provide takeover feedback with increasing omission rates. Dots report the
accumulated after 10,000 simulation timesteps, for 50 simulations. First row (red): MF-only robot; second row (blue)
MB-only robot; third row (green): MC-Rnd robot; fourth row (purple): MC-EC robot.
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Importantly, using our arbitration criterion allows the MC-EC robot not to be dependent on the human to achieve the601

objective that has been set for it, but also to absorb its potential errors more effectively. In other words, the proposed602

architecture allows the simulated robot to be more robust to human errors in this task.603

4.8.2 Results with human intervention of the Takeover type604

Unlike the Congratulation type intervention, we can see in Online Resource Suppl. Fig. S10 that the Takeover type605

intervention has an effect on the performance of each robot, although the performance effect on the MF-only robot606

remains larger. For the other three robots, we can see that intervening over a period of more than 100 iterations no607

longer significantly increases performance. A Krustal-Wallis test between the performances of the four robots for an608

intervention duration of 500 iterations confirms that at least one of the performances is significantly different from609

the others (p-value = 6.10× 10−35). A Dunn test finds that at an intervention time of 500 iterations the performance610

of the MC-EC robot is significantly different from the performance of the MC-Rnd robot (p-value = 5.84× 10−16),611

MB-only (p-value = 1.73× 10−32) and MF-only (p-value = 2.50× 10−04). The performance of the MC-Rnd robot is612

also significantly different from the performance of the MF-only (p-value = 1.53× 10−04) and MB-only (p-value =613

1.25×10−03), which both also have a significantly different performance (p-value = 1.44×10−04). These performances614

exceed on average the 1200 accumulated rewards, i.e., more than the maximum performances obtained by the robots615

within the framework of the Congratulation type intervention (Online Resource Suppl. Fig. S8). In summary, all robots616

have different performances, and again, the MC-EC robot is the best of all.617

We can explain the high performance of the Takeover type intervention by the fact that the decision of the human replaces618

that of the robot in 100% of cases, whereas in the case of the intervention of Congratulation type, the decision-making619

process, although biased in favor of the human, is still subject to a probabilistic treatment through the softmax function620

(3), which can at times select a non-optimal action. In addition, the Takeover type intervention acts on the behavior of621

the robot at the iteration on which it is performed, while the Congratulation type intervention has an influence on the622

robot behavior only the next time the robot performs the state-action combination that the human praised.623

In Figure 8B, we can see that the cumulative cost values are as low as in the Congratulation type intervention: The more624

efficient the human intervention, the less the MB expert needs to do expensive calculations. Finally, in Dromnelle et al.625

[2020a] we observed the same guidance phases of the two experts as for the Congratulation and No-intervention cases.626

If we observed previously that the robots MB-only, MC-Rnd and MC-EC were not impacted by humans omitting to627

intervene, because the human did not provide any significant assistance to the robots equipped with an MB expert,628

things are logically different here since the intervention brings clearer help. Indeed, we can see in Figure 9C that at high629

omission rates, the performance of all the robots degrades, even if again, the degradation of the performance of the630

robot MF-only remains much more important. Of the three other robots, the MC-EC robot seems to be the one doing631

the best when faced with the oversights of its human partner.632

Finally, we again put the robots in front of humans making mistakes (Fig.9B). In the context of the Takeover type633

intervention, this means that the human takes control of the robot arm to put the cube in the wrong container, or to634

remove the cubes from the containers of the right color. Here the results are quite close to those observed in Figure 9A:635

we observe an overall degradation of the robots’ performance, again much more intensive in the case of the MF-only636

robot. As before, at a very high human error rate, the quantities of cumulative rewards at the end of the experiment are637

lower than these same quantities when the human never interacts with the robots. This is due to the performance lag638

accumulated during the 500 iterations of erroneous interventions.639

With our arbitration criterion, the robot benefits from the human performing a Takeover to even better achieve the640

objective that has been assigned to it, contrarily to Congratulation interventions, that are less effective. This superiority641

of Takeover over Congratulation has been observed in other studies [Knox et al., 2011]. It is therefore to be preferred.642

Nevertheless, as with the Congratulation type intervention, the combination of MF and MB experts can absorb human643

errors more effectively.644

5 Experiment 3: Human-robot interaction with human as cooperator645

In the third experiment, we evaluate our coordination system in a human-robot cooperation task different from the646

previous one: While in Experiment 2 the robot could learn with or without human intervention, here the robot necessarily647

needs help from the human. All the following results are previously unpublished.648

We first present the new version of the simulated cube storing task, and the way in which we modeled the human partner649

with whom the robot must now cooperate to achieve its goal. In the second part, we present the results obtained and650

show that in a situation where the partner can turn into an adversary, our coordination system is no longer able to651

maintain a high level of performance. To circumvent this problem linked to a natural algorithmic asymmetry between652
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Figure 10: Illustration of the Human-Robot Cooperation task. Figure by Dromnelle, Renaudo, Khamassi and Girard
(2022); available under a CC-BY4.0 licence (https://doi.org/10.6084/m9.figshare.21031723).

the MF and MB experts, and not to the human partner, who is only the revealer, we propose an inexpensive solution,653

under the form of adding a context switching detection mechanism to the robot. With this mechanism, the robot is again654

able to maintain a high level of performance while still greatly reducing its computational cost.655

5.1 Material and methods656

5.1.1 Simulated environment and robot657

This experiment is also carried out in simulation only. The same robot as the one presented in Experiment 2 faces a658

table. This time, the table is divided into three distinct spaces: A space accessible to the human only, a common space659

and a space accessible to the robot only. The human space and the robot space each contain a container, referred to as660

the human’s container and the robot’s container. Three colored cubes are available on the table (Fig. 10). This task is661

inspired by those of Alami et al. [2011] and Renaudo et al. [2015a].662

Unlike in Experiment 2, here the robot’s first objective is to learn how to put each cube in its own container. When663

this is done, the robot gets a scalar reward, and the cubes are automatically returned to the human’s container. Like664

in Experiment 1, we make the task non-stationary by introducing a change of objective during the experiment. More665

precisely, at the 5000th iteration, the robot must now learn to put each cube in the human’s container. When this is done,666

the cubes are automatically returned to the robot’s container.667

We also test a variant of this experiment with another pair of objectives. The cubes’ position has to be swaped: first, the668

red and the blue start in the robot container and have to be put in the human container, while the green starts in the669

human container and must end in the robot container; then, the starting position is reversed (red and blue in the human670

container, green in the robot container) and positions still have to be swaped.671

Unlike the task in Experiment 2, where the robot could carry out the experiment without the help of the human, the672

participation of the human is essential here, since the robot does not have access to the human’s side of the table. For673

this reason, we speak here of cooperation with humans, and no longer just of human intervention.674

5.1.2 Robot state and action spaces675

The state space is again a discrete state space. A state always represents the position of the three colored cubes. Each of676

the cubes can be located: In the human’s container, in the common space, in the robot’s container, in the human’s hand677

and in the robot’s hand. If we remove the states where the robot and the human are holding several cubes at the same678

time, this represents a total of 99 states, which is 13 less than the task of Experiment 2.679
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Concerning the action space, the robot can perform 6 classic actions: take the red cube, take the green cube, take the680

blue cube, place the cube held in hand in its container, place the cube held in hand in the common area, skip its turn. In681

addition, there are 2 interactive actions, allowing the robot to give the cube held in hand directly to the human (if his682

hand is empty) or, conversely, to ask the human to give the cube he is holding (if the robot’s hand is empty), leading to a683

total of 8 actions.684

As we will see in the next subsection, the human is considered in this experiment as a decision-making agent, and685

therefore has its own state space equivalent to that of the robot.686

5.1.3 Simulated human687

In Experiment 2, the human could from time to time interact with the robot. Here, its participation in the task is essential688

to the success of the robot. To model human behavior, we opted for a version of our MB-only robot with a complete689

transition model. We consider that if the robot must first learn the consequences of its actions during the babbling phase,690

the human already knows, for example, that when he takes the red cube from his container, the cube is now located in691

his hand.692

5.2 Pre-experimental babbling phase693

A babbling phase, where the robot and the human can manipulate the cubes in the absence of reward precedes the694

experiment. We chose to add this pre-learning phase for the same reasons as those mentioned in Experiment 2. This695

time, on the other hand, rather than evaluating the robot’s performance using our arbitration criterion (MC-EC) at696

different babbling durations, we evaluate them at different percentages of transitions explored (Fig. 11). We choose697

an exploration percentage of 80% (yellow curve) for the first pair of objectives and an exploration percentage of 70%698

(orange) for the second. These values correspond to those above which continuing to explore no longer allows the699

reward to accumulate quicker over time. Again, we could choose to give the robot a more or less complete transition700

model before the start of the experiment or to reuse the transition model built by the robot before the first experiment701

for all subsequent ones, in the case of real experiences where time is not an unlimited resource.702

Figure 11: Sizing the babbling phase. A. Average performance of 50 simulations of the MC-EC robot for different
percentages of transitions explored during the babbling phase and for the first combination of objectives (tidying task).
B. Average performance of 50 simulations of the MC-EC robot for different percentages of transitions explored during
the babbling phase and for the second combination of objectives (swapping task). Performance is defined as the robot’s
ability to accumulate reward over the duration of the experiment (5000 actions).

5.2.1 Expert parameters703

We reuse again the same set of parameters used in the navigation task and the human-robot interaction task for each704

of the experts and for the meta-controller (Table 2), in order to show the robustness of our learning and meta-control705

system. The parameters of the simulated human are identical to those of the robots.706

The action-state values of the experts and the human are again initialized to 0.0 at the start of the experiment.707
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Table 2: Selected values of expert and meta-controller parameters in the tidying task in cooperation with a human.
Param MB MF MC
α n.a. 0.6 n.a.
τ 0.02 0.02 0.02
γ 0.9 0.9 n.a.
κ n.a. n.a. 7.0

5.3 Results708

To evaluate the performance of simulated robots, we reuse the color code from previous experiments: Red for the709

MF-only robot, blue for the MB-only robot, green for the random coordination robot (MC-Rnd) and purple for the710

robot that coordinates the two experts using the arbitration criterion that we have proposed (MC-EC).711

The interest of this experiment is to evaluate the contribution of meta-control (expert coordination) in a task where a712

robot must necessarily cooperate with a human to progress, but also to push our architecture to its limits.713

5.3.1 When the partner becomes an adversary714

With the first pair of objectives (tidying task) during the first phase of the experiment, the performance of the MC-EC715

robot again equals that of the MB-only robot (Fig. 12.B), for a computational cost divided by three (Fig. 12.D).716

Unfortunately, as soon as the objective changes, the MC-EC robot no longer manages to accumulate as many rewards717

as the MB-alone robot, and is even caught up by the MF-only robot, hitherto considered to be the less efficient. We718

observed exactly the same tendencies with the second pair of objectives (swapping task, Online Resource Suppl.719

Fig. S11.A and B). In previous experiments, we had never faced such a drop in performance of the MC-EC robot. To720

explain it, we need to look at what exactly happens at the 5000th iteration.721

For the robot and the human, the 5000th iteration is just another iteration: The objective changes without them being722

informed. Not knowing that the objective has changed, the two partners will continue to pass the cubes as if nothing723

had happened. When they finally manage, for example, to put all the cubes in the robot’s container (in the case of the724

first pair of objectives), no reward is issued to them and their R reward models are therefore modified accordingly.725

Following this, as soon as the inference processes of the MB experts of the MC-EC robot and the human are activated,726

the state-action values of the MB experts get reset to 0.0 via the natural action of the dynamic programming algorithm727

Value Iteration (Eq. 2).728

However, before the 5000th iteration, the behavior of the MC-EC robot is mainly directed by the MF expert (Fig. 12F729

and Online Resource Suppl. Fig. S11.C), which is not able to reset its action-state values in one go. Indeed, it will take730

many iterations and passages through the states leading to the rewarded state for the action-state values to decrease731

following the absence of reward. The problem is therefore the following: after realizing that the objective has changed,732

the simulated human will go back to exploring the environment in order to find the new rewarded state, or even try733

to fulfill the new objective if he succeeds. To discover it, while the robot MC-EC, whose behavior is directed at this734

moment of the experiment mainly by its expert MF, will continue to try to achieve the first objective, resulting in735

destructive interferences. The robot will, for example, ask the human to give the currently held cube, so as to put it in736

the robot’s container, before the human can put it in its own container, therefore preventing the obtention of reward (and737

thus the identification of a new goal). On the contrary, the human may manage to put some cubes in his own container,738

preventing the robot to reach the previously rewarded state, where it would observe the absence of reward, generating739

large negative reward prediction errors that would start to modify the behavior of his MF expert. Here, the partner740

turned adversary highlights an algorithmic difference whose effect we had already observed in the navigation task of741

Experiment 1.742

Indeed, this inability of the MF expert to reset his state-action values in the same way as the MB expert was the cause743

of a "spike" in the selection probability of the MF expert (Fig. 12C) which correlated with the very slight lag in reward744

accumulation that the MC-EC robot took on the MB-only robot (Fig. 12A). As a reminder, our arbitration criterion is745

a compromise between the cost of the inference process and the quality of the learning defined as the entropy of the746

distribution of the probabilities of selection of actions. Concretely, the closer the state-action values of a state are to747

each other, the greater the entropy will be, and the lower the learning quality will be. When the MB expert resets his748

state-action values, he also resets his learning quality. The MF expert not being able to do so, he will de facto become749

the expert with the best learning quality, and therefore the expert controlling the behavior of the robot, whereas the750

judicious behavior would be precisely to stop playing the first objective.751
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Figure 12: Tidying task results with (A, C,E ) or without (B, D, F) a context change detection mechanism: A,B. Average
performance for 50 simulated experiments. C,D. Average computational cost for 50 simulated experiments. E,F.
Average probability of selection of experts by the meta-controller of the MC-EC robot for 50 simulated experiments.
We use standard deviation as an indicator of dispersion in all three figures.
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In both experiments, the observation is therefore the same: if the environmental change implies a modification of the752

reward models of the MB experts, the algorithmic asymmetry of the MF and MB experts gives rise to a period when753

the MF expert directs the behavior of the robot more than it should. If this did not prevent the robot from maintaining754

good performance in the navigation task, the MB expert is no longer able to regain control of the robot’s behavior here755

(Fig. 12F and Online Resource Suppl. Fig. S11.C) and therefore remains stuck in MF expert guidance phase 2.756

Note that, compared to the navigation task of Experiment 1, we do not observe here the exploratory phase of the MF757

expert. As a reminder, the existence of this phase was due to the difference in learning methods of the two experts, at758

the origin of the fact that the state-action values of the expert MF decreased slightly more than those of the expert. MB759

expert. Here, the state-action values of the experts being initialized at 0.0 at the start of the experiment, and not at 1.0760

as in the browsing experiment, this effect of algorithmic asymmetry is not observed.761

5.3.2 Context change detection762

To counter this problem, we equipped our robot with a mechanism allowing it to automatically detect changes in763

goals by taking into account only the evolution of its action-state value models. To do this, we relied on the cosine764

similarity to evaluate the similarity of two n-dimensional vectors by determining the cosine of their angle. Generally765

used as a measure of similarity between two documents, we use it here to measure the similarity between two vectors of766

state-action values:767

cos(θ) =
A.B

‖A‖ ‖B‖ (7)

where A is the state-action value vector of the previous state before it was updated by the MB expert and B is the768

state-action value vector of the previous state after its update by the MB expert. Note that the vector values have all769

been multiplied by 100 and the null values have been replaced by very small values to avoid division by 0. If the two770

vectors are identical, θ is 1.771

We already used this measure in [Caluwaerts et al., 2012b], where the cosine similarity was computed on vectors772

containing the Q-values of the MB expert. Concretely, every time the MB expert carries out its inference process, it also773

computes the cosine similarity θ of the Q-value vectors before and after this update, and compares it to a threshold. If θ774

is lower than this threshold, the MB expert then sends an additional signal to the meta-controller (arrow t1 in Fig. 1),775

which will take care of sending a signal to the MF expert to request a reset of its Q-values (arrow t2). The value of θ776

will necessarily decrease due to updates of state-action values in three cases:777

• When the robot first finds the reward. In this case, resetting the state-action values of the MF expert is not a778

problem, since all of them are already null.779

• When the robot reaches the previously rewarded state and does not obtain a reward, the moment we are most780

interested in.781

• When the robot first finds the new reward. In this case, resetting the state-action values of the MF expert again782

is not a problem, since they have all been reset previously.783

In the end, more than a mechanism allowing it to automatically detect a change of objective, the cosine similarity784

also allows the robot to detect the appearance of a new objective: it is therefore a mechanism for detecting changes of785

context, as pointed out by Caluwaerts et al. [2012b]. In our algorithm, when the robot discovers that the rewarded state786

no longer yields a reward, the action-state values of its expert MF are reset. Instead, we could allow it to store them787

in memory, so that we can potentially reuse them if the formerly rewarded state becomes rewarded again later in the788

experience, which is not the case here.789

Of course, the functionality of the mechanism depends on the threshold against which the value of the cosine similarity790

θ will be compared. To define it, we looked over 200 simulations at the value of the cosine similarity at the iteration791

following that in which the robot reaches the formerly rewarded state for the first time. θ was in 100% cases less than792

or equal to 0.611 for the first pair of objectives (100 simulations), and 0.706 for the second (100 simulations). We793

have chosen a common threshold of 0.7. The histograms of the frequencies of the different values obtained from θ794

for an experiment of each of the pairs of objectives (Fig. 13) reveal that most of the time, the values of θ are worth795

1.0, a sign that during the experiments, the values of the state-action pairs of the MB expert do not evolve much. In796

the tidying task (Fig. 13A), the values of θ were lower than 0.7 four times (3 of 0.558 and 1 of 0.611), and in the797

swapping task (Fig. 13B), it happened five times (2 of 0.61 and 3 of 0.666). In both cases, this therefore corresponds to798

more event than the 3 ones we identified above as being actual context changes (discovery of reward, discovery of the799

disappearance of the reward, discovery of the new reward). This means that sometimes, the values of state-actions of800
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the expert MB strongly evolve without this being linked to a change of context, but for example rather to the discovery801

of a new unexplored state or transition. Depending on the defined threshold, the robot can therefore trigger false alarms,802

mistaking this “brutal” update for a change of context and reset the state-action values of the MF expert when it should803

not.804

However, a these rare false alarms do not seem to have any negative effect on the robot’s performance: With the context805

change detection mechanism and a threshold of 0.7, the performance of the MC-EC robot is now identical to that of806

the MB-only robot (Fig. 12A). Just after the goal change, the computational cost of the inference process increases807

(Fig. 12C), a sign that the MB expert takes control of the robot’s behavior to enable it to better cope with environmental808

change. Figure 12E confirms this with the reappearance of the second guidance phases of the MB expert, absent from809

the experiments carried out without the detection mechanism context changes. Again, these results were replicated with810

the second pair of objectives (swapping task, Online Resource Suppl. Fig. S12).811

5.4 Conclusion812

In this last experiment, we evaluated our learning expert coordination model in a simulated human-robot cooperation813

task where the robot must actively cooperate with the human to achieve its objectives. The human is no longer simply814

present to help the robot improve its performance, but becomes a real partner. Again, we reused the parameters815

optimized for the navigation task, in order to show the robustness of our learning and meta-control system.816

In this experiment, the robot was confronted with a problem already observed in the navigation task, but which until817

now did not prevent it from progressing: the inability of the MF expert to reset its action-state values after the change of818

objective compared to the MB expert. Here, due to the presence of a human not being affected by this problem, the two819

partners can become adversaries for a time, which leads to a drastic drop in the robot’s performance. Here, the human820

is not the problem, but simply its revelator. To counter this, we have therefore added a mechanism to detect context821

switches, allowing the robot to automatically reset the state-action values of its MF expert when necessary. With this822

mechanism, the robot using our arbitration criterion, once again obtains the same level of performance as that of a robot823

controlled solely by a model-based learning algorithm, while drastically reducing its computational cost (Fig. 12B,D).824

Finally, we illustrated again with this human-robot cooperation task the generic and task-independent nature of our825

coordination model, and an efficient and inexpensive solution allowing it to circumvent a problem that can arise during826

abrupt changes in the task objectives. These results further highlight the robustness of the proposed method.827

6 Discussion828

We analyzed the behavior of a three-layered robot cognitive architecture integrating human-inspired mechanisms for the829

coordination of model-based (MB) and model-free (MF) reinforcement learning modules. Its main novelty lies in the830

use of the explicit online measure of both performance and computational cost of each system, so as to give control831

to the system with the best current trade-off between the two. The goal of this approach is to maximize behavioral832

flexibility, while enforcing computational (and thus energetic) frugality.833

Behavioral flexibility was assessed in three main experiments: an indoor navigation task, a HRI task where the human834

teaches the robot and a HRI task where the human and the robot must cooperate. All these tasks were non-stationary, as835

an unsignalled change of the goal or of the available transitions, always happened in the course of learning. We kept the836

parameters of the system identical from one task to another.837

Heavy computations consume both time and energy, resources that can be essential for robots: autonomous robots that838

rely on their sole (and usually limited) computational resources cannot always afford the time required by a complex839

computation, fast reactions can be necessary in many realistic settings, to avoid damaging the environment or oneself;840

even when time is not a crucial issue, heavy computations consume energy, a resource that is even more crucial to a841

mobile robotic platform. Our RL module coordination system is the first one in robotics, to our knowledge, to explicitly842

take into account the actual computational costs to arbitrate between modules. In computational neuroscience, some843

earlier models [Keramati et al., 2011, Pezzulo et al., 2013] proposed to evaluate the value of gaining better information844

from a MB module, versus the cost of performing inference with this MB module, but they were tested in toy problems,845

with shallow MDPs, with deterministic transitions, and with the model already knowing the transition function. Here846

we used a more empirical approach, by evaluating the real temporal costs induced by the use of MF and MB learning847

modules.848

The comparison with DQN, made in the navigation experiment, showed that using end-to-end RL has a computational849

cost not compatible with robotic constraints, and that thus building and using a data representation adapted to the task850

at hand reduces the burden on the RL part of the system, allowing for low-cost on-the-fly learning. Nevertheless, the851
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Figure 13: Values taken by the cosine similarity θ, used to parameterize the context change detection threshold.
Histograms report the frequency of θ values measured in two 10,000 iteration-long simulations, using: in A, the first
pair of objectives; in B, the second pair of objectives. The robot and the human play on a turn-based basis, so that
makes a total of 5000 values of θ per experiment. 26
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discrete state and action spaces used here for RL may partly limit the generality of the method, and prevent it from852

tackling more complex high dimensional problems. Indeed, as designers of the system, we chose a representation853

(discretization of the output of a SLAM algorithm) adapted to the problem at hand (a navigation problem). However854

the context of this proposal is to build on the representation redescription framework [Doncieux et al., 2018, 2020] to855

ultimately design systems that autonomously determine the representations adapted to the task. The modularity of the856

present architecture also enables to extend it to the continuous case by replacing tabular value functions with neural857

network implementations. Nevertheless, there is actually a trade-off between quickly learning an efficient (even if not858

optimal) solution to coarsely represented or even discretized problem, versus slowing acquiring a more precise and859

optimal solution using continuous representations and deep function approximators. In particular, humans are able to860

alternate between contexts in which learning a discrete action plan is sufficient, versus contexts requiring the slower861

acquisition of more fine-grained plans, especially motor plans like riding a bicycle, learning to play a music instrument,862

etc [Haruno and Kawato, 2006, Hikosaka et al., 1999]. Thus, rather than having robots tackle any new problem with863

computationnally heavy deep RL methods, a promising direction for future work could be to add yet another expert to864

our architecture, composed of a deep network, that the meta-controller will coordinate and compare to the other experts.865

This way, when the meta-controller detects that a simpler solution is sufficient, it could avoid heavy computation and866

would both reduce learning time and energy consumption. Moreover, because in our architecture each expert learns867

from observing what the other experts are doing, initial MB control could bootstrap initial learning and exploration in868

the deep network composing the new expert.869

The arbitration criterion proposed in this work allowed the robots to autonomously determine when to shift between870

systems during learning, generating coherent temporal decision-making patterns that alternates between strategies over871

time. This promoted more flexibility than pure MF control in response to task changes, and permitted to reach the872

same level of performance than pure MB control, while drastically reducing the computational cost. The HRI teaching873

task revealed an interesting property of our system: Its ability to compensate for the imperfections of the human874

feedbacks (when they were either omitted or erroneous). This suggests that our method is promising for experiments875

involving interactions between robot and naive human users. In that case, our architecture can automatically cope with876

human errors by relying more on its MB component. This enables to avoid redesigning or retuning the robot learning877

parameters to different situations, and thus make the approach more realistically applicable to real-world HRI.878

The meta-controller proposed here often produced a sequence of three behavioral phases with different expert selection879

patterns: Initial MF-driven exploration, MB-driven decisions once the internal model has included reward information,880

MF-driven less costly decision-making once the MF expert has been sufficiently trained. Such a pattern is similar to881

the one observed in humans in an instrumental task [Viejo et al., 2015]. In that task, humans had to learn through882

trial-and-error to associate different colored stimuli (considered as Markovian states) to different fingers of the hand883

(considered as actions). After learning and stabilizing these associations (exploitation), the task conditions were884

changed so that the humans had to learn new associations. Different computational models had been fitted to human885

subjects’ behavior, in order to determine the best model: An MF-only model, and MB-only model, and different ways886

of coordinating MB and MF. Not only did the authors find that an entropy-based MB-MF coordination model best887

explained humans’ behavior in this task. They also found during subsequent analysis of the model fitted to human888

behavior that it displayed a sequence of three behavioral phases: Initial quick responses by the humans when exploring889

(where both MF and MB experts contributed), then an increase in decision time due to the MB contribution, and then890

a progressive reduction of decision time as the MF increased its contribution. It is thus striking that despite a task891

difference between humans and robots, and despite the fact that the present entropy-based coordination method has892

been extended from [Viejo et al., 2015] by adding a cost term, we can still replicate on the robot a similar behavioral893

pattern than the one experimentally observed in humans.894

A system able to detect context changes was added in the last experiment, in order to allow for re-learning when895

the goal-change occurred. It was inspired by such a system developed in our previous MF-MB coordination system896

[Caluwaerts et al., 2012a]. Explicitly detecting task changes did not prove necessary in the navigation nor in the897

teaching task, nevertheless, it should also improve the performance in these two tasks. In future work, we could study898

to which extent the context change detector produces similar performance in these other tasks, and whether it allows in899

general to cope with a wider variety of non-stationary tasks.900
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1 Experiment 1: Navigation task

1.1 Additional simulation results of the task with change in goal location

Figure 1: Simulation results of individual runs of the navigation task with change in goal location. A. Mean
probabilities of selection of experts by the MC using the Entropy and Cost criterion for 100 simulated runs of the task.
These probabilities are defined by the softmax function of each expert. The duration is represented as the number of
actions performed by the agent. We use standard deviation as dispersion indicator. B. Probabilities of selection of
experts by the MC using the Entropy and Cost criterion for 2 simulated runs of the task.
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Figure 2: Evolution of the expert spatial preferences in the reward location change navigation experiment. Expert
selection maps of the MC-EC agent for one of the hundred simulations: in red, states where the MF was the last chosen
expert, in blue, where the MB was last chosen. The MF driving phase and the MB driving phase correspond to the
behavioral phases identified in Fig. 5C in the main manuscript.. Same conventions as in Fig. 6 in the main manuscript.

1.2 Additional simulation results of the task with change in wall configuration

1.3 Additional results of the navigation task with the real robot

2 Experiment 2: Human-robot interaction with human as teacher

2.1 Results with human intervention of the type Congratulations

2.2 Results with human intervention of the type Takeover

3 Experiment 3: Human-robot interaction with human as cooperator

3.1 When the partner becomes an adversary

3.2 Context change detection

2
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Figure 3: Simulation results of individual runs of the navigation task with change in wall configuration. A. Mean
probabilities of selection of experts by the MC using the Entropy and Cost criterion for 100 simulated runs of the task.
B. Probabilities of selection of experts by the MC using the Entropy and Cost criterion for 2 simulated runs of the task.
Same conventions as Suppl. Fig. 1.

Figure 4: Real robot dynamics of expert selection in the wall configuration condition of the navigation task: Mean
performance (in cyan) and computational cost (in brown) of the MC-EC robot. Dashed lines: simulation results; full
lines: real robot results.
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Figure 5: Expert selection map by the MC of the MC-EC robot for one of the navigation experiments with the
real robot and with change in reward location. Same conventions as in Fig. 6 in the main manuscript.

Figure 6: Expert selection map by the MC of the MC-EC robot for one of the navigation experiments with the
real robot and with change in wall configuration. Same conventions as in Fig. 6 in the main manuscript.
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Figure 7: Results of Dunn’s multiple comparison tests for the performance of the four robots in the congratu-
lation type intervention of Experiment 2. P-values below the significance threshold 0.05 are colored in red. The
significance level has been corrected with the Bonferroni correction.
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Figure 8: Reward accumulation in Experiment 2 when humans provide congratulation feedback for various durations
(from 0 to 500 timesteps). Dots report the accumulated after 10,000 simulation timesteps, for 50 simulations. First
row (red): MF-only agent; second row (blue) MB-only agent; third row (green): MC-Rnd agent; fourth row (purple):
MC-EC agent.
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Figure 9: Reward accumulation in Experiment 2 when humans omit to provide congratulation feedback with increasing
omission rates. Dots report the accumulated after 10,000 simulation timesteps, for 50 simulations. First row (red):
MF-only agent; second row (blue) MB-only agent; third row (green): MC-Rnd agent; fourth row (purple): MC-EC
agent.
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Figure 10: Reward accumulation in the HRI teaching task, when humans provide takeover feedback for various
durations (from 0 to 500 timesteps). Dots report the accumulated after 10,000 simulation timesteps, for 50 simulations.
First row (red): MF-only agent; second row (blue) MB-only agent; third row (green): MC-Rnd agent; fourth row
(purple): MC-EC agent.

8



SUBMITTED TO IJSR, S.I. ON ‘HUMAN-LIKE BEHAVIOR AND COGNITION IN ROBOTS’, NOVEMBER 24, 2022

Figure 11: Simulation results of the human-robot cooperation task (Experiment 3) with the second pair of
objectives. A. Average performance for 50 simulated experiments. B. Average computational cost for 50 simulated
experiments. C. Average probability of selection of experts by the meta-controller of the MC-EC robot for 50 simulated
experiments. We use standard deviation as an indicator of dispersion in all three figures.
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Figure 12: Simulation results of the human-robot cooperation task (Experiment 3) with the second pair of
objectives with context change detection. A. Average performance for 50 simulated experiments. B. Average
computational cost for 50 simulated experiments. C. Average probability of selection of experts by the meta-controller
of the MC-EC robot for 50 simulated experiments. We use the standard deviation as an indicator of dispersion in all
three figures. In these experiments, robots are able to detect context switches.
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