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Abstract

This paper deals with large-scale crew scheduling problems arising
at the Dutch railway operator, Netherlands Railways (NS). NS oper-
ates about 30,000 trains a week. All these trains need a driver and
a certain number of guards. Some labor rules restrict the duties of
a certain crew base over the complete week. Therefore splitting the
problem in several subproblems per day leads to suboptimal solutions.

In this paper, we present an algorithm, called LUCIA, which can
solve such huge instances without splitting. This algorithm combines
Lagrangian heuristics, column generation and fixing techniques. We
compare the results with existing practice. The results show that the
new method significantly improves the solution.

Keywords: crew scheduling, large-scale optimization, column gen-
eration

1



1 Introduction

Netherlands Railways (NS) is the main Dutch railway operator of passenger
trains. It operates about 4,700 trains on a working day. All these trains
need a driver and a certain number of guards (depending on the length of
the train). At the end of 2009, NS employed about 2,700 drivers and 3,000
guards.

Because many rules deal with a whole week instead of a single day, it
is more efficient to solve the crew scheduling problem for a single week in
one run (see Abbink et al. (2008)). In addition, night trains connect the
individual days to each other. However, it should be mentioned that the
number of night trains on the Dutch railway network is limited.

Because we will consider instances for a whole week, the instances that
we solve are a magnitude larger than one typically finds in the Operations
Research (OR) literature. Kohl (2003) claims to solve the largest Crew
Scheduling Problem (CSP) in the world, namely the instance for one day
of the German long-distance traffic. Those instances are comparable to the
single-day instances of NS, and thus about 7 times smaller than the instances
for a whole week, which are solved in this paper.

Since 1998, NS uses the manual crew scheduling system CREWS, devel-
oped by the company SISCOG (Morgado & Martins (1998)). A few years
later, since 2002, NS uses an Operations Research based algorithm to create
the crew schedules (see Kroon & Fischetti (2001), Abbink et al. (2005)).
These schedules were loaded and manually adjusted in the CREWS system.
Because the crew scheduling algorithm could only solve single-day instances,
Abbink et al. (2008) described several adjustments to improve the use of
this algorithm.

To obtain further improvements and to get a full connection between
the manual system and the algorithm support, NS and SISCOG decided
to join forces and started a research project in 2007. This resulted in the
development of the algorithm, called LUCIA. In a first phase, an algorithm
was developed capable of providing better solutions than the already highly
optimized solutions generated by the previous algorithm. This first version
was capable of solving the individual day instances efficiently. The first
production plan was created with the stand-alone version of LUCIA for the
schedules for 2009. Overall an estimated efficiency gain of 2% was achieved.
As SISCOG is also supplying the decision support system CREWS to NS,
the next step was to fully integrate LUCIA into this system. This resulted
in a very powerful system that enables the planners of NS to perform what-if
scenario analyses and make very efficient schedules. During the summer of
2009, NS needed to change the crew schedules due to an agreement with
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the unions to change the minimum transfer time. With the new system, NS
was able to create these new plans in a few weeks. This paper describes the
extension of the algorithm LUCIA, in order to address the instances for a
whole week, with the aim to gain additional efficiency improvement.

The remainder of this paper is organized as follows. The crew scheduling
process at NS, including a detailed description of the labor rules, is explained
in Section 2. Section 3 provides a mathematical formulation of the problem.
In Section 4, we discuss the outline, and some important details, of the
LUCIA algorithm. The results of several computational experiments with
this algorithm, comparing solving 7 individual days and a whole week in one
single run, are reported in Section 5. Finally, we finish this paper with some
concluding remarks on the business impact.

2 Crew planning at NS

2.1 Planning process

In Figure 1, we give a schematic overview of the crew planning process for
drivers and guards at NS. Other crew members (at ticketing offices, the
call center, mechanics, etc.) fall outside the scope of this paper. The crew
scheduling problem (CSP) is the problem of assigning tasks to anonymous
duties. These tasks are given by the timetable and by the rolling stock
schedule (see Huisman et al. (2005) for a discussion on all planning problems
at NS). More formally, a task is the smallest amount of work that has to be
assigned to one crew member. A duty is the work for one crew member from
a specific crew base on a certain day.

At NS, the crew scheduling process has been split in two stages. First,
the crew schedules for the annual plan are constructed. Secondly, the crew
rosters are created, where the crew members are assigned to operate the
duties (see Hartog et al. (2009)). The annual plan deals with a generic
Monday, Tuesday and so on. It is constructed once a year from scratch, and
it is modified about 6 times a year as a result of changes in timetable and
rolling stock schedules. In addition, there are exceptions on every individual
day resulting in modified daily crew schedules (see Huisman (2007)). This
paper deals with constructing the crew schedules from scratch.

2.2 Labor rules

The rules which a crew schedule needs to satisfy, can be divided into two
categories: (1) rules that each duty should satisfy individually, and (2) rules
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that involve more duties at the same time.
Each duty should satisfy the following restrictions:

• The minimal duration of a duty is 4 hours. The maximal duration of a
duty can be determined from the starting time of the duty and varies
between 8 and 9.5 hours.

• It is not allowed to work more than 5.5 hours without a break. If the
duration of a duty is less than 5.5 hours, the duty does not need a meal
break. The minimal break time depends on the location of the canteen.
It varies between 32 and 40 minutes.

• For tasks on the same rolling stock, the minimal transfer time is zero.
For normal driving tasks, the minimal transfer time is 20 minutes.
Sometimes, there are e.g. two drivers assigned to the same task. In fact,
only one of the drivers can actually drive the train and the other driver
is actually a passenger. The minimal transfer time for the passenger is
only 10 minutes. Also, for driving empty trains a minimal transfer time
of 10 minutes is used. There is one exception to these minimal transfer
times of 10 minutes. It occurs when a passenger task or a task on an
empty train is followed by a normal task on the same rolling stock. If
the transfer time before the normal task is smaller than 20 minutes,
the minimal transfer time before the empty or passenger tasks is set to
20 minutes.

• Drivers can only drive trains on routes that they are familiar with, as
they should know the maximum speed on that track, the location of
the signals and so on. The same holds for rolling stock: A driver can
only drive certain kinds of rolling stock. It is assumed that drivers
from the same crew base have roughly the same route and rolling stock
knowledge. For guards there are no restrictions related to route and
rolling stock knowledge.

• The transfer times for tasks on the same rolling stock can be arbitrarily
small. It is only allowed to stay 3.5 hours on the same rolling stock
without a small break of 15 minutes.

• Since it is boring to work all day on the same train line, it is only
allowed to go up and down twice on the same train line.

To assure that feasible rosters can be created afterwards, the set of duties
on each crew base has to satisfy the following constraints:
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• The average duration of the duties for a crew base should be less than
8 hours.

• A maximum number of duties can be assigned to a crew base.

• The percentage of short duties should be less than 5%, where a short
duty is defined as a duty with a duration of less than 5 hours.

• A duty with a duration of more than 9 hours counts as a long duty.
The percentage of long duties is at most 5%.

• A duty is a night duty when it ends after one o’clock in the night or
starts before five o’clock in the morning. The percentage of night duties
should be lower than 53.6 %.

• The percentage of duties in the weekend, with respect to the total
amount of duties, should be not more than 12% on a Saturday and
11% on a Sunday.

Moreover, it is important that to obtain a fair division of the work over
the week for the different crew members, the work should be fairly spread
over the different bases. The latter constraints are typical for the Dutch
situation and are known as “Sharing Sweet & Sour” rules. They aim at
allocating the popular and the unpopular work as fairly as possible among
the different crew bases. For the following properties, there is a bound both
on the average for each crew base and on the standard deviation over the
crew bases.

• Preferred trains

• Aggression work

• Nasty stock

For example, we give a detailed description of the rule related to the
preferred trains (A-trains). The work in every task consists of working on
an A-train, a B-train or of different work. Generally, stoptrains are B-trains,
while all other normal (non-empty, national) trains are considered A-trains.
Define now for every crew base s ∈ S, the total amount of work on an A-train,
dA

s and the total amount of work on a B-train, dB
s . The following should be

satisfied.

1. The percentage of A-trains for each crew base s ∈ S should be at least
25 %.

pA
s :=

dA
s

dA
s + dB

s

× 100% ≥ 25%.
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2. The standard deviation of the percentages of A-trains should be below
14 percent. We use the number of duties for the crew bases as the
weights, and denote Ds for the number of duties for crew base s ∈ S.
The weighted average percentage of A-trains is then defined as

pA :=

∑
s∈S Dsp

A
s∑

s∈S Ds

× 100%.

The standard deviation is now defined with respect to this average. We
should have

σA :=

√∑
s∈S Ds(pA

s − pA)2∑
s∈S Ds

≤ 14%.

For a more detailed description of other “Sweet-and-Sour” rules, we refer
to Abbink et al. (2005).

3 Problem formulation

We will now formulate the crew scheduling problem as an integer program-
ming problem. Denote S for the set of crew bases. For every crew base s ∈ S,
we consider the set Js containing the possible duties that can be performed
by crew base s. To every duty j we associate costs csj. These costs are
(affinely) dependent on the length of the duty. Finally, let T be the set of
tasks that need to be covered. We define a 0/1 parameter asjt that indicates
whether the duty performs task t or not. Furthermore, we introduce the
binary decision variables xsj that indicate whether a duty is selected or not.
The crew scheduling problem is now given by

min
∑
s∈S

∑
j∈Js

csjxsj (1)∑
s∈S

∑
j∈Js

asjtxsj ≥ 1 ∀t ∈ T, (2)

Li ≤
∑
s∈S

∑
j∈Js

wsjixsj ≤ Ui ∀i ∈ I, (3)

xsj ∈ {0, 1} ∀s ∈ S, j ∈ Js. (4)

The objective is to minimize the total cost of the duties. Constraints
(2) ensure that every task is being performed at least once. Additional
constraints, such as crew base capacity and average duty duration are taken
into account via (3). The set I is an index set for the additional constraints.
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The capacity constraint for crew base s ∈ S can be formulated as∑
j∈Js

xsj ≤ Bs,

where Bs is the capacity of crew base s. Note that this is of the form (3)
if we choose ws′ji = 1 for s = s′ and 0 otherwise. The constraint that the
average duration of the duties should be less than Πs hours for every crew
base s ∈ S can be expressed as∑

j∈Js

(πsj − Πs)xsj ≤ 0.

Here πsj is the duration of the duty. The average amount of work on an
A-train can be incorporated in the model by replacing it by∑

j∈Js

(
3

4
dA

sj −
1

4
dB

sj

)
xsj ≥ 0,

where dA
sj and dB

sj correspond to the amount of A and B work in duty j,
respectively.

Most of the other constraints can also be formulated as (3). For the
constraints that deal with a standard deviation, this does not hold. In a first
run, we often discard these constraints. When a solution is found, the average
for every crew base and the standard deviation over the crew bases can be
computed. If the standard deviation is too large, we usually notice that a
small number of crew bases deviates too much from the average. For these
crew bases, the bounds for the constraints on the average are adjusted. By
solving the problem with the new bounds, one usually finds solution for which
the standard deviation value is closer to the required value. By repeating
the procedure, solutions that satisfy the constraints on standard deviation
are found.

4 LUCIA

In this section, we describe the LUCIA algorithm that was developed to solve
the CSP. LUCIA has been fully integrated in the CREWS package developed
by SISCOG. It uses dedicated networks where nodes corresponds to tasks,
and arcs to connections between tasks. A path in such a network corresponds
then to a duty.

The CSP is solved by a Lagrangian-based heuristic combined with col-
umn generation. We refer the reader for details about the theory of column
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generation to a few surveys on this topic: Barnhart et al. (1998); Lübbecke
& Desrosiers (2005); Desaulniers et al. (2005).

As we will see later in more detail, the algorithm is designed to take
advantage of the modern CPU architectures with multiple cores. The pricing
problems (generation of the duties) and parts of the master problem can be
processed in parallel.

4.1 Network of connections

First, we explain how we construct the networks, where paths represent all
possible duties. We construct such a network for each crew base such that
we can take the route and rolling stock knowledge of a crew base directly
into account. Since we are planning duties for a complete week, a task in
this context refers to an activity that the crew member has to perform on a
particular weekday. This means that in this network: (i) a train that runs
from Monday to Friday corresponds to 5 nodes, one per weekday; (ii) the
starting time of a task is the time elapsed between 0:00 of the first day of
the week and 0:00 of the day where the task starts plus the clock time where
the task starts. This also means that the network contains all tasks operated
in a standard week. Arcs in this network connect either: (i) nodes on the
same weekday, (ii) nodes at the end of a weekday to nodes at the beginning
of the next weekday; and (iii) nodes at the end of the week to nodes at the
beginning of the week. The length of an arc is limited, as will be explained
later. So, this means that the network is typically continuous, because the
subnetworks of consecutive weekdays may be connected to each other; and
cyclic, because it can contain cycles that take one or more weeks to complete
the turn.

The length of an arc in this network is limited. More precisely, two tasks
i and j can only be connected by an arc if the time between them satisfies
the following upper bound:

[(taskStartTimej − taskEndTimei) mod weekTime] ≤ maxArcLength, (5)

where taskStartTimej is the starting time of task j, taskEndTimei is the
ending time of task i, mod is the modulo operator, weekTime is a constant
representing the time elapsed in one entire week, and maxArcLength is a
parameter representing the maximum length allowed for an arc, which must
always be smaller than the maximum duty length.

To check whether an arc between two nodes exists and is useful, we solve
a shortest path in another network, which contains much more details. This
is necessary because the minimal transfer time between two trains differ
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when a crew member is a passenger or working on a certain train. In this
second network, the nodes corresponds to trips. Here, a trip is defined as
the movement of a train between a pair of stations. There are arcs between
two nodes if two trips can be assigned to the same crew member and when
there is enough transfer time between two trips. In addition, we introduce a
copy of each node which represents the same trip but it is used a positioning
trip (with the shorter transfer time). We illustrate this with an example (see
Figure 2).

In this example six nodes are depicted. There is not enough transfer
time between node 4 and node 2, so there is no connecting arc. Node 2′ is
added as an optional trip and there is an arc between node 4 and 2′. By
adding the optional trip, the solution can be made with two duties (1, 2, 3)
and (4, 2′, 5). Without the optional trip it would be required to generate
an additional duty. A drawback of this formulation is that the size of the
problem is increased significantly when the number of additional optional
trips is large.

A simple, yet very efficient solution is depicted in Figure 3. We add an
arc between node 4 and node 5 (and between node 4 and 3) because we know
that there is a possibility to get from the end location of node 4 to the start
location of node 5 by using a positioning trip. Please note that we could also
add an arc between node 1 and node 3 but, due to the mechanism of allowing
node 2 to be over-covered, this arc would be redundant.

This idea can also be found in the work of Rezanova & Ryan (2010).
A special preprocessing procedure determines when such additional arcs are
to be added. Adding arcs instead of nodes is computationally efficient and
solves our problem for formulating differentiated transfer times.

4.2 Lagrangian heuristic combined with column gen-
eration

The main characteristics of the algorithm are a dynamic pricing scheme for
the variables, coupled with subgradient optimization and greedy algorithms,
and the systematic use of column fixing to obtain improved solutions. To
tackle the large number of potential duties, LUCIA uses column generation to
generate feasible duties (“columns”). These duties are generated by solving a
resource constrained shortest path problem in a network of connections (see
Section 4.1).

At the top level, as shown in Table 1, the algorithm obtains solutions
based on a given network of connections by executing a loop (line 4) that
alternates between column generation and optimisation that is fed by the
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1 algorithm Solve (network) returns sols
2 begin
3 (cols,Λ)← GenerateInitialSetOfColumns(network)
4 return GenerateAndOptimise(network, cols,Λ)
5 end

Table 1: The main algorithm

1 algorithm GenerateInitialSetOfColumns (network) returns(cols,Λ)
2 begin
3 cols← GenerateSlackVariableColumns(tasks(network))
4 Λ← (0, 0, . . . , 0)
5 while Number of iterations without improving lBound(Λ, cols)

below certain limit and
6 Total number of iterations below certain limit do
7 begin
8 cols← cols \ ChooseColumnsToDelete(cols,Λ)
9 Λ← SolveLagrangeanRelaxation(Λ, cols)
10 aggregLevel← 100%− (percentage of iterations done so far)
11 cols← cols ∪ GenerateColumns(network, ∅,Λ, aggregLevel)
12 end
13 return(cols,Λ)
14 end

Table 2: Algorithm that generates the initial set of columns

columns stored in the pool cols and the set Λ of Lagrange multipliers (line
3) related with the constraints (2) and (3).

The generation of the initial set of columns is shown in Table 2. The
algorithm starts by generating for each task in the network a column repre-
senting an infeasible duty that covers that task (line 3). These duties have
a very high cost so that they are included in the solution only if there is no
feasible way of covering the task. Next to that, the algorithm enters in an
iterative process where several steps are executed. First (line 8), uninter-
esting columns are removed from the column pool cols. Then (line 9), the
Lagrangian multipliers Λ are updated by solving the Lagrangian relaxation
problem in a very similar way as described in Caprara et al. (1999). Fi-
nally (line 11), the columns are generated (i.e. the pricing problem is solved)
for the updated multipliers according to what will be explained later in this
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1 algorithm GenerateAndOptimise (network, cols,Λ) returns sols
2 begin
3 sols← ∅
4 fixedCols← ∅
5 while Gap between lBound(Λ, cols) and uBound(sols)
6 above certain limit and
6 Total number of iterations below certain limit
7 begin
8 Λ← SolveLagrangeanRelaxation(Λ, cols)
9 (Λ, sols)← SolveOptimisationProblem(cols,Λ, fixedCols, sols)
10 fixedCols← ChooseColumnsToFix(cols,Λ)
11 cols← cols \ ChooseColumnsToDelete(cols, fixedCols,Λ)
12 while Number of sub-iterations below certain limit do
13 begin
14 cols← cols ∪ GenerateColumns(network, fixedCols,Λ, 0%)
15 Λ← SolveLagrangeanRelaxation(Λ, cols)
16 end
17 end
18 return sols
19 end

Table 3: Algorithm that solves the problem by combining generation and
optimisation phases

document. In order to speedup the column generation process, tasks that
share the same rolling stock are aggregated in a decreasing degree of strength
during the iterative process. Aggregating a set of tasks means considering
them (temporarliy) as just one task, so that they all must be assigned to
the same duty. By doing so, the number of nodes in the network reduces
as well as the number of arcs (in a more dramatic way), and therefore the
pricing problems become easier and faster to solve. This procedure is known
as partial pricing.

The loop that alternates between column generation and optimisation is
the most important part of the algorithm and is shown in Table 3. In the
main loop, that terminates when the gap between the lower and upper bound
becomes small enough or when a certain number of iterations is reached
(line 5), after updating the Lagrangian multipliers in line 8, the optimisation
problem is solved for the current set of columns and multipliers (line 9) to
obtain solutions. The optimisation problem is solved with a Lagrangian-
based heuristic inspired by Caprara et al. (1999).
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Before switching to the column generation phase, the most interesting
columns (with smallest reduced cost) are fixed (line 10) to reduce the com-
plexity of the problem, and uninteresting columns are removed from the
column pool cols (line 11). The column generation (line 14) is executed sev-
eral times in a secondary loop where the multipliers are updated (line 15) to
reflect the new columns that were added to the container.

Column generation The generation of columns (i.e. the resolution of
the pricing problem) is done by an algorithm that uses as a starting point
the solution of the shortest path problem over the network of connections.
As in Huisman (2007), the algorithm looks for variations over the shortest
path (including the shortest path itself) and it collects the ones that have
negative reduced cost and that are feasible. A path is feasible if it satisfies
some additional constraints such as the meal break constraint.

The fact that the network is cyclic poses a problem to the shortest path
algorithm. This problem is easily solved by solving the pricing problem over
different parts of the network (subnetworks), instead of doing it over the
entire network. Splitting the pricing problem in parts, not only solves the
cyclic network problem, but also opens a door for running the algorithm in
parallel. A natural way of dividing the network in parts is by weekday. This
means that each of the 7 subnetworks is associated to a particular weekday
and should be such that the columns generated inside it correspond to all
duties that start on that weekday (and therefore belong to that weekday).
So, following these guidelines, we defined the subnetwork of weekday j as the
part of the overall network containing all sign on and sign off nodes and the
tasks (nodes) that fit inside the following time intervals:

[
dayStartj, dayEndj + maxDutyLength

]
, if j = 1, ..., 6 (6)

[dayStart1, maxDutyLength] ∪ [dayStart7, dayEnd7] , if j = 7, (7)

where: dayStartj is the time elapsed between the start of the week and the
time where weekday j starts; dayEndj is the time elapsed between the start
of the week and the time where weekday j ends; and maxDutyLength is the
maximum time length allowed for a duty.

A conclusion that we can take out of this definition is that the subnetwork
of a weekday overlaps with the subnetwork of the next weekday in a time
length that is equal to maxDutyLength. These overlapping areas contain tasks
that belong to both weekdays (can be covered by duties of both weekdays).
By looking to the definition it is also possible to confirm that the subnetworks
are acyclic as required beforehand.
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Due to the size of the network, solving the pricing problem is usually a
very time consuming process. In order to obtain very significant performance
improvements we run the algorithm in parallel. The number of threads de-
pend on the number of cores available. If there are enough cores, there can be
a thread for each weekday and crew base. In this case, each thread would run
the pricing algorithm over a subnetwork corresponding to a given weekday
with a sign in and sign off node corresponding to a given crew base.

5 Results

In this section we present the improvement we reach by solving the CSP for
a complete week. We will not compare the performance of the algorithm
for a single weekday instance with existing approaches in detail. Internal
benchmarks show that the optimizer is capable of generating solutions which
are about a few percent better than the results presented in Abbink et al.
(2005) and Abbink et al. (2008). These results had already a high quality
and were used in practice for many years. Abbink et al. (2008) also addressed
the issue of the global (week) constraints. However, the authors did not solve
the problem as a whole, like the presented approach does.

To compare the results of optimizing the instances per weekday with the
results of the optimizing the week as a single instance, we have created two
cases: (i) all tasks for the drivers and (ii) all tasks for the guards. With these
two cases we varied the number of applied constraints. All experiments were
carried out on the same hardware1.

First, we made an experiment without global constraints. In the second
experiment we added the constraints on the duration (D) of the duties. To
be specific, the constraint of 8 hours on the maximum average duration of
the duties and the constraint saying that no more than 5% of the duties can
have a length of more than 9 hours. In a third experiment we have added the
constraint on having a minimum of 40% and a maximum of 70% of work on
preferred trains (PT) per crew base. We have created these three experiment
instances for both drivers and guards.

Table 4 shows the result for each of the instances. The first two columns
indicate the type of the problem. The second and third column show the
value of the cost function for the individual day cases, respectively for the
week instance. The first experiment shows that solving the complete week as
a single instance gives a worse result. In theory, the solution can be better
because the solver can decide to plan a task in a duty of a different day than
the day it was assigned to in the runs for the individual days. However, the

1Intel Octo Core (2x4 Cores), 2.6GHz, 8Gb RAM

13



Case Constraints Indiv. Days Week Delta Relative
Drivers 1 none 22907166 22962526 55360 0.2%
Drivers 2 D 23079190 22882933 –196257 –0.9%
Drivers 3 D & PT 23403709 23097736 –305973 –1.3%
Guards 1 none 27608478 27738766 130288 0.5%
Guards 2 D 27863687 27790539 –73148 –0.3%
Guards 3 D & PT 28229258 28094205 –135053 –0.5%
Guards 1 + Drivers 1 none 50515644 50701292 185648 0.4%
Guards 2 + Drivers 2 D 50942877 50673472 –269405 –0.5%
Guards 3 + Drivers 3 D & PT 51632967 51191941 –441026 –0.9%

Table 4: Results Week optimization

experiments show that the increased size of the problem makes the problem
harder to solve which results in a worse solution. The effect is larger for the
guards, which can be explained by the fact that the instances are larger than
the drivers instances.

The other experiments show that solving the complete week as a single
instance gives a better result than solving the single weekday instances. This
can be explained by the fact that in the week instances, the algorithm can for
instance decide to have a larger average duration for the duties in the weekend
as long as it compensates this with shorter duties during the weekdays.

It is not shown in the table, but when we inspect the solution in more
detail, this is exactly what happens in some cases. In other cases the system
decides to have longer duties during the weekdays and to have shorter duties
during the weekend. For the total set of bases we see that the average
duration gets longer in the weekend and also the related percentage of long
duties (with a duration of more than 9 hours), is higher than during the
weekdays.

Having short duties during the weekdays is efficient because in railway
operations there is generally a peak–hour pattern for the commuters. During
these peak-hours there is a higher need for crew than during the rest of the
day and this need can be efficiently covered with short duties. In the weekend
there is no peak-hour pattern, and it is efficient to create long duties. The
positive effect of this is the fact that the amount of duties during the weekend
is reduced. Crew generally like to have the weekend off, so they regard having
to operate relatively less duties during the weekend as being attractive.

The results of the third set of experiments, with the additional constraint
on the preferred trains, show that the effect of solving the week instance
as a whole even gives a larger improvement. The effect for the guards in-
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stances is somewhat smaller than for the drivers, but still it is a significant
improvement. The results show that the gain in solving the week as a single
instance gets larger when there are more global constraints that apply for
the complete week. Even though the problem has more global constraints,
in some cases, the algorithm is still able to find better solutions. With the
presented approach we are able to solve the complete week instance with
global constraints that are to be applied in the NS case. The overall effect is
that we gain an efficiency increase of about 1%.

6 Conclusions and Business Benefits

As explained in the introduction, initially we developed an algorithm LUCIA
capable of solving the individual day instances efficiently. Practical results
show that the use of this algorithm improved the quality of the crew sched-
ules at NS. Then we extended this algorithm such that it was able to solve
instances for the complete week.. The presented work shows that solving the
complete week can be done with the current state-of-the-art techniques and
that it leads to a significant improvement of about 1% efficiency gain, which
reflects a cost reduction of 3 million euros.

The work described in this paper is the result of joined research between
a commercial software vendor and a large railway operator. It is interesting
to see that combination of the common Operations Research knowledge, the
specific IT knowledge of SISCOG and the specific domain knowledge of NS
lead to benefits for both parties. For SISCOG, the research resulted in a
new optimizer that was integrated in their software suite. Their competitive
strength was enlarged and SISCOG is now able to support the most complex
crew scheduling problems. The basic algorithm for single days is currently
used in production at NS. The results of the solving the complete week
instances have not been used in practice of NS yet. As the results of the
experiments are very promising, we foresee that the new approach will be
applied in practice in the near future so the indicated cost reduction of about
3 million can be achieved.
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Figure 1: Crew planning process
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Figure 2: Graph with optional node
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Figure 3: Graph with additional arc
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