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Abstract

Delay management models determine which connections should be
maintained in case of a delayed feeder train. Recently, delay manage-
ment models are developed that take into account that passengers will
adjust their routes when they miss a connection. However, for large-
scale real-world instances, these extended models become too large to
be solved with standard integer programming techniques. We there-
fore develop several heuristics to tackle these larger instances. The
dispatching rules that are used in practice are our first heuristic. Our
second heuristic applies the classical delay management model without
passenger rerouting. Finally, the third heuristic updates the parame-
ters of the classical model iteratively. We compare the quality of these
heuristic solution methods on real-life instances from Netherlands Rail-
ways. In this experimental study, we show that our iterative heuristic
can solve large real-world instances within a short computation time.
Furthermore, the solutions obtained by this iterative heuristic are of
good quality.

Keywords: Public Transportation, Railway Operations, Delay Manage-
ment, Passenger Rerouting

1 Introduction

Most regular train passengers will recognize the frustration of missing a
connecting train when their feeder train arrives at the transfer station with
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a small delay. In low-frequency railway systems, missing a connection can
have a severe impact on the travel time of the passengers, even if the delay
of the incoming train is only small. In such cases, it might be better to delay
the connecting train slightly. By delaying the connecting train, passengers
from the delayed train are able to transfer to the connecting train and do
not have to wait for the next train. A train waiting for passengers from a
delayed feeder train reduces the punctuality, which is the main performance
indicator for most railway operators. However, it improves the reliability of
the system as a whole and thereby increases passenger satisfaction. Nether-
lands Railways, the largest passenger operator in the Netherlands, endorses
the importance of the reliability of the railway system and has recently intro-
duced the passenger punctuality as a performance indicator. The passenger
punctuality measures the ratio of passengers who arrive at their destination
with a delay smaller than a certain threshold value.
In railway operations management, determining which connections to main-
tain in case of a delayed feeder train is the subject of delay management.
Delay management thus decides which trains should wait for a delayed feeder
train and which trains should depart on time. The aim is to minimize the
total delay for the passengers. Deciding on the wait-depart decisions is a
complex problem: If a train waits for a delayed feeder train, passengers in
that train will arrive with a delay at the next station, where subsequent
transfers take place. This shows that the effects of the wait-depart decisions
propagate throughout the entire railway network. Therefore, when solving
the delay management problem, the entire railway network should be con-
sidered at once. Nevertheless, the current practice at most railway operators
is to apply simple rules of thumb to determine which trains should wait. As
an example, Netherlands Railways applies a so-called Waiting Time Rule.
For each connection, a threshold is determined. If the delay of the incoming
train is smaller than the threshold, the connecting train waits. Otherwise,
the train departs on time. Kliewer and Suhl (2011) evaluate a wide range
of such simple dispatching rules.
In this paper, we consider off-line delay management. In the off-line delay
management problem, all primary delays in the system are known before the
optimization process starts. Off-line delay management is useful when delays
can be predicted, for example when construction works restrict the maximal
speed of the trains. Furthermore, when a set of primary delays is known in
the system, the secondary delays can be determined easily. Off-line delay
management can then propose how to react to these secondary delays. Fi-
nally, solution methods for off-line delay management can be applied to solve
on-line problems in a real-time setting. This application requires solution
methods that solve the off-line delay management within a short compu-
tation time. The delay management problem that we consider is: Given a
set of source delays in a railway system, determine a disposition timetable
with a new set of maintained connections, such that the total delay of the
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passengers is minimized.
A crucial aspect in delay management is to determine the delay for the pas-
sengers. To evaluate the delay for passengers who miss a connection, one has
to determine how passengers react if a connecting train is missed. Early de-
lay management models assume that such passengers wait for the next train
on the same line (Schöbel, 2001). The delay can then be approximated by
the cycle time of the timetable. This approximation is correct if the never-
meet-property holds (Schöbel, 2007). However, in dense railway networks
such as in the Netherlands, this property is mostly not respected. Gatto
et al. (2005) show that the general delay management problem is NP-hard,
even under the assumption that passengers wait a complete cycle time. To
overcome the difficulty of computing the delay in the case of missed connec-
tions, Ginkel and Schöbel (2007) consider the delay management problem as
a bi-criteria problem, and optimize the delay of the trains and the number
of missed connection simultaneously.
The delay management models mentioned so far ignore the limited infras-
tructure capacity of the railway system: The limited number of tracks and
platforms are not taken into account. In order to obtain solutions to the
delay management problem that are feasible in practice, one should consider
the infrastructure capacity explicitly. A first approach to take the limited
capacity of the tracks into account is presented in Schöbel (2009). Computa-
tional tests and heuristics are described in Schachtebeck and Schöbel (2010).
In Dollevoet et al. (2011b), the limited capacity of the stations is taken into
account. Another line of research originates from the conflict detection and
resolution literature (D’Ariano et al., 2008), which takes a microscopic view
of the railway network to find conflict-free dispostion timetables. In Corman
et al. (2010), this microscopic view is applied to minimize the train delay
and number of missed connection simultaneously.
Another extension to the classical delay management problem concerns the
computation of the delay for passengers who miss a connection. Dollevoet
et al. (2011a) compute this delay more realistically: It is assumed that pas-
sengers who miss a connection will take the fastest alternative route to their
destinations. To do so, they include the routing decisions of the passen-
gers in the integer programming formulation from Schöbel (2007). In this
way, a route is determined for all passengers explicitly. In an experimental
study, it is shown that determining the routing decisions already during the
optimization of the wait-depart decisions reduces the delay for the passen-
gers significantly. However, for large-scale real-world instances, the integer
programs become too large to be solved by standard integer programming
techniques.
In this paper, we propose several heuristic solution approaches for the delay
management problem that incorporate the routes of the passengers. Our
aim is to find solution methods that balance the computation time on one
hand and the quality of the solution on the other hand. We will compare
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the heuristic solutions to the ones obtained by the exact algorithm for the
delay management problem with passenger rerouting and to solutions that
are obtained by simple dispatching rules. We will show that a solution can
be found for large-scale real-world instances in a reasonable amount of time
without compromising the solution quality too much.
The remainder of this paper is organised as follows. In Section 2, we describe
the delay management model and review the integer programming formula-
tion for delay management with passenger rerouting. Section 3 introduces
the heuristic solution methods that we consider. In Section 4 we describe
our experimental setup and compare the various solution methods. Finally,
in Section 5 we draw some conclusions and discuss possibilities for further
research.

2 Delay Management Model

We will now first describe our delay management model formally and then
present an integer programming formulation. The integer programming for-
mulation will be used as a benchmark for our heuristic methods and will
serve as the basis for some of the heuristics.
Most approaches model the off-line delay management problem with an
event-activity network N = (E ,A). In this directed graph, the events are
the departures and arrivals of the trains, that need to be scheduled. We
denote the set of arrival and departure events as Edep and Earr, respectively.
The events are connected by activities, that represent constraints on the
times when these events take place. For example, a waiting activity makes
sure that the departure of a train from a station takes place after its arrival
there. Driving activities ensure that a minimal driving time between the
departure of a train from a station and its arrival at the next station is
respected. We denote the waiting and driving activities by Await and Adrive,
respectively. The transfers from one train to another are represented by
activities that can be removed from the network and denoted by Achange.
Only transfers that are maintained pose restrictions on the departure times
of the connecting trains. For each activity a ∈ A = Await ∪Adrive ∪Achange,
we denote the minimal time required for that activity by La.
The passenger data is represented as a set P of origin-destination pairs (OD-
pairs). Each OD-pair p ∈ P represents a group of wp passengers that want
to travel from an origin to a destination at a given time. To determine a
route for the passengers explicitly, we solve a shortest-path problem in the
event-activity network N . In order to do this, we introduce for each OD-pair
an artifical source and sink node in the network. These nodes are referred
to as origin and destination events, respectively, and denoted by Org(p) and
Dest(p). The source and sink nodes are connected to the regular events by
origin and destination arcs. The origin arcs connect the source Org(p) for
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an OD-pair p to all departure events e ∈ Edep that correspond to a depar-
ture from the origin station of p after the time when the passengers in p

start their journey. Aorigin denotes the set of all origin arcs. Similarly, all
arrival events at the destination station of OD-pair p are connected to the
sink node. Adestination denotes the set of destination arcs.
Note that the arcs a ∈ Await∪Adrive∪Achange can be used by any OD-pair p.
On the contrary, an origin arc a = (Org(p), e) ∈ Aorigin can only be used by
OD-pair p ∈ P . To ease the notation later on, we denote the set of activities
that can be used by an OD-pair p ∈ P by

A(p) = Await ∪ Adrive ∪ Achange ∪ δout(Org(p)) ∪ δin(Dest(p)).

We assume that the original timetable and a set of delays is given. For each
event e ∈ E = Edep ∪ Earr, the time when event e is planned is denoted by
πe. The delay at event e is denoted by de. Note that de = 0 for events e ∈ E
that are not delayed.
For each changing activity a ∈ Achange, we now determine whether the
corresponding transfer is maintained. In order to do so, we introduce for
each a ∈ Achange a binary decision variable

za =

{

1 if connection a is maintained,
0 otherwise.

For each event e ∈ E , we determine a new time xe when event e takes place.
The values xe together determine the disposition timetable. Furthermore,
for each OD-pair p ∈ P, we determine which trains the passengers in that
OD-pair take. This corresponds to determining a path in the event-activity
network for each OD-pair. To model this, we introduce for each OD-pair
p ∈ P and each activity a ∈ A(p) a binary decision variable

qap =

{

1 if OD-pair p uses activity a,

0 otherwise.

Finally, for each OD-pair p ∈ P, we introduce an auxiliary variable tp that
represents the arrival time for passengers in OD-pair p. The integer program-
ming formulation for delay management with passenger rerouting reads as
follows (Dollevoet et al., 2011a).

min
∑

p∈P

wptp (1)
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such that

xe ≥ πe + de, ∀e ∈ E , (2)

xe ≥ xe′ + La, ∀a = (e′, e) ∈ Await ∪ Adrive, (3)

M(1− za) + xe ≥ xe′ + La, ∀a = (e′, e) ∈ Achange, (4)

qap ≤ za, ∀p ∈ P, a ∈ Achange, (5)

1 =
∑

a∈δout(Org(p))

qap, ∀p ∈ P, (6)

∑

a∈δin(e)∩A(p)

qap =
∑

a∈δout(e)∩A(p)

qap, ∀p ∈ P, e ∈ E , (7)

∑

a∈δin(Dest(p))

qap = 1, ∀p ∈ P, (8)

tp ≥ xe −M(1− qap), ∀a = (e,Dest(p)) ∈ Adestination, (9)

xe ∈ N, ∀e ∈ E , (10)

za ∈ {0, 1}, ∀a ∈ Achange, (11)

qap ∈ {0, 1}, ∀p ∈ P, a ∈ A(p) (12)

tp ∈ N, ∀p ∈ P. (13)

The objective function (1) minimizes the weighted sum of realized arrival
times. As the planned arrival times are fixed, this is equivalent to minizing
the weighted sum of delays. Constraints (2) make sure that no event e

takes place earlier than planned and that the source delays are taken into
account. (3) propagate delays along waiting and driving activities a, while
(4) propagate them along maintained changing activities a. Constraints
(5) state that passengers of OD-pair p can only use a changing activity a

if the corresponding transfer is maintained. Equations (6)-(8) formulate a
shortest-path problem for each OD-pair p. Finally, Constraints (9) compute
the arrival times of the passengers. The constant M in (4) and (9) is a
sufficiently large number. Dollevoet et al. (2011a) propose a finite value for
M that is large enough.

3 Heuristic solution approaches

In this section we will describe several heuristic methods to solve the delay
management problem. Recall from Section 1 that the delay management
problem asks for wait-depart decisions, a disposition timetable and new
routes for the passengers. At this stage we should note that if the wait-
depart decisions are given, finding the optimal timetable and routes is trivial.
The disposition timetable can be found by the critical path method (Schöbel,
2007), while the routes for the passengers can be found by solving a shortest-
path problem in the event-activity network. This implies that every method
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that determines the wait-depart decisions can be used as a heuristic.
An easy policy to implement in practice is not to consider the connections
at all. In that case, delays are propagated throught the network only by the
driving and waiting activities. As a consequence, all trains depart as early
as possible. We call this heuristic a no-wait policy (NW). We will use this
heuristic as a benchmark for all the methods that we develop next.

3.1 Simple dispatching rules

In the current operations, railway traffic controllers usually apply simple
dispatching rules to determine whether or not to maintain a connection. In
Kliewer and Suhl (2011), a large set of such dispatching rules is compared.
We have implemented two rules to compare our heuristic solutions to. The
first one, the Waiting Time Rule (WTR), corresponds to the current prac-
tice at Netherlands Railways.
Under a WTR policy, a maximal waiting time is determined for each con-
nection. This maximal waiting time can be differentiated for different types
of connections or even for each connection individually. However, we will
assume a constant time dmax for all connections for simplicity. Let now a
changing activity a = (e, e′) ∈ Achange be given and assume that the ar-
rival event e is delayed. It is easy to determine the time that event e′ has
to be delayed in order to maintain the connection. Denoting this delay to
maintain connection a by da, it holds that

da = πe + de + La − πe′ .

A connection a is maintained if da ≤ dmax and dropped otherwise. We have
experimented with different values of dmax. Note that dmax = 0 corresponds
to a no-wait policy.

The drawback of the previous dispatching rule is that it does not take into
account the number of transferring passengers. To improve the solutions, the
second rule that we consider is the Ratio of Transferring Passengers (RTP).
For each connection, first the number of passengers who use a connection is
determined. This number is then compared to the number of passengers that
have planned to take the connecting train. For a connection a = (e′, e) ∈
Achange, we thus compute the following ratio

ρa =
Number of passengers that planned to use connection a

Number of passengers that planned to use driving activity (e, f)
.

Note that for each departure event e, there is exactly one driving activity
(e, f) ∈ Adrive. If the ratio of these numbers is larger than a certain threshold
ρmin, i.e., ρa ≥ ρmin, then connection a is maintained. Again, for values ρmin

larger than 1, we obtain the no-wait policy.
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3.2 The classical model as a heuristic

The next heuristic method applies the delay management model from Schöbel
(2007). Recall from the introduction that this model assumes that passen-
gers wait for a complete cycle time when they miss their connection. As
input, the model needs the number of passengers we that plan to end their
journey at event e ∈ Earr and the number of passengers a ∈ wa that use a
connection a ∈ Achange. Given the set of OD-pairs P, these numbers can be
computed as

we =
∑

p∈P(e)

wp, wa =
∑

p∈P(a)

wp,

where P(e) denotes the set of OD-pairs that planned to arrive at their
destination with event e and P(a) denote that set of OD-pairs that planned
to use a connection a ∈ Achange. Denoting T for the cycle time of the
timetable, the delay for the passengers is approximated by

∑

e∈Earr

∑

p∈P(e)

wpxe +
∑

a∈Achange

∑

p∈P(a)

wpT (1− za). (14)

An integer programming formulation for the classical model is now given by
the objective function (14) together with the constraints (2)-(4) and (10)-
(11). Note that passengers who miss a connection are counted twice in
the above objective function: Both the train they planned to arrive with is
included in the first term, and the transfer that they missed is included in
the second term. The model is correct if the so-called never-meet-property
holds (Schöbel, 2007), but for dense railway networks as the one in the
Netherlands, this property is often not satisfied.
The classical model assumes that passengers who miss a connection have to
wait for one cycle time T , and therefore adds a penalty T to the objective
function for every connection that is dropped. Instead of assuming that
passengers wait for one cycle time, we can also assume that there is an
estimate D of the additional delay for passengers who miss a connection,
and add this estimate as a penalty to the objective function for every missed
connection. The objective function then becomes

∑

e∈Earr

∑

p∈P(e)

wpxe +
∑

a∈Achange

∑

p∈P(a)

wpD(1− za).

We now view the estimate D as a parameter and find the best value D∗

by trial and error. Note that the classical model gives both the wait-depart
decisions and the disposition timetable. Given the disposition timetable, it
is easy to determine the fastest path for each OD-pair p ∈ P in order to
evaluate the total delay.
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3.3 An iterative heuristic

The previous set of heuristics assumes a fixed estimate D for the additional
delay: This delay is equal for all OD-pairs. We will now relax this assump-
tion, and allow for an estimate Dp that differs among the OD-pairs p ∈ P.
Given a set of values Dp, we can solve the classical delay management model
with objective function

∑

e∈Earr

∑

p∈P(e)

wpxe +
∑

a∈Achange

∑

p∈P(a)

wpDp(1− za).

We will find the best value for Dp with an iterative approach. Given the
values Dp, we can solve the classical delay management model. With the
wait-depart decisions and disposition timetable that we then obtain, we can
determine new routes for the passengers. If we find an OD-pair that misses
a connection, we can compute the actual delay for this OD-pair, and use
this to update the estimate Dp. This process can be repeated until the best
values Dp are found. A more formal outline of the iterative algorithm is
given below.

1. Initialize: Set Dp = 0 for all p ∈ P.

2. Repeat until convergence or until a maximum number of iterations has
been reached:

(a) Solve the classical delay management model with the current val-
ues Dp.

(b) Compute the fastest routes for the passengers. This gives the
additional delay dp for an OD-pair p that misses a connection.

(c) Update the values Dp for all passengers who miss a connection:

Dp = dp − xe,

where e is the arrival event that OD-pair p planned to arrive with.

In the initialization step, all values Dp are set to 0. This means that pas-
sengers are not delayed if they miss a connection. In particular, the first
solution of the classical delay management model will drop all connections
and the timetable that we then find will equal that of a no-wait policy. For
the passengers in an OD-pair p ∈ P who miss a connection in this no-wait
policy, the value Dp will be updated in Step 2c. Recall that an OD-pair p is
counted twice in the objective function. Dp should therefore be an estimate
of the additional delay of OD-pair p ∈ P. This explains the term xe in the
update of the estimates in the final step. In the subsequent iterations, the
classical model will find a balance between this additional delay for OD-pair
p and the delay that is obtained when the connection is maintained.
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Figure 1: The railway network that is considered in the numerical experi-
ments

4 Numerical experiments

We have performed an experimental study to compare the peformance of
the heuristics that are described in the previous section. We will now first
describe our experimental setup and then discuss the results.

4.1 Cases

We obtained detailed passenger data from Netherlands Railways, the largest
passenger operator in the Netherlands. We have created six real-world in-
stances of varying size to determine how the solution time and solution
quality depend on the size of the networks and on the number of passengers.
Five of these instances are also used in Dollevoet et al. (2011a).
In Figure 1, the railway network that we consider is depicted. The graph
represents part of the Dutch railway network in the mid-Western part of
the country. It contains a node for each transfer station in the network.
Two nodes are connected by an edge if there is a train service between the
stations. On most links, both a long distance and a regional train service is
operated, typically with a frequency of two trains per hour. Note that there
can be many smaller stations on a link, that are serviced by the regional
trains only.
All cases consider a period of four hours in the evening. In the first three
cases, we consider all stations indicated by a black dot in this figure. The
first case includes all long distance trains. As passenger weights, we consider
for each OD-pair the average number of passengers. The second and third
case consider both the long distance and the regional trains on this network.
In the second case, we again take the average number of passengers as the
weights. Recall however that the regional trains stop at all stations in the
network. As a consequence, the number of OD-pairs is much larger than
in the first case. For many of them, the average number of passengers is
relatively small. In order to deal with this enormous amount of OD-pairs, in
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Case Stations Trains OD-pairs Passengers Departures Transfers

I 10 117 355 (36%) 147 (12%) 219 1074
II 34 284 3940 (65%) 261 (12%) 1022 8068
III 34 284 908 (28%) 289 (12%) 1022 8068
IV 16 168 914 (55%) 345 (21%) 349 1723
V 82 404 22256 (81%) 705 (17%) 2053 13812
VI 82 404 2875 (39%) 775 (17%) 2053 13812

Table 1: Some characteristics of the instances

the third case we consider a possible realization of passenger figures for one
day. The realization is constructed in such a way that the expectation of the
passenger figures equals the average. We refer to Dollevoet et al. (2011a) for
more details on the process of generating the realizations of the passenger
figures.
The remaining three cases consider the entire network in Figure 1. The
fourth case includes only the long distance trains. The fifth case consid-
ers also the regional trains. Both cases use the average passenger figures
as weights. Finally, the sixth case considers all trains on the network, but
considers a possible realization of the passenger demand.
In Table 1, some characteristics of the cases are given. For each case, we
list the number of stations, the number of trains, the number of OD-pairs,
the number of passengers, and the number of departures and transfers in
the event-activity network. The number of passengers has been scaled for
secrecy and does not represent the true numer of passengers. In the columns
with the number of passengers and the number of OD-pairs, we have indi-
cated in brackets the percentage of passengers that have to transfer during
their trip. It can be seen that the percentage of passengers that transfer is
much smaller than the percentage of OD-pairs with a transfer. This implies
that the passenger weights wp are much larger for OD-pairs p ∈ P that need
no transfer.
To evaluate the heuristic methods, we have simulated 100 delay scenarios

for each case. The scenarios are constructed as follows. First, each arrival
has a probability of 10% to be delayed. Second, if a train is delayed, its
delay is a uniformly distributed number between 1 and 15 minutes.

4.2 Dispatching rules

Our first heuristics apply simple dispatching rules to find the wait-depart
decisions. These heuristics maintain a connection if a property of this con-
nection exceeds a certain threshold value. We will now show how to find the
best values for these threshold values.
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dmax I II III IV V VI

0 177053 558667 6068 540393 1917679 20736
1 175178 551059 5992 531780 1877530 20293
2 174863 554903 6033 526938 1869495 20206
3 178453 574323 6246 527224 1903082 20578
4 182580 612444 6662 533188 1986597 21501
5 189927 670575 7298 543174 2119217 22969

Table 2: The results of the Waiting Time Rule for the first three cases. For
each case, the best result is underlined.

4.2.1 Waiting Time Rule

The Waiting Time Rule (WTR) maintains a connection if the connecting
train has to wait at most dmax minutes. To find the best value for the
threshold paramater dmax, we have evaluated the heuristics for values rang-
ing from 0 to 5 minutes. In Table 2, the results are presented. The first
column in this table gives the value of the parameter dmax. Then, the aver-
age objective value is given for each of the cases. Recall that for dmax = 0,
WTR corresponds to a no-wait policy. For the first three cases, with a value
dmax > 2 for the threshold, the WTR heuristic performs worse than the
no-wait policy. It turns out that allowing all connecting trains to wait for
more than 2 minutes for a delayed feeder train gives a bad policy. For Cases
IV and Cases V and VI, WTR performs worse than the no-wait policy if
dmax ≥ 5 and dmax ≥ 4, respectively. In all cases, the WTR peforms better
than a no-wait policy for dmax ∈ {1, 2}: The delay is reduced on average by
1.9%. For the second and third case, the best results are found for dmax = 1.
For all other cases, dmax = 2 gives the best performance.
For easier comparison of the results among the cases, we have normalized
the objective value and plotted these relative objective values in Figure 2.
The objective value for the no-wait policy is set to 100 percent. For values
of dmax > 0, we have computed the delay relative to the no-wait policy. One
immediately notices that the behavior of the policy is very similar for Cases
II and III, and for Cases V and VI. Recall that these cases consider the same
railway system, and differ only in the OD-pairs that are considered. It fol-
lows from this graph that a small subset of OD-pairs can be used to evaluate
the performance of the heuristic for the case that includes all OD-pairs.

4.2.2 Ratio of Transferring Passengers

The Ratio of Transferring Passengers (RTP) heuristic computes the ratio of
the number of passengers who plan to use a connection and the number of
passengers who plan to use the connecting train. If this ratio exceeds a given
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Figure 2: The results of the Waiting Time Rule for Cases IV-VI

threshold ρmin, the connection is maintained; otherwise it is dropped. We
experimented with values of ρmin between 0 and 100 percent. Note that we
obtain a no-wait policy if ρmin > 100%. In order to compare the results to
the no-wait policy, we therefore also applied the heuristic with ρmin = 110%.
In Figure 3, the results of the RTP heuristic are presented for all cases.

From the graph we see that with the best value for the parameter ρmin, the
RTP dispatching rule performs about 4% better than the no-wait policy.
Contrary to the WTR rule, the best value for the parameter ρmin differs
among the cases. For Cases I and IV, that consider only the long distance
trains, the best value is found at 30% and 20%, respectively. For the other
cases, that include also the regional trains, the best heuristics are found
with ρmin equal to 40% or 50%. We conclude that if both long distance
and regional trains are considered, the optimal ratio ρmin should be higher.
In order to explain this, recall that the regional trains stop at all stations
along the railway line. Consider a transfer to a regional train that travels
in the direction of a larger stations and stops at some smaller stations along
the way. Many passengers will enter the regional train in one of the smaller
stations and travel towards the larger station. When we determine whether
to maintain the connection at the transfer station or not, these passengers
are not considered, as they will enter the train at a later time. However,
if the connection is maintained, they will be delayed. The RTP heuristic
then underestimates the delay that arises if the connection is maintained.
Choosing a higher value for ρmin makes up for this underestimation.
With the optimal value for the parameter, the RTP rule reduces the delay
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Figure 3: Results for the Ratio of Transferring Passengers rule

roughly by 4%. Comparing the RTP rule to the WTR rule, we see that the
performance of the RTP rule is much better. It thus pays off to compare
the number of passengers that want to use a connection to the number of
passengers that are delayed if the connecting train waits.

4.3 Classical Delay Management

Our second set of heuristics applies the classical delay management model,
but views the penalty D in the objective function as a parameter. In the
original model, this parameter was set to T , the cycle time of the timetable.
If we set D = 0, the heuristic equals the no-wait policy. That allows us
again to normalize the objective value, in order to be able to compare the
results among the cases. We have experimented with values for D ranging
from 0 to 60 minutes. Note that T = 60 minutes in our timetable.
In Figure 4, the results for all cases are presented. To find the best value

for the paramater D, we have evaluated the heuristic for more values around
D = 20. For all cases, we found that 18 ≤ D∗ ≤ 21. Furthermore, the dif-
ferences in objective value are very small among these values. We conclude
that the additional delay for passengers that miss a connection is about 20
minutes. The performance of the heuristic with the best value for the pa-
rameter D is much better for the last three cases. For the smaller network,
the quality of the solutions is 6% better than a no-wait policy. For the larger
network, the objective values are reduced by 9%.
Considering the shape of the graph for each case individually, one sees that
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Figure 4: The results for the heuristic that applies the classical model

the graph for Cases I and IV is very flat at the end. If the value of D is
increased, this does not give objective values that are much worse. On the
contrary, for the other cases the objective value increases if the value of
the parameter is inreased. Furthermore, we again see that the results are
very similar for Cases II and III, and for Cases V and VI. This suggests that
one can use a small set of OD-pairs to find the best value of the parameterD.

4.4 Iterative heuristic

Our final heuristics applies the classical delay management model in an
iterative fashion. Contrary to the previous heuristic, it uses a parameter Dp

that differs among the OD-pairs p ∈ P. In each iteration, the heuristic first
solves the classical model and then reroutes the passengers. It stops when
the method converges or when the maximal number of iterations has been
reached. In Table 3, we present the number of iterations that the heuristic
needs. The first row gives the number of instances that did not converge.
The second row gives the average number of iterations among the instances
that did converge. We see in the table that the heuristic converges for almost
all instances. Only in Cases III and V, there is one instance that does not
converge. For these instances, the heuristic cycles between two solutions,
that have almost identical objective values. In both instances, there is one
OD-pair that is rerouted in one solution, and takes the planned route in the
other. On the other instances, the iterative heuristic converges on average
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I II III IV V VI

Instances that did not convergence 0 0 1 0 1 0
Average number of iterations 2.23 3.48 3.09 2.78 3.90 4.24

Table 3: The number of instances for which the iterative heuristic did not
converge and the average number of iterations

I II III IV V VI

No-wait 177053 558667 6068 540393 1917679 20736
WTR 174863 551059 5992 526938 1869495 20206
RTP 169477 536135 5852 516173 1841761 19853

Classical 166601 518809 5638 498031 1731831 18692
Iterative 165610 515573 5600 496529 1720748 18534
Exact 165110 512878 5567 495111 - 18343

No-wait 100.0 100.0 100.0 100.0 100.0 100.0
WTR 98.8 98.6 98.7 97.5 97.5 97.4
RTP 95.7 96.0 96.4 95.5 96.0 95.7

Classical 94.1 92.9 92.9 92.2 90.3 90.1
Iterative 93.5 92.3 92.3 91.9 89.7 89.4
Exact 93.3 91.8 91.7 91.6 - 88.5

Table 4: The absolute and relative objective value for each heuristic

in less than five iterations.

4.5 Comparison of the heuristics

In the previous sections we have shown how to find the best parameters
for the simple dispatching rules and for the heuristic based on the classical
model. We will now compare both the quality and the running time of the
heuristics to each other and to the exact approach. In Table 4, the best
objective value is presented for each heuristic and for each case. The upper
rows contain the absolute objective values, the lower ones contain relative
objective values. Again, we used the no-wait policy to normalize the objec-
tive values.
We see in the table the simple dispatching rules give the worst results. Al-
though they are easy to implement, the quality of the solutions they produce
is bad. Using the classical model as a heuristic, by viewing the penalty D

as a parameter, reduces the delay on average by 8%. The iterative heuristic
improves slightly over the classical model, reducing the delay by an addi-
tional 0.5%. For the first five cases, the problem could also be solved by the
exact algorithm. Comparing the objective values obtained with the iterative
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I II III IV V VI

Classical 0.04 0.5 0.25 0.08 3 0.5
Iterative 0.05 1 0.3 0.11 6.1 1
Exact 0.48 357 10 1.4 - 62

Table 5: The average running times for the classical, iterative and exact
algorithm, in seconds

and exact algorithm for those cases, we see that the iterative heuristic finds
solution that are close to optimal. The relative deviation is on average only
0.4%.

Our aim with the off-line delay management heuristics is to apply them
in an algorithm for the on-line delay management problem. As the on-line
delay management problem should be solved in a short computation time,
we are also interested in the running times for the different heuristics. For
the heuristics that apply simple dispatching rules, the running times are
neglectable. For each case, the running time was so short that it could not
reliably be measured. We thus compare only the running times for the clas-
sical and iterative heuristic and for the exact algorithm. In Table 5, these
average running times are reported.
The running times for the classical and iterative model are very short.

Even the largest case can be solved within seconds. For the larger cases,
the classical heuristic is about two times faster than the iterative heuristic.
The exact algorithm needs much more computation time. It takes on aver-
age almost six minutes to solve Case III. For the real-time setting of delay
management, such computation times are too long. The running times of
the classical and iterative heuristic allow a real-time application.

5 Conclusions

To evaluate the quality of any delay management policy, the routes that pas-
sengers choose have to be taken into account. This rerouting aspect of delay
management should be considered when solution methods for the delay man-
agement problem are developed. In this paper, we have constructed several
heuristic methods to solve the off-line delay management problem. We have
compared these heuristic among each other and to the exact algorithm in
an experimental study. In this study, it is shown that an iterative heuristic,
that solves the classical delay management model iteratively, leads to good
solutions. On average, the performance of the iterative algorithm is only
0.4% worse than the exact algorithm. This decrease in quality is compen-
sated by the running time of the method; the iterative approach could solve
all instances within seconds. We have also implemented simple dispatching
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rules, that are currently used in practice. For example, the Waiting Time
Rule is applied at Netherlands Railways. In our numerical experiments, it
is shown that these dispatching rules do not perform well.
Our delay management model ignores the limited capacity of the railway in-
frastructure. To obtain solutions that can be implemented in practice, these
capacity considerations should be incorporated in the delay management
models with passenger rerouting. An exact algorithm for delay management
models that includes both passenger rerouting and the capacity constraints
might be too ambitious. However, any algorithm for the capacitated delay
management problem without rerouting can be applied in an iterative fash-
ion to obtain a heuristic for the capacitated delay management problem with
passenger rerouting. Our results on the uncapacitated delay management
problem suggest that the total delay for the passengers can then be reduced
significanly.

References

F. Corman, A. D’Ariano, D. Pacciarelli, and M. Pranzo. Bi-objective conflict
detection and resolution in railway traffic management. Transportation
Research Part C, 2010. in press.

A. D’Ariano, F. Corman, D. Pacciarelli, and M. Pranzo. Reordering and
Local Rerouting Strategies to Manage Train Traffic in Real Time. Trans-
portation Science, 42(4):405–419, 2008.

T. Dollevoet, D. Huisman, M. Schmidt, and A. Schöbel. Delay management
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M. Schachtebeck and A. Schöbel. To wait or not to wait and who goes first?
Delay management with priority decisions. Transportation Science, 44(3):
307–321, 2010.
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