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Abstract

The estimation of the number of passengers with the identical journey is a common
problem for public transport authorities. This problem is also known as the Origin-
Destination estimation (OD) problem and it has been widely studied for the past
thirty years. However, the theory is missing when the observations are not limited to
the passenger counts but also includes station surveys.
Our aim is to provide a solid framework for the estimation of an OD matrix when only
a portion of the journey counts are observable.
Our method consists of a statistical estimation technique for OD matrix when we have
the sum-of-row counts and survey-based observations. Our technique differs from the
previous studies in that it does not need a prior OD matrix which can be hard to
obtain. Instead, we model the passengers behaviour through the survey data, and
use the diagonalization of the partial OD matrix to reduce the space parameter and
derive a consistent global OD matrix estimator. We demonstrate the robustness of
our estimator and apply it to several examples showcasing the proposed models and
approach. We highlight how other sources of data can be incorporated in the model
such as explanatory variables, e.g. rainfall, indicator variables for major events, etc,
and inference made in a principled, non-heuristic way.

Keywords: constraint maximum likelihood estimation, eigenvectors, counts
estimation

1. Introduction

The Origin-Destination (OD) matrix is important in transportation analysis. The
matrix contains information on the number of travellers that commute or the amount of
freight shipped between different zones of a region. The OD matrix is difficult and often
costly to obtain by direct measurements/interviews or surveys, but by using incomplete
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traffic counts and other available information one may obtain a reasonable estimate. A
particular application of the OD matrix estimation is in the area of public transport.
In order to improve their service, the responsible managers are looking for on-going
evaluation of the passenger flow and the reasons that would influence this flow. This is
typically the case for the City Rail, Sydney Bus and Sydney Ferry organisations, which
handle the public transport in the region around the city of Sydney, Australia.

CityRail and Co are handling a large number of stations (wharfs, Bus stops) for
Trains (Buses and Ferries) across the state. They carry thousands of passengers every
day, and periodically optimise the time-table schedule to best meet the changing de-
mand.

An ideal optimization of the schedule would consider the resources in trains, drivers,
stations and passengers. While the primary informations (trains, drivers, stations) are
known to CityRail and Co, the number of passenger on each train between each station
cannot be deduced easily given their current passenger flow data collection processes.

Various approaches to estimating the OD matrix using traffic counts have been de-
veloped and tested [11, 4] using traffic counts, or road traffic flows [7], [5]. Most of the
papers in the literature solve this problem by postulating a general model for the trip
distribution, for example a gravity type model [12, 13, 14, 6], which aims at introducing
a prior knowledge on the traffic flows and assigning a cost to each journey. Then the
inference is produced to estimate the parameters of this model. All these papers are
not passengers oriented.

Most of the work relating to OD matrix estimation are based on passengers ob-
servations assuming the knowledge of where the people get in and out of the public
transport. Lo et al [1] developed a framework centred on the passenger choice, which
they called the random link choice, and model this to obtain a maximum likelihood
estimator. Nandi et al [15] applied a strategy centred on a fixed cost per person per
kilometre assumption on the air-route network of India and provide some comparisons
with the real data.

When the information is not available (for example we have no data on when pas-
sengers get off the bus), Kostakos [9] offers to use a wireless detection of the passengers’
trips, and Lundgren and Peterson’s model [3] is based on a target OD-matrix previously
defined. However, none of the cited work considered using survey data. Indeed, if no
complete information is available about the passengers’ destinations, the simplest solu-
tion is to use an appropriate survey to estimate destination information. Furthermore,
what characteristics of the survey are required for the estimation to be accurate?

Bierliaire and Toint [16] introduces a structure-based estimation of the Origin-
Destination matrix based on parking surveys. In their article, they used the parking
surveys to infer an a priori estimate of the OD matrix, and they used this prior in
coordination with the partial observations of the network flows to derive a generalized

2



least square estimator of the OD matrix. Despite its novelty, this article assume that
the behaviour of car-user and public transport users are the same, at least regarding
their respective OD matrix. Given that the public transport network topology is often
different from the road network topology, one may doubt the accuracy of this assump-
tion. Moreover, they just use the partial structure extracted from the surveys.

The purpose of this paper is then to develop an estimation procedure for the Origin-
Destination matrix based on the ticket records available for the transport network
and/or on previous surveys. Unlike the article from Bierliaire [16], we use survey data
collection from public transport users, and estimate the approximate whole matrix
structure through the estimation of its eigenvectors. We propose a robust version of
the estimator to avoid biases induced by the survey. We also construct a regression
estimation procedure that accounts for the influence of exogenous variable such as the
weather conditions or the time of the year.
We first briefly present the passenger model, and then move on to outlining the obser-
vations model. In section 3, we explain how the measurements are obtained, and what
measurements error should be expected. In section 4, we explain the assumptions we
make on the measurements, and how this affects our estimation procedure. We present
in section 5 the maximum likelihood (ML) estimation procedure, by providing a system
of equation to be solved, for deriving estimators. We improve on this ML estimation to
make it robust to survey biases in section 6. Finally, we present a simulation example
and an application to a real world case in section 7. We finally comment on the results
and outline some future research opportunities.

2. The Passenger model

LetMt be the matrix of passengers number between the stations in the rail network
over time period t so that mt

ij is the number of passengers who depart from station i
and arrive at station j at time period t. Given that there is an obvious time dependency
here, denoted by t the period in which the commuting occur (for example a day). The
purpose of this work is to provide an estimation ofMt given the observations specified
in section 3.

3. The observations model

The observations provided about the passengers are very different, and only con-
sidering them all allow a direct estimation of Mt. We list in the subsections 3.1,3.2
and 3.3 the different kind of observations.

3.1. Casual commuters

A casual commuter is defined as a single or return journey that is not repeated
regularly (e.g. daily). Typically, people going to a once-in-a-year event will buy their
ticket for that trajectory and will probably return on the same day. Accordingly for
single and day return tickets, we have complete information under the assumption that
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they take the next train after purchasing their ticket and that they take the shortest
route. Let X tC be that matrix of measurements.

3.2. Departure-Arrival recordings

Each journey between major stations, the passenger has to validate his ticket
through the machines at the entrance of the station, and do it again at the exit.
Between minor stations we assume they take the next train to arrive at the station
they purchased their ticket at and assume they take the trio planners recommended
route for that time. Two scenarios are considered. In the first one, (called Ha), every
station in the network have these machines. In the second case (called Hb) only major
stations have these machines. In any case, let call YtD the vector corresponding to the
departures at the stations, and YtA the vector of arrivals.

3.3. Regular commuting partial measurements

Fortunately we can have regular passengers with specific departure and destination,
and this matrix will be denoted X tRs, where the rows stand for the departure stations
and the columns for the arrival stations. This matrix is observed, and assumed dis-
tributed according to a Poisson probability function with mean Rs.
The main part of the information, however, remains unknown. Indeed most of the
passengers will probably have a Zone ticket for a period of time, from 1 week to 1 year.
The nature of these tickets make the station of departure and arrival unknown, and is
the main challenge of this paper. Let call X tRz the matrix of Zone passengers numbers.
To make a proper statistical inference, we need two assumptions;

• The traveller will act independently of the validity duration of his ticket;

• The regular traveller commits to a return journey on each working day.

The observations linked to this model are two-folds. For major stations, we have the
total number of passengers that crossed the boom gates, in and out. For stations
without boom gates, the observations have to estimated using a survey. We also have
access to the total number of people with a valid zone ticket at time t (e.g. the day of
the analysis), denoted N t

Rz,

N t
Rz = 1′X tRz1. (1)

In the end, the total number of regular passenger at the time period t will be denoted
X tR, and we have,

X tR = X tRz + X tRs. (2)

4. Model assumptions and modelling

With these very different observations, we need a good fitting model based on
reasonable assumptions. Sections 4.1, 4.2, 4.3 and 4.4 presents these assumptions for
each parameter in our model.
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4.1. General Modelling Assumptions

Recall that X tM is a matrix of count, the main assumption on that matrix is that
the number of passenger is the sum of the casual passengers (X tC) plus the regular
passengers (X tR) plus a matrix stating the unusual big events such as major sporting
events, or large concerts (called X tE),

X tM = X tC + X tR + X tE . (3)

4.2. Casual Commuter Matrix Assumptions

The casual commuter journey could be assumed to be Poisson distributed i.e.
XC ∼ P(C)1 where C is the matrix of means for the counts.
However, the variance of the counts are not expected to be equal to their mean and
so the Poisson counts assumption may be unrealistic. Therefore, we decided to use a
Negative Binomial regression model for XC , which can be over-dispersed in order to
better describe the distribution of the counts. We specify that C is distributed accord-
ing to a Gamma distribution, C ∼ Ga(rC , pC/(1 − pC)). For a purpose of simplicity,
let XC be distributed as negative binomial with parameters rC and pC (we will denote
XC ∼ NB(rC , pC)).

4.3. Departure-Arrival Assumptions

According to the definition of the measurements, the following relationships hold:{
X tR1 = YtD
1′X tR = YtA

(4)

where YtD and YtA are the vectors of the total number of departures and arrivals at
each station during time period t.

4.4. Regular Commuter Matrix Assumptions

For the same reasons as described for the casual matrix, we will use a negative
binomial distribution to model the uncertainty around the regular traveller’s informa-
tion. However, unlike the casual commuter, we do not suspect an over-dispersion but
an under-dispersion, so that, XRs ∼ NB(rRs, pRs) and XRz ∼ NB(rRz, pRz). Let Rs
and Rz be the expectation of XRs and XRz .

1This is a notation abuse stating that every element in XC is supposed to be drawn with a Poisson
distribution which parameter belong to the matrix C.
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5. Naive Maximum Likelihood (ML) Estimation

When the model is well defined, the estimation procedure is computationally straight
forward, e.g., between major stations where we have complete information of arrivals
and departures. Meaning that the maximum likelihood estimation method accuracy,
practically depends on the efficient solving of the optimization problem. In this sec-
tion, the stationary model parameters are estimated from the data. Since the process
is unlikely to be stationary, we present a second option (Section 5.4), a multivariate
spatio-temporal model that we expect to fit the data better.

The estimation procedure will be carried out in well-defined steps. If we ignore the
time dependence, the successive observations can be considered independent, identical
random counts from Negative Binomial or Poisson distribution. This means that simple
maximum likelihood estimation should work well, especially for large sample sizes.

5.1. Casual parameters estimation

We observe X tC for several realizations. Given no space-time dependencies we as-
sume that X tC is independently distributed as NB(rC , pC). The likelihood is then,

L
(
(xtC){t1,...,tn}|rC , pC

)
=

∏
t

fC(xtC) (5)

=
∏
t

[Γ(rC + xtC)

Γ(rC)xtC !
prCC (1− pC)x

t
C

]
(6)

where xtC stands for one element of the matrix X tC . We thus can estimate the parameters
through,

(r̂C , p̂C) = argmax
r,p

L
(
(xtC){t1,...,tn}|rC , pC

)
(7)

Despite the absence of closed form solution to this problem, the optimization algorithms
can quickly lead to a global maximum.

5.2. Regular parameters estimation

Unfortunately we don’t have complete information for those with weekly, monthly
, quarterly or anuual tickets (long-term tickets). We have information of the times
they enter and departs at major stations but we don’t have complete information for
the long term tickets either to or from minor stations. Our assumption here is that
only a proportion πz of the Rz people will travel on day t, where 0 ≤ πz ≤ 1. πz is
an additional parameter that reflects the passengers habit. It does exist because when
performing the estimation, one may find a bigger estimation of travellers than what is
observed. Some of the difference is due to the randomness of XR, but it might also be
explained by the fact that travellers with prepaid long term tickets will not necessary
travel each of the working day of the week.
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However, we may provide the same estimation for the Rs parameters as we did in the
previous section, that is,

(r̂Rs, p̂Rs) = argmax
r,p

L
(
(xtRs){t1,...,tn}|rRs, pRs

)
(8)

where L stands for the same likelihood function as above.

This leads us to the final estimation, the contribution this paper makes to the
literature. The aim is to estimate the matrix X tRz with the available departure and
arrival data. The first step is to estimate the general shape of the X tRs matrix. The
problem is to achieve this in a simple way given that X tRz is to be estimated with
N×N parameters, and only N equations. The following paragraph presents an elegant
solution to this problem.
Recall Rz as the expectation of X tRz

. It is assumed symmetric, we can diagonalize it,
so that,

Rz = PDzP
−1 (9)

where P is a projection matrix of eigenvectors of Rz and Dz is a N × N diagonal
matrix, with terms equal to the respective eigenvalues. Therefore, if the structure of
Rz is known (i.e. the eigenvectors are known) and constant, then we have reduced the
problem to solving a system of N unknown parameters with N equations . Given Eq.
4 and the previous estimations, we have the following system,{

X tRz1 = ỸtD
1′X tRz = ỸtA

(10)

where ỸtD and ỸtA are obtained by simple subtraction. The probability density function
of the observations ỸtD, ỸtA can then be written,

∀i ∈ [1, n] p
(
ytDi|Rz, pRz

)
∼ NB(

∑
j

rijz , pRz) (11)

where (rijz )(i,j) = Rz and (ytDi)i = ỸtD. According to this equation, we then have n
likelihood equations (i ∈ [1, n]) but n(n− 1)/2 parameters to estimate (Rz being sym-
metric). To perform the estimation, we then need to reduce the number of parameters.
According to Eq. 9, we have,∑

j

rijz =
∑
k

λkpik
∑
j

pjk (12)

Then, if we knew P , the maximum likelihood would be tractable and provide an esti-
mation of Rz (with λi being the ith eigenvalue). The n likelihoods would look like,

∀i ∈ [1, n] L
(
ytDi|Rz, pRz

)
=

∏
t

p
(
ytDi|Rz, pRz

)
(13)
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where p
(
ytDi|Rz, pRz

)
∼ NB(

∑
k λkpik

∑
j pjk, pRz). The maximum likelihood estimat-

ing equations are then,

(λ̂1, . . . , λ̂N , pRz) = argmax
λi,pRz

∣∣∣∣∣∣∣
L
(
ytD1
|Rz, pRz

)
...
L
(
ytDn
|Rz, pRz

) (14)

Moreover, this complex equation can be simplified by assuming that the observations
are independent conditionally on knowing the parameters (e.g. the errors are indepen-
dents), and then,

(λ̂1, . . . , λ̂N , pRz) = argmax
λi,pRz

∏
i

L
(
ytDi
|Rz, pRz

)
(15)

The dimension of the parameter space is reduced according to the knowledge of P . To
estimate P , remember that Rs is symmetric, we have,

Rs = P̃DsP̃
−1 (16)

Then, we make the assumption that all the regular passengers behave identically over
time, that is, P is not a function of time. Then we have,

P = P̃ (17)

Then P can be estimated from R̂s, and introduced into Equation 12 to obtain Eq. 15.
Finally, we can use D̂z and P̂ to estimate R̂z.

5.3. Optimization Issues

Finding the solution of equation 15 is a classic optimization problem. The simple
likelihood shape insures the existence of a solution, and it can be found by any standard
optimization function. Let this solution be R̂z

s
. The problem with this estimator is

that we can not guarantee that it will fulfil the underlying constraint of the density
parameters. Indeed, some values in the matrix will be negative, and there will be some
element in the diagonal that won’t be null. Therefore, some constraints have to be
added to the ml estimating equations. These are:
Constraint 1 All the elements in the matrix R̂z are greater than or equal to zero, or
equivalently,

∀(i, j)
∑
k

λkpjkpik ≥ 0 (18)

Constraint 2 All the diagonal elements in the matrix R̂z must be zero, or equivalently,

∀i
∑
k

λkp
2
ik = 0 (19)
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Constraint 3 The last set of parameters to be estimated is the probability matrix pR.
Therefore, all the elements should belong to the interval [0, 1],

∀(i, j) pijR ∈ [0, 1] (20)

Most of the optimization algorithms that deal with the constraint require an initial-
ization which belong to the constrained space. One could be tempted to address as
a starting point the mean value of the observations, according to the one-dimensional
(n = 1) result. However, it is very unlikely that this initial point will satisfy the con-
straints. Therefore, the best choice so far seems to be the diagonal elements of the
matrix Ds, given that they naturally fill Constraint 1 and Constraint 2.

The complete optimization program therefore becomes,∣∣∣∣∣∣
maximize

Λ

∏
i

L
(
ytDi
|Rz, pRz

)
subject to C1,C2,C3

with the initial value Λ0 = diag(Ds). This optimization program can be replaced
by an explicit expression of the estimator, subject to some constraints stated in Ap-
pendix A. The main constraint is the Poisson distribution assumption, so that we have,

Proposition 1: Assume that g ∼ P(), then

Λ̂ = S−1
d

tP [diag(PS)]−1Ȳ (21)

where Λ̂ is the matrix of estimated eigenvalues of Rz.

If now we consider a Gaussian likelihood instead of Poisson, the following maximum
likelihood estimator is found,

Proposition 2: Assume that g ∼ N (), then

Λ̂N = S−1
d

tPȲ (22)

where Λ̂N is the matrix of estimated eigenvalues of Rz.

The proofs of Propositions 1 and 2 are presented in Appendix A. We can also
derive the follwing theorem, that ensures us of the quality of the estimation,

Theorem 1
Assume that P̂

a.s.−−−→ P (see Anderson [17],[18]). Then we have,

Λ̂N
P−−→ Λ (23)

The proof is presented in Appendix B.
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5.4. Multivariate estimation

If we want to deal with a more realistic modelling, it seems obvious that we have
to consider spatial, temporal and multivariate influences on the number of passengers,
and then on the parameters of our modelling.
Let (Xi)i be a set of exogenous features, and (βi)i their corresponding (unknown) in-
fluence on the number of passengers. Therefore, the regression model can be written,

∀i ∈ [1, n] p
(
ytDi|Rz, pRz, (Xi)i

)
∼ NB

(∑
k

λkpik
∑
j

pjk +
∑
l

Xlβl, pRz
)

(24)

where the parameters to be estimated are θ =
{

(λk)k, (βl)l, pRz
}

. The likelihood is
expressed as in Eq. 13, and we have,

((λ̂i)i, (β̂l)l, pRz) = argmax
θ

∏
i

L
(
ytDi
|Rz, pRz, (Xi)i

)
(25)

Then, if we consider the projection matrix to be constant over time, then we have the
following proposition (proved in Appendix C),

Proposition 3: If we apply the same methodology as before we obtain the following
estimator,

Λ̂R = S−1
d

tP [diag(PS)]−1Y tX(XtX)−1 (26)

where X = (xlm)(m,l) is the matrix of the exogenous variables.

A more complex solution would be to perform the same technique as before, except
that P will no longer be constant. Therefore, the varying Pt estimated from Rs will
help in the recovery of the matrix Rz. The reason why we cannot perform a direct
estimation of the β’s through this technique is because Rz can be diagonalize, but we
don’t know how the β influence the λ. Then a space-time model for the regular zone
passenger is required. A further sensitivity analysis has to be run in order to figure out
if the results are significantly affected by the increased uncertainty.

6. Ad hoc Approach

The quality of the estimator will strongly depend on the survey sub-matrix Rs. In
section 5, we assume that the similarity between the matrix Rs and Rz relies on the
projection matrix P and P̃ . Moreover, we assume P = P̃ (Eq. 17), and this assump-
tion is the key to derive the Propositions 1− 3.
It is however difficult to design and implement a survey that provides accurate infor-
mation. Therefore, Eq. 17 is no longer valid. To overcome this, we propose to consider
an Ad hoc estimation of the O-D matrix.

10



6.1. Estimator

Despite the survey having some unknown biases, it provides useful information
that we need. Let Λ̂N be the estimation based on the eigenvalues of Rz, relying on
the assumption P = P̃ . While inaccurate, this estimation looks like the perfect prior
information. We define,

Rπ0z = P̃ × diag(Λ̂N )× P̃−1, (27)

Now, given that the survey may be biased, we need to emphasize the influence of the
observations Y, by building an observation-based matrix R̂obz , such that,

r̂obij =
1

2n

(
s̄i. + s̄.j

)
, (28)

where s̄i. = 1/nobs
∑

k

∑
j x

k
ij and s̄.j = 1/nobs

∑
k

∑
i x

k
ij . Rπ0z is symmetric, and

roughly correspond to an equal partition of the passengers in the different stations.
Let (r̂π0ij )ij = Rπ0z . Now, we need to integrate the information provided by Rπ0z . Then

we define the final ad hoc estimator R̂ahz ,

r̂ahij =
n

2

( r̂obij × r̂π0ij∑
j r̂

ob
ij

+
r̂obji × r̂

π0
ji∑

j r̂
ob
ji

)
. (29)

6.2. Robustness Analysis

We define the robustness of our estimation as its ability to overcome biased survey
results. To analyse the performance of the estimators, we considered that the parameter
matrix of the survey was biased according to the following two equations,

Rsurvey = αRz + η × P(max(αRz)) (30)

where α ∈ [0, 1] stands for the scale of the survey, η ∈ [0, 1] stands for the varying noise
level, and P means the Poisson distribution, and,

Rsurvey = αRz + η × P(αRz) (31)

The difference between the two equations relies in the bias structure. In Eq. 30, integer
values are randomly added regardless of the real value of the parameter. It is the kind of
errors we expect to find in badly designed surveys or respondents responding randomly.
In Eq. 31, we consider that the bias keeps the same structure as the Rz matrix. This
is more an equivalent of a measurement error usually described in the literature with
centred Gaussian distributions. Therefore, we expect the estimators to provide better
estimates when the survey’s parameters are driven by Eq. 31.
Figure 1 shows the ML and Ad Hoc estimation results for the two kind of bias, with
different number of observations and different strength of bias. As expected, the second
type of error (eq. 31) is more easily overcome by the estimators. The important
conclusion we can make from this result is that the Ad Hoc estimation performs better
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Figure 1: Robustness of the estimators to the accuracy of the survey through the estimators’
MSE. The eigen-value based estimation is plotted blue with 95% CI. The Ad-Hoc estimation
is plotted in green. The upper line stands for a bias designed according to Eq. 30, and the
bottom line for Eq. 31. The MSE is calculated among 2000 simulations.

than the naive ML estimation, no matter what kind of noise we add.
Finally, and also very important, the Ad Hoc estimator seems more consistent and its

performances are less affected by the number of available observations. For instance, we
can observe that the log(MSE) profile is identical in Fig. 1 for 30−200 observations and
for 300− 2000. The importance of that being to allow some reliable time-dependency
analysis (on a monthly basis, it would mean 30 observations), which would be more
complicated with the ML estimation.

7. Application

7.1. Simulation Study

Let M be a 5 × 5 matrix, representing departure and arrival stations (origin and
destination). We assume that any value of M is a random number, generated according
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to the matrix of parametersM, and the probability p. The matrixM has the following
values, 

0 70 11 54 51
70 0 23 43 82
11 23 0 95 13
54 43 95 0 22
51 82 13 22 0

 (32)

Let M̃ be an observed sub-sample of M, i.e. only a proportion π of M is represented in
M̃ . We assume that for every value of M, π will be the same, only perturbed by some
low-level additive noise. A realization of M̃ is the following matrix,

0 11 3 10 7
7 0 5 8 14
4 2 0 14 3
5 8 18 0 2
3 11 8 8 0

 (33)

The value of π in this example is roughly equal to 1/6. The estimation of M̃ is per-
formed with the observations of this matrix. Then, M̃ being symmetric, we diagonalize
it, and using the optimization program described in section 5.3 we are able to provide
the following estimated M̂ matrix (for 10, 50, 500 and 10000 observations respectively),

0 60 48 48 54
60 0 18 42 287
48 18 0 60 12
48 42 60 0 90
42 287 12 90 0




0 68 24 42 54
68 0 18 36 124
24 18 0 126 12
42 36 126 0 18
54 124 12 18 0




0 78 12 60 42
78 0 24 48 78
12 24 0 102 12
60 48 102 0 24
42 78 12 24 0




0 72 12 54 48
72 0 24 42 78
12 24 0 96 12
54 42 96 0 24
48 78 12 24 0



(34)

Table 1 provides the mean square error of the estimator for different number of obser-
vations and different value of dispersion in the case of a negative binomial modelling.
We also display in table 3 the p-values for the Cramer-von Mises normality test of 1000
estimation procedures for each eigenvalue. The table 2 provides the mean square error
of the estimator for different number of observations in the case of a Poisson modelling.

The results of our estimation method on this simulation example seem very promis-
ing and we applied it to a real case data in the next paragraph.
Table 4 displays the mean square error of the estimators for the regression modelling.
As we can see, the estimator is consistent. And we also can conclude that the estimator
seems to behave reasonably well for 500 or more observations. This number will how-
ever depend on the size of the exogenous parameter space and explanatory ”power” in
terms of % variation explained.

13



Num. Obs. 10 50 500 10000

p = 0.2 1575 (> 7× 106) 101.1 (7538) 11.13 (43.39) 3.008 (4.318)

0.5 5888 (> 1× 107) 441.9 (> 4× 105) 24.90 (302.4) 3.112 (3.084)

0.8 4169 (> 2× 106) 2972 (> 2× 106) 193.3 (> 5× 104) 9.743 (94.70)

Table 1: Negative Binomial modelling: Values of the mean square error of the parameter
estimation with different number of observations and different distribution assumption over
1000 replication of the simulation, and the according variance (under brackets).

Num. Obs. 10 50 500 10000

MSE 13.82 (47.16) 4.196 (7.024) 1.888 (0.078) 1.838 (0.077)

Table 2: Poisson modelling: Values of the mean square error of the parameter estimation with
different number of observations over 1000 replication of the simulation, and the according
variance (under brackets).

Num. Obs. 10 50 500 10000

λ1 0.071 (0.27) 0.034 (0.78) 0.031 (0.82) 0.042 (0.65)

λ2 3.291 (10−10) 1.203 (10−10) 0.089 (0.16) 0.114 (0.07)

λ3 5.291 (10−10) 1.413 (10−10) 0.284 (0.001) 0.103 (0.11)

λ4 0.283 (10−4) 0.050 (0.51) 0.053 (0.47) 0.079 (0.21)

λ5 0.092 (0.14) 0.104 (0.10) 0.055 (0.44) 0.028 (0.87)

Table 3: Asymptotic behaviour of the estimator: Values of Cramer-von Mises Statistic for 1000
replication of the simulation, and the corresponding p-value (in brackets).

Num. Obs. 10 50 500 10000

MSEβ0 8.107 (6.1022) 1.104 (1.1012) 3.103 (8.107) 5.102 (2.105)

MSEβ1 7.106 (4.1016) 6.103 (3.107) 5.102 (2.105) 2.101 (6.102)

MSEβ2 9.107 (9.1018) 7.103 (5.107) 6.102 (3.105) 3.101 (6.102)

Table 4: Regression modelling: Values of the mean square error of the regression estimation (M = 3)
with different number of observations over 1000 replication of the simulation, and the according variance
(in brackets).

7.2. Sydney Region Ferry

We consider as an example the passengers commuting from the Sydney Region
Ferry, according to five surveys organized in 2010, 2011, and 2012 by The Bureau of
Transport Statistics of New South Wales. The overall survey could have been analysed,
but in order to be understandable, we will focus our analysis on the Eastern Suburbs
route, composed with 6 different wharfs and 35 different days. Fig. 2 represents the
links between the wharfs, meaning that you can have a direct access by taking only
one ferry.

As we can see from the plots, all the wharfs seem to be able to be reached starting
from any other wharf, except for Darling Point, Watsons Bay and Garden Island.
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Figure 2: Ferry Links and Passengers Entry/Exit by wharf in 2010

Starting from this, the objective is the estimation of the OD matrix, which is almost
like the Ferry Links matrix presented in the figures except that instead of logical values,
it will be filled by counts of passengers. However, this survey does not provide enough
data to perform this estimation. In particular, it doesn’t give any observation on the
ticket sales at the Wharfs. Then, to provide an estimation, we use a different survey
from the same institute, which aimed at understanding the preferred mean of transport
for people going to work. From this database, we only kept those who declared taking
the ferry.
Before we could provide an analysis of these data, we had to consider that the origins

Figure 3: Left: Observations OD matrix of the Survey. Right: Estimated OD parameter matrix
of the survey. The darker, the greater number of passengers.

and destination of the people in the second survey didn’t correspond to the wharfs
of the first survey. Therefore, we decided to attribute to every passenger the starting
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point of their journey as the closest wharf to their home, and a destination point the
closest wharf to their office. The distance have been calculated according to each Wharf
and Location longitude and latitude values. This being done, we can provide a new
origin-destination matrix. It is plotted in Fig. 3.
This OD matrix is then supposed to have the same structure as the regular OD of the

Figure 4: OD Expectation matrix and Expected Passengers Entry/Exit after the estimations of
the parameters, according to the naive ML estimation.

barrier counts. Therefore, we will apply the methodology presented in section 5.1 to
reconstruct the 2010, 2011 and 2012 OD matrix according to the barrier counts. The
eigenvalues and eigenvectors are then calculated, and the reconstruction of the Ferry
passengers are presented in Figs. 4 and 5.
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Figure 5: OD Expectation matrix and Expected Passengers Entry/Exit after the estimations of
the parameters, according to the Ad Hoc estimation.
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8. Conclusion and further work

We presented in this paper a new estimation technique for the OD matrix. We
use the information available from surveys to infer the correct projection matrix and
reduce significantly the size of the parameter space. By using a maximum likelihood
approach, we compute the estimating equations and provide an Ad Hoc estimator of
the OD matrix. We demonstrated its robustness in section 6.
We also demonstrated that a regression analysis could be performed on this kind of
data, and showed that this estimation procedure is also consistent. To the best of our
knowledge, this is the first time that a such multivariate approach is used to estimate the
OD matrix. This approach will improve the prediction ability of passengers journeys.
We finally applied our techniques to simulated data and real-case scenario in Sydney
ferry transport using the data from the Bureau of Transport Statistics.
The estimation of the OD matrix is a first step for the analysis of the passengers flow
over the transport network. Then, beyond this estimation point, we may cite:

1. Monitoring the passengers count;

2. Forecasting of the passengers count (1 week in advance for example);

3. Predicting the passengers flow in case of spatio-temporal topological change in
the network

In order to address the monitoring task (1), several strong assumptions have to be
made, which will require ground verifications before being tested. Among them, we
can cite the time between ticket validation and getting into the train or the regularity
at which people take their train if they are regular passengers. Moreover, a real-time
access to the data is necessary. While difficult, this seems achievable.
The forecasting of passenger counts (2) can be done without additional information
(if sufficient temporal information has been provided in a first place), even if more
observation would probably mean smaller variances. These forecasts could be helpful
for efficient scheduling the trains (for example), but further study have to be done in
order to understand the influence of complex variables such as the temperature or the
humidity.
Real-time prediction of passenger flows (3) is more difficult, but is theoretically achiev-
able. What we denote a spatio-temporal topological change is a change in the timetable,
or in the public transport route.
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Appendix A.

Calculation in case of Poisson distribution. To make it clear, we will explore a simple
density example, where the Poisson distribution will be used instead of the Negative Binomial.
Therefore, the pdf can be expressed as,

fRs
(XR) =

µXR

XR!
e−µ (A.1)

where µ is the parameter we are interested in. Then, if we make the assumption that the number
of passengers in every station are independent, each ỹiD is distributed according to a Poisson
distribution, with the parameter

∑
j rij, which can be re-written according to Eq. 16,

ỹiD ∼ P(
∑
k

λkpik
∑
j

pjk) (A.2)

where the λi are the eigenvalues, and the pij the element of the matrix P. If we denote sk =∑
j pjk, the transformed density can then be written,

gRz
(ỹD) =

(
∑
k λkpiksk)ỹD

ỹD!
e−

∑
k λkpiksk (A.3)

Therefore, the log-likelihood can be expressed as follow,

logL = −N
n∑
k=1

λks
2
k +

n∑
i=1

ln
( n∑
k=1

λkpiksk
) N∑
l=1

ỹli (A.4)

The maximum likelihood estimation is then equivalent to solve the following system,
−Ns2

1 +
∑n
i=1

pi1s1∑n
k=1 λkpiksk

∑N
l=1 ỹ

l
i = 0

...
...

−Ns2
n +

∑n
i=1

pinsn∑n
k=1 λkpiksk

∑N
l=1 ỹ

l
i = 0

(A.5)

still under the constraint C1 and C2. C3 is excluded because this set of parameter doesn’t exist
in the Poisson modelling. If n = 1, C1 ⇔ λ ≥ 0 and C2 doesn’t stand. Then estimated value
corresponds to the classical one dimensional Poisson unbiased mean estimator λ̂ = ȳ.
The system of equations A.5 seems at first a quite complicated one. Nevertheless, it can be
simplify so as to become,

∀i, −si +

n∑
j=1

pjiȳj
µj

= 0 (A.6)

where µj =
∑
k λkpjksk contains the unknown parameters. Then, if we denote U = (1/µj)j,

then,

Û =
(
ȲdP

tPȲd
)−1

Ȳ PS (A.7)

where Ȳd = diag(ȳi)i and S = (si)i. Then, we can keep simplifying the expression,

Û = Ȳ −1
d PS (A.8)
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Finally, the same reasoning leads to the following estimator,

Λ̂ =
(
Sd

tPPSd
)−1

Sd
tP
(
Ȳ −1
d PS

)−1

(A.9)

where Sd = diag(si)i. This estimator will probably not be the best estimator given that it
relies on the inversion of Û , but has the advantage to be asymptotically unbiased, with variance
decreasing to zero.

Properties of the calculated estimators. Let f be a probability density function. If fΛ denotes
the pdf of Λ, and fP the pdf of P̃ , we can write,

fΛ =

∫
fΛ|P̃ (λ)fP̃ (p̃)dp̃ (A.10)

Let consider the estimator presented in Eq. 22, and make the assumption that we are in a large
value case, meaning P(.) ∼ N (., .). Then,

Λ|P̃ ∼ N
(
m,N−1Σ

)
(A.11)

where, {
m = S̃−1

d
tP̃PSdΛ

Σ = S̃−1
d

[
D + tP̃ diag(PSdΛ)P̃

]
S̃−1
d

(A.12)

and P̃ is an estimation of P according to the first observations.

Appendix B.

To prove the convergence in probability, we need to demonstrate that,

lim
n

P(|Λ̂− Λ| ≥ ε) = 0 (B.1)

where n = min(N1, N2). Starting with the left hand side, we have,

P(|Λ̂− Λ| ≥ ε) = P(|S̃d
−1tP̃ Ȳ − Λ| ≥ ε)

≤ P(|S̃d
−1tP̃ Ȳ − S−1

d
tPȲ |+ |S−1

d
tPȲ − Λ| ≥ ε)

=

∫
P
(
|S−1
d

tPȲ − Λ| ≥ ε− c
)
P(|(S̃d

−1tP̃ − S−1
d

tP )Ȳ | = c)dc(B.2)

And we know that Ȳ
a.s.−−−→ PSdΛ. Then,

∀ε > 0, lim
n

P
(
|S−1
d

tPȲ − Λ| ≥ ε
)

= 0 (B.3)

and we have,

P(|Λ̂− Λ| ≥ ε) ≤
∫ ε

0
P
(
|S−1
d

tPȲ − Λ| ≥ ε− c
)
fn(c)dc+

∫ +∞

ε
fn(c)dc (B.4)

where fn() stands for the probability density function of |(S̃d
−1tP̃ − S−1

d
tP )Ȳ |.

The first integral decreases towards 0 as n grows to infinity according to Eq. B.3.
The argument for the second integral is the following. According to the assumption of
strong convergence of P̃ , fn() converge towards the Dirac function δ0() as N1 goes to
infinity. ε being strictly positive, this ends the proof. �.

20



Appendix C.

Calculation in case of Poisson regression (and log link function). The beginning of
the reasoning is similar to the previous one. Then, if we assume that exogenous variables have
impacts on the number of passengers, we can write,

R = β0 +
∑
m

βmxm (C.1)

where β are symmetric matrices reflecting the intercept (β0) for baseline commuter flows and the
variable influences (βm) for changes in commuter flows from known daily influences. Moreover,
we assume that the same diagonalization (meaning with the same eigenvectors) can be applied,
which lead us to,

rij =
∑
k

d0
kpjkpik︸ ︷︷ ︸

fixed part

+
∑
k

∑
m

dmk pjkpikxm︸ ︷︷ ︸
multivariate-time varying part

(C.2)

Therefore, ỹi will be distributed according to a Poisson distribution with the following parameter,∑
j

rij =
∑
k

d0
kpiksk +

∑
k

∑
m

dmk pikskxm (C.3)

where the parameters to be estimated are (d0
k)k, (d

m
k )k,m, which means we have to estimate

n× (r + 1) parameters.
The probability of one observation can then be written,

p(ỹli|xlm) =
(
∑
k d

0
kpiksk +

∑
k

∑
m d

m
k pikskx

l
m)ỹ

l
i

ỹli!
×

e−(
∑

k d
0
kpiksk+

∑
k

∑
m dmk pikskx

l
m) (C.4)

which gives the following log-likelihood,

logL ∝
∑
i

(∑
l

ỹli log
(∑

k

d0
kpiksk +

∑
k

∑
m

dmk pikskx
l
m

)
−
∑
l

(∑
k

d0
kpiksk +

∑
k

∑
m

dmk pikskx
l
m

))
(C.5)

Therefore, to obtain the final system of equation, we need to calculate the derivatives of the

log-likelihood with respect to each parameter dmk .
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