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Abstract Accurate estimation of running and dwell times is important for all

levels of planning and control of railway traffic. The availability of historical

track occupation data with a high degree of granularity inspired a data-driven

approach for estimating these process times. In this paper we present and

compare the accuracy of several approaches to model running and dwell times

in railway traffic. Three global predictive model approaches are presented based

on advanced statistical learning techniques: LTS robust linear regression,

regression trees and random forests. Also local models are presented for a

particular train line, station or block section, based on LTS robust linear

regression with some refinements. The models are validated and compared using

a test set independent from the training set. The applicability of the proposed

data-driven approach for real-time applications is proved by the accuracy of the

obtained estimates and the low computation times. Overall, the local models

perform best both in accuracy and computation time.
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1 Introduction

Accurate estimation of running and dwell times is important for all levels of

planning and control of railway traffic: strategic, tactical and operational. The

validity of capacity analysis and line planning on the strategic level depends to a

great extent on the accuracy of process time estimation (Abril et al. 2008; Schöbel

and Schwarze 2013). Similarly, on the tactical level, the accurate estimation of

running and dwell times is important for creating feasible and realizable timetables

(Goverde 2007; Büker and Seybold 2012; Medeossi et al. 2011). Finally, on the

operational control level, process times need to be estimated for real-time traffic

prediction and conflict detection (Dolder et al. 2009; D’Ariano et al. 2007; Kecman

and Goverde 2014), as well as to provide reliable passenger information (Berger

et al. 2011).

The essential drawback of the existing approaches to estimating running times

(Brünger and Dahlhaus 2014; Wende 2003) and dwell times (Stam-Van den Berg

and Weeda 2007; Buchmueller et al. 2008) in real time is that they do not consider

actual traffic conditions on the network. In other words, process time estimates do

not differ depending on the time of the day, train line or delays. The initial work in

overcoming this problem was presented by Van der Meer et al. (2010) using a

data-driven approach based on current monitoring data and historical data.

However, the macroscopic character of that model prevents estimation of train

runs on the level of block sections, which is essential for prediction of route

conflicts.

This paper presents new data-driven approaches for deriving running and dwell

times. A global approach consists of a generic statistical model, applied on an

aggregated set of historical data. Data about all running times on the level of block

sections and all dwell times are aggregated and used to train and validate statistical

models. A set of predictor variables is identified for the purpose of building the

global model. Three advanced supervised learning methods are used for computing

accurate process time estimates. Furthermore, local models are developed that

estimate process times for particular blocks, stations and train lines. Each local

model represents an independent statistical model. The global and local approaches

are compared by their accuracy and applicability for calibrating a real-time railway

traffic prediction model described by Kecman and Goverde (2014).

The following section covers the relevant contributions in the literature. The

methodology used to build the statistical learning models is described in Sect. 3.

Section 4 describes briefly the advanced supervised learning methods for estimation

of conflict-free running and dwell times followed by their implementation in the

global (Sect. 5) and local model (Sect. 6). Model validation on a test set is presented

in Sect. 7. Finally, the main conclusions and recommendations for further research

are given in Sect. 8.
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2 Literature review

2.1 Running time estimation

Train running times are usually computed by means of train motion equations

(Brünger and Dahlhaus 2014; Wende 2003). This approach considers the

characteristics of rolling-stock and infrastructure that are represented in parameters

of train dynamics models. The empirical parameters for running time computation

are typically given for a particular line or rolling-stock type and train composition.

The parameters are usually determined and tuned by experts for a particular railway

company. This method is often used in the process of timetable construction

(Hooghiemstra 1996) and microscopic traffic simulation (Nash and Huerlimann

2004).

However, greater precision can be achieved by calibrating the parameters of the

train motion equations for different traffic conditions using realised running time

data derived from track occupation or train event recorders data. Longo et al. (2012)

define a single parameter for each dynamic motion phase. Bešinović et al. (2013)

extend this approach by calibrating each tractive effort and resistance parameter

separately. These parameters are optimised by a procedure that minimises the gap

between the simulated and actual train positions and speed profiles. The

computational requirements for solving the train motion equation prevent the

application of this method for running time estimation of a large number of trains in

busy networks. Moreover, such approach is static in the sense that it does not

consider the current traffic state and potential impact on running times.

These drawbacks can be overcome by data-driven approaches that compute

robust estimates of process times based on historical data. The basic idea is to

determine the explanatory variables and build statistical models that quantify their

impact on process times using a training data set. Given the values of explanatory

variables, the models provide the estimates of process times in real time. Van der

Meer et al. (2010) presented an approach based on robust regression analysis to

investigate the correlation between process times and delays. The results showed a

strong correlation between arrival delays and dwell times, whereas the correlation

between running times and departure delay was found to be much weaker. Similar

results were obtained from a set of track occupation data from Switzerland by Lüthi

(2009). Both approaches for modelling running times rely on data aggregated over

open track sections. As a result, neither train separation principles on open track nor

route setting and release principles in station areas can be included.

2.2 Dwell time estimation

Current approaches for the estimation of dwell times used in timetable construction

and rescheduling rely on the measurements of realised dwell times. Wiggenraad

(2001) performed a detailed analysis of dwell times, and passenger boarding and

alighting processes using a set of manually collected data from seven busy stations

in the Netherlands. The impact of platform and vehicle characteristics, delays,
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station types and peak-hours was analysed with the purpose of a detailed analysis of

dwell times. The analysis determined the average boarding and alighting time per

individual passenger as well as per passenger within a cluster. Lee et al. (2007)

performed a similar study using manually collected data from two busy stations in

the Netherlands. They focused on the factors that determine passenger behaviour

and their influence on dwell times. The limited scope of the studies due to the

manual data collection makes it hard to derive general conclusions.

The availability of data from on-board event recorders inspired a stream of

research on dwell time modelling. More precise and larger data sources were

analysed with the purpose of deriving general conclusions about dwelling processes

of trains in stations. Buchmueller et al. (2008) collected and analysed data from

door sensors, passenger counters and train event recorders. They analysed the

duration of each subprocess separately with respect to vehicle and platform design,

and passenger demand. The impact of uncertainty of dwell times was studied by

Longo and Medeossi (2013) who presented a complex model for dwell time

estimation that separates dwell time into deterministic and stochastic subprocesses.

They focused on the detailed modelling of stochastic processes such as boarding and

alighting time, waiting time and departure imprecision time. The application of a

detailed data-based approach that relies on sensor and train event recorders data

strongly depends on data availability which in particular restricts online use.

For real-time prediction of traffic evolution it is more convenient to use track

occupation data, which is received in real time in traffic control centres from all

running trains. The main challenge then is to estimate the exact arrival and

departure times on the platform tracks. Stam-Van den Berg and Weeda (2007)

presented an approach that relies on knowing the exact location of access points to

the platform, the actual stopping point of each train and assuming the constant

acceleration (deceleration) of all trains. Even though this approach reduces the

estimation error based solely on track occupation data it relies on the knowledge of

platform design and track layout. In this paper we used a generic procedure to

estimate exact arrival departure time that relies not only on section occupation times

but also on section release times (Kecman and Goverde 2012). This requires only

track occupation data as input.

3 Methodological framework for statistical analysis

3.1 Main methodology

The global and local approaches in this paper for estimating running and dwell

times bridge the gaps identified in the literature review of Sect. 2. Both approaches

rely on advanced statistical learning methods that are able to quickly produce

accurate estimates of process times. The estimates are derived based on historical

track occupation data thus overcoming the limitations of manual data collection for

dwell time estimation. Moreover, the models are created without the need of relying

on a detailed description of rolling-stock and platform design nor passenger data

which are difficult to obtain.
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A set of relevant predictor variables is identified for each process type. The

principle idea is to derive process time estimates depending on the values of

explanatory variables that reflect the current traffic conditions in the network, i.e.,

the actual train positions, delays and period of the day. Moreover, running times are

estimated on the level of block sections. The estimates can be used for calibrating

microscopic railway traffic models that can capture route conflicts. Finally, the

resulting predictive models are applicable in a real-time environment. The estimates

can be produced quickly depending on the traffic condition parameters obtained

from the live stream of track occupation data.

3.2 Description of the data set

For this study, track occupation data archives for three months (March–May, 2010)

from the areas Rotterdam and The Hague in the Netherlands were made available by

the Dutch infrastructure manager ProRail. The experimental setup was built for the

busy corridor Leiden–The Hague–Rotterdam–Dordrecht in the Netherlands. The

60 km long corridor is (partially) traversed daily by approximately 300 trains per

direction. Figure 1 shows the schematic representation of the observed network

along with the train lines and corresponding stopping pattern for the 2010 timetable.

The thin line illustrates the train line that runs once per hour, whereas the other lines

operate twice per hour.

The raw data archives were processed to extract and filter the process times of all

trains (Kecman and Goverde 2012). The resulting data format, which classifies

conflict-free running and dwell times per block section, station and train line, is an

essential requirement for applying the models described in this paper to different

networks and case studies. Data archives from 82 days were used as a training set to
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train and calibrate the statistical models. The archives of the remaining 10 days

were used in a test set to test and compare the prediction accuracy of the models.

The dwell times at each station were computed using the occupation and release

times of the platform sections, which may result in an estimation error (Stam-Van

den Berg and Weeda 2007). For arrival times the error equals the time lag between

the last section message before the train stop and the actual standstill. Similarly, for

departure events, the estimation error is equal to the time lag between the actual

departure and the first section message.

3.3 Global model

The global model for process time estimation aggregates the process times of all

trains that were recovered from the raw track occupation data archives into a set of

running times and a set of dwell times. A separate model is created for each process

type.

3.3.1 Global model for running time estimation

Predictor variables used to estimate train running time over a block were

determined. Table 1 summarises the training set used to build the model. The

response variable ‘running_time’ represents the running time of a train over a block.

The training data set contained 101,481 data points describing the running times of

nine train lines over 143 blocks in 82 days. An obvious indicator of train running

time is the block length (‘block_length’), which can be derived from track

occupation data. Moreover, we consider the distance of the block from the last

scheduled stop (‘distance_from’), as well as the distance to the next scheduled stop

(‘distance_to’) in order to include the effects of extended running times due to

braking and acceleration. The distances were computed between the middle of the

platform and the middle of the block.

Furthermore, we consider the impact of peak-hours on train running times. A

binary variable is created that indicates whether the observed process takes place

during a peak-hour (27 % of data relate to peak-hours). The difficulty in separating

the data set to peak and off-peak events stems from the fact that the limits of peak

hours can be fuzzy, as well as train line and station dependent. The exact limits of

peak periods are difficult to obtain without the additional data sets that reflect the

Table 1 Summary of the training set for running time estimation

Mean Median St. dev. Min Max

running_time (s) 43.16 41.57 19.10 10.01 179.35

departure_delay (s) 100.29 53.97 148.90 -147.73 1199.13

block_length (m) 1137.82 1185.00 384.70 255.00 1915.00

distance_from (m) 5300.93 3685.00 5291.24 131.00 23,765.00

distance_to (m) 6986.98 5140.00 5500.12 1190.00 24,440.00

headway (s) 691.58 610.58 556.48 93.66 21,349.03
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demand such as passenger counts, ticket sales information or smart card data.

Therefore, in the global model, we use the definition of peak-hours on work days

from the Dutch national train operator. Morning peak is the period between

6.30–9.00 and the afternoon peak is between 16.00–18.30. Note that the drawback

in accuracy of using the predefined limits for peak periods is overcome in the local

model (Sect. 6.2).

A categorical variable that indicates the train type is also considered as a

predictor. In order to create a generic model, this variable has only two levels:

intercity trains with scheduled stops in large stations and local trains that stop in

every station along their route (68 % of data points are related to intercity trains).

Freight trains are not included in the data set due to a small corresponding sample in

the considered area. Moreover, even though hindered train runs are excluded from

the data set, the headway time between successive trains is included as a predictor

(‘headway’) that may explain the impact of the preceding train on train running

time. Headway time is in this context defined as the time between successive

occupations of the same block.

Finally, we test the validity of the assumption that the running time of a train

depends on the delay at the previous departure (‘departure_delay’). It is assumed

that delayed trains may run with maximum performance in order to reduce the delay

by using the running time supplements included in the timetable. On the other hand,

trains running on time or ahead of their schedule are assumed to run at a lower

speed, thus avoiding early arrivals and achieving energy efficient driving. This

assumption was not validated in earlier approaches (Lüthi 2009; Van der Meer et al.

2010) on the macroscopic level.

3.3.2 Global model for dwell time estimation

This section presents dwell time predictors obtainable from track occupation data.

Continuous variables for dwell time estimation are shown in Table 2. The training

set contains 145,807 points describing the dwell times of 9 train lines in 19 stations

(5 of which are large) over 82 days. The scheduled dwell time (‘scheduled_time’)

for each scheduled stop is an obvious choice for predictor variable. Furthermore, the

fact that trains do not depart before their scheduled departure time indicates that

arrival delay may have a major impact on train dwell time. Early trains have longer

dwell times than scheduled in order to avoid early departures. On the other hand,

trains with a positive arrival delay that is larger than the dwell buffer time spend a

minimum dwell time in order to minimize the departure delay.

Table 2 Summary of the training set for dwell time estimation

Mean Median St. dev. Min Max

dwell_time (s) 136.60 114.72 80.17 10.01 599.66

arrival_delay (s) 8.48 -16.60 131.05 -299.94 1199.04

scheduled_time (s) 70.20 69.60 65.40 30.00 360.00
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The impact of train and station type is examined by including the corresponding

two-level categorical variables. Stations are separated into small (60 % of data

points) and large stations, and trains into intercity (47 % of data points) and local

trains. A station where only local trains stop (it is skipped by intercity trains) is

considered small. On the other hand, a station where both local and intercity trains

stop is considered large. Finally, the impact of peak-hours on dwell times due to the

increased number of alighting and boarding passengers is included in the same

manner as in the model for running time estimation (24 % of data points from peak-

hours).

3.4 Local model

The processed track occupation data enable to derive a separate process time

estimation model for each block, station and train line. The goal of the local model

is to explain the variation of running times of trains from the same line over a

particular block. For that reason, many of the predictors used for running time

estimation in a global model, such as block length, distance to and from the last

scheduled stop, train type and headway become redundant. In order to estimate the

process times for a particular instance (train line, block section or station), we

investigate the impact of departure delay and attempt to verify the assumption that

delayed trains run faster to reduce their delay. Similarly, the local model for dwell

time estimation derived for each station and train line considers only the impact of

arrival delay and peak-hours.

The applicability of local models is limited by data availability. For example a

local model for estimating the running time of trains from a certain train line over a

particular block cannot be generalised to other block sections or train lines.

Therefore, a sufficient amount of data is required to build each local model. It is

important to have this in mind because train lines operate with different frequencies

and some parts of the network may be utilised less than the busy main lines or

station routes.

4 Statistical learning methods

This section introduces briefly the statistical learning methods used for developing

the process time estimation models. The criteria used to select these methods are:

prediction accuracy, the simplicity of implementation, computational requirements

and the interpretability of results. Moreover, an important aspect is the trade-off

between bias and variance, i.e, between underfitting and overfitting the models

(Hastie et al. 2009). Finally, due to the envisaged real-time application of the

obtained process time estimates, it is essential that they are robust against outliers,

noisy and missing values in the data. We first apply linear models due to their

simplicity. Second, the accuracy of predictions might be improved by regression

tree based method, which can capture nonlinear relations between the predictors and

the response. Finally, random forests are applied to overcome the high variance of

regression trees.
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4.1 Robust linear regression

Robust linear regression (Rousseeuw 2005) represents a modification to the ordinary

least-squares linear regression method with the intention to identify and exclude

outliers in the data set. Estimates that are resistant to outliers can be obtained by

fitting the regression curve to the majority of data and subsequently identifying

outliers as data points with large residuals from the robust solution. Rousseeuw and

Driessen (2006) presented an efficient algorithm for computing robust linear

regression coefficients using the least-trimmed squares (LTS) method. The objective

is to find a subset of h from n data points and minimise the ordered squared residuals

for each observation yi and the corresponding estimate ŷi

Xh

i¼1

ðyi � ŷiÞ2i:n ð1Þ

where ðy1 � ŷ1Þ21:n � � � � � ðyn � ŷnÞ2n:n are ordered squared residuals and h is a

point that reflects the percentage a of resisted outliers, h ¼ dnð1� aÞe.
The simplicity of the linear model comes with a price of inaccuracy and inability

to model interactions between predictors and their non-linear impact on the output

variable. An example of the non-linear relationship between a predictor and the

output variable are discrete categorical variables. Interactions between predictors

indicate that they are correlated and the impact of one predictor is dependent on the

value of another. It is therefore difficult to distinguish the impact of correlated

predictors separately. An example of interacting predictors may be that delayed

trains run faster in the acceleration and braking phase. Thus the impact of block

position with respect to previous and next scheduled stop could indicate how

important a departure delay is on running time estimation. The correlation between

distance from the previous and distance to the next scheduled stop is clear.

4.2 Tree-based non-linear methods

4.2.1 Regression trees

A way to overcome the drawbacks of the linear method emerged with the

development of tree-based methods (Breiman et al. 1984). The basic concept of

these methods and their application in regression is to segment the predictor space

into simple regions. The output variable is predicted in each region separately. The

predictor space represents the set of values for the predictors X1;X2; . . .;Xp which is

divided into J distinct and non-overlapping regions R1;R2; . . .;RJ . For every

observation of p predictors an appropriate region Rj (terminal node in the tree)

exists. The terminal node for each observation is reached by applying splitting rules,

i.e., binary decisions at internal nodes that direct the observation towards its

corresponding region. The estimated value of the output variable is computed as the

mean of the response values for the training observations in Rj.
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Regression trees are obtained from an optimisation procedure that minimises the

residual sum of squares RSS ¼
PJ

j¼1

P
i2Rj

ðyi � ŷRj
Þ2, where ŷRj

is the mean of all

output values from training observations in Rj. Because of the high computational

complexity of this problem, Therneau et al. (2014) developed an algorithm that

recursively partitions the predictor space in a greedy manner. The tree is built by the

following procedure: first a single variable Xj and point s is found that splits the data

into two groups fXjXj\sg and fXjXj � sg. The procedure is recursively repeated in

each partition until a threshold is reached in terms of the number of training

observations in the region. The algorithm always selects the splitting variable that

contributes the most to minimising the RSS. Certain variables with a low

contribution to the main objective may thus be left out completely from the model

and not be chosen as splitting variables. An indicator of importance is obtained for

each variable used for growing the tree. It is computed as the sum of improvements

of the objective function for each split for which the variable was used as the

splitting variable. Furthermore, in order to increase the interpretability of a tree and

avoid overfitting the model to the training set, the tree can be pruned. The resulting

tree has fewer regions and performs better on the test set. More details on pruning

can be found in Breiman et al. (1984).

The major advantage of regression trees is that they are transparent and easy to

interpret and validate by experts. They are able to handle non-linear dependencies,

interaction between predictors, and categorical variables. However, the prediction

accuracy is often unsatisfactory when applied on a test set. Even after pruning the

trees, the prediction in terminal nodes may be significantly affected by outliers.

4.2.2 Random forests

The drawbacks of regression trees can be overcome by generating a large number of

trees on the training set and using the average values of all responses to estimate an

instance from the test set. This concept is called bagging and relies on the repeated

sampling of the training set and obtaining B different training sets (Breiman 1996).

Each sample Sb, b 2 f1; . . .;Bg, of d2B=3e randomly drawn points is used to build a

regression tree. The predicted response of the model to a test observation is

computed as the average over all trees

ŷ ¼ 1

B

XB

b¼1

ŷSb : ð2Þ

In each sample, the data that is left out is used to estimate the so-called ‘out-of-bag’

(OOB) error. The response for the bth observation is predicted using each regression

tree for which this observation was left out from the training set (B/3 observations

on average). All errors are averaged to obtain the OOB error as a cross-validated

indicator of model accuracy.

Random forests have been introduced by Breiman (2001) in order to further

improve the accuracy of bagging models. They rely on randomisation of the

previously described recursive algorithm for construction of each tree. The major
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modification is that not all predictors are considered for choosing the best split of

the predictor space but only m randomly chosen variables. The prediction is again

performed by averaging the response of each of the B trees thus further reducing the

response error of regression trees.

5 Process time estimates by global models

This section presents the results of applying the statistical learning methods

described in the previous section on the available data set (Sect. 3.2). The

algorithms for creating the statistical models have been implemented in the R

programming language for statistical computing (R Core Team 2013). The packages

for robust linear regression (Rousseeuw et al. 2014), regression trees (Therneau

et al. 2014) and random forests (Liaw and Wiener 2002) were used to build the

models. All models were fitted on a computer equipped with an Intel Core i5-520M/

2.4 GHz processor and 4 GB memory. The computation times are highest for the

random forest models which take approximately 5 min to build. The other models

are computationally less demanding and produce solutions in several seconds.

5.1 Running time estimates derived from the global model

5.1.1 Robust linear model for running time estimation

The results of applying LTS robust multiple linear regression to fit the data are

given in Table 3. The coefficient is given for each variable. Moreover, we give an

indicator of importance of a particular variable for the overall model, which is a

representation of the corresponding p value. Note that the categorical variables are

represented by only one level since the value for the second level is equal to zero.

Table 3 Summary of the LTS

model for running time

prediction

*** p\ 0.01

Dependent variable: running_time

Coefficient p value

peak_hour = 1 -0.1608 ***

departure_delay -0.0019 ***

headway -0.0013 ***

distance_to -0.0002 ***

distance_from -0.0002 ***

block_length 0.0239 ***

train_type = ‘local’ 0.6803 ***

Intercept 13.0600 ***

R2 0.6514

Residual std. error 6.5810

F statistic 19,320.0800 ***
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The results indicate that all considered variables have a significant impact on

running time. The running times during peak-hours are slightly shorter than in the

off-peak. A negative correlation with departure delay is determined, which indicates

that delayed trains run slightly faster to recover from the delay. Furthermore, the

negative correlation between running time and headway may indicate that in case of

a short headway with the preceding train, trains tend to run slower to reduce the

possibility of running into a route conflict. The position of the block with respect to

the station of the previous and next scheduled stop reflects the train motion regime,

i.e., acceleration, cruising, coasting or braking. The negative coefficients of the

corresponding variables indicate shorter running times with increased distance

from/to the scheduled stop. Furthermore, block length has an expected positive

impact on train running times. Finally, local trains are estimated to have slightly

longer running times than intercity trains.

The lower part of Table 3 presents the predictive quality of the model. The R2

value indicates that 65 % of the variation of running times can be explained by the

presented model. Having in mind that the variation within the training set is

relatively low (Table 1), this implies that the presented model is useful for

estimating running times. This is also demonstrated by the low residual square error

(RSE) of less than 7 s. The large F statistic and low p value indicate a strong

correlation between response and explanatory variables.

5.1.2 Regression tree model for running time estimation

The non-linear relationship between predictors and response, as well as interactions

among predictors can be resolved using regression trees. Figure 2 presents the tree

obtained after applying the recursive partitioning algorithm (Therneau et al. 2014)

on the training set.

A complex regression tree with 16 internal nodes (splits), indicated by ovals, and

17 terminal nodes (rectangles) was generated. Each node contains the mean value of

the response (running time) and the number of data points n in the corresponding

region. The tree indicates the relative importance of the variables: ‘length’ (41 %),

‘distance_from’ (21 %), ‘distance_to’ (18 %), ‘train_type’ (11 %), ‘headway’

(5 %) and ‘delay’ (4 %). The data is split throughout the tree in accordance with the

interpretation of the results from the linear regression for important variables.

However, the final terminal nodes that are split according to the ‘length’ variable

show inconsistencies with the assumption that running time is positively correlated

with block length. In case of short headways (\214.4 s) and blocks close to the

scheduled stop (\1970 m) the running time over short blocks tends to be longer.

However, the large mean squared error (MSE) obtained after tenfold cross-

validation of the tree indicates that these regions may be affected by outliers and

therefore produce inaccurate estimates.

The overall quality of the model is presented in Fig. 3 which shows the

improvement of error (left) and R2 (right) after performing each split. The prediction

error is presented relative to the initial estimation error which equals the mean of all

observed running times in the training set. Each split contributes to a reduction of
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the prediction error. The maximum value of R2 ¼ 0:697 is obtained for 16 splits.

Even though the predictive quality of the linear model is improved by using a

regression tree, the effects of outliers still may present a source of inaccuracy for

estimating running times.

5.1.3 Random forest model for running time estimation

Random forests provide a further increase of prediction accuracy and improve the

resistance of regression trees against outliers. The training set (Table 1) is used to

create a random forest model with 300 trees (Liaw and Wiener 2002). Each split is

performed using the best of three randomly chosen variables from the full set of

predictors.

The MSE and R2 depending on the number of trees in the forest are presented in

Fig. 4. A significant error decrease of 30 % is visible for increasing the forest size up

to 100 trees. Further increase of the number of trees has a limited contribution to error

reduction. A significant improvement of R2 is achieved compared to the approach

with a single regression tree. The effects of increasing the number of trees above 100

are small. The value of R2 ¼ 0:780 indicates that 78 % of running time variation can

be explained by the predictor values. The relative variable importance is obtained

after computing the OOB error and does not differ from the single tree case.

5.2 Dwell time estimates derived from the global model

5.2.1 Robust linear model for dwell time estimation

LTS robust multiple linear regression is used to fit the data from the training set. The

results show that all predictors have a strong impact on the response ‘dwell_time’

(Table 4). The relatively large intercept can be explained by the unavoidable error

of dwell time estimation (Sect. 3.2). The realised dwell times are clearly closely
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correlated with the scheduled dwell times. Dwell times in small stations, as well as

the dwell times of local trains are estimated to be slightly larger than scheduled.

Moreover, arrival delay is negatively correlated with dwell times. That finding

reflects the fact that early trains have to wait for the scheduled departure time and

late trains tend to depart as soon as possible to reduce their delay. Finally, dwell

times during peak-hours are estimated to be longer than in off-peak periods.

The indicators of the predictive quality of the model (lower part of Table 4) show

a high predictive power of the model with 73 % of response variation explained by

the explanatory variables. The high value of the F statistic also indicates the

relevance of selected predictors on the response value. However, the possible

interactions between explanatory variables cannot be determined using the linear

model which is why non-linear predictive models are also tested.

5.2.2 Regression tree model for dwell time estimation

The recursive partitioning algorithm (Therneau et al. 2014) is used to optimise

regions in the prediction data space with respect to prediction error. The resulting

regression tree containing eight splits and nine terminal nodes is presented in Fig. 5.

The relative variable importance is also determined: ‘scheduled_time’ (56 %),

‘station_type’ (24 %), ‘arrival_delay’ (19 %) and ‘train_type’ (1 %).

The correlation between scheduled dwell times, arrival delays and the response,

determined using robust linear regression are visible from the internal nodes of the

tree. The interpretation of the splits is therefore consistent with the interpretation of

correlation coefficients. However, terminal nodes and splits on the lower level of the

tree did not manage to capture dwell time dependence on peak-hours. Moreover,

train type does not influence any split of the tree. This can be explained with the

correlation between station type and train type. In particular, data points for small

stations imply the local train type.

The overall quality of the regression tree model is determined by a tenfold cross-

validation. Figure 6 shows the decrease of prediction error (left) and the increase of

R2 (right) with increasing number of splits in the tree. For the optimal number of

Table 4 Summary of the LTS

model for dwell time prediction

*** p\ 0.01

Dependent variable: dwell_time

Coefficient p value

peak_hour = 1 5.2223 ***

arrival_delay -0.1163 ***

train_type = ‘local’ 2.2810 ***

station_type = ‘small’ 7.4580 ***

scheduled_time 1.0070 ***

Intercept 38.7810 ***

R2 0.7281

Residual Std. Error 31.5000

F Statistic 73,700.2481 ***
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splits 70 % of variation of dwell time from the training set can be explained using

the presented regression tree model. The application of the regression tree method

for prediction of dwell times resolved the issue of mutually correlated and

interacting predictors, and non-linear impact on the response variable. The resulting

tree is easy to interpret and the relative importance of each considered variable is

given. However, the predictive power of the global model did not improve.

Sensitivity to outliers, especially in lower internal and terminal nodes, may cause

inaccuracy of prediction.

5.2.3 Random forest model for dwell time estimation

We attempt to improve robustness against outliers and prediction accuracy of the

global model by applying the random forest method on the training set (Liaw and

Wiener 2002). The resulting random forest contains 300 trees. Each split in each

tree is created by choosing the best out of three randomly selected predictors.

The indicators used to examine the quality of the model are MSE and R2.

Figure 7 shows the reduction of MSE (left) and the increase of R2 (right) with

increasing number of trees in the forest. No significant improvement is achieved for

forests larger than 100 trees. The final value of R2 shows that by using the random

forest algorithm, 76 % of dwell time variability can be explained and predicted.

Thus, the predictive power improved compared to the regression tree model.

6 Process time estimates by local models

A running process in a local model is defined by the train line and block section, and

a dwell process by the train line and station of the scheduled stop. LTS robust linear

regression is used to predict running and dwell times depending on departure and

0 2 4 6 8

0.
2

0.
4

0.
6

0.
8

1.
0

Number of splits

X
 R

el
at

iv
e 

E
rr

or

0 2 4 6 8

0.
0

0.
4

0.
8

Number of splits

R
−s

qu
ar

ed
 

0 2 4 6 8

0.
0

0.
4

0.
8

Fig. 6 Relative prediction error (left) and R2 (right) for regression tree dwell time model
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arrival delay, respectively. The assumption about different behaviour of delayed

(delay larger than 60 s) and punctual or early trains is tested by separating the set of

observed running and dwell times into corresponding sets of delayed and punctual

trains and applying the Wilcoxon rank-sum test at 5 % significance level, with the

null hypothesis that samples have distributions with equal medians.

6.1 Estimation of running times over a particular block

In Fig. 8, the realised running times are presented relative to the departure delay.

The left part of the figure shows the dependence of running time over the last block

before the scheduled stop in Delft station of train line 2200. The solid red line in the

left part of the figure represents the robust fit. The black dashed line represents the

tenth percentile of running times used as a robust estimator of minimum running

times in order to avoid unrealistically low values for large delays (Van der Meer

et al. 2010). A weak correlation between running times and departure delays was

found on the level of block sections. Similar results were obtained for other blocks

and train lines. Hence, most drivers did not adjust their train speed with respect to

delay. The driver manual prescribes that in case of delays drivers must run at a

higher speed where possible, however no online delay information or speed advice

is available and moreover the traffic intensity of the considered railway corridors is

amongst the highest in the Netherlands, so that train drivers may also try to avoid

running in on a preceding train and thus keep their normal speed behaviour.

The Wilcoxon rank-sum test rejected the null hypothesis with p � 0 thus

indicating different distributions of running times of delayed trains. The box-plots in

Fig. 8 (right) show small differences in distributions of six data samples specified

based on the value of departure delay. The box-plots used in this paper indicate the

median (line in the middle of the box), the first and the third quartiles (upper and

lower bound of the box) and data maximum and minimum (ends of the upper and

lower whisker). Note that the outliers are excluded from the plots, for the sake of

clarity of the figures, but not from the data set used to compute the quartiles.

Outliers are detected in a conventional procedure by adding (subtracting) the
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interquartile difference multiplied by 1.5 to (from) the upper (lower) quartile. All

values outside the obtained range are considered as outliers.

6.2 Estimation of dwell times for a particular station

The dependence of dwell times on arrival delays was examined. The correlation is

particularly strong for large stations. In smaller stations where only local trains are

scheduled to stop, no significant correlation between dwell times and arrival delays

was established. That can be explained by the fact that these stops are scheduled as

short stops (Sect. 3.3.2). The trains only stop for boarding and alighting and depart

as soon as possible.

Figure 9 (left) shows the dependence of dwell times on arrival delays for the train

line 2200 in station Delft. The horizontal black dashed line represents the tenth

percentile of all dwell times, whereas the red line represents the robust linear fit for

punctual trains. The scheduled dwell time is 60 s. A strong correlation

(R2 ¼ 0:8704) was captured for early and punctual trains. The Wilcoxon rank-

sum test rejected the null hypothesis of equal dwell time for early and late trains

(p � 0) and indeed the box-plots in Fig. 9 (right) show clearly different distributions

of dwell times for punctual and late trains. Moreover, the variation of dwell times

for delayed trains needs to be explained by other factors, and therefore the data set is

divided into a set of punctual and delayed trains at the threshold of 60 s.

The variability of dwell times of delayed trains is explained by modelling dwell

time as a time series to determine the impact of peak-hours. The dwell times of

delayed trains normally equal the minimum dwell time required for passenger

operations and route setting if the delay exceeds the dwell buffer time. We assumed

that passenger volumes and consequently the time needed for alighting and boarding

increases during peak-hours. Figure 10 shows dwell times (weekends and holidays

were not considered) relative to the scheduled arrival times of train line 2200 in

Delft. The increase in dwell times during peak-hours is clearly visible. The red line

indicates the median dwell time.
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This clear distinction between causes of variability of dwell time for punctual and

delayed trains requires a separate approach to prediction of dwell times. Therefore,

dwell time for a delayed train is estimated from historical data based on dwell times

of the same train number and adjacent train numbers of the same series (e.g. if train

2245 arrived with a delay, the dwell time will be predicted as the average dwell time

of trains 2243, 2245 and 2247 obtained from the data set of delayed trains). The

reason for including the data from the adjacent train numbers is to ensure the

sufficient sample size and robustness of the moving average estimate (Van der Meer

et al. 2010).

Figure 11 shows the effect of using the described moving average approach for

predicting the dwell times of delayed trains on a test set. The prediction accuracy is

compared to the approach based on LTS robust regression. The prediction error is

computed by subtracting the estimate from the realised dwell time. The positive bias

of the LTS estimate error indicates that dwell times of delayed trains are

underestimated. This approach assumes a minimum dwell time for delayed trains

thus disregarding the effects of peak-hours. The moving average approach

significantly improves the prediction accuracy.

7 Comparison of statistical models

7.1 Validation of running and dwell time estimation models

Figure 12 shows the distribution of prediction error for each running time prediction

model. The test set for running time estimation consists of the processed data for

10 days of traffic in areas Rotterdam and The Hague and contains 18,684 data

points. All presented approaches quickly produce estimates for each instance from

the test set. The random forests clearly give the most accurate estimates of running
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times with respect to other global models. The performance of random forests is

comparable to the performance of local models that give the most accurate

predictions of running times. Note the very small prediction errors within �10 s for

the local LTS and random forest estimates.

Similar results are obtained for dwell time estimation (Fig. 13). The size of the

test set for dwell times is 12,225. Random forests are the best performing global

model. However, local models, consisting of an LTS robust linear regression model

for punctual trains and a time series (TS) model for delayed trains, give more

accurate estimates for the dwell times. The high standard deviation of the prediction

error even for the most precise model indicates that relying on track occupation data

as the sole data source for dwell time prediction may not result in sufficient

accuracy.

7.2 Comparison of prediction accuracy for scheduled processes

To offer a fair comparison of the presented models, the accuracy of the estimates

relative to the scheduled processes needs to be considered. Recall that the running

time analysis presented in this paper relates to running times over block sections.

The running time between two scheduled stops can be computed as the sum of the

running times over blocks in the route of the train including the outbound route from

the station of departure and the inbound route at the arrival station. In order to

exclude the impact that other trains may have had on the running times of trains in

the test set, all hindered train runs were excluded from the analysis. Figure 14 shows
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a comparison of the absolute prediction errors for dwell time and running time

estimates (left) and the errors relative to the scheduled process times (right). The

results are obtained using the local LTS models. The running times between two

scheduled stops are clearly predicted more precisely than dwell times. This is also

demonstrated by comparing the relative errors, obtained with respect to the

scheduled time of the corresponding process. The errors of running time estimates

are within 10 % of the corresponding scheduled running times, whereas the error of

dwell time estimates may be even larger than the corresponding scheduled dwell

times.

The methodology presented in this paper was used for the calibration of a real-

time prediction model described in Kecman and Goverde (2014). Having in mind

the real-time character of the tool, the main criteria for comparing the data-driven

approach with other relevant approaches are prediction accuracy and computational

requirements. Our approach quickly generates robust predictions of future process

times for multiple trains. It is therefore appropriate for use in an online environment

with frequent updates of train positions. Dolder et al. (2009) presented a comparable

online prediction tool where running times are calculated using train motion

equations. Due to a computationally demanding procedure for computing train

trajectories, their approach uses deterministic offline computed estimates. Regard-

ing the accuracy of prediction, the data-driven approach produces more flexible and

accurate predictions for all prediction horizons.
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8 Conclusions

This paper presented four data driven approaches for estimation of conflict-free

running times and dwell times. Three global models were developed by collecting

all running time and dwell time data from the training set and creating a separate

predictive model for estimation of each type of process time. Advanced supervised

learning methods were tested and compared on predictive power, interpretability of

results, and accuracy. On the other hand, local running time and dwell time models

for a particular block and station were developed based on the data structure of the

training set. Both approaches were validated on an independent test set. The local

models provided more accurate predictions for both running and dwell times.

The running times showed a small variation which was to a great extent

explained by predictors in both models. A weak dependence on delays was

established. The data analysis showed that the majority of trains run with maximum

performance regardless of departure delays. Furthermore, running times seem to be

weakly affected by peak hours and do not have a significant daily variation. An

interesting observation is that even for conflict-free train runs a short minimum

headway after the preceding train may cause an extended running time in order to

prevent a route conflict. The high accuracy of running time estimates on the level of

block sections and between scheduled stops indicates the applicability of the

proposed data-driven approach for calibration of running times in railway traffic

models with different degrees of granularity.

Dwell times of punctual trains show a strong correlation with arrival delays, in

particular in large stations. On the other hand, the dwell times of delayed trains are

more sensitive to the impact of passenger volume variability in peak and off-peak

periods. Despite the strong predictive power of the presented dwell time models, the

validation on an independent test set showed that the variability of dwell times

cannot be fully explained by the selected predictor variables. Hence, dwell times

need to be modelled by more factors since the variation of prediction error is

significantly larger than for running times. One way to do this is to include other

data sources such as platform design and rolling-stock properties to improve the

predictions. This might enable computation of more accurate estimates of arrival

and departure events. Moreover, data related to behavioural properties of passengers

and train drivers can be used to derive more accurate estimates of dwell times.

The major advantage of the global model is that the results can be generalised

and applied to other parts of the network and different train lines that are not

included in the training data set. However, calibration of the global model as well as

the application in real-time is computationally more demanding than creating the

multiple local models and using them for prediction. Therefore, the local models

were used for real-time calibration of the railway traffic prediction model described

in Kecman and Goverde (2014).
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