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Abstract Light rail transit and bus rapid transit have shown to be efficient and cost-

effective in improving public transport systems of cities around the world. As these 

systems comprise various elements, which can be tailored to any given setting, e.g. 

pre-board fare-collection, holding strategies and other Advanced Public Transport 

Systems (APTS), the attractiveness of such systems depend heavily on their 

implementation. In the early planning stage it is advantageous to deploy simple and 

transparent models to evaluate possible ways of implementation. For this purpose, the 

present study develops a mesoscopic model which makes it possible to evaluate 

public transport operations in details, including dwell times, intelligent traffic signal 

timings and holding strategies while modelling impacts from other traffic using 

statistical distributional data thereby ensuring simplicity in use and fast computational 

times. This makes it appropriate for analysing the impacts of improvements to public 

transport operations, individually or in combination, in early planning stages. The 

paper presents a joint measure of reliability for such evaluations based on passengers’ 

perceived travel time by considering headway time regularity and running time 

variability, i.e. taking into account waiting time and in-vehicle time. The approach 

was applied on a case study by assessing the effects of implementing segregated 

infrastructure and APTS-elements, individually and in combination. The results 

showed that the reliability of on-street public transport operations mainly depends on 

APTS-elements, and especially holding strategies, whereas pure infrastructure 

improvements induced travel time reductions. The results further suggested that 

synergy effects can be obtained by planning on-street public transport coherently in 

terms of reduced travel times and increased reliability. 
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1. Introduction 
Bus Rapid Transit (BRT) and Light Rail Transit (LRT) are being implemented around 

the world due to the high attractiveness at a relatively low cost compared to 

underground systems (Hidalgo and Muñoz 2014). In Copenhagen the first BRT 

segment opened in 2014 and the first LRT line is scheduled to open in 2023. These 

systems comprise of segregated infrastructure, signal priority and other Intelligent 

Transport Systems (ITS) and Advanced Public Transport Systems (APTS) (Hwang et 

al. 2006). These elements may be implemented individually or in combination, locally 

or system-wide. The advantages of these systems include reduced travel times, 

improved comfort and increased reliability which is obtained through optimising the 

operations, for example by improved dwell time procedures, as compared to 

conventional bus services. Due to the varying implementation scopes and 

optimisation procedures, the potential effects will also differ greatly. 

On-street public transport systems are complex due to (i) being affected by car 

traffic (unlike metro networks), and (ii) operations being very much dependent on the 

service characteristics, e.g. vehicle types, boarding and alighting procedures or 

holding controls. The effects of implementing BRT or LRT in favour of conventional 

bus services will vary significantly depending on the actual system design (Hensher 

and Golob 2008). Considering the complexity of mass public transport systems, 

which are large-scale, dynamic systems, combining multiple actors and require 

constant management and monitoring, such systems are inherently vulnerable (Cats, 

2013; Kim et al. 2015; Reggianni et al., 2015). Because of the number of people 

served by the system, the importance of connectivity and accessibility in daily life 

and network propagation effects, any disruption can negatively impact the entire 

system resulting in high societal and economic costs (Cats 2013; Reggiani et al. 2015; 

Kim et al. 2015). For example, small disruptions to single vehicles have significant 

impacts in terms of congestion leading to crowding, discomfort and lower service 

reliability (Cats et al. 2016). In order to maintain a high level of reliability, transit 

operators operate within high inventory levels in terms of vehicle fleet and system 

buffer times. Because reliability is key for reducing inventory levels, reliability is 

increasingly sought in operation of critical infrastructure and high-reliability 

organizations in the transport sector, with the growing demand by stakeholders for 

lean operation (Pettersen and Schulman 2016). 

The current study proposes new operational reliability indicators adoptable at the 

early planning stage. The study is motivated by the need to reduce the gap between 

the high importance of robustness analysis in transport planning, and the lack of a 

systematic evaluation of the consequences of service disruptions in network design 

processes and assessing the robustness value of new investments (Cats 2016). The 

proposed approach serves as a coping strategy with the inherently stochastic nature 

of transit systems due to daily fluctuations in traffic, travel demand and supply 

availability. For example, sources of travel time uncertainty are congestion in the 

network and dwell times which constitute up to 50% of the total travel time for buses 

in Copenhagen, each contributing with 20-25% (Ingvardson and Jensen 2012a; Movia 

2014). The contribution of the current study is three-fold.  

Firstly, it provides new operational measures of reliability as perceived by 

passengers taking into account the stochasticity related to in-vehicle travel time and 

waiting time. Evaluating service reliability is important both from the supply side and 

the demand side perspective. In fact, a recent study from Copenhagen has shown that 

reliability is valued much higher than actual travel time (Prato et al. 2014).  

Secondly, it complements Cats and Jenelius (2014) by applying a corridor-based 

mesoscopic model for reliability analysis. The proposed model stands in-line with 

other newly developed mesoscopic models, such as MATSim and BusMezzo. The 

model was originally developed as part of the thesis of the authors (Ingvardson and 



 

 

Jensen 2012a; Ingvardson and Jensen 2012b), but has been enhanced in several ways 

with the purpose of being able to model individual APTS elements as well as different 

on-street public transport systems. The model’s simplicity, transparency and 

tractability make it suitable for evaluating reliability of on-street public transport 

systems in the early planning phases. Notably, the work of Cats and Jenelius (2014) 

focuses on system vulnerability due to irregularities in operations, while the current 

analysis focus on system reliability at the early planning stage by accounting for 

regular operational fluctuations in travel time variability and headway time regularity.   

And thirdly, while the implementation of human-centric design and operational 

measures has been gaining momentum to improve system performance and level of 

service, a systematic evaluation of their impacts is scarce (Fadaei and Cats 2016). 

This study fills this knowledge gap by analysing and comparing the effects of 

individual operational building blocks, e.g. holding strategies and boarding 

procedures as well as their synergy effects in improving transit operations. 

The remainder of this paper is structured as follows. Section 2 of the paper 

introduces the service reliability measure for evaluating the reliability of transport 

operations. The model approach is introduced in section 3, while section 4 presents 

the application on a case study corridor including model validation and definition of 

scenarios. Section 5 reports the results of the case study scenarios while section 6 

discusses the applicability of the model and concludes the work. 

 

 

2 The proposed transit service reliability indicators  
 

Passengers’ value of time in the public transport system differ significantly 

between spending time in the transport vehicles (in-vehicle time) and waiting and 

transferring between vehicles (out-of-vehicle time) (Nielsen 2000; Balcombe et al. 

2004; Fosgerau et al. 2007). The inconvenience of waiting for the next transit vehicle, 

either at the departure stop or when transferring, makes it important to not only 

minimise travel times, but even more importantly minimise the waiting time for 

passengers (Parbo et al. 2014). Hence, when managing public transport it is crucial to 

ensure a reliable service. Ultimately unreliable operations make it necessary for the 

users to add a buffer to the travel time thus extending the actual travel time (Parbo et 

al. 2016). 

Several definitions of reliability exist, also within public transport. A general 

formulation defines it as “continuity of correct service“ (Avizienis et al. 2001). In a 

public transport context this can be interpreted as maintaining the same service as 

displayed in the public timetables. From the passengers’ point of view this covers a 

combination of experiencing the anticipated waiting time at the stop, and 

experiencing the same in-vehicle travel time between stops. For high-frequency 

public transport operations this implies a low variation of running time while 

maintaining a homogeneous headway time between vehicles.  

In this paper we propose a distribution-based service reliability measure suitable 

for high and medium-frequency public transport operations in a two-fold manner as 

sketched in Figure 1. It is reasonable to describe reliability in terms of distributions 

(Ceder 2007), hence measuring reliability in statistical terms. The mean, variation and 

coefficient of variation are therefore useful measures for the degree of variation of the 

operation. The lack of reliability can be quantified as the standard deviation multiplied 

by the corresponding value of time, hence supporting the use of statistical terms 

(Balcombe et al. 2004). Thus, the effective travel time includes the mean travel time 

and the standard deviation due to unreliability. This can be adopted for various time 

elements, e.g. running times, waiting times, etc. 

 



 

 

 
Figure 1: Measures of service reliability for high frequency public transport operations as 

proposed by Ingvardson and Jensen (2012a). 

The metrics applied in the evaluation of service reliability in this study are: (1) the 

coefficient of variation of the running time (running time variability), and (2) the 

number of headway times within the threshold of +/- 50% of the scheduled headway 

time (headway time regularity). By using these measures it is possible to capture the 

service reliability of the public transport operations in terms of the total travel time 

experienced by passengers, i.e. the continuity of running times (in-vehicle times) and 

headway times (waiting times). 

The proposed measures improve the indicators suggested by Nakanishi (1997) and 

Kittelson & Associates et al. (2003), by extending them to better represent the actual 

service. Nakanishi (1997) propose an on-time performance indicator and a service 

regularity indicator. The on-time performance indicator is based on the percentage of 

trips departing from all scheduled time points, not including terminals, between 0 and 

5 min after their scheduled departing time. The service regularity is measured as the 

percentage of headway times that deviates less than 50% from the scheduled 

headway. This measure also makes it possible to evaluate whether passengers 

experience a reliable service. Kittelson & Associates et al. (2003) recommend 

headway adherence which is based on the coefficient of variation of the headway 

times at a given stop. The improvement in our proposed measures is three-fold.  

Firstly, the new measures are based on running times instead of departures times 

in order to account for delay propagation in the system.  

Secondly, we calculate the statistical distribution instead of a single value of 

headway time regularity, in order to account for operational stochasticity in daily 

service variation and to cope with the inherent uncertainty in the early planning stage.  

And thirdly, instead of calculating aggregate measures at the zone-level or at every 

stop, the measures are calculated at important nodes in terms of size and system 

operation. This approach allows an efficient and transparent identification of 

connectivity cavities in the system. 

 

 

3. The proposed model  
 

Recent research efforts have resulted in several mesoscopic simulation models, 

e.g. BusMezzo (Cats 2011), MISTRANSIT (Cortés et al. 2007), SmartBRT (Werf 

2005), MILATRAS (Wahba and Shalaby 2006), DYBUS/DYBUS2/DYBUSRT 

(Nuzzolo et al. 2001; Nuzzolo et al. 2015), and MATSim (Balmer et al. 2008). 

Focusing on transit operations, Toledo et al. (2010) evaluate the effects of varying 

passenger demand and travel time uncertainty on on-time performance and headway 

reliability of transit vehicles. Cats et al. (2012) and Fernandez et al. (2010) 

investigates the effects of various holding strategies on passengers in terms of 

headway variability, travel time and waiting times. Cats (2016) evaluate the effects 

of a network extension on crowding in transit vehicles. And Fernandez et al. (2010) 

evaluates the effects of station layouts and operational strategies in terms of passenger 

interchanges, bus operations at stops and stop capacity within busways. Other studies 

have analysed the applicability of mesoscopic models on large-scale test networks 

(Nuzzolo et al. 2016) and real networks (Wahba and Shalaby 2011; Neumann et al. 

2012).  

(2) Headway time regularity 

Number of headways within a threshold of 
+/- 50% of the scheduled headway time 

(1) Running time variability 
Coefficient of variation of running time 

Service reliability 



 

 

This paper develops a mesoscopic simulation model in line with existing models 

for modelling public transit operations in a feedback loop with a macroscopic traffic 

assignment model. The mesoscopic model simulates the operation of public transit 

vehicles individually in a detailed manner whereas other traffic is macroscopically 

determined using the output of the macroscopic model, i.e. traffic volumes 

determining speed-density relationships, augmented with distributional data 

representing possible daily traffic fluctuations. The stochasticity of travel time is 

represented by sampling from link-specific distributions while traffic dynamics are 

explicitly modelled in the macroscopic model. The feedback loop allows for 

representing the implications of changes in running time on the number of passengers 

and traffic volumes, in order to plan for service robustness and reliability.  Pedestrian 

and bicycle traffic at right/left turns in signalised intersections are represented in the 

current model by time penalties dependent on the signal timing plans of the traffic 

signals for cyclists and pedestrians. 

The model is event-based where vehicles and their movements are simulated 

stepwise based on observations of bus behaviour in Copenhagen and Istanbul 

conducted as part of Ingvardson and Jensen (2012a) and Ingvardson and Jensen 

(2012b). This includes observations for different infrastructure designs, i.e. buses 

running in fully segregated busways, partly segregated bus lanes, and in mixed traffic 

at different congestion levels. Conventional bus operations are simulated by use of 

current observations from bus line 5A in Copenhagen, whereas observations from the 

Metrobús system in Istanbul makes it possible to model infrastructure designs 

containing segregated busways. By utilising this form of data in the model it is 

possible to simulate the variation in operations without data on exact traffic levels in 

roads and intersections. An illustration of the overall work flow of the model is 

sketched in Figure 2. 
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Figure 2: Illustration of the model framework including input, output, and the mode-choice and 

traffic assignment model feedback loop. 

 

3.1 Input 

 

The input to the model consists of characteristics related to the network, the 

passengers, and the operations of the public transport line. The input values are based 



 

 

on empirical data collected as part of Ingvardson and Jensen (2012a) and official data 

from public transport agency of Copenhagen (Movia). The data is implemented in a 

stochastic manner as statistical distributions. Hence, it is possible to simulate the 

variation of operations based on the statistical variation in the input parameters such 

as passengers boarding a specific vehicle. 

 

3.1.1 Network Parameters 

 

The network consists of links, signals, and stations. These are associated with a 

number of parameters, e.g. for links this includes the length and maximum speed 

whereas it for signals include the cycle time and green time. 

 

3.1.2 Service Parameters 

 

Service parameters are related to the level of service and the public transport 

operation. Hence, this includes the boarding and alighting time per passenger 

(depending on ticket type), and the vehicle seat capacity for evaluating comfort levels. 

The dispatching input includes the headway time between departures at the starting 

node and the level of randomness by which buses are dispatched, i.e. the level of 

bunching at the departure stop. 

 

3.1.3 Calibration Controls 

 

To capture minor variations of the operations a number of calibration control 

parameters have been implemented. These parameters include holding controls, and 

reflect the behaviour of a driver who catches up with a bus and thus holds back to 

ensure a certain time gap between the vehicles. These parameters are also used when 

simulating different bunching controls. 

 

 

3.2 Simulation 

 

The simulation of vehicles is based on the characteristics of the operations which 

suggest that the travel time of an individual vehicle basically consists of three 

elements: (i) time spent to overcome distance, (ii) time spent dwelling at stops, and 

(iii) potentially time spent waiting at traffic signals. The time spent on links 

overcoming distance depends on the speed and acceleration profile of the vehicle and 

external factors such as congestion if driving in mixed traffic. Time spent at stops 

depends on a fixed amount of time for deceleration and acceleration and for opening 

and closing the doors. Additionally there is a variable amount of time used for 

passengers to board and alight the vehicle which is dependent on vehicle and service 

planning characteristics. The same is the case for signals along the route where the 

vehicle potentially uses a fixed amount of time to decelerate and accelerate and a 

variable amount of time for waiting at the signal. At each event for every vehicle the 

model will calculate the position, time and occupancy, e.g. when arriving at a stop 

these parameters are calculated based on the input variables, cf. Figure 3. 



 

 

Update time and position 

Update time since 

previous vehicle

Calculate dwell 

time, and update 

occupancy

Update in motion dummy

StationLink Signal

Identify Link Type 

Calculate ρ, and 

pick speed from 

distribution

Is the vehicle

in motion?
YesNo

Calculate running 

time for link

Add acceleration 

penalty

Calculate number of 

waiting passengers

Calculate passenger 

ticket type distribution

Is the vehicle 

bunched with 

previous vehicle?

No

Add bunching 

penalty

Yes

Green or red?

Calculate waiting 

time to next green

Any waiting 

passengers?
No Yes Green

Add waiting time 

at signal

Identify 

event type 

Is there any further 

events?

Start vehicle #n

Calculate start time and start occupancy 

based on time to previous vehicle

No Yes

Go to event

Red

Update time

Are there more 

vehicles?

Initialize

Yes

STOP
Generate 

output

Identify station parameters

Compare to vehicle arrival 

time

Identify signal circulation 

time

No

Any alighting 

passengers?

No

Yes

 
Figure 3: Detailed overview of the model simulation framework. More information can be found 

in Ingvardson and Jensen (2012a). 

After initialising the model with relevant input the first vehicle is assigned. The 

bus initially identifies the first event. Then the time, distance travelled, and changes 

in occupancy at the event are calculated. The output from the event is an update of 

this information (time, location, and occupancy) which is used as input to the next 

event. At every event the headway times between vehicles are calculated as this is 

used to calculate the number of passengers waiting at stops and to control bunching 

and possible overtakings if such are allowed. Also, a dummy variable denoting 

whether the vehicle is in motion or not is updated. This dummy is implemented as the 

travel time on a link is dependent on whether the vehicle is already in motion or if it 

needs to accelerate. When all vehicles have been through all events, i.e. travelled the 

entire corridor, it is possible to calculate and evaluate the effects for vehicles and 

passengers. If a scenario results in significant travel time reductions the output will 

be used as input to an assignment model making it possible to evaluate the changes 

to passengers’ route choices. This is important in order to evaluate the effects for 

passengers on the public transport line being investigated as well as in the entire 

public transport network. 

 

  



 

 

3.2.1 Links 

 

The time spent travelling on links generally depends on trip time (e.g. hour, day, 

week, season), number of passengers, and the habits of the individual driver (Ceder 

2007). In traditional traffic assignment models the travel time on links can be 

estimated according to traffic flow theory (Ortúzar and Willumsen 2011). As this 

mesoscopic simulation model does not model car traffic this approach is not adopted. 

Instead this model estimates the speed of the public transport vehicle on a given link 

based on empiric speed data. 

The framework for calculating the speed of public transport vehicles is based on 

letting the speed be randomly distributed thus simulating that the travel speed both 

depend on local conditions of the road and on external factors such as the driving 

behaviour. Hence, when a given vehicle arrives at a given link the speed on that link 

will be randomly drawn from an appropriate link-specific distribution. In this way it 

is possible for the model to calculate the time it takes for the vehicle to travel on that 

link. To include the fact that the characteristics of the road influence the speed of the 

vehicle the links in the network has been categorised into different link types, see 

Table 1. 

 

Link Type Description Congestion level 

W 

No disturbance from other traffic. This includes 

busways only. - 

N 

Low disturbance from other traffic. This 

includes bus lanes only. - 

M 

Medium disturbance from other traffic. This 

includes mixed use lanes. 0.80-1.00 

K 

High disturbance from other traffic. This 

includes road with some congestion. 0.55-0.80 

H 

Very high disturbance from other traffic. This 

includes roads with major congestion. 0.00-0.55 

Table 1: List of link types used in the model. 

The categorisation of link types is based on the travel speed, the availability of 

bus lanes or busways, and the traffic congestion level defined by the actual speed, v, 

and the free speed of the link, vf, as (1 – v/vf). Both measures are included to take into 

account the variability of travel speed as this to a large extent depends on the 

congestion level. The actual travel speeds are based on GPS data for a number of cars 

traveling in the Copenhagen area during 2014. In other contexts where GPS data is 

not available the actual speeds can also be based on output from the traffic assignment 

model. 

Each link type has been assigned a number of parameters which makes it possible 

to calculate the travel time for the transit vehicle on a given link. These parameters 

include the mean and standard deviation of the top speed on the link in addition to a 

penalty term which takes into account the acceleration of the vehicle for reaching that 

specific maximum speed. The latter is only included if the vehicle has been brought 

to a stop at the previous event such as at a red signal.  

The distributional data of travel speeds of the public transport vehicle for the five 

different link types are based on empirical data collected as part of Ingvardson and 

Jensen (2012a). This data was tested using the Shapiro-Wilk  test (Shapiro and Wilk 

1965) in order to justify the assumption of the data being random and normally 

distributed. This test was chosen due to its higher statistical power than the 

Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests (Razali and Wah 2011).  



 

 

Link 

Type 
Distribution 

Mean 

[km/h] 

Standard 

Deviation 

[km/h] W Pr < W 

W Normal 60.5 4.85 0.933 0.2225 

N Normal 37.4 3.60 0.943 0.1562 

M Normal 26.0 3.18 0.977 0.3840 

K Normal 17.9 2.96 0.965 0.3089 

H Normal1 9.8 3.06 0.945 0.4527 

Table 2: Test for normality for the empiric data of travel speeds for the five link types. 

The test results presented in Table 2 show that the assumption cannot be rejected 

at a 95% confidence level. Thus, the normal distribution is accepted as providing a 

good fit for the data. Due to the nature of the normal distribution which is symmetric 

around the mean it has been necessary to limit the possible values for links of type H. 

The speed on these links can only take on values between 5 and 15 km/h. This has 

been done to avoid very low or even negative speeds in the model. 

As the speed of each vehicle is drawn randomly vehicles that are traveling close 

together can travel at quite different speeds. As this is not realistic dependency 

between speeds of successive vehicles has been implemented. This dependency is 

implemented by letting the speed of a given vehicle be partly dependent on the speed 

of the previous vehicle. Both vehicles will have a speed drawn from the appropriate 

distribution from the given link type. However, if two vehicles travel within 15 

seconds of each other on the same link the second vehicle will adopt the same speed 

as the first vehicle. If the headway time between successive vehicles on a specific link 

is more than 180 seconds the travel speeds will be fully independent. The transition 

between full dependency and full independency of travel speeds is calculated linearly 

as (180 –t)/165, where t is the time between vehicles. This is illustrated by an 

example: Two transit vehicles travelling on the same link (link type M) at a headway 

time of 60 seconds results in 0.73. The vehicles draw speeds from the appropriate 

distribution, cf. Table 2, resulting in speeds of say 28.79 km/h for the first vehicle and 

22.47 km/h for the second vehicle. In the model the first vehicle will then be assigned 

the speed of 28.79 km/h (assuming that no other vehicles travelled this link within 

180 seconds prior to the first vehicle). The second vehicle will due to the short 

headway time not travel at 22.47 km/h. Instead the speed is adjusted to 

0.73*28.79+(1-0.73)*22.47=27.07 km/h. By this the model ensures that vehicles 

travelling at very short headways, i.e. in very similar traffic conditions, do not travel 

at very different speeds. 

 

3.2.2 Signals 

 

Signals are modelled as nodes and are based on the signal timing plans using three 

input parameters: (i) the cycle time, (ii) the start time for the green phase, and (iii) the 

end time for the green phase. The model then calculates the potential waiting time 

until the next green for a given vehicle approaching a given signal. Signals that have 

priority for public transport vehicles are modelled using extended green times. For 

traditional bus operations there is no full transit priority in signals, i.e. buses have to 

yield for pedestrians and bicycles when turning right, and also for car traffic when 

turning left. Such delays caused by other traffic have been implemented by use of 

time penalty. By this the model can be used to evaluate signal prioritisation measures 

for the public transport vehicles. 

 

                                                           
1 Can only take on values in the interval [5,15] 



 

 

3.2.3 Stations 

 

Stations are modelled as nodes with two parallel procedures being calculated 

simultaneously; (i) the number of boarding passengers, and (ii) the number of 

alighting passengers. These are used to calculate the total dwell time for the bus. 

The dwell time calculations depend on the type of boarding process. When all 

passengers board and alight through the same door the dwell time can be estimated 

by a linear model of the form (Ceder 2007): 

 

𝐷𝑖𝑘 = {
𝑏 + 𝛿𝐵 ∙ 𝐵𝑖𝑘 +  𝛿𝐴 ∙ 𝐴𝑖𝑘         , 𝑖𝑓 𝐵𝑖𝑘 > 0 𝑜𝑟 𝐴𝑖𝑘 > 0

0                                       , 𝑖𝑓 𝐵𝑖𝑘 = 𝐴𝑖𝑘 = 0
 

 

For vehicles with multiple doors where boarding and alighting passengers use 

different doors the dwell time can be calculated as (Ceder 2007): 

 

𝐷𝑖𝑘 = {
𝑏 + max (𝛿𝐵 ∙ 𝐵𝑖𝑘    ,   𝛿𝐴 ∙ 𝐴𝑖𝑘)    , 𝑖𝑓 𝐵𝑖𝑘 > 0 𝑜𝑟 𝐴𝑖𝑘 > 0

0                                                , 𝑖𝑓 𝐵𝑖𝑘 = 𝐴𝑖𝑘 = 0
 

 

where Dik is the dwell time of the vehicle serving trip i at stop k including the time 

required for acceleration and deceleration (Dik = 0 if vehicle i do not stop at stop k); 

b is the dead time portion including acceleration, deceleration, and closing and 

opening of doors; Bik is the number of passenger boarding the vehicle serving trip i at 

stop k; Aik is the number of passenger alighting the vehicle serving trip i at stop k; δB 

is the marginal dwell time per boarding passenger; δA is the marginal dwell time per 

alighting passenger. 

This model suggests that the total dwell time for a vehicle can be estimated by a 

fixed time including acceleration and deceleration, and opening and closing of doors, 

and a variable time depending on the number of passengers boarding and alighting 

the vehicle. If the vehicle has separate doors for boarding and alighting passengers 

these events happen independently of each other, and the variable term of the dwell 

time then depends on the event which takes the longest time. However, if the vehicle 

has only one door, or the doors are used for both boarding and alighting, the events 

cannot happen simultaneously. For BRT and LRT the latter will to some extent be the 

case as the doors are used by both boarding and alighting passengers hence creating 

conflicts. 

The number of boarding passengers at a stop, i.e. passengers arriving at a stop, is 

assumed to be random as the frequency is high with headway times of less than 5 

minutes (Nakanishi 1997). At such low headway times the proportion of passengers 

arriving in coordinated arrival patterns is rather low (Neumann et al. 2013). Hence, 

the arrival intensity is assumed to follow the Poisson distribution similar to in Cats et 

al. (2010). From this it follows that the time between passenger arrivals, the passenger 

headway time, is exponentially distributed. Hence, the number of boarding passengers 

at a given departure at a given stop can be calculated based on the mean passenger 

arrival intensity for that given stop. 

The number of alighting passengers at a given stop is assumed to follow the 

binomial distribution (Andersson and Scalia-Tomba 1981; Liu and Wirasinghe 2001; 

Toledo et al. 2010). Hence, it is calculated based on the occupancy of a given vehicle 

at a given stop and the share of passengers alighting at that stop in the given time 

period. 

 

 

3.3 Output 

 



 

 

The output of the model consists of the time, position, and occupancy for all 

modelled vehicles at all events. This is then used to evaluate level of service 

parameters such as waiting times at stops, travel time for vehicles and passengers, and 

headway time distributions. By this it is possible to evaluate the operations including 

the experienced service reliability as experienced by passengers, and to compare the 

effects obtained by implementing various technologies including APTS elements 

individually as well as full BRT or LRT scenarios. 

 

 

3.4 Mode choice and traffic assignment model 

 

The model framework includes a feedback algorithm between the mesoscopic 

simulation model and a combined mode choice and traffic assignment model. The 

feedback algorithm allows for modelling changes to passenger flows in the public 

transport network resulting from improvements to the service operations on a single 

public transport line as modelled by the mesoscopic simulation model. The output 

from the mesoscopic model in terms of dwell times and running times between stops 

are used as input to the traffic assignment model which estimates the impacts of the 

updated travel times on mode choice and passengers’ route choice in the public 

transport network. The output in terms of a new OD-matrix for passengers on the 

public transport line is then used as input to the next iteration of the mesoscopic 

simulation model. The feedback continues until steady-state conditions are attained. 

In this model framework such conditions are attained when the total running time for 

the public transport line changes by less than 1 minute. This threshold was chosen 

because the input of running times to the traffic assignment model is given in whole 

minutes. 

The feedback loop requires car and public transport networks as well as origin-

destination matrices as input. Mode choices and route choices are estimated based on 

random utility theory using utility functions and impedance functions taking into 

account volume-delay relationships. The traffic assignment model makes it possible 

to describe passengers’ different preferences towards public transport modes and 

transfers in a schedule-based configuration (Nielsen 2004) within a reasonable 

calculation time (Nielsen and Frederiksen 2006). 

The feedback algorithm is optional, and the mode choice and route choice models 

can be run individually. 

 

4. Case Study Corridor 
 

The selected case study corridor is part of the busiest bus line in the Copenhagen 

area, 5A, which runs between Husum Torv and Sundbyvester Plads, cf. Figure 4. The 

bus line is part of the high-frequency A-bus network covering the dense areas of 

Copenhagen with short distances of 3-400 meters between stops. The bus line 5A 

links the city centre with two of the most dense city districts, namely Amagerbro in 

the southern part and Nørrebro in the north-eastern part of Copenhagen. The 

passengers on this line travel an average of 2.60 km which is shorter than on other 

bus lines, partly due to using the bus as feeder to metro or suburban railway lines. 

Hence, only 16% of passengers on line 5A travel across both corridors. The paper 

analyse the southern section between Nørreport station and Sundbyvester Plads. This 

segment is 6.5 km long and currently covers 18 stops.  



 

 

 
Figure 4: The 5A corridor between Nørreport station in central Copenhagen and Sundbyvester 

Plads on Amager. 

Currently, approximately 40% of the corridor has dedicated bus lanes and several 

APTS elements are already implemented including bus priority in selected traffic 

signals and real-time traffic information for passengers based on automatic vehicle 

location (AVL). Despite these elements the operation suffers from low reliability and 

slow travel speeds (Ingvardson and Jensen 2012a). 

 

 

4.1 Data 

 

The base scenario was based on manually collected data as well as AVL bus data 

for the current bus operations of 5A in Copenhagen. Manually collected data was used 

for bus speeds and headway time distributions at Amagerbro station and Nørreport 

station (Ingvardson and Jensen 2012a) because the AVL data available did not include 

distributional data. AVL aggregate data for the autumn of 2014 was used for 

passenger numbers and to validate the model. 

 

 

4.2 Model Replication 

 

The model was run for a typical morning peak period, 7am-9am, including 72 

buses (18 per hour per direction). The input parameters were altered randomly to 

introduce noise, and the results are averages of 50 runs. 

The validation of whether the simulated model results accurately replicate the real 

world has been done by two-sample Kolmogorov-Smirnov tests, similar to in Cats et 

al. (2010). Statistical distributional data of the actual operations were only available 

for Amagerbro station in both directions and at Nørreport station in the northbound 

direction. Hence, the parameter that is being tested is the distributions of headway 

times at these locations. The test results shown in Table 3 imply that the model 

replicates real-world operations sufficiently well. 

  

  N 



 

 

Test parameters D KSa Pr > KSa 

Amagerbro st. 

Southbound 0.1313 0.9033 0.3882 

Amagerbro st. 

Northbound 0.1214 0.8565 0.4555 

Nørreport st. 

Northbound 0.1112 0.7844 0.5697 

Table 3: Kolmogorov-Smirnov tests for validating the model replication of the headway 

distributions. 

Optimally this validation method should be used for all relevant parameters in the 

validation process. However, the observed data on running times and time use shares 

did only include mean values from the buses and not distributional data. Hence, it was 

not possible to validate the model in this manner with regards to running time and 

time use shares. Instead the validation of these parameters was done by use of mean 

and standard deviation values, cf. Table 4. 

 

Northbound 

Average running 

time 

Running time 

variability 

Commercial 

speed [km/h] 

Headway time 

regularity2 

Observed base 27 min 29 sec 9.2% 14.2 54% 

Modelled base 27 min 25 sec 6.3% 14.2 56% 

  

Southbound 

Average running 

time 

Running time 

variability 

Commercial 

speed [km/h] 

Headway time 

regularity3 

Observed base 23 min 59 sec 6.2% 16.3 47% 

Modelled base 23 min 50 sec 6.0% 16.4 58% 

Table 4: Model simulation results for the base situation compared to the real base situation. 

The comparison shows that the model replicates reality well with regards to travel 

time. However, the modelled service reliability measures differ from the observed 

values, i.e. lower running time variability and higher headway time regularity. Hence, 

it seems that the model has difficulties simulating large reliability problems. One of 

the reasons for this might be the models lack of ability to model larger breakdowns in 

the network, e.g. traffic jams, or taxis or trucks blocking bus lanes. A detailed 

overview of the running time adherence of the modelled base situation is shown in 

Table 5. 

  

                                                           
2 Headway time regularity as average of Amagerbro station and Nørreport station. 

3 Headway time regularity at Amagerbro station only. 



 

 

 Southbound Northbound 

Stop Km Observed Model Difference Km Observed Model Difference 

Nørreport st 0,000 0 0 0 6,517 1649 1645 -4 

Larslejsstræde 0,408 96 109 13 6,109 1540 1553 13 

Jarmers Plads 0,722 173 184 11 5,795 1505 1521 16 

Rådhuspladsen 0,943 220 244 24 5,574 1386 1395 9 

Vesterport st 1,215 298 319 21 5,302 1297 1311 14 

Hovedbanegården 1,695 466 459 -7 4,822 1111 1131 20 

Polititorvet 2,116 624 622 -2 4,401 958 970 12 

Otto Mønsteds Plads 2,366 667 667 0 4,151 905 901 -4 

Klaksvigsgade 3,127 796 805 9 3,390 761 757 -4 

Ørestad Boulevard 3,486 890 877 -13 3,031 696 690 -6 

Amager Fælledvej 3,972 966 967 1 2,545 600 587 -13 

Sønderport 4,214 1005 1004 -1 2,303 549 536 -13 

Amagerbro st 4,580 1083 1073 -10 1,937 430 429 -1 

Tingvej 4,930 1160 1154 -6 1,587 323 338 15 

Øresundsvej 5,118 1196 1186 -10 1,399 234 238 4 

Tycho Brahes Alle 5,627 1272 1267 -5 0,890 158 157 -1 

Smyrnavej 6,070 1347 1349 2 0,447 74 76 2 

Sundbyvester Plads 6,517 1439 1430 -9 0,000 0 0 0 
Table 5: Running time adherence of the model results compared to base situation 

 

The model estimates of the travel time between stops reflect the observed values 

in an acceptable manner, i.e. the variation between the observed and model estimates 

of accumulated times at stops are less than 30 seconds for all stops. 

 

 

4.3 Scenarios 

 

The model was applied to analyse the effects of different APTS upgrades of the 

current 5A bus line in Copenhagen. Furthermore, the effects of implementing full 

BRT and LRT systems involving multiple APTS elements were analysed. The 

scenarios are outlined in Table 6. 

 

 Scenarios 

Infrastructure only Fully segregated busways and additional bus lanes 

Planning and technology only Pre-board fare 

collection 

Specialised vehicles 

with multiple doors 

Bunching controls All planning and 

technology elements.  

Full system solutions Full BRT system including a combination of 

segregated infrastructure, and planning and 

technology elements. 

Full LRT system including a combination of 

segregated infrastructure, and planning and 

technology elements. 

Table 6: Overview of the performed analyses of upgrades to the current bus operations. 

 

4.3.1 Infrastructure scenarios 

 

The infrastructure only scenario applied segregated busways on segments where 

possible while ensuring that existing traffic was not influenced significantly. The 

corridor was hence upgraded with a total of 2.8 km busways fully segregated from 

car traffic along the 6.5 km corridor. On these segments the transit vehicles ran in the 

middle of the road physically separated from car traffic in order to ensure the fastest 



 

 

possible operation. In addition, 1.2 km had dedicated lanes for the public transport 

vehicles. An overview of the upgraded infrastructure is shown in Figure 5. 

 

 
Figure 5: The layout of the proposed infrastructure upgrades of the 5A corridor between 

Nørreport station and Sundbyvester Plads. 

 

4.3.2 Planning and technology scenarios 

 

The planning and technology scenario only included upgrades to the vehicle fleet 

and the operation of vehicles. Pre-board fare collection was implemented, and 

vehicles with different door configurations were tested. Adding additional doors will 

allow for a faster exchange of boarding and alighting passengers, and automatic fare 

collection allows for faster and more homogeneous passenger boarding times. Also, 

dynamic holding was analysed in order to prevent bunching of vehicles. Finding the 

optimal holding strategy has been the focus of many studies, see a review of strategies 

in Strathman et al. (2001). Cats et al. (2012) test different holding strategies in terms 

of holding criteria and time point and find that headway-based strategies are superior 

to schedule-based strategies. Reliability is further improved by adapting holding to 

both the preceding and following bus. Other studies have seen improved results by 

proposing adaptive control schemes that holds back or slow buses continuously based 

on real-time information of headways rather than on specific stops (Daganzo and 

Pilachowski 2011; Xuan et al. 2011). Two holding strategies were adopted;  

The first strategy was based on continuously holding back vehicles if the headway 

time becomes smaller than a defined threshold. As the reliability measure is defined 

based on headway times in the interval +/- 50% of the scheduled headway time, the 

same threshold was applied for the holding strategy. Hence, a vehicle was told to slow 

down if the headway time to the vehicle in front was less than 50% of the scheduled 

headway time. Similarly, vehicles running ahead of a delayed vehicle were slowed 

down to ensure even headways between vehicles. Nagel and Neumann (2010) show 

that such a strategy helps to reduce the average delay of the vehicle, the passengers’ 

travel time and bus bunching caused by minor delays. In the model this was achieved 

by adding two seconds to the running time at links and dwell time at stops if the 

headway time was less than 50% of scheduled or more than 150%, respectively.  

The second holding strategy was simpler as vehicles were only held back at stops. 

The same thresholds were applied, but the vehicles were held back for five seconds. 

A BRT Lite scenario incorporating pre-board fare collection, vehicles with four 

double doors, and the dynamic holding strategy that slows down vehicles at stops and 

links was also analysed. 

The scenarios involving different public transport vehicles incorporate different 

dwell time parameters as listed in Table 7. 



 

 

 

Number of 

double doors 

for boarding 

Boarding time 

per passenger 

[sec] 

Alighting time 

per passenger 

[sec] 

Dead time 

[sec] 
Source 

1 1.45/1.82/10.554 0.50 10.95 (Ingvardson and Jensen 2012a) 

1 1.53 0.39 8.705 (Ingvardson and Jensen 2012a) 

2 0.70 0.60 8.00 (+3.52)6 

(Ingvardson and Jensen 2012a), 

(Highway Capacity Manual 2000) 

3 0.50 0.40 8.00 (+3.52)6 

(Ingvardson and Jensen 2012a), 

(Highway Capacity Manual 2000) 

4 0.25 0.46 8.00 (+3.52)6 (Ingvardson and Jensen 2012a) 

Table 7: Dwell time parameters used in the analyses. 

The parameters used for the analyses were collected from buses in Copenhagen 

and Istanbul (Ingvardson and Jensen 2012a). Pre-board fare collection was not 

implemented in the base scenario; hence passenger boarding times depend on the 

ticket type used ranging between 1.45 seconds for a pre-paid ticket, 1.82 seconds for 

so-called stamp cards7, and 10.55 seconds if buying a cash ticket at the driver. In the 

base situation 62% of passengers use pre-paid tickets, 32% use stamp cards, and 6% 

buy cash tickets according to the public transport agency in Copenhagen. When 

implementing pre-board fare collection while only boarding through the front door 

the boarding time per passenger is reduced only marginally. This is due to the narrow 

layout of the buses which require passengers to board in one single line. Vehicles that 

allow for boarding and alighting through more doors reduce the boarding times 

notably as multiple passengers can board simultaneously without being hindered by 

potential jams at the front door (Neumann et al. 2014).  

The boarding and alighting times were based on the Highway Capacity Manual 

(Highway Capacity Manual 2000) and Ingvardson and Jensen (2012a). 

 

4.3.3. Full system scenarios 

 

The individual upgrades were combined into two different system scenarios, BRT 

and LRT. These scenarios included the same upgrades to infrastructure ensuring 

segregation from car traffic where possible. Both scenarios incorporated the same 

improvements to the boarding and alighting process including pre-board fare-

collection, traffic signal priority and bunching controls. Hence, the systems were 

meant to replicate systems such as the Malmö Express BRT and Bergen Bybanen 

LRT. 

Due to unavailability of statistical distributional data for LRT the calculation of 

running time on links was performed differently than specified in section 3.2.1. 

Running times for the light rail vehicles were then calculated based on vehicle 

characteristics. Hence, travel times on links were calculated based on the maximum 

allowed speed on the links. In fully segregated busways and bus lanes this was set to 

60 km/h. In mixed traffic it was set to 40 km/h or 50 km/h depending on the link type. 

                                                           
4 Boarding times in base situation with on-board fare collection using different ticket types (62% 

prepaid, 32% stamp card, and 6% cash-ticket). More information can be found in (Ingvardson and 

Jensen 2012a). 

5 Boarding and alighting from different independent doors. Adapted from (Ingvardson and Jensen 

2012a). 

6 Boarding and alighting from multiple doors with a congestion penalty of 3.52 seconds if the bus 

is near capacity limit. Adapted from (Ingvardson and Jensen 2012a). 

7 Stamp cards are 10-fare cards that need to be stamped in a machine when entering the vehicle. 



 

 

The actual average speeds on links are lower because the model takes into account 

potential acceleration and deceleration prior to and after the link. Also, the top speed 

can only be reached by the vehicle if travelling for a sufficiently long distance. In 

addition a running time supplement was added to links ranging from 5-20% 

depending on the congestion levels. The simulation of dwell times was performed 

using characteristics for a bus with four double doors. Hence, the modelling of the 

two scenarios was identical, except for the speed calculations. 

 

 

5. Results 
 

The main results of the various scenarios with regards to travel time and reliability 

are summarised in Table 8 for the morning peak period (7-9). All scenarios required 

one single iteration of the feedback loop, i.e. one assignment model and two runs of 

the mesoscopic model per scenario.  

 

Scenario 
Avg. running 

time 

Commercial 

speed [km/h] 

Change 

[%] 

Running time 

variability 

Change 

[%] 

Headway time 

regularity8 

Change 

[%] 

Base 25 min 38 sec 15.2 - 6.2% - 53% - 

Infrastructure 23 min 08 sec 16.9 -10% 7.6% +1.4% 50% -3% 

Pre-board, 1 door 25 min 18 sec 15.4 -2% 5.8% -0.4% 54% +1% 

Pre-board, 2 doors 24 min 30 sec 15.9 -5% 5.6% -0.6% 55% +2% 

Pre-board, 3 doors 23 min 59 sec 16.3 -7% 5.7% -0.5% 56% +3% 

Pre-board, 4 doors 23 min 50 sec 16.4 -7% 5.5% -0.7% 57% +4% 

Holding  26 min 06 sec 14.9 +1% 5.0% -1.2% 67% +14% 

Holding, stops only 26 min 13 sec 14.9 +2% 4.9% -1.3% 68% +15% 

BRT Lite9 24 min 18 sec 16.0 -6% 4.8% -1.4% 71% +18% 

Full BRT 20 min 00 sec 19.5 -22% 5.0% -1.2% 73% +20% 

Full LRT 19 min 57 sec 19.6 -23% 5.2% -1.0% 80% +27% 

Table 8: Main results of the modelled scenarios aggregated for both directions. 

The results showed that the travel time decreased by 10% when implementing 

upgrades to infrastructure. However, reliability was not improved notably in terms of 

headway time regularity. Instead, the running time variability increased, mainly due 

to the increased travel speed. When implementing improvements to the boarding 

procedure the travel times were reduced by up to 7% depending on configuration. The 

implementation of pre-board fare collection resulted in a marginal decrease of 2%, 

whereas larger travel time reductions of 5-7% were obtained when implementing 

vehicles with more doors. These results are a bit lower than estimated by Stewart and 

El-Geneidy (2014) and Neumann et al. (2014) which found running time reductions 

of up to 15% and 20%, respectively, when implementing boarding at all doors. Also, 

headway time regularity was improved when adding more doors. By this, dwell times, 

and variation of dwell times at the stops, were reduced ensuring a more reliable 

service for the passengers. The best reliability was obtained when implementing 

bunching controls that actively reduces bunching of vehicles, however at the cost of 

a lower average travel speed. But passengers perceive an improvement as the increase 

                                                           
8 Headway time regularity as average of Sundbyvester Plads, Amagerbro station, Hovedbanegården 

and Nørreport station. 

9 Includes pre-board fare collection, vehicles with 4 double doors, and holding strategy. 



 

 

in in-vehicle time is offset by the decrease in waiting time which is valued higher by 

passengers (Nielsen 2000; Balcombe et al. 2004; Fosgerau et al. 2007), cf. Table 9.  

 

Scenario 
Avg. in-vehicle time 

[sec] 

Avg.  waiting time 

[sec] 

Avg. travel time 

[sec] 

Base 529 120 649 

Infrastructure 482 124 605 

Pre-board, 1 door 518 120 638 

Pre-board, 2 doors 498 119 616 

Pre-board, 3 doors 485 118 603 

Pre-board, 4 doors 481 117 598 

Holding  535 113 648 

Holding, stops only 537 115 652 

BRT Lite 489 111 599 

Full BRT 406 111 516 

Full LRT 387 111 497 

Table 9: Main results from the modelled scenarios in terms of passenger effects. 

Comparing the two holding strategies the best results were obtained by continuous 

holding rather than only holding at certain stops which is in accordance with the 

findings of Xuan et al. (2011) and Daganzo and Pilachowski (2011). 

As expected, the best results were obtained when implementing a full system 

design, either as a light rail or BRT system. Hence, travel times were reduced 22% 

and 23% for the BRT and LRT systems, respectively, resulting in an increase in the 

amount of passengers of 42% and 43%, respectively. In addition, running time 

variability was reduced significantly and headway time regularity increased from 

53% to 73% and 80%, respectively. The travel time reduction in the Full BRT 

scenario is higher than the sum of the reductions obtained by only implementing 

improved infrastructure or only improving the planning and technology elements 

(BRT Lite). This indicates the synergies obtained when focusing on not only the 

travel time between stops, but also the dwell time at stops. As the dwell times and 

running times become more predictable the system becomes more resilient and the 

signals can be adjusted more efficiently creating larger synergies. Hence, this 

suggests that it is important to plan a coherent project when implementing APTS 

elements in public transport.  



 

 

Northbound Southbound 

  

 
Figure 6: Headway time regularity (percent of departures within +/-50% of the scheduled 

headway time) on selected stations during the morning peak period for the analysed scenarios. 

The results in terms of headway time regularity on selected important stations, cf. 

Figure 6, underline the importance of boarding procedures and intelligent solutions 

when improving the reliability of on-street public transport. By doing so headway 

time regularity is improved so that buses are not increasingly bunching when 

travelling through the corridor which was the case in the base scenario. The best 

results were obtained in the full system scenarios. The improvement for the BRT 

scenario of 20% is larger than the sum of improvements of the infrastructure (-3%) 

and BRT Lite (+18%) scenarios. Considering the standard deviation of the average 

headway time regularity of 4-6% depending on scenario, the results suggest that 

infrastructure improvements alone do not improve the headway time regularity 

significantly since the key driver for bus bunching is the dwell time. Instead it is 

important to consider the dwell procedures and/or bunching controls. The more 

efficient boarding and alighting procedure and bunching controls have positive effects 

for both travel times and service reliability as perceived by the passengers. This is 

further increased if also implementing infrastructure improvements even though 

infrastructure alone did not improve headway time regularity. This is likely due to a 

more efficient use of the infrastructure and signal prioritisation, i.e. the travel time 

between signals is less random when the running time variability on links and dwell 

time variability at stops are both reduced. This will make it easier to create green 

waves for public transport vehicles; hence, improving the use of signal priority.  

 

6. Discussion and conclusions 
 

Improvements to public transport are on the political agenda in many cities around 

the world. The low costs of BRT and LRT systems as compared to subways make 

them popular choices; hence they are being implemented throughout the world 

(Hidalgo and Muñoz 2014). These systems hold many opportunities in improving 

public transport systems of intermediate and developed cities. However, benefits are 

limited by the application; a system which consists of expensive infrastructure may 

not yield the anticipated effects. For the system to be successful it requires intelligent 

service planning and active use of the technology available. This includes APTS 

elements that are shown to have significant importance in creating an attractive public 

transport system.  
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When assessing high-frequency public transport systems from the passengers’ 

point of view it is important to also consider service reliability (Parbo et al. 2014). 

The paper proposes a joint measure of reliability which consists of evaluating both 

the headway times and the running times. More specifically, the service reliability 

measure is proposed to include i) the coefficient of variation of the running time, and 

ii) the proportion of headway times that are within +/- 50% of the scheduled headway 

time. This makes it possible to evaluate the quality of service and reliability of public 

transport operations in a systematic manner. In addition, by implementing a service 

reliability measure it will be possible for the transport agency to incentivise the 

operators. 

The mesoscopic model approach proposed by this paper makes it possible to 

evaluate public transport operations by taking into account traffic dynamics while 

maintaining simplicity and transparency. This makes it appropriate for assessing the 

reliability of operations as well as analysing the impacts of improvements, 

individually or in combination, in earlier planning stages. This is achieved by 

simulating the actual operation of transit vehicles in detail while the impacts of other 

traffic are taken into account using statistical distributions. The model builds upon a 

simpler version developed as part of Ingvardson and Jensen (2012a), subsequently 

enhanced in several ways as part of the present paper. Most importantly it now 

features a feedback algorithm between the mesoscopic simulation model and a mode 

choice and route choice assignment model which allows modelling changes to 

passenger flows in the entire transport network resulting from improvements to the 

bus operations. The mesoscopic model also includes more realistic interaction 

between successive vehicles which allow for dependency between travel speeds and 

possibility of overtaking, and the dwell time procedure was improved by 

incorporating stochastic alighting times. 

The approach proved to replicate the current bus operations in an acceptable 

manner in terms of running times, service reliability (running time variability and 

headway time regularity), and headway time distributions at selected stops. In 

addition, the calculation time for running a scenario of 50 runs is less than one minute 

on a quad-core, 3.00 GHz CPU, 8GB RAM standard desktop computer. Hence, the 

model approach appears promising for modelling public transport operations in an 

efficient manner at early planning stages. Still, the model approach does have some 

limitations which future studies could address.  

Firstly, it could be improved to better model larger traffic breakdowns where 

transit vehicles are caught in traffic, e.g. due to taxis or trucks in the bus lane, or traffic 

jams when running in mixed traffic lanes. This could be achieved by incorporating a 

risk probability of such events happening on the various link types in the model and 

could be based on empiric data for the local street network.  

Secondly, the running times of light rail transit were estimated based on speed and 

acceleration characteristics for light rail vehicles rather than empiric data. To add 

uncertainty to the running times this model adopted a running time supplement 

dependent on the influence from surrounding traffic. This supplement was 

implemented as a fixed time supplement, hence decreasing the stochasticity of the 

model results. Future improvements should address this, e.g. by utilising AVL data 

which are collected by many transit operators. This would also make it possible to 

easily adapt the model to a different setting by allowing the usage of bus speed data 

for other bus lines.  

Thirdly, validation of the model could be further improved by utilising statistical 

distributions of the running times and for headway times at all stops in the corridor.  

Fourthly, the combined mode choice and route choice model ensures that car 

travel times are endogenous to the model. However, bus running times are exogenous 

to the model framework as they are based on specific input. Hence, the estimation of 



 

 

bus running times when changing the road geometry is based on exogenous data. This 

framework was chosen because of the simplicity and the possibility of using 

representative real-life data. Another approach could be to estimate running times 

endogenously, e.g. by speed-density relationships and/or queue models.  

Lastly, the combined mode choice and route choice model does not take into 

account congestion in the public transport network. Hence, in-vehicle crowding will 

not influence the route choices of passengers in the public transport network. This 

limitation could be relaxed by deploying a route choice model that includes vehicle 

capacities and hence in-vehicle crowding.  

The approach was demonstrated on a case study corridor in Copenhagen where 

various improvements to the existing bus line 5A were evaluated. The results showed 

travel time reductions of up to 10% when upgrading the infrastructure in terms of 

adding fully segregated busways and bus lanes in approximately 60% of the corridor. 

However, improvements to reliability were insignificant. The results of implementing 

public transport vehicles with more doors for boarding and alighting showed travel 

time reductions in the corridor of 5-7%. As expected, travel time reductions increased 

when adding more double doors. The running time variability improved as the number 

of doors increased, whereas the marginal increases to headway time regularity was 

insignificant (2-4 percent points depending on the number of doors). The best results 

in terms of both headway time regularity and running time variability were obtained 

when implementing holding strategies. Furthermore, major improvements were 

obtained when combining APTS elements and improved infrastructure into full BRT 

and LRT systems, i.e. travel time reductions of 22-23% for the BRT and LRT 

scenarios, respectively. Simultaneously, the reliability of the operations improved 

significantly in terms of headway time regularity increasing from 53% in the base 

situation to 73% and 80% for the BRT and LRT systems, respectively, as well as 

running time variability improving from 6.2% to 5.0% and 5.2%, respectively. This 

suggests that synergy effects can be obtained if planning a coherent on-street public 

transport system. By this it is possible to utilise the infrastructure and signal 

prioritisation more efficiently. Hence, it is important to focus on planning and 

technology, e.g. APTS elements to ensure an efficient boarding and alighting process 

as well as holding strategies to reduce bunching of vehicles, when improving the 

reliability of public transport operations. Such results are in line with other studies 

suggesting that it is possible to improve reliability by implementing a combined 

infrastructure-technology approach, for example intermittent bus lanes and green 

waves and bus pre-emption (Viegas and Lu 2001), while showing the insufficiency 

of the infrastructure only solution.  
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