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Abstract

While conventional shared demand-responsive transportation (SDRT) systems mostly
operate on a door-to-door policy, the usage of meeting points for the pick-up and drop-off
of user groups can offer several advantages, like fewer stops and less total travelled mileage.
Moreover, it offers the possibility to select only feasible and well-defined locations where
a safe (de-)boarding is possible. This paper presents a three-step workflow for solving the
SDRT problem with meeting points (SDRT-MP). Firstly, the customers are clustered into
similar groups, then meeting (and divergence) points are determined for each cluster. Finally,
a parallel neighbourhood search algorithm is applied to create the vehicle routes. Further,
a simulation with realistic pick-up and drop-off locations based on map data is performed
in order to demonstrate the impact of using meeting points for SDRT systems in contrast
to the door-to-door service. Although the average passenger travel time is higher due to
enhanced walking and waiting times, the experiment highlights a reduction of operator
resources required to serve all customers.
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1 Introduction

Demand-responsive transportation (DRT) services, also known as Dial-a-Ride, provide a mo-
bility solution based on door-to-door transportation on request. They can be operated by
companies or statutory authorities. Initially intended as a service with restricted usage (such
as for disabled or elderly), it attracted more attention in recent years due to emerging mobility
solutions and the shortcomings of conventional public transportation systems (Nelson et al.,
2010; Navidi, Ronald, and Winter, 2016). The DRT trend is further boosted by the rapid devel-
opments in information and communication technologies which help to automatically process
requests and assign vehicles.

While taxi and conventional DRT services accommodate mostly one customer (or a cus-
tomer group) at a time, shared demand-responsive transportation services (SDRT) aim at util-
ising idle resources by combining several requests with similar itineraries and time schedules.
Although this induces possible detours to accommodate multiple passengers, the service costs
can be reduced and the vehicle capacity utilization can be improved. Growing traffic problems
such as congestion or pollution in urban areas encourage a shift towards shared mobility as
a more sustainable practice. In the last decade, many companies have launched new shared
demand-responsive transportation services, including popular companies like UberPOOL1 and
Lyft Line2, and smaller local startup companies such as Bridj3 (Boston, Kansas), Via4 (New
York, Chicago, Washington D.C), CleverShuttle5 (Berlin, Leipzig, München), and Allygator6

(Berlin).
Most of the SDRT services focus on door-to-door transportation, offering passengers the abil-

ity to choose the desired pick-up and drop-off location by themselves. However, some recently
launched SDRT service providers, such as Uber, Bridj and Via, deviate from this paradigm and
operate on a meeting-point-based mode. The passengers are expected to walk to a meeting point
recommended by the system and, after the ride, are dropped off at another predefined point,
close to their desired destinations. Moreover, multiple passengers can be grouped together and
picked-up (and dropped-off) at the same meeting (and divergence) point. This provides the
benefit of reducing the number of stops and the service time. Stiglic et al. (2015) have shown
that, in a ride-sharing system, the use of meeting points also has the ability to improve the
percentage of matched participants and to reduce the total mileage of vehicles.

In the literature, the use of meeting points has not gained much attention compared to
conventional door-to-door DRT systems. Although there are some simulation studies that
investigate the impact of meeting points, the actual determination of eligible meeting points in
a real city environment is mostly neglected. Often, the Euclidean plane is used for simulation, or
all vertices of the street network are considered as potential meeting point location (e.g. Stiglic
et al. (2015); Balardino and Santos (2016); Aissat and Oulamara (2014)). In reality, however,
suitable locations for a safe and convenient pick-up and drop-off are not ubiquitous, since it may
not be possible to stop at a junction or in the middle of a street. Moreover, feasible meeting
point candidates, such as public parking areas, are usually unequally distributed within the city
area and dissimilarly reachable by vehicles and pedestrians. Further, the road network may
contain obstacles and one-way streets that require large detours to reach some meeting points.
Hence, the impacts of these limitations need to be investigated regarding a SDRT scenario.

Besides, the naming of meeting points is not consistent in the literature. Frequently used

1http://www.uber.com/de/ride/uberpool
2http://www.lyft.com/line
3http://www.bridj.com
4http://ridewithvia.com/
5http://clevershuttle.org/
6http://www.allygatorshuttle.com/
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denominations include meeting point, pick-up point, boarding point, stopping point, ride-access
point and rendezvous point ; and correspondingly: drop-off point, deboarding point and leaving
point. For the sake of consistency, the denominations meeting point (MP) and divergence point
(DP) will be used in this paper.

This paper presents a workflow towards a realistic inclusion of meeting points for SDRT
services in urban areas. The approach uses real-world meeting points, such as from Open-
StreetMap7. The resulting SDRT with meeting points (SDRT-MP) problem is solved with a
multi-step approach. Firstly, the incoming requests are clustered into groups of equal size. In
the second step, feasible pick-up and drop-off locations for each cluster are obtained while en-
suring acceptable walking distances and time windows. If it is potentially beneficial, multiple
alternative meeting point locations are proposed, which are considered within the routing op-
timisation. Finally, a vehicle routing optimisation algorithm is applied to determine efficient
routes with meeting points to serve the customers. Experimental results show that the use
of meeting points can offer several benefits especially for the service operator compared to a
conventional door-to-door service.

The paper is organized as follows. The review of related works in the literature is presented
in the next section, followed by a detailed description of the proposed workflow in Section 3.
Subsequently, a simulation experiment (Section 4) is presented, followed by the results (Section
5) and a discussion (Section 6).

2 Literature Review

This section covers related works to the given problem. Firstly, an introduction to general
vehicle routing problems is given, followed by a subsection on clustering techniques. Finally, a
review on other works that deal with meeting points is presented.

2.1 Capacitated pick-up and drop-off problem with time windows

The fleet management of a DRT service is commonly referred to as the Dial-A-Ride Problem
(DARP). The DARP aims to create an efficient route plan in order to satisfy a set of transporta-
tion requests. Each request consists of a set of users, intending to travel from an origin to a
destination within associated pick-up and drop-off time windows. As long as the capacity of the
vehicles is not exceeded, requests with similar itineraries can share the same vehicle. Typically,
hard time windows are assumed where customers must be visited within the nominated time
windows for the solution to be feasible. However, with soft time windows, vehicle routes are
penalized but still considered feasible if they arrive at the customer locations outside of the time
window. A DARP can be placed into two categories, namely a static case, where all requests
are known in advance, and a dynamic case, where some or all of the requests appear on short
notice. This paper only focuses on the former, which is essentially the capacitated pick-up and
delivery (or drop-off) problem with time windows (CPDPTW). It was defined by Savelsbergh
and Sol (1995) and is proved to be NP-hard. A survey of the CPDPTW is presented by Parragh,
Doerner, and Hartl (2008).

There are a number of exact solution methods for the CPDPTW in the literature, such
as dynamic programming (Psaraftis, 1986; Desrosiers, Dumas, and Soumis, 1986); mixed in-
teger programming (Ropke and Cordeau, 2009; Baldacci, Bartolini, and Mingozzi, 2011) and
constraint programming (Zhou, 2009). Furthermore, there are several approximation methods,
which can be categorised as solution construction techniques (Lu and Dessouky, 2006; Gronalt,
Hartl, and Reimann, 2003), solution improvement approaches (Hasle and Kloster, 2007; Bent

7http://www.openstreetmap.org/
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and Hentenryck, 2006; Ropke and Pisinger, 2006), and others that do not fit into these categories
(Xu et al., 2003; Koning, van den Akker, and Hoogeveen, 2011). Popular global optimisation
techniques, such as genetic algorithm (Pankratz, 2005; Hosny and Mumford, 2009; Nagata and
Kobayashi, 2010) and ant colony optimisation (Badaloni et al., 2008; Huang and Ting, 2010),
can also be used to solve the CPDPTW. Arguably, the most common solution method used
to solve a CPDPTW is the neighbourhood search heuristic (Bent and van Hentenryck, 2004;
Ropke and Pisinger, 2006; Pisinger and Ropke, 2010; Demir, Bektaş, and Laporte, 2012; Ribeiro
and Laporte, 2012; Azi, Gendreau, and Potvin, 2014; Li et al., 2016), sometimes coupled with
a column generation method to reduce the scale of the resulting optimisation problem (Feillet,
2010).

The use of meeting points in SDRT creates a new type of problem, CPDPTW with meeting
points (CPDPTW-MP), and introduces two novel challenges. Firstly, the formulation in the
literature needs to be modified to include the possibility of selecting a meeting point from a
number of alternatives. Secondly, typical to other optimisation problems, CPDPTW suffers
from the curse-of-dimensionality, which is worsened by the introduction of meeting point selec-
tion in CPDPTW-MP. A common approach to handle the scalability issue is to decompose the
problem into assignment problem and single-vehicle routing problem (Cordeau and Laporte,
2007).

2.2 Demand clustering

Clustering techniques are a common heuristic to solve and combat the computational complexity
of DARP. In general, there are two clustering approaches used for DARP: vehicle based and
spatio-temporal based clustering.

In a vehicle based approach, the requests are clustered, and a single vehicle is assigned to
serve each group (Bodin and Sexton, 1986; Desrosiers, Dumas, and Soumis, 1986; Borndorfer
et al., 1999; Pankratz, 2005; Häme and Hakula, 2015). This approach is also commonly referred
to as the assignment problem. What follows is multiple single-vehicle routing problems, which
can be solved independent of each other. The popularity of this approach is attributed to the
fact that it provides a partial solution to the DARP by dividing it into two simpler subproblems.
In addition, the solution is often defined over a graph representation of the actual DARP, which
implies that there are some spatial, and in some cases temporal, constraints.

The second approach used spatio-temporal constraints to cluster the requests (Cullen, Jarvis,
and Ratliff, 1981; Gidofalvi et al., 2008; Ma, Zheng, and Wolfson, 2013; Mart́ınez, Viegas, and
Eiró, 2014; Morris et al., 2016). In the routing optimization phase, each cluster is treated as
a single trip/request. Using this approach it is possible to serve two clusters using a single
vehicle at the same time. Hence, it allows for a more flexible routing optimisation phase. The
clustering technique used in this paper falls into this category. It is based on nearest neighbour
calculations akin to those in pattern recognition and data analysis.

2.3 Meeting points in ride-sharing

In contrast to conventional door-to-door services, the use of meeting points can offer some
advantages at the cost of additional customer walking. A common assumption is that people
will walk on average 400 m without objection, with an acceptable maximum walking distance
of 800 m (Untermann, 1984; Hess, 2012; Millward, Spinney, and Scott, 2013). Although these
estimations vary, it can be argued that a pick-up and drop-off at the doorstep is not essential
for the general population, except for the disabled or elderly. The longer walking and waiting
time can, on the other hand, be sacrificed for a lower transportation price.
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There are several reasons why meeting points can be advantageous for a standard DRT
service:

• The reduction of the number of stops naturally also reduces the overall service time of the
vehicles.

• An appropriate meeting point can be chosen, providing a safe boarding and a convenient
parking.

• Easier identification for both the vehicle and the passenger since more precise, non-
ambiguous location descriptions can be provided.

• The real origin and destination locations of the customers are not necessarily disclosed
or can be obfuscated with some techniques due to privacy reasons (Aı̈vodji et al., 2016;
Goel, Kulik, and Ramamohanarao, 2016).

• It encourages walking that increases daily physical activities, the lack of which may lead
to severe medical consequences (Ewing et al., 2003, 2014; Giles-Corti et al., 2016).

In general, meeting points have mostly been studied in the scope of ride-sharing and car-
pooling, where it is essential to determine a meeting location for a driver/passenger match. For
scientific experiments, they are sometimes placed on the Euclidean plane (Stiglic et al., 2015;
Häll, Lundgren, and Värbrand, 2008) or the result of an optimization, e.g. as cluster centroid
locations (Mart́ınez, Viegas, and Eiró, 2014). More detailed settings use the street network
for the MP determination. In a ride-sharing scenario, Balardino and Santos (2016) assign pas-
sengers and drivers to meeting points based on a real street network, enforcing a maximum
detour length of the driver and a maximum vehicle capacity. Once drivers and passengers are
paired, Yan, Zhao, and Ng (2011) present an optimal and a greedy solution method if only
one meeting point is needed. Alternatively, Aissat and Oulamara (2014, 2015) propose several
exact and heuristic methods based on extensive shortest path computations to find meeting and
divergence points.

In the literature, there have been mixed results on the impact of meeting points for SDRT.
Häll, Lundgren, and Värbrand (2008) simulated a DRT as a part of an integrated public trans-
port system, where the meeting points are uniformly placed based on a grid. They discovered
that the MP-based operation does not seem to give any major differences in the simulation
results compared to a door-to-door service concerning the efficiency. However, they also state
that if the operator can select the MPs of the customers, the MP solution may be more ben-
eficial. Stiglic et al. (2015) found that, in a ride-sharing scenario based on real-world demand
data, the introduction of meeting points can improve several metrics, including the percentage
of matched participants and mileage savings. This contradiction demonstrates the need for
further investigation on the impacts of MP in SDRT services.

3 Solution workflow

This section describes the proposed workflow used to solve the SDRT-MP. It basically consists
of three discrete steps:

1. Clustering

2. MP candidates selection

3. Routing Optimisation with final MP selection

5



Figure 1 visualizes the processing chain. In a nutshell, the demand (Figure 1a) is initially
clustered into groups with similar itineraries and time schedules (Figure 1b). Secondly, each
group is separately split into trips, with each trip having a common meeting and divergence
point and potential alternative meeting points (Figure 1c). Finally, the vehicle routing problem
is solved to construct routes (Figure 1d). All steps are explained in detail in the course of this
section.

(a) Initial state with six customers (b) State after clustering (step 1)

(c) State after MP candidates selection (step 2) (d) State after vehicle optimization (step 3)

Figure 1: Basic workflow with clustering, MP selection and route optimization

In this paper, a neighbourhood search approach is applied to solve the vehicle routing
optimization (Step 3). Since this step is very time consuming when being performed on large
input data, a modified five-step version is used to enable a parallel processing. For this, the
trips resulting from Step 2 are again clustered (Re-Clustering step) to partition the trip data
into equally large instances. For the Re-Clustering, the same technique as in step 1 is used.
The clustered trips are then processed by the route optimization solver in parallel. Since the
partitioned instances are much smaller, the computation time is significantly reduced. Finally,
a Concatenation step is necessary to merge the different vehicle routes again, which is explained
in more detail in Section 3.5.

In the following, the data prerequisites and the details of each step of the parallel version of
the workflow are described.

3.1 Data prerequisites

The proposed workflow needs the following input and parameters:
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• Street Network. A network graph G = (V,E) consisting of vertices V and directed
edges E. Each edge e ∈ E has a distance d(e), and a corresponding vehicle driving time
tdriv(e) and / or a corresponding passenger walking time twalk(e), depending on the type
of edge (e.g. footpaths have no defined vehicle driving times).

• Meeting Point Candidates. A set of predefined meeting point candidates µ ∈M ⊂ V
and a set of potential divergence point candidates δ ∈ D. In this paper, these two sets are
considered as equal, so that M = D. A method to identify the meeting point candidates
is presented in Section 4.3.

• Demand. A set of passenger requests P , where each passenger ρ ∈ P defines an origin
vertex v+, a desired destination vertex v−, and a desired departure time t+.

Table 1: Workflow parameters.

Notation Unit Description Value used
for simulation

twait∗ s Maximum passenger waiting time 1200 s
dwalk∗ m Maximum passenger walking distance 800 m
tdetr∗ s Maximum allowed vehicle detour time 1200 s
rdetr∗ % Maximum allowed vehicle detour time percentage 25 %
tserv∗ s Vehicle service time (for boarding/alighting procedure) 120 s
σ % Shortcut ratio threshold (see section 3.3) 50 %

k1 - Maximum cluster size for the initial clustering 11 passengers
k2 - Maximum cluster size for the re-clustering 10 trips

q∗ - Maximum vehicle capacity 9 passengers
cdist∗ km−1 Vehicle distance dependent cost 1 / km
cvehi∗ - Vehicle capital cost 2000
cwait∗ s−1 Passenger wait time cost 0.5 / second
clate∗ s−1 Passenger late time cost 5 / second
α - Passenger wait time cost growth 0.5
β - Passenger late time cost growth 2

Depending on the maximum passenger walking distance dwalk∗ , each passenger ρ ∈ P is able
to walk to/from a set of reachable meeting points Mρ and divergence points Dρ, respectively.
Furthermore, the maximum allowable detour time of a passenger is capped by tdetr∗ , which is
useful to avoid unreasonably long detour on long trips. The resulting maximum detour time is
used in the calculation of the latest acceptable arrival time at the destination t−ρ as follows:

t−ρ = t+ρ + twait∗ + tserv∗ + min
(
tdriv

(
v+ρ → v−ρ

)
+ tdetr∗ , tdriv

(
v+ρ → v−ρ

)
· rdetr∗

)
. (1)

3.2 Clustering

The clustering method in this paper is used to cluster similar transportation requests into groups
that are limited in size. It utilises a similar idea to those in the field of data analysis, where
abstract points in space are classified using various distance measures in multiple dimension.
Although typically maximum spatial and temporal constraints are imposed on clusters, the
proposed workflow in this paper applies the constraint checking during the MP candidates se-
lection step (section 3.3) to use actual distances based on the street network instead of Euclidean
distances.
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In a similar fashion to many classification algorithms (Hastie, Tibshirani, and Friedman,
2009, chapter 14), we consider a vector of features x = [x1, x2, . . . , xN ]T , which in this case are
the properties of a transport request:

x = [origin coordinates, destination coordinates, desired departure time]T . (2)

The cost function is defined as the Euclidean distance d(xi,xk) =
√∑n

j=1(xi,j − xk,j)2, where

xi,j is the jth element of vector xi. To generalize this, consider a cluster C that is a set of
transport requests, then the distance of a new transport request x from cluster C is determined
by

d(C,x) :=

{∑
c∈C d(c,x) if C 6= ∅

0 if C = ∅
(3)

In this paper, the maximum number of requests in the cluster is fixed, so that the created
groups are equally sized. The clustering works iterative, so that it processes one request after
another. To gain better understanding of this consider a matrix X such that the rows are made
of transport requests xi where i is the number of rows i.e. requests. In the beginning of the
clustering procedure we have C = ∅. The cost for the first request x0 in X is determined using
Equation (3.2) which is equal to zero since C is empty. This is the smallest possible cost for
the clustering, hence x0 is added to C and x0 is removed from X. In the next step, the cost
from the cluster C to all other vectors is calculated using Equation (3.2) and the vector that
has the smallest cost is added to C. This is repeated until the maximum allowed size of groups
is reached in C, after which the whole process is repeated again until all request are processed.

A compact description of the clustering procedure is presented in Appendix 7 (Algorithm 1).

3.3 Meeting Point Candidates Selection

In this step, feasible meeting and divergence points are assigned to the previously determined
clusters. Since the previous clustering step does not use the street network but Euclidean dis-
tance, each group may have to be subdivided to satisfy the walking and time window constraints
of the customers under real-world conditions. The output of this step is a set of trips, each being
a tuple of MPs and DPs to be considered in the vehicle routing phase.

3.3.1 Single MP / DP Selection.

Firstly, each cluster is divided into trips, each having a single MP and DP. A trip τ is defined
as a tuple consisting of one or more passengers with one or more meeting and divergence point
candidates and corresponding time windows, as formula 4 shows. tE means here earliest possible
arrival, whereas tL indicates the latest possible arrival time at a meeting point.

τi =
(
{ρi,1, ρi,2, · · · }, {

(
µi,1, t

E (µi,1) , t
L (µi,1)

)
,
(
µi,2, t

E (µi,2) , t
L (µi,2)

)
, · · · },

{
(
δi,1, t

E (δi,1) , t
L (δi,1)

)
,
(
δi,2, t

E (δi,2) , t
L (δi,2)

)
, · · · }

)
(4)

A trip is considered as feasible if the time windows and walking distances are within the
thresholds for all customers of the trip. The earliest and latest pick-up times for a MP µ are
determined by

tE(µ) = t+ + twalk(v+ → µ), (5)

tL(µ) = t+ + twalk(v+ → µ) + t∗wait (6)

8



whereas the earliest and latest drop-off time for a DP δ are calculated by

tE(δ) = t+ + tdriv(v+ → v−)− twalk(v− → δ)− tserv∗ , (7)

tL(δ) = t+ + twait∗ + min
(
rdetr∗ · tdriv

(
v+ → v−

)
, tdriv

(
v+ → v−

)
+ tdetr∗

)
− twalk

(
v− → δ

)
− tserv∗
(8)

respectively.
The stated problem can be interpreted as set covering problem, where the task is to find the

smallest number of subgroups that satisfy the walking and time constraints of the passengers
out of a given cluster. The set covering problem was shown to be NP complete by Karp (1972);
nevertheless, due to the limited size of the clusters resulting from step 1, we propose an exact
recursive algorithm to solve the given set covering problem.

Initially, the algorithm attempts to put all customers within a cluster into a trip with a
common meeting and divergence point. If this is spatially and/or temporally infeasible, the
group is split into all possible subgroup combinations, and their feasibility is checked likewise.
This is done recursively for each subgroup until a feasible solution is found how the group can
be split up. The main objective is to split the initial cluster into as few separated trips as
possible. If there are multiple different combinations with the same amount of necessary trips,
the combination with the least sum of squared walking distances of all customers is chosen. The
squaring is applied to penalize longer walking distances more than short distances to equally
distribute the walking distances among the passengers.

As stated above, the method is NP-complete. However, by storing the intermediate re-
sults during the recursive process the computation time can be considerably reduced (dynamic
programming approach). Thus it is possible to process reasonably sized clusters within an ac-
ceptable time (see Figure 4 for an experimental determination of a limitation). The proposed
MP candidates selection method is outlined in Appendix 7 (Algorithm 2).

3.3.2 Alternative MP / DP Selection.

The previously described algorithm returns exactly one MP and DP (including time windows)
for each trip. However, there can be other meeting points worth considering from the operators
perspective. For instance, consider the scenario shown in Figure 2. In this case, the closest
meeting point from the passenger origin (Point A) is chosen, which is located north of the
motorway. Two other meeting point candidates, namely B and C, would also be feasible for
the trip, but they have not been chosen because of longer walking distances. For the operator,
however, it could be advantageous in the routing phase to also consider C, since it offers the
possibility to approach the passenger from the south without having to take a large detour
around the motorway. From the passenger’s perspective, it is only a minor extension of the
walking path via the footbridge. To combat this, a second algorithm is proposed to identify
alternative meeting points.

Using a shortcut ratio threshold σ, an alternative meeting point candidate µa is considered
if

tdriv(µ→ µa)

twalk(µ→ µa)
≥ σ, (9)

where µ is the initially identified meeting point candidate. In the example shown in Figure
2, Point C is likely to satisfy (9), whereas Point B is unlikely. A larger σ indicates fewer
alternatives, which helps to reduce the input size of the vehicle routing problem. For faster
computation times, all ratio values between all meeting point pairs can be precomputed and
stored. The proposed algorithm is outlined in Appendix 7 (Algorithm 3). It recursively checks
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the next best option until no further useful alternative can be found. Also, note that the
corresponding time windows of the alternative meeting points have to be checked.

Figure 2: Schematic drawing of a situation with useful alternative meeting point search

3.4 Route Optimization with Final Meeting Points Selection

In this step, the trips having one or more meeting point alternatives resulting from the previous
unit are combined and concatenated to vehicle routes. In order to speed up the process, a
second clustering is initially applied on the trips to form equally sized trip bunches with similar
itineraries, which can then be solved in parallel. For this, the already described clustering
method (section 3.2) is reused, however with a different threshold (k2). Certainly, this makes it
necessary to append a postprocessing step to combine the results of the simultaneously derived
vehicle routes (section 3.5).

The proposed route optimisation problem itself differs from those in the literature mainly
because of the alternative meeting points for each boarding/alighting procedure that introduces
an extra complexity to the problem. The presented approach of the route optimisation problem
follows the formulation by (Kutadinata, Thompson, and Winter, 2017), which is similar to
typical vehicle routing problems (Cordeau and Laporte, 2007; Ropke and Pisinger, 2006; Li
et al., 2014).

The problem is formulated as an optimisation model on a directed graph (which is a different
graph to the previously defined directed street graph G). Firstly, the stops to be visited are
represented by a set of nodes, which include the vehicle starting points, meeting and divergence
points, and a depot. Note that although each stop can have multiple alternative meeting points,
it is still represented by one node. The alternative meeting points modelling will be explained
later in this subsection.

Although the vehicles are located at the depot at the beginning, the formulation differenti-
ates between the starting points and the depot to accommodate the vehicle capital cost (which
will become obvious later in the formulation). Next, the index set V = {0,S,M,D} is assigned
to these nodes, where S is the set of ν starting nodes of vehicles, M is the set of n meeting
point vertices, D is the set of corresponding n divergence point vertices, Node 0 is the depot,
and a demand is represented by a pair of meeting and divergence points (i, n+ i). These nodes
are connected with directed edges, where each edge indicates a possible route to be traversed
by the vehicles. Let E be defined as the set of all directed edges in the network. A directed
edge εi,j ∈ E connects a pair of nodes, from Node i to Node j, that belongs to one of the
following subsets: for each i ∈ S, j ∈ {0} ∪M; for each i ∈ M, j ∈ M ∪ D; for each i ∈ D,
j ∈ V \ {S ∪ i− n}.

Each node is associated with several parameters that define the trip demand. Similarly,
each directed edge is associated with distance and travel time parameters. To take into account
the multiple alternative meeting points, some of these parameters are functions of the chosen
meeting points. For each i ∈M∪D, let Ni be the number of alternative meeting points for node
i. Thus, define A = [m1 m2 . . . mν+2n+1], where mi ∈ {1, 2, . . . , Ni} is the chosen meeting
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point alternative for node i. Having established this, all the graph parameters can be defined
as follows. Let [tEi (mi), t

L
i (mi)] be the associated time-window of node i when mi is chosen.

Note that the time windows are treated as soft constraints. Furthermore, let di,j(mi,mj) and
ti,j(mi,mj) be the travel distance and time from node i to node j. In addition, each node has
an associated service time si and a load qi. For i ∈ {0}∪S (the depot and the starting points),
si = qi = 0, Ni = 1, and [tEi (1), tLi (1)] = [0,∞]. For the other nodes, si = tserv∗ . Moreover, in
order to keep track of the vehicle loads, let qki be the passenger load on-board vehicle k when it
leaves node i.

Finally, the optimisation formulation is ready to be presented and the decision variables can
be defined. Let uki denotes the time vehicle k starts servicing node i. The starting point of
each vehicle k is similarly denoted with the index k and sk = 0. Hence, the variable ukk (which
technically is the start of the service time of vehicle k at node k) indicates the first departure
time of vehicle k from its starting point. Similarly, uk0 represents the final arrival time at the
depot. The binary variable xki,j is defined to decide whether vehicle k traverses from node i to

node j. Thus, the decision variables are the service time uki , the binary variable xki,j , and the
meeting points A. The optimisation problem is formulated as follows:

min
x,u,A

∑
i∈M∪D

(
cwait∗ max{uki − tEi (mi), 0}α + clate∗ max{uki − tLi (mi), 0}β

)

+
∑
k∈S

cvehi∗ sgn
(
uk0

)
+
∑
i,j∈V

cdist∗ xki,jdi,j(mi,mj)

 (10)

subject to:

∑
k∈S

∑
j∈V

xki,j

 = 1 ∀i ∈M, (11)

∑
j∈V

xki,j =
∑
j∈V

xkn+i,j ∀i ∈M,∀k ∈ S, (12)

∑
i∈V

xkk,i =
∑
i∈V

xki,0 = 1 ∀k ∈ S, (13)∑
j∈V

xki,j =
∑
j∈V

xkj,i ∀i ∈M∪D, ∀k ∈ S, (14)

ukj ≥ max
{
uki + si + ti,j(mi,mj), t

E
j (mj)

}
xki,j ∀i, j ∈ V, ∀k ∈ S, (15)

uki+n ≥ uki ∀i ∈M,∀k ∈ S, (16)

qkj = (qki + qj)x
k
i,j ∀i, j ∈ V, ∀k ∈ S, (17)

0 ≤ qki ≤ q∗ ∀i ∈ V,∀k ∈ S, (18)

where sgn(·) is a function that returns the sign of the input scalar. For a further parameter
description we also refer to table 1.

The formulation ensures that each customer is picked-up only once and is dropped-off at the
destination by imposing (11) and (12). Furthermore, a vehicle has to start at its corresponding
starting point and ends its route at the depot as enforced by (13) and (14). Constraint (15)
provides a lower bound on the arrival time of a vehicle at a node and (16) ensures that the
drop-off occurs after the corresponding pick-up. Note that uki can be zero if vehicle k never
visits node i. Finally, (17)–(18) are constraints for the passengers load of each vehicle.
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The first summation in the objective function is the “service level cost”, which takes into
account the passengers late time, pick-up wait time, and detour time. The parameters α and β
are introduced to enable various polynomial forms of penalty terms. For instance, a quadratic
term (α = 2) can be used to penalize longer wait/late times more than short wait/late times.

The first term in the second summation is the capital cost of each vehicle used. In a typical
scenario, the vehicles start and end at the same depot. Due to (13), if a vehicle k never leaves
the depot (i.e. is never used), the solution of the formulation would still indicate that the vehicle
“travels” back to the depot (xkk,0 = 1), however with no costs assigned. Finally, a route length
minimisation is taken into account by the last term of the objective function.

With this formulation, the time windows are treated as penalty terms instead of hard con-
straints, which is different to typical formulations in the literature (Bent and van Hentenryck,
2004; Cordeau and Laporte, 2007; Ropke and Cordeau, 2009; Baldacci, Bartolini, and Mingozzi,
2011). This allows the optimisation algorithm to choose a solution that has late services that
are justified by the savings in other aspects. Typically, higher penalty weight parameters are
used to avoid unreasonable number of late arrivals. However, if hard time window constraints
are desired, simply choose very large penalty values. Finally, a two-layer neighbourhood search
algorithm is used to solve the optimisation. The top layer optimises the trip allocation to
vehicles, which repeatedly calls the bottom layer that optimises the route of each vehicle in-
cluding the meeting and divergence point selection. The algorithms are presented in Appendix
7 (Algorithms 4 and 5).

3.5 Route concatenation

The output of the optimisation process in the previous step is a group of routes, each route
performed by a vehicle. Since the optimisation of the previous step can be performed in parallel
for each cluster of trips, some of the routes can now be concatenated to reduce the total number
of routes (and consequently the total number of vehicles used). Thus, this step can be described
as a problem of maximising the number of concatenations by using a Linear Programming (LP)
approach. To ensure that a concatenated route can still be feasibly served by a vehicle, a
constraint is applied to ensure that there is enough time to travel from the last stop of a
precedent route to the first stop of the subsequent one.

Let R be the set of all routes produced by the route optimisation process. A route ri ∈ R
is defined by the tuple {tsi , bsi , tei , bei}, where tsi is the start of the service time of the first stop
of ri (that is not the vehicle starting point), bsi is the location of the first stop of ri, t

e
i is the

end of the service time of the last stop of ri (that is not the depot), and bei is the location of
the last stop of ri. Moreover, tdriv(bei → bsj) is the vehicle travel time from the last stop of ri
to the first stop of rj . Furthermore, define the decision variable xi,j , which is equal to one if
rj is appended to the end of ri, and zero otherwise. The optimisation aims at maximising the
number of concatenation as follows:

max
x

∑
i,j

xi,j (19)

subject to:
tei + tdriv(bei → bsj) ≤ tsj , ∀i, j. (20)

The proposed concatenation approach is also visualized as a simplified 2D version in Figure
3. Note that the final statistics presented in this paper are the output of the LP problem.
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Figure 3: Concatenation of routes to form longer ones

4 Simulation experiment

To evaluate the potential benefits of the use of meeting points as proposed by the workflow,
a simulation experiment is carried out, comparing the performance of a meeting-point based
service (MP) with a conventional door-to-door service (DS) used as a baseline scenario. In the
MP service, all steps of the proposed workflow are executed, whereas the DS service only uses
the vehicle routing optimization, applied on the raw demand data. As a result, this simulation
focuses on highlighting the benefits of Steps 1 and 2 rather than the route optimisation itself.
Note that for the simulation experiments, the parallel version of the route optimization is used
in order to speed up the computation and solve the instances within a reasonable CPU time.

4.1 Simulation setup

The simulation experiment investigates the impact of using meeting points for various demand
densities. It is expected that, as the demand density increases, the impact of using meeting
points is more significant. To this end, a total of 10,000 passengers are randomly generated
based on the procedure described in Section 4.4 and subdivided into four demand instances
(1000, 4000, 7000 and 10,000). Each demand instance is subjected to both the MP and DS
workflow. To simplify the experiment, only a static problem is considered, i.e. all trips are
known in advance. The parameters used in the optimisation and meeting point algorithm are
shown in Table 1.

The maximum cluster size for the initial clustering is a tuning parameter that balances the
trade-off between the quality of the result and the computation time. Larger clusters lead to
better results since the meeting point determination is exact and yields the optimal solution,
but the computation time grows exponentially. In order to choose a reasonable maximum
cluster size, different values are investigated. Figure 4 shows an experiment based on 5000
customers. The maximum cluster size is varied from 2 to 12; the resulting number of trips and
the computation times are recorded using parallel processing on 4 cores. Based on this result, a
maximum cluster size of 11 has been chosen for the simulation experiment, as it provides good
solutions at still reasonable computation times.
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Figure 4: The number of trips and the computation time for different maximum cluster size
settings

4.2 Street Network

For the simulation experiment, the city of Braunschweig, Germany, is used as spatial tem-
plate. It is a medium-sized city with 250,000 inhabitants and a typical European city structure:
The centre is dominated by its historical core with an irregular street network and pedestrian
precincts, surrounded by a densely populated area with a more regular street network. In the
outskirts, the population density is significantly lower and there are some industrial areas.

The street network has been obtained from OpenStreetMap8 and transformed into a routing-
enabled graph (Figure 5a). As previously mentioned in Section 3.1, vehicle driving times
tdriv(vi → vj), passenger walking times twalk(vi → vj) are calculated for every edge e ∈ E. The
driving time depends on the maximum allowed speed. The walking time twalke is determined
by assuming a constant walking speed of 4.8 km/h, using the mean speed for active-transport
walking trips revealed by Millward, Spinney, and Scott (2013). The traversal of footpaths, cycle
ways and stairways is prohibited for vehicles. Likewise, pedestrians are not allowed to walk on
major roads or motorways.

As potential origins, residential buildings from a Level-of-Detail 1 building model of the city
of Braunschweig (Municipality of Braunschweig, 2016) with a size of more than 100 m2 are
added to the network. Likewise, workplace buildings are used for potential destinations. All
considered buildings are connected to the street network to model the whole path of the user
(Figure 5b). In total, the network consists of 88381 nodes and 99497 edges, including 26845
potential home and 2615 potential work locations.

8http://www.openstreetmap.org/
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Figure 5: Investigation area: City of Braunschweig, Germany

4.3 Meeting point candidates

Feasible MP candidates µ ∈M (and, consequently, also DP candidates) are identified automati-
cally in the map data obtained from OpenStreetMap. In order to ensure safety and convenience
aspects like boarding places with reduced traffic, possibilities to park and easily recognizable
places, the candidate locations are limited to the following selection:

• publicly accessible parking places without parking fees,

• side road intersections (with all adjacent roads having a maximal speed of ≤ 30 km/h),

• turning areas (mostly at the end of a cul-de-sac),

• petrol stations.

All geoobjects are extracted by a GIS workflow from an OpenStreetMap file. Parking areas
and petrol station areas are converted to point features using the centroid. Each identified
candidate is then connected to the street network G with an edge between the meeting point
location and the closest point on the closest edge. If the closest edge is not reachable by vehicles
(such as a footpath), a second edge is inserted to the closest drivable edge. The same procedure
is applied for edges not accessible by foot. In total, 3475 meeting points have been detected
within the investigation area. In relation to the total investigation area size of 193 km2, the
overall MP density is approximately 18 per km2, and in dense urban areas up to 40 MP per
km2. The observed mean distance to the nearest neighbouring MP is approximately 70 meters.

Compared to the total number of nodes in the graph (excluding house connections) with
approximately 30 000 nodes, the number of candidate locations is relatively low compared to
other works that use all street nodes as candidate locations, like Balardino and Santos (2016).
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4.4 Random demand

A set of randomly generated passenger requests P is used, defining for each passenger ρ ∈ P
an origin node v+ρ , a desired destination node v−ρ , and a desired departure time t+ρ . For the
DS case, the closest node that is reachable by vehicles is stored as the origin, and for the
destination likewise. The spatial distribution of the trip requests is based on a weighted sampling
of building data. Specifically, the probability of a building to be chosen as origin or destination
is proportional to its volume. To prevent huge factory buildings to be chosen disproportionately
often, the probability of a building being selected is capped equivalent to having a volume of
10000 m3. Figure 6 visualizes the spatial distribution of customers within the investigation
area.

Furthermore, trip requests having their destination within 2000 m Euclidean distance of
the origin are avoided since the passengers are assumed to walk or cycle. Figure 7a shows the
resulting distribution of direct travel times via driving between origins and destinations.

(a) Customer origin locations (b) Customer destination locations

Figure 6: Distribution of customer origins and destinations within the investigation area

In order to simulate a busy morning commute peak, the temporal distribution of the requests
follows a Gaussian distribution centred at 07:00 am with a standard deviation of 30 minutes
(Figure 7b). Moreover, as there are no actual depots in this problem, the depot location is
chosen as the node which has the smallest maximum travel time to the other nodes in the
network graph.
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Figure 7: Statistics about randomly generated customer demand

5 Results

Figure 8 shows the group size histogram after the MP candidates selection step for four cases
with different total number of customers (up to 40,000). While after the initial clustering phase
nearly all groups have the maximum allowed size (in our case 11), the next step splits these
groups into feasible subgroups. The result naturally correlates with the average number of
customers per pick-up (Figure 9a). Generally, it can be stated that, with increasing number of
customers, the portion of bigger groups increases as more people with similar itineraries and
time schedules can be grouped together. On the other hand, in our study area of Braunschweig,
4000 passengers are already sufficient for a majority of people to share their rides. This also
inherently reduces the number of necessary boarding and de-boarding service stops for the ve-
hicles (Figure 9b), since they have to stop only once for a group instead of stopping for every
single customer. Naturally, the savings are higher when the demand is dense. With 5000 cus-
tomers, the number of necessary stops is reduced by 33 %, while it is halved at about 15000
customers.

After the vehicle routing optimization phase, several further statistics about actual vehicle
usage and trip times can be derived (see tables 2 and 3 in the appendix). Figure 10 gives
an impression about the potential benefits for the operator when using meeting points (MP)
instead of offering pick-ups at the doorstep (DS). While the effect is relatively small in low
demand cases, the benefits are more significant with increasing number of customer requests.
All plots in Figure 10 show a similar trend. In the 10000 customers case, the savings in time,
kilometre, and fleet size is up to 30%. In addition, there are fewer dead kilometres (the distance
travelled when the vehicle is without a passenger) in the MP case.
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Figure 9: Comparison between meeting point and doorstep simulation concerning trip size. DS
= Doorstep, MP = Meeting Points
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Figure 10: Comparison between meeting point and doorstep simulation concerning vehicle
statistics (DS = Doorstep, MP = Meeting Points)
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Figure 11, on the other hand, shows the dimension of drawback for the passengers resulting
from the usage of meeting points. Naturally, the walking time is an additional factor that has to
be considered in the total travel times (Figure 11a). The average walking times in our example
range from 6 to 8 minutes, including the walking time from the alighting point to the destination.
For the doorstep case, the walking time is obviously zero. In addition to the walking time, the
average waiting times at the meeting points are higher compared to the doorstep case (Figure
11b), since passengers likely have to wait for other fellow travellers. Here, the average waiting
times for the pick-up are almost doubled when using meeting points, but the absolute values
with about 3 to 5.5 minutes are comparably low. The total travel time differences between
meeting and doorstep case can be seen in Figure 11c.
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Figure 11: Comparison between meeting point and doorstep simulation concerning passenger
statistics (DS = Doorstep, MP = Meeting Points)

6 Discussion

In general, the results show benefits for operators of SDRT systems when using meeting and
divergence points for the pick-up and drop-off procedure. Fewer vehicles, less mileage and a
high reduction of necessary boarding and de-boarding stops can help reducing the operational
costs, especially for cases where the demand is high.

However, these benefits for the operator come at the cost of some inconvenience for the
customers as they have to spend additional time walking and waiting for fellow travellers. On
the other hand, the reductions in operational costs may translate to a benefit for the customers
if the travel price is subsequently reduced. This benefit can be expected to increase if more
customers participate. In cases with a relatively high number of customers, the waiting and
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walking times do not significantly increase as the problem size increases (Figure 10). In contrast,
the operators saving is consistently improving (Figure 11). This is due to the fact that more
customers can be grouped with more flexibility, thereby reducing the distance to the closest
meeting point within the cluster. The walking time in the 1000 customer case (Figure 11a) is
only lower because of the many single traveller which are simply assigned to the closest available
meeting point candidate. The additional walking and waiting times are in general lower than
the difference in detour time (Figure 11c). Thus, the point-to-point transfer times in the MP
case is faster than those in the DS case, which might be caused by the reduced total service
time.

In the simulation of Häll, Lundgren, and Värbrand (2008), it was found that, in general, the
DS case offers a better service for the customers, which can be confirmed by the results of this
paper regarding travel time. However, they found no major differences in the results between
the MP and the DS case and state that, according to their results, a door-to-door service can
be offered without any noticeable loss in efficiency. This contradicts the findings of this paper,
where an improved operational efficiency has been demonstrated (Figure 10).

Despite performed on a ride-sharing system (which only allows one boarding and de-boarding
stop per vehicle), the experiment by Stiglic et al. (2015) also concludes that the introduction
of meeting points can improve a number of performance metrics, such as mileage savings and
an increase in the number of matched riders. In their simulations, the total walking time
is, on average, between 8 and 9 minutes, which is compareable to the finding of this paper.
Furthermore, they state that the average trip time for matched riders increase by approximately
12% due to the walking to or/and from a meeting point. In this paper, the travel time increase
is up to 44%, which can be attributed to the relatively low total travel times (17.5 minutes for
the DS case, 25.3 minutes for the MP case on average). Since Braunschweig is a small city and
congestion is not modelled, all nodes of the city network can be reached within a short time,
and hence meeting and waiting times have a high impact on the result.

A drawback is the computation time of the presented workflow approach, especially for the
vehicle routing optimization. While the instances are still solvable within a reasonable time for
static demand (i.e. a planning problem), the computation time is still too large for real-time
applications using dynamic requests.

7 Conclusion

Shared demand-responsive transportation systems offer the possibility to share travel costs
among several passengers. For an efficient implementation, it is crucial to group people in a
smart way to reduce detours and service stops. This paper introduces a workflow to include
real-world meeting point locations in a SDRT solver, based on a partitioning of the demand.
In a computational study, it has been demonstrated that the usage of meeting points in SDRT
services can be beneficial for the operator in terms of vehicle usage, operation hours and mileage
at the cost of increased travel times for the passengers, mainly due to walking and waiting
times. In real-world applications, the recommended meeting points can offer some advantages
concerning safe boarding and reliable localization. Further works include utilising real-world
travel demand data and the design of an improved solver which can be used for real-time
operation.
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Appendix

Algorithms

Note on notation and algorithms. Medium brackets are use to indicated access to a certain
element in the vector or a set e.g. given a set S, S[0] indicates an access to the first element. From
this you can also notice that we use zero-based indexing which is common in C like languages. In
many algorithms we used mathematical notation for what are common algorithmic procedures,
this allows algorithms to be more compact while still keeping same level of information.

Algorithm 1 Clustering algorithm

Given a set of all requests X and a maximum cluster size kmax.
R ← {}
C ← {}

1: while SizeOf(X) > 0 do . SizeOf(·) returns the number of elements in a set
2: if SizeOf(C) = 0 then
3: C ← C ∪ {PopFront(X)} . PopFront(X) removes and returns first element
4: end if
5: if SizeOf(C) ← kmax then
6: R ← R∪ {C}
7: C ← {}
8: end if
9: x∗ ← min

x∈X
d(C, x) . d(·, ·) is defined in Equation 3.2

10: C ← C ∪ {x∗}
11: end while
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Algorithm 2 describes the procedure for the meeting point determination for a given demand
cluster. The mentioned 2-Combinations function yields all possible paired combinations of
a given set, e.g. 2-Combinations(a,b,c,d) = [a-bcd, b-acd, c-abd, d-abc, ab-cd, ac-bd, ad-bc].
The algorithm returns the optimal combination in terms of number of subgroups and summed
squared walking distances.

Algorithm 2 Meeting Point Determination

1: procedure FindCombination(c) . Procedure is called for every cluster c ∈ C
2: Given: Passenger group c← {ρ1, ρ2, . . . }
3: M←Mρ1 ∩Mρ2 ∩ . . . . Find common meeting points
4: D ← Dρ1 ∩ Dρ2 ∩ . . . . Find common divergence points
5: MTF ,DTF ← {}
6: if | M |≥ 1 & | D |≥ 1 then . Check if at least one common MP and DP exists
7: for µ ∈M do . Check temporal feasibility for common meeting points
8: tE(µ)← max

ρ∈c
(tEρ (µ)) . Earliest possible departure time at MP

9: tL(µ)← min
ρ∈c

(tLρ (µ)) . Latest possible departure time at MP

10: if tE(µ) ≤ tL(µ) then . Check time feasibility for the meeting point
11: γ(µ)←

∑
ρ∈c d

W (v+ρ → µ)2 . Calculate cost for this meeting point
12: MTF ←MTF ∪ (γ(µ), µ) . Time feasible - add to set
13: end if
14: end for
15: Compute DTF likewise for divergence points
16: if | M |≥ 1 & | D |≥ 1 then . Check if time feasible common MP and DP exist
17: γ∗(µ), µ∗ ← min(MTF ) . Find µ with minimal cost
18: γ∗(δ), δ∗ ← min(DTF ) . Find δ with minimal cost
19: return S ← (1, γ∗(µ) + γ∗(δ), µ∗, δ∗) . Return combined cost, µ and δ
20: end if
21: else . No common meeting and divergence point exists
22: SCur ← (|c|,∞, {}, {}) . Initialize current best solution
23: for c1, c2 ∈ 2-Combinations(c) do . Iterate through possible pairwise combinations
24: S1 ← FindCombination(c1)
25: S2 ← FindCombination(c2)
26: SNew ← S1 ∪ S2
27: if SNew better than SCur then . Better = Less separate groups
28: SCur ← SNew
29: end if
30: end for
31: end if
32: return SCur
33: end procedure
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Algorithm 3 Recursive Alternative Meeting Point Search

Input
M . Set of meeting points that all passengers of a trip can reach.
MC ⊂M . Set of meeting points determined by Algorithm 2.
AR . Travel time ratio matrix.
σ∗ . Travel time ratio threshold
Return
MC . Set of meeting points to be considered

1: procedure FindMPAlternatives(M,MC)
2: R ← ∅ . Initialize empty result set
3: for α ∈M \MC do
4: S ← ∅ . Initialize empty temporary set
5: for β ∈MC do
6: S ← S ∪A[α][β]
7: end for
8: R ← R∪ (min(S), α) . Get minimum value among all already considered points
9: end for

10: γ ← max(R) . Get maximum to choose point with highest minimal value
11: if γ[0] ≥ σ∗ then . Check if value is above the threshold
12: MC ←MC ∪ γ[1] . Add this point to the set of considered points
13: return FindMPAlternatives(M,MC). Search for more points based on current

setting
14: end if
15: return MC

16: end procedure

Algorithm 4 Route neighbourhood search

Input
Initial route Rk := {sk1, sk2, . . . , skN} where ski is the ith stop of vehicle k.
Rkbest ← Rk

1: for a pre-specified number of iterations do
2: Rneighbourbest ← Rk
3: for γ ∈ {1, 2, . . . ,neighbourhood size} do
4: Randomly choose a stop ski with 1 < i < N .
5: Choose a random appropriate stop reinsertion spot
6: Rneighbourγ ← the new route after reinsertion and DP optimisation

7: if J(Rneighbourγ ) < J(Rneighbourbest ) then . J(·) objective function of a single vehicle.

8: Rneighbourbest ← Rneighbourγ

9: end if
10: end for
11: if J(Rneighbourbest ) < J(Rkbest) then

12: Rkbest ← R
neighbour
best

13: end if
14: Rk ← Rneighbourbest

15: end for
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Algorithm 5 Trip allocation neighbourhood search

Input
Ak := {τi} . τi represents trip i and k is vehicle index
Akbest ← Ak, ∀k.
Rkbest ← Rk, ∀k.

1: for a pre-specified number of iterations do
2: Aneighbour,kbest ← Ak, ∀k.

3: Rneighbour,kbest ← Rk, ∀k.
4: for γ ∈ {1, 2, . . . ,neighbourhood size} do
5: Randomly choose a trip τi ∈ ∪kAk.
6: k ← η1 . η1 is vehicle index of the chosen trip.
7: β ← {k | Ak 6= ∅} \ {η1} ∪min{k | Ak 6= ∅}.
8: Reinsert the trip to a random vehicle k ∈ β. . greedy insertion
9: k ← η2 . η2 is the vehicle index being inserted.

10: Aneighbour,kγ ← the new trip allocation after reinsertion, ∀k
11: Rneighbour,kγ ← Rk, ∀k /∈ {η1, η2}
12: Re-optimise Rη1 and Rη2 using Algorithm 4.
13: Rneighbour,η1γ ← Rη1
14: Rneighbour,η2γ ← Rη2
15: if

∑
k J(Rneighbour,kγ ) <

∑
k J(Rneighbour,kbest ) then

16: Aneighbour,kbest ← Aneighbour,kγ , ∀k.

17: Rneighbour,kbest ← Rneighbour,kγ , ∀k.
18: end if
19: end for
20: if

∑
k J(Rneighbour,kbest ) <

∑
k J(Rkbest) then

21: Akbest ← A
neighbour,k
best , ∀k.

22: Rkbest ← R
neighbour,k
best , ∀k.

23: end if
24: Ak ← Aneighbour,kbest , ∀k.

25: Rk ← Rneighbour,kbest , ∀k.
26: end for

Tabular results
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Table 2: The results for the MP case

No. of riders 1000 4000 7000 10000

Final objective function value 498,835 2,319,368 4,086,774 3,815,542
Total vehicle kms* 12,594 39,915 60,485 79,470
Total vehicle hours 344 1065 1634 2133

No. of vehicles used* 184 602 931 1248
Total dead kms 6,357 20,668 31,222 41,118
Total idle hours 36 91 134 161

Total empty-idle hours 33 84 121 145

Trips average pick-up waiting time (minutes) 2.05 1.73 1.54 1.39
Trips average detour time (minutes) 2.17 2.42 2.56 2.4

Passengers average pick-up waiting time (minutes) 3.49 4.83 5.05 5.32
Passengers average detour time (minutes) 11.26 14.51 15.32 15.75
Passengers average walk time (minutes) 5.87 7.74 8.24 8.51

Route optimisation computation time (hours) 0.94 3.12 4.51 5.30

Table 3: The results for the DS case

No. of riders 1000 4000 7000 10000

Final objective function value 413,294 1,632,910 2,701,750 3,895,434
Total vehicle kms* 13,536 48,723 80,570 110,655
Total vehicle hours 379 1392 2324 3208

No. of vehicles used* 198 794 1296 1871
Total dead kms 6,603 24,032 40,016 54,806
Total idle hours 32 91 136 160

Total empty-idle hours 28 71 106 119

Passengers average pick-up waiting time (minutes) 2.50 2.64 2.70 2.77
Passengers average detour time (minutes) 5.75 7.09 7.62 7.95

Route optimisation computation time (hours) 3.15 9.79 16.50 25.80
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