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Abstract
Real-time control strategies deal with the day’s dynamics in bus rapid transit sys-
tems. This work focuses on minimizing the number of buses of the same line cruis-
ing head-to-tail or arriving at a stop simultaneously by implementing bus holding 
times at the stops as a control strategy. We propose a new mathematical model to 
determine the bus holding times. It has quadratic constraints but a linear objective 
function that minimizes the bus bunching penalties. We also propose a beam-search 
heuristic to reduce computational solution time to solve large instances. Experimen-
tal results on a bus rapid transit system simulation in Monterrey, Mexico, show a 
bus bunching reduction of 45% compared to the case without optimization. Moreo-
ver, passenger waiting times are reduced by 30% in some scenarios. For real-world 
instances with 60 buses, the beam-search approach provides solutions with an opti-
mality gap of less than 5% in less than 3 s.
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1  Introduction

Every city encourages their public transport companies to mobilize its population 
more sustainably. Nevertheless, public transport systems often lack high-quality 
service, making them unattractive to users with private vehicles (National Acad-
emies of Sciences, Engineering, and Medicine 2013; He et al. 2020). The trans-
port dynamics are challenging to understand and to incorporate into the opera-
tion. Public transportation companies aim to reduce variability in the user waiting 
times at the stops to increase customer service satisfaction and attract more cus-
tomers. Indeed, quality is positively correlated to reliable systems (Ceder 2016; 
Prassas and Roess 2020; Verbich et al. 2016). For this, technology and infrastruc-
ture in transportation services enable better communication with the bus drivers 
and extensive data collection such as user flows, bus occupancy, the geospatial 
location of buses, or road reports. This information provides real-time feedback 
to the bus control system that aims to improve the users’ satisfaction (National 
Academies of Sciences, Engineering, and Medicine 2013; Ceder 2016; Deng 
et al. 2020).

Once a public transportation company establishes the buses’ departure times 
for each stop with a specific frequency, the company uses real-time control strat-
egies to palliate the day’s dynamics such as traffic, passenger flow, weather, or 
accidents. As Wang and Sun (2020) and Ceder (2016) mention, a slight frequency 
deviation can cause many buses to be delayed on their schedule.

In this work, we aim to improve the dynamic aspects of transport systems in 
real time. We focus on the time difference between trips of consecutive buses at a 
particular stop, known as headway (Ceder 2016). In particular, we deal with bus 
bunching that occurs when the value of the headway is equal to zero (or equiva-
lently, buses arriving at a bus stop simultaneously). Bus bunching implies fre-
quency variability that affects the user waiting times at the stops and traveling 
times. Also, bus bunching involves unbalanced occupancy rates since many wait-
ing users choose to board the first bus that arrives at the stop, especially when the 
information on the arrival of the next bus is unknown, as in most cities in devel-
oping countries.

Figure  1 shows an example of bus bunching for a single bus line. The time 
is plotted on the horizontal axis, while bus stops are on the vertical axis. There 
are three bus trips (red, blue, and yellow) with an established departure time of 
7:00, 7:10, and 7:20, respectively. Each line shows the time-space trajectories 
of the three trips. An ideal behavior of the buses without bus bunching is when 
the headway is equal to 10 min at any time and space. Nevertheless, in this fig-
ure, the blue and yellow trips (solid trajectories) deviate from the planned ones 
(dotted trajectories). Indeed, the second bus (blue) finds more congestion than 
usual between stops 1 and 2. Thus, more persons are at stop 2, implying a larger 
dwelling time. At stop 2, some passengers that should have taken the yellow trip 
boarded the blue one; eventually, the blue and the yellow trips bunch.

Our objective is to reduce the number of bus bunching events by maintaining 
quasi-regular headways between each pair of buses to reduce user waiting times 
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at the stops and their overall traveling times. We use a control strategy consisting 
of holding the buses for some minutes at some stations after the boarding and 
alighting processes have been completed. There are other control strategies, such 
as skipping stops or speed control. However, according to Verbich et al. (2016), 
the bus holding strategy has an essential impact on the reduction of bus bunching 
events and it is easy to implement. Therefore, we aim to solve the bus bunch-
ing problem (BBP) (Delgado et al. 2012; Hernández-Landa et al. 2015; Sánchez-
Martínez et al. 2016; Wang and Sun 2020) that seeks to determine a set of bus 
holding times at some stops to minimize the number of bus bunching events.

Fig. 1   Bus bunching event at stop s between the buses that departed at 7:10 (blue) and 7:20 (yellow), 
caused by congestion between stations 1 and 2 (color figure online)

Fig. 2   Framework for the real-time data retrieving and the mathematical model
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As shown in Fig. 2, our proposed solution approach to this BBP has two main 
processes. One of them is an optimization stage that determines the holding times 
of each bus at each stop by considering the current information along the bus line 
and by predicting the future events in the line: persons at each bus stop, dwelling 
and alighting times, and the capacity of each of the buses. This stage is modeled 
as a quadratically constrained integer linear program that yields the holding times 
for the buses, which are immediately communicated to the drivers to recover 
quasi-regular headways between them. This model is one of the main contribu-
tions of this work. While most related studies deal with a non-linear objective 
function that minimizes the total user waiting time at the optimization stage (see 
the overview by Ibarra-Rojas et  al. 2015), our BBP methodology uses a linear 
objective function that speeds up its computational time. The main advantage 
of our model is that it includes the forecasting of the departure, boarding, and 
alighting times for each bus at each future stop, compared to previous works by 
Delgado et al. (2012) and Hernández-Landa et al. (2015). Only a few approaches 
consider the bus capacity every time the optimization model computes hold-
ing times during the evolution of the simulation process, as we do in this study. 
Another significant feature of our model is that it does not use origin–destina-
tion matrices as most of the other approaches (Delgado et al. 2009; Hernández-
Landa et al. 2015; Sánchez-Martínez et al. 2016; Wang and Sun 2020; Xuan et al. 
2011), which affects their efficiency. Instead, we use the user’s arrival rate and the 
proportions of users that alight at stops. Our integer programming model can be 
solved by an exact method, such as branch-and-bound, or a heuristic to speed up 
the computational effort (beam-search heuristic in Sect. 3.4).

The other process of our methodology (see Fig. 2) is collecting data in real time: 
the position of the buses, the actual number of users waiting at stops, and the actual 
number of users on each bus. This information is the input of the optimization stage. 
These two processes are periodically applied one after the other along the working 
day to maintain quasi-regular headways between each pair of buses. We developed a 
discrete-event simulation program representing a bus rapid transit (BRT) system to 
simulate the real-data collection and stress the transit system under different param-
eters. Thus, we can retrieve simulated real-time data from the system to validate 
the efficiency of our mathematical model. This simulation takes as input the hold-
ing times of the optimization stage. Then, it evolves over time, and when asked, it 
returns its actual state, which is the input of the optimization stage.

Maintaining quasi-regular headways in a transit line differs from sticking to the 
buses’ planned departure times at the stops. Quasi-regular headways imply a reliable 
service for users since the variance in the frequency of the buses is small at each bus 
stop and has a significant effect on travel time reliability  (Soza-Parra et al. 2021). 
This tactic is beneficial in cities where the users do not know the exact scheduling of 
the buses, since they only have an expected frequency estimation, as is the case with 
systems in developing countries (Hernández-Landa et al. 2015).

The main contributions of this study are the following.

•	 A new mathematical model for the BBP with quadratic constraints, whose linear 
objective function minimizes the penalties caused by non-quasi-regular head-
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ways. Our model considers that buses have a capacity that changes at each stop. 
Thus, users must wait for the next bus if the bus capacity is reached. We use 
users’ arrival and alighting rates at every stop as a more efficient and realistic 
alternative to origin–destination matrices.

•	 A BRT discrete-event microsimulation that effectively represents rush-hours 
to analyze the impact of the holding times obtained by the optimization model 
under different scenarios. This simulation is stochastic with random components 
on the travel times and the arrival of the users.

•	 A beam-search heuristic based on our mathematical model to reduce computa-
tional solution time to solve larger instances in real time.

This paper is organized as follows. In Sect. 2, we present a related literature review. 
Section 3 describes the system characteristics and the description of the mathemati-
cal model, the discrete-event simulation that represents a bus rapid transit system, 
and the beam-search approach. We validate the efficiency of our BBP methodology 
with a case study from Monterrey city in Mexico in Sect. 4. Finally, Sect. 5 presents 
the conclusions of this work.

2 � Literature review

Significant efforts have been made to address the BBP with real-time monitoring 
strategies, categorized in inter-station and station control (Ibarra-Rojas et al. 2015). 
Inter-station control strategies are those where decisions are made at some bus line 
stops, such as holding times (Wang and Sun 2020; Daganzo 2009; Xuan et al. 2011), 
skipping stops (Sun and Hickman 2005; Fu et al. 2003; Cortés et al. 2010), boarding 
time limits (Delgado et al. 2012; Barnett 1974; Delgado et al. 2009), station control 
strategies such as bus speed regulation (He 2015; Daganzo and Pilachowski 2011; 
He et al. 2019), or traffic signal priority (Estrada et al. 2016; Liu et al. 2003; Ling 
and Shalaby 2004).

Among all the BBP strategies, holding time is the most used and the one that 
users resent the least. Table 1 shows the studies related to the holding time strategy 
(we do not include hybrid strategies). The first column presents the reference. The 
second column indicates whether the vehicle capacity is considered or not. The third 
column indicates the different types of control points that the system considers, such 
as single preset control points (SPCP), multiple preset control points (MPCP), or 
multiple control points (MCP) defined by the solution strategy. Column “Alighting” 
is how the users leave the transport system in the solution approach: a proportion of 
the onboard passengers or determined by an origin–destination (OD) matrix. The 
fifth and sixth columns indicate the considered objective function and model type, 
respectively (QP is for quadratic MILP, MIQCP is for quadratically constrained inte-
ger linear programming). The solution approach is in the “Method” column (B&B 
is for branch-and-bound), while the “Sim” one indicates whether the approach is 
analyzed through any simulation. Finally, the last column reports if a case study was 
tested.
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The last line of Table 1 considers the approach we propose. Our BBP approach 
searches for headway regularity which we show later implies reducing waiting times. 
This search for headway regularity allows us to have a linear objective function that 
reduces computational times compared to other approaches that directly optimize 
waiting times with a quadratic function. We also consider that buses have a capac-
ity. The users must wait for the next bus if this capacity is reached. Our optimization 
process determines the stops where the buses must hold and the holding times. An 
enormous gain is obtained by considering that passengers alight a bus via a proba-
bilistic approach since an OD matrix is rarely updated and reliable.

Argote-Cabanero et al. (2015) employ a combination of dynamic holding times 
and en-route driver guidance to improve schedule adherence. This method is ana-
lytically evaluated with simulations to improve reliability. As in our work, their sim-
ulation reflects a real BRT. Hall et  al. (2001) develop analytical models to obtain 
the optimal holding times and waiting times at transfer stations. Their instances are 
based on actual data from the Los Angeles transit network. Daganzo (2009) pro-
poses an adaptive control scheme that dynamically determines holding times at the 
stops. The proposed scheme aims to provide quasi-regular headways. The method 
proves to be effective when minor disturbances arise. Chen et al. (2013) present a 
problem that is a non-convex optimization problem with linear constraints that 
focuses on minimizing the user waiting time. Their model considers that the user 
arrival rate is uniform. The buses have the available capacity to let all users board at 
a stop. They use a suitable heuristic algorithm for real-time situations as a solution 
method.

More recently, Gkiotsalitis and Cats (2019) consider a periodic holding time con-
trol method where holding times of all running trips are computed simultaneously 
within each optimization period. They model the BBP as a discrete non-linear opti-
mization problem. They do not consider additional user arrivals, when the bus is 
waiting at a stop, or the capacity of buses, since all users can board the first bus that 
arrives, even if this implies longer headways.

He et al. (2020) present a dynamic target-headway-based holding strategy. They 
observe that the average total waiting time increases at the beginning of their experi-
ment but decreases over time, which is the desired behavior. Delgado et al. (2012) 
incorporate two strategies: holding time and boarding limits. They propose a math-
ematical programming model that minimizes total delays with a quadratic function 
evaluated in a simulation environment. Nevertheless, their simulation considers very 
short headways for computing holding times when a bus reaches a stop. Although 
they obtain the value of the holding times for all the buses in their following stops, 
they only use the holding time value for the current stop discarding the other values.

Liang et al. (2019) combine bus holding and stop-skipping with the objective 
of automatically equalizing bus headways on a single line. Their results show 
good performance in a simplified scenario where bus capacity is not considered. 
Sun and Schmöcker (2018) consider passenger choices and bus overtaking with 
uncapacitated buses; when a delay occurs in any of the buses, the departure times 
of all buses are calculated using a set of discrete state equations. Similarly, Drab-
icki et al. (2023) consider that users have arrival information for the next pair of 
buses. Thus, users may decide whether to board the first bus arriving at the station 
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or wait for the next one. They developed a boarding choice model implemented 
in a simulation framework. Wang and Sun (2020) incorporate global coordination 
and long-term operation in holding time with a multi-agent deep reinforcement 
learning framework. However, they do not consider the bus capacity. Sánchez-
Martínez et al. (2016) present a quadratic model to compute passengers’ average 
waiting time costs and separately obtain the holding times. Their simulation only 
considers ten buses and equal arrival rates for all OD pairs. Li and Li (2022) 
present a probabilistic prediction model to classify the headways into bunching, 
stable and large gap, and decide which control strategy is suitable to use (hold-
ing, speed-adjusting, or stop-skipping) to minimize the deviation of the headway. 
However, their experiments consider the same arrival rate at all stops, a fixed traf-
fic light time, and the alighting rate at intermediate stations is a random number 
between 0 and 1.

Tian et al. (2022) propose a model that uses the short-turning strategy in which 
they perform a rescheduling of the trips and whose objective is to minimize the 
deviation from the original schedule. They consider that the buses’ scheduled 
arrival time at the stops must be known and that the capacity of the buses is suf-
ficient to meet passenger demand. Laskaris et al. (2019) coordinate different bus 
lines using bus holding for minimizing the travel times of the users. Nevertheless, 
the capacity of their vehicles is not considered, and they use OD matrices. Sajiku-
mar and Bijulal (2022) propose a model for a network with multiple origins. The 
model uses a schedule-based slack control strategy to reduce bus bunching and 
establish a redesigning route schedule. Bus capacity is not considered.

A close but simplified work, compared to ours, is presented by Liang et  al. 
(2021). They present an algorithm that determines the optimal holding times to 
solve the nonlinear optimization problem. However, the obtained solution is local 
since, at the control point, the model only considers the bus that arrived at the 
station and its front and rear bus.

Yu et  al. (2016) use supervised learning techniques by using support vector 
machine techniques and transportation smart-cards data to predict bus schedules 
and bus bunching. Shi et  al. (2022) propose a distributed deep reinforcement 
learning to solve the bus bunching problem by maintaining schedule adherence, 
and headway regularity. Degeler et al. (2021) prove that it is possible to extract 
and detect individual cases of bus bunching using fully unsupervised techniques.

In this paper, we integrate simulation and optimization to reduce the number 
of bus bunching events and indirectly reduce the total user waiting times. On the 
one hand, we develop a discrete-event simulation of a BRT system. On the other 
hand, the mathematical model has quadratic constraints, but its objective function 
is linear, speeding up its computational time.
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3 � The BBP methodology

Our BBP solution approach has two main processes (see Fig.  2). This section 
describes our bus rapid transit (BRT) system and introduces its notation. Then, 
we present the mathematical model of the optimization stage that determines the 
holding times of each bus. Finally, we present the simulation stage that represents 
the real-time data collection of a BRT case study.

3.1 � The bus rapid transit description

Consider a one-way bus line corridor with a set S of stops plus the depot denoted 
as 0, as represented in Fig. 3, operated by a high-frequency bus service. A set of B 
buses with capacity Cb for each b ∈ B and an average speed of V constitute the bus 
service. All buses start their trip at the depot following a departure frequency of F 
minutes (ideal headway). Each bus b ∈ B sequentially visits all the stops in the cor-
ridor. The buses are numbered in ascending order in the corridor; bus b + 1 leaves 
the deposit after bus b, for b ∈ B ⧵ {|B| − 1 }. Notice that bus passing is not allowed. 
When a bus b arrives at the last stop, all bus users must alight, and the bus returns 
to the depot (no deadheads, since it is a circular corridor). The travel time between 
a pair of stops (s − 1, s) is denoted as ds , for s ∈ S . The limit case d1 is the distance 
between stop 1 and the depot.

The users arrive at each stop s ∈ S following a Poisson distribution rate �s . The 
boarding and alighting times per user are U , and U , respectively. The total time 
taken by the bus doors for opening and closing is  G. Similarly to Eberlein et  al. 
(2001), our work assumes that the number of users alighting from bus b ∈ B at stop 
s ∈ S is a proportion �s of the number of onboard users, a crucial point since we 
avoid using OD matrices that make heavier models. Additionally, the holding time 
assigned to a bus at a stop must not exceed a number H of minutes per station to 
avoid the irritation of the onboard users.

Fig. 3   Circular bus line corridor with s stops (green circles) and five buses (color figure online)
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Time t0 is when the real data is collected to compute the required decisions to 
recover a quasi-regular frequency. We collect the following data for each b ∈ B : 
the distance between bus b and its following stops denoted as ms

b
 , the number of 

onboard users on bus b is qb , and lb is the last station visited by bus b. Note that if 
bus b is at station s at time t0 , then lb = s . Also, at time t0 , we collect the number of 
users waiting at station s denoted by ws for every station s ∈ S.

Let us properly define the concept of quasi-regular headways and a bus bunch-
ing event to incorporate them into our mathematical model (Daganzo 2009; Ibarra-
Rojas et  al. 2015). Maintaining ideal headways F along the BRT is not practical. 
Thus, let 0 ≤ � ≤ 1 be the tolerated percentage deviation from the ideal headway 
such that 𝜅F < F∕2.

Definition 1  The headway between two buses is quasi-regular if it is in the interval 
[(1 − �)F, (1 + �)F] . Thus, there is a bus bunching event between two buses at a 
stop if their headway is between [0, (1 − �)F] or if it is larger than (1 + �)F.

3.2 � The BBP optimization stage

The main variables to formulate the quadratically constrained integer linear program 
of the BBP methodology are hs

b
 that indicate the holding time for bus b ∈ B for all 

the future stops s = lb + 1,… , |S| that the bus must visit. With the position of the 
buses at time t0 and the holding time variables, we can derive the rest of the vari-
ables of each bus b ∈ B at stop s = lb + 1,… , |S| . Let ts

b
 be the variables that rep-

resent the departure time of bus b from stop s. With these last variables, we can 
compute the number of users who want to board bus b at stop s, the number of users 
who indeed boarded the bus, and the number of persons that alight that bus, denoted 
by zs

b
 , xs

b
 , and ys

b
 , respectively, for b ∈ B and s = lb + 1,… , |S| . See Table  2 for a 

notation summary.
The headway between the bus pair (b, b + 1) is determined by the difference of its 

departure times at a stop s: ts
b
− ts

b+1
 , for s ∈ S . Let variable ps

b
 be the penalty related 

to the headway between two buses for b ∈ B and s ∈ S:

Fig. 4   The penalty values between a bus pair at a certain stop
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Figure 4 shows the headway values between a pair of buses at any fixed stop on 
its horizontal axis while the vertical axis represents the headway penalty values. 
Since the buses cannot overtake each other, this difference is positive. To incor-
porate the penalty value of bus b at stop lb + 1 in the objective function, we use 
constraints (1) and (2). Note that ps

b
 are positive variables:

ps
b
=

⎧⎪⎨⎪⎩

0, if ts
b+1

− ts
b
∈ [(1 − 𝜅)F, (1 + 𝜅)F]

ts
b
− ts

b+1
+ (1 − 𝜅)F, if ts

b+1
− ts

b
∈ [0, (1 − 𝜅)F)

ts
b+1

− ts
b
− (1 + 𝜅)F, if ts

b+1
− ts

b
> (1 + 𝜅)F

(1)ps
b
≥ts

b
− ts

b+1
+ (1 − �)F, b ∈ B, s = lb + 1,

Table 2   Notation for the BBP mathematical model

Parameters
B Set of buses (b ∈ B)

S Set of stops (s ∈ S)

C Bus capacity
F Ideal headway at every stop
V Average bus speed

U , U Boarding and alighting time per user

G Time taken by the bus doors for opening and closing at each stop
H Maximum holding time value
� Percentage deviation from the ideal frequency F
ds Distance between stations s − 1 and s, s ∈ S

�s User arrival rate at station s, s ∈ S

�s Proportion of users alighting from bus b at the station s, s ∈ S

t
0

Time when information is obtained
lb Last station visited by bus b at time t

0
 , b ∈ B

ws Users waiting at stop s at time t
0
 , s ∈ S , b ∈ B

qb Number of onboard users on bus b at time t
0
 , b ∈ B

ms
b

Distance between bus b and its next stop s at time t
0
 , s ∈ S , b ∈ B

Variables (for s ∈ S , b ∈ B)
ts
b

Departure time of bus b from stop s
zs
b

Number of users who want to board bus b at stop s
xs
b

Number of users who indeed boarded the bus b at stop s
ys
b

Number of persons that alight bus b at stop s
hs
b

Holding time for bus b at stop s
ps
b

Headway penalty between buses b and b + 1 at stop s
ns
b

1 if xs
b
≤ C for bus b at station s, 0 otherwise

rs
b

1 if xs
b
> C for bus b at station s, 0 otherwise
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Changing the slopes of the right-hand side of the previous constraints would imply 
different importance to each one of the cases. Here we take the same slopes for both 
cases. In this way, the objective function (3) that minimizes the bus bunching penal-
ties for each pair of buses to maintain quasi-regular headways between the buses is:

By minimizing the bus bunching occurrences and the number of separated buses, 
we aim to approach quasi-regular headways and, indirectly, to reduce user waiting 
times, as it is empirically shown in Sect. 5.

There are two cases for establishing the buses’ departure times at each future sta-
tion that they will visit after time t0 . For handling the first case, constraints (4) set the 
departing time of bus b at stop lb + 1 as the time t0 plus the remaining time to arrive 
at stop lb + 1 , the boarding and alighting times, its holding time, and the opening and 
closing of the bus doors. For the second case, constraints (5) define the departure time 
of bus b from stop s = lb + 2,… , |S| . Constraints (6) do not allow a bus to leave a 
stop earlier than its predecessor, thus ensuring that passing between buses is impossi-
ble. Constraints (7) ensure that the holding times do not exceed the maximum allowed 
value. These last constraints were also included in the model by Hernández-Landa et al. 
(2015):

The number of users at stop s who are waiting to board bus b is established by con-
straints (8). They consider the persons ws who are already at the stop at time t0 plus 
the persons who arrive with a Poisson rate during the time that takes the bus to 
arrive at this stop s:

Note that not all these users zs
b
 will be able to board bus b at stop s, since we are con-

sidering that buses have a finite capacity.

(2)ps
b
≥ts

b+1
− ts

b
− (1 + �)F, b ∈ B, s = lb + 1.

(3)min
∑
b∈B

|S|−1∑
s=lb+1

ps
b
.

(4)ts
b
= t

0
+

ms
b

V
+ Uxs

b
+ Uys

b
+ hs

b
+ G, b ∈ B, s = lb + 1,

(5)ts
b
= ts−1

b
+

ds

V
+ Uxs

b
+ Uys

b
+ hs

b
+ G, b ∈ B, s = lb + 2,… , |S|,

(6)t
s

b
≥ t

s

b−1
, b ∈ B, s = l

b
+ 1,

(7)h
s

b
≤ H, b ∈ B, s = l

b
+ 1.

(8)zs
b
= ws + �s

(
ms

b

V

)
, b ∈ B, s = lb + 1,… , |S|.
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Constraints (9) determine the number of alighting users from bus b at stop s. They 
consider the onboard passengers and the users already alighted in previous stops s′ < s , 
multiplied by the estimated proportion �s of passengers alighting at this stop, for s ∈ S:

The boarding users at stop s are determined with the following constraint (10), for 
b ∈ B, s = lb + 1,… , |S|:

The right side of this minimum considers the case where the number of users wait-
ing at s is less than the bus capacity. Thus, all users board except the ones that have 
already boarded a previous bus. The left side of the minimum limits the board-
ing users to the bus’s current capacity. It subtracts the users who boarded previous 
buses. Constraints (10) are not linear, but a classical linearization (Williams 2013) 
for the minimum cannot be applied in this case because the objective function (3) 
includes the difference of ts

b
− ts

b+1
 that could be negative. Thus, we introduce two 

binary indicator variables for b ∈ B and s = lb + 1,… , |S| . The first one, ns
b
 , is equal 

to 1 if the number of users waiting for bus b at stop s is less than the actual bus 
capacity, and 0 otherwise. The second one, rs

b
 , equals 1 if the available bus capacity 

is less than the number of users waiting for bus b at stop s, and is 0 otherwise. With 
these two binary sets of variables, we replace equation (10) with linear constraints 
(11) and (12), for b ∈ B and s = lb + 1,… , |S|:

Constraints (11) indicate that only one case is possible. Either all the users waiting 
at stop s are going to board bus b, implying ns

b
= 1 , or some of them will wait for the 

next bus b + 1 ; thus rs
b
= 1 . By adding constraints (12), we explicitly choose between 

these two options and assign the correct value to the boarding variable xs
b
.

To reinforce the mathematical model, we add two families of valid inequalities. Con-
straints (13) and (14) bound the boarding passengers variable xs

b
 by either the passen-

gers at the stop or its remaining capacity, respectively, for b ∈ B and s = lb + 1,… , |S| . 
These constraints are not necessary for the model to be correct, but they strengthen 
the convex hull of the discrete solution space, which reduces the resolution time of the 
mathematical model (Wolsey 2020).

(9)ys
b
= �s

(
qb +

s−1∑
s�=lb+1

xs
�

b
− ys

�

b

)
, b ∈ B, s = lb + 1,… , |S|.

(10)xs
b
= min

{
Cb − qb −

s∑
s�=lb+1

xs
�

b
+

s∑
s�=lb+1

ys
�

b
, zs

b
−

b−1∑
b�=0

xs
b�

}
.

(11)1 = n
s

b
+ r

s

b
,

(12)xs
b
= ns

b

(
zs
b
−

b−1∑
b�=0

xs
b�

)
+ rs

b

(
C − qb −

s∑
s�=lb+1

xs
�

b
+

s∑
s�=lb+1

ys
�

b

)
.
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To summarize, the mathematical model that determines the best holding times for 
the buses at their future stops at time t0 is named H-BBP(t0):

In the H-BBP(t0 ) model, the forecast of the departure times and the boarding and 
alighting times play an essential role for each bus at each future stop. These approxi-
mations are one of the critical points of our study since they are much more precise 
than the ones made by other related approaches (Hernández-Landa et al. 2015; Del-
gado et al. 2012).

In Sect. 4, we solve model H-BBP(t0 ) by a branch-and-bound algorithm to obtain 
high-quality solutions. Also, we propose a beam-search heuristic (see Sect. 3.4) to 
find a trade-off between quality and CPU time.

Table 2 summarizes parameters and variables for the BBP model.

3.3 � The simulation of the real‑time collection stage of the BBP

Our BBP methodology requires real-time data collection. We can obtain this data by 
using global positioning or automatic vehicle location systems for each bus in the 
BRT system. However, this kind of data is not always available, so we developed a 
discrete-event microsimulation to mimic a real-time situation described in Sect. 3.1. 
Besides, with our simulation, we can analyze the impact of the optimization model 
under different scenarios.

Our discrete-event simulation model is stochastic (with random components on 
the travel times and the arrival of the users) but is not dynamic, since time is not 
variable (Leemis and Park 2006; Sokolowski and Banks 2011). Indeed, we simulate 
a single rush-hour period.

The system state of our microsimulation is composed of four components that 
contain enough information to describe the evolution of the transportation system 
over time: the activation of a bus, the user’s generation, the movement of the buses 

(13)x
s

b
≤ z

s

b
−

b−1∑
b�=0

x
s

b�
, b ∈ B, s = l

b
+ 1,… , |S|,

(14)xs
b
≤ Cb − qb −

s∑
s�=lb+1

xs
�

b
+

s∑
s�=lb+1

ys
�

b
, b ∈ B, s = lb + 1,… , |S|.

min(3),

s.t. (1), (2),

(4) − (9)

(11), (12),

(13), (14), {valid inequalities}

hs
b
, xs

b
, ts
b
, zs

b
, ys

b
, ps

b
∈ ℝ

+, s ∈ S, b ∈ B

ns
b
, rs

b
∈ {0, 1}, s ∈ S, b ∈ B.
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that consider the boarding and alighting users, and the holding times obtained by the 
optimization stage.

The ActiveBus function ensures that every F minutes, a new bus leaves the 
depot, recording all its information at every step of the simulation: the departure 
times, the number of persons on board or alighting, travel times, and holding times.

At each step of the simulation and for each stop s, the UserGeneration(s) 
function randomly generates users following a Poisson distribution with mean �s , 
for each s ∈ S . Each generated user at s is recorded together with its waiting time to 
catch the first bus and its traveling time on board. In this manner, at the end of the 
simulation, we can compute the total user waiting time.

Algorithm 1 MoveBus(s, b)
1: s′ ← lb + 1
2: while bus is not at stop s do
3: advance b up to s′ during ms

b/V of time
4: at stop s′, hold bus b of Ux̄s′

b + Uȳs
′

b + hs′

b +G time
5: s′ ← s′ + 1
6: end while

The MoveBus(s, b) function, described by Algorithm 1, describes how the buses 
move in the BRT system. A bus b may advance or stop at a stop during each simu-
lation step. A bus dwells at a stop s′ < s until the users board and alight x̄s�

b
+ ȳs

�

b
 , 

plus the holding time hs
b
 established by the H-BBP(t0 ) model, plus the time needed 

by the doors to open and close. This addition reflects the case where boarding and 
alighting occur through the same door. Note that x̄s′

b
 and ȳs′

b
 are not variables; they 

are values computed with the actual users at the stops and the actual capacity of 
the bus. Alighting users ȳs′

b
 are a proportion �s′ of the onboard users. The boarding 

process follows a First-in-First-out (FIFO) rule, so the first user at the stop is the first 
to board the bus, provided the bus has available capacity. Otherwise, the user waits 
until the next bus arrives with available capacity. Therefore, x̄s′

b
 is the minimum 

value between the available capacity of the bus b and the users waiting at a stop. The 
holding times are obtained from the H-BBP(t0 ) model presented in Sect. 3.2.

At every step of the simulation, we keep track of the bus capacities and their 
location, the onboard users, and the ones at the stops. Therefore, different measures 
of effectiveness (MOE) may be calculated. The MOEs reflecting the system perfor-
mance statistics are the total user waiting time to board a bus, the total travel time of 
the users, and the number of bus bunching events.

At the initial state of the simulation, there are only B =
⌊
S

2

⌋
 active buses in the 

corridor, uniformly distributed through the stops. The total execution time of the 
simulation represents a high demand period of Tmax minutes. Ω is the frequency at 
which the holding times are computed by the H-BBP(t0 ) model where t0 is distrib-
uted evenly in the interval [10%Tmax, 90%Tmax] (the planning period starts at time 0). 
The first 10% of the simulation time is the warm-up time to reach a steady point, 
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while the last 10% is mainly for the users to alight the buses, so there is not much 
interest in computing holding times anymore at the end of the period.

3.4 � Beam‑search heuristic

While exact methods can solve relatively small instances, larger ones take con-
siderably longer. Therefore, heuristic methods for delivering quick, high-quality 
solutions become very important. In this work, we consider beam search, a clas-
sical heuristic search method that has been very effective in several combinatorial 
optimization problems (Akeb et al. 2009; Bennell et al. 2018). The beam-search 
idea is applied within a branch-and-bound framework, where the most promising 
nodes, according to certain criteria, are considered for further branching at each 
level while the rest of the nodes are permanently pruned. Thus, this can be seen 
as a truncated branch-and-bound method where optimality can no longer be guar-
anteed, but the computational effort is considerably smaller.

Tamannaei and Irandoost (2019) solve a carpooling problem, and Yavuz 
(2017) addresses a vehicle routing problem using heuristic beam-search algo-
rithms. They show that their solution methods are efficient in terms of computa-
tional time, and they find near-optimal solutions for large-scale instances. More 
related to public transportation, Islam et al. (2019) developed a stochastic beam-
search algorithm for a multicriteria route design problem for a transit network.

Our particular beam-search heuristic works as follows. Given a relative opti-
mality gap parameter � , we discard nodes (corresponding to subproblems) whose 
best objective function value falls beyond � percent from the global optimum. 
That is, if LB is the linear programming relaxation value of a given node, we 
discard it if LB +

𝜀

100
> UB , where UB is the best-known upper bound (for a 

minimization problem). By proceeding this way, the algorithm eliminates many 
nodes from the enumeration tree. Ultimately, it finds a solution with a guaranteed 
optimality gap of at most � . Naturally, computational effort and solution quality 
trade-off depend on � . The smaller the � value, the better the solution will be at 

Fig. 5   Beam-search approach example on a branch-and-bound enumeration tree
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a higher computational effort. This trade-off is empirically assessed in Sect. 4.8. 
Another critical issue in beam-search heuristics is the search strategy. The nodes 
can be explored by breadth- or depth-first search strategies or using some heuris-
tic to improve the current solution. This issue is also investigated in Sect. 4.8.

Figure  5 shows some nodes within the branch-and-bound enumeration tree 
when a beam-search approach is applied. Only teal nodes are considered in the 
beam search. In contrast, yellow nodes are discarded from the beam-search tree 
because their best solutions have an optimality gap larger than the � percentage.

4 � Experimental results

In this section, we test a set of experiments on a case study with various scenarios to 
verify the effectiveness of our BBP strategy to mitigate the bus bunching effect and 
reduce the user waiting times.

The system’s current state at time t0 is the input that the mathematical model 
H-BBP(t0 ) receives. This model is coded in C++ and solved using the commercial 
solver Gurobi 8.11. Since we have a linear objective function, valid inequalities, and 
we avoid origin–destination matrices, our formulation can be solved in less than 15 s 
for most instances. In this manner, the rapidly obtained holding times are input for 
the discrete-event simulation coded in R 3.6.0 every Ω minutes along the planning 
period.

The experiments were carried out on a computer with macOS Catalina 10.15.5 
with an Octa-core of 3 GHz Intel Xeon E5 processor and 16GB 1866MHz DDR3 
of RAM. All the instances and the code of the mathematical model are available at 
https://​doi.​org/​10.​6084/​m9.​figsh​are.​16688​770.​v1.

4.1 � Case study: Ecovía in Monterrey, Mexico

The case study analyzed in this work contemplates the morning rush hours 
(6:00–8:00) of the Ecovía, a BRT corridor that provides service in Monterrey city 
and its metropolitan area in Mexico. The one-way corridor has 40 stations, includ-
ing two terminal stops (Lincoln and Valle Soleado) located at opposite ends of the 
line, as schemed by the red line in Fig. 6. We consider the BRT Ecovía from Lin-
coln to Valle Soleado, which is around 30.2 km long. Notice that it intersects two 
city underground rapid transit rail system lines: Line 1 at Mitras station and Line 2 
at Regina station. Mitras is the most critical stop since this bus/subway station has 
higher arrival and alighting rates. Although the Ecovía BRT has three types of buses 
with different capacities, 80% of the buses are of the same class, so our experiments 
are performed with only the type of buses with a maximum capacity of 80 persons.

The Ecovía simulation period is Tmax = 120 min with a frequency F of 2 min 
during the rush hour. Thus, there could be more than 60 buses simultaneously in 
the corridor. The step size of the simulation is 10 s. This parameter was determined 
empirically.

https://doi.org/10.6084/m9.figshare.16688770.v1
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We have statistically determined parameter vectors (�s)s∈S and (�s)s∈S used in the 
simulation and the H-BBP(t0 ) model through a field survey. At each stop, the users’ 
arrival process �s , s ∈ S , is a Poisson distribution with around eight passengers per 
minute rates at Mitras or Lincoln stations, while as few as 0.12 passengers per min-
ute for the final stations close to Valle Soleado. We use the expected value of these 
distributions for the H-BBP(t0 ) model. We have also determined the proportion of 
users alighting at each station. The first stops have a small proportion of �s = 1% , 
while in Mitras it is �Mitras = 75% . Also, from our field survey, we fixed the board-
ing and alighting time per person in U = U = 2 s, similar to what was reported in 
Fernández et al. (2008) and Tirachini (2014). These times already consider a con-
gested rush-hour system with passenger friction since users board and alight by the 
same door. When a bus arrives at a station, opening and closing its doors takes an 
average of G = 5 s (Dueker et al. 2004).

For the simulation, the travel times along the corridor are a Lognormal distri-
bution with a mean of 0.77 and variance of 0.4  min as in Delgado et  al. (2012) 
and Hernández-Landa et  al. (2015). Still, one could use the collected real date to 
fine-tune these parameters as in Ricard et al. (2022). To mimic a real bus line, the 
simulation should not stop its evolution while the optimization stage is computing 
the bus holding times. Nevertheless, we pause the simulation in our experimental 
setting until the model is executed.

For the H-BBP(t0 ) model, we consider an average speed of 60 km/h for all buses 
and � = 0.20 . Preliminary experimentation regarding the values of � showed a 

Fig. 6   Map of Monterrey, Mexico. Bus rapid transit Ecovía (red) intersects Line 1 (yellow) and Line 2 
(green) of the underground rapid transit rail system. Adapted with permission of the author from [Ecovía 
Monterrey], from Google, n.d., https://​www.​google.​com/​maps/@​25.​69838​01,-​100.​33658​17,12.​41z. All 
rights reserved 2021 by Google (color figure online)

https://www.google.com/maps/@25.6983801,-100.3365817,12.41z
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positive relationship with the number of bus bunching events. However, our results 
were not conclusive when related to the total user waiting time. The company vali-
dated this value of � by arguing that diminishing the service quality was a detriment 
to their user demand share.

To validate our simulation (without the optimization phase), we compared the 
number of bus bunching events, the average number of persons in the main bus 
stops, and the average bus load with observations of the real BRT system.

As mentioned in Sect. 2, a few works dealing with bus bunching adhere to the 
features of our BBP problem and our case study. The work of Delgado et al. (2012) 
is the closest to our research. However, we cannot make a comparison between their 
methodologies and ours. Indeed, they limit the boarding passengers at stops since 
they do not consider a dynamic bus capacity at each stop as we do in this work. The 
user’s boarding limits strategy cannot be applied in our case study, since it would 
create user displeasure, which would worsen the service reliability. Moreover, their 
instances are unsuitable for our case study, since there is almost no flexibility for 
the holding times. Nevertheless, we use our instances and the model proposed in 
this paper to compare our policy with the optimization policy presented by Delgado 
et al. (2012). The comparison results can be found in Sect. 4.7.

Since we are using a simulation of the Ecovía, we can stress the system to deter-
mine high-quality holding policies. Thus, different scenarios address the following 
questions (bold parameters are the real case). We wish to investigate the following 
critical issues in our experimental work.

•	 We wish to investigate if the boarding and alighting times are the leading cause 
of bus bunching. If this is the case, the companies may evaluate investing in 
other vehicles with two doors instead of one or implement different queuing pro-
cesses. Thus, we consider U = U ∈ {1, 2, 3} s per person, as in Tirachini (2013).

•	 We want to know how the bus frequency F impacts the BRT behavior and 
whether higher frequencies reduce bus bunching. We consider F ∈ {1, 2, 3, 4} 
min per bus. F = 4 corresponds to the COVID-19 situation where traveling in 
public transportation was not recommended.

•	 We wish to establish how many times the holding times must be computed dur-
ing the planning period. Thus, we test with Ω ∈ {2, 5, 7, 15, 20, �} , where ∅ 
means that no holding times are applied.

•	 We want to evaluate whether holding times should be an integer number so driv-
ers adopt them more easily. In addition, we want to know the effect of rounding a 
holding time, for example, from 35.8 s to 30 s or 1 min. Thus, we consider both 
cases; the holding times in the H-BBP(t0 ) may be integer or continuous values.

Therefore, |U| × |F| × |Ω| × 2 = 144 configurations were tested to evaluate and 
compare the H-BBP(t0 ) model under different operating conditions. Ten simulation 
runs were carried out for each scenario to guarantee statistically sound results.



614	 C. M. Olvera‑Toscano et al.

1 3

4.2 � Number of bus‑bunching pairs

The main objective of the H-BBP(t0 ) model is to avoid paired bus bunching. Thus, 
we apply our BBP methodology to the scenarios with boarding and alighting 
U = U ∈ {1, 2, 3} s per person corresponding to the three box-plot graphs of Fig. 7. 
The vertical axis indicates the total number of bus-bunching pairs throughout the 
2 h. Note that if there are four buses at a station, then there are three bus bunching 
events. The horizontal axis represents the optimization process’s frequency Ω . The 
four different types of boxes correspond to the different frequencies F.

Our BBP methodology significantly reduced the number of bus-bunching pairs 
in the evaluation scenarios, so users will perceive a more reliable service. Note that 
generating the holding times more often ( Ω < 2 ) does not necessarily imply a higher 

Fig. 7   Bus-bunching pairs with respect to optimization process frequency Ω when the bus boarding and 
alight times are a 1, b 2, and c 3 s
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reduction of bus-bunching pairs. A period of Ω = 5 or Ω = 7 min obtains the best 
results without overwhelming the drivers with frequent holding requests. On the one 
hand, when the boarding time of users U = U is 2 or 3 s (Fig. 7b and c), the smallest 
amount of bus-bunching pairs occurs when the optimization process Ω is performed 
every 7 min. On the other hand, when the boarding time of the users U = U is 1 s 
(Fig. 7a), it is recommended that the optimization phase runs every 5 min. For sys-
tems with a low bus frequency F = 4 , the bus bunching reduction is not as drastic 
as for the high-frequency ones of F = 1 min. The case study is observed in Fig. 7b 
with a bus frequency of F = 2 without a bus bunching strategy, and there are around 
470 bunching pairs. With an intervention every Ω = 5 min, we could reduce bus-
bunching pairs by 45%. The faster boarding and alighting times are, the more bus 
bunching reductions we get with the BBP methodology. For Fig. 7c, corresponding 
to a COVID-19 situation where line frequency is augmented, we observe that the 
causes of bus bunching are the boarding and alighting times.

In model H-BBP(t0 ), constraints (7) bound the holding times by H minutes. We 
used H = 5 for the previous experimentation of Fig.  7, but we carried out other 
experiments without this bound obtaining similar results about the bus bunching 
reduction. However, longer holding times could be resented by the users.

In our BRT case study, the distance between stations is short (approximately 
700 ms), and the frequency of bus departures during rush hour is very high. It is a 
heavily loaded system with little freedom of movement. A system with these char-
acteristics naturally tends to become bunched. Although there are alternatives that 
can be addressed that would possibly allow a significant decrease in the number of 
bus bunching events, such as a redesign of the network or the bus stops, through the 
results of our experiments, we found that our methods will help alleviate the bus 
bunching events and the user waiting times (Fig. 7).

4.3 � Time‑space bus trajectories

Bus trajectories in time-space graphs allow us to observe the bus bunching cases at 
a glance whenever two or more lines collide. The four graphs in Fig. 8 are similar 
to the ones in Sect. 1. Each line is a bus trip, where the time in minutes is on the 
horizontal axis, while the position of the buses is on the vertical one. Figure 8 cor-
responds to the case study parameters: boarding and alighting times equal to 2 s and 
a bus frequency of 2 min. Figure 8d presents the simulation when no holding times 
are applied ( Ω = � ). We observe many bus-bunching pairs and long intervals with-
out buses at the stops, especially after kilometer 10. The optimization stage is done 
every 20 and 10 min, respectively, in the time-space Fig. 8b and c. We can observe 
a significant change since there are fewer bus bunching cases than without consider-
ing holding times. Indeed, the trips tend to be more equidistant, so there are fewer 
long intervals without buses. We obtain the best solution when Ω = 5 min corre-
sponds to Fig. 8a. A bus bunching reduction of around 30% is achieved compared to 
the first scenario.
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4.4 � User waiting times

The objective function in the H-BBP(t0 ) model seeks to maintain quasi-regular 
headways to reduce the amount of bus-bunching pairs. The main question is if this 
strategy positively correlates with a reduction of user waiting times, which is the 
essential characteristic of the quality in a public transport system (Ben-Akiva and 
Lerman 2018; Eberlein et al. 2001).

Figure 9 shows that in our BBP methodology, the minimization of the bus-bunch-
ing pairs implies a reduction of the user waiting times. In box-plot graphs of Fig. 9, 
the vertical axis corresponds to the average user waiting time until they board the 
first bus. This average was obtained considering all the system stations and based 
on real data. The horizontal axis is the optimization process frequency Ω . As in the 

Fig. 8   Bus trajectories in 2 h with bus boarding and alight times equal to 2 s ( U = U = 2 ), bus frequency 
of 2 min, and considering different optimization process frequencies a every 5 min, b every 10 min, c 
every 20 min, and d without optimization process
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previous box-plots of Fig. 7, we vary the bus frequency F and the user’s boarding 
and alighting times U = U : (a) 1, (b) 2, and (c) 3 s.

Figure 9a and b, show that the more frequent the optimization interventions are, 
the more the average waiting times are reduced. For the case study (Fig.  9b with 
F = 2 ), the average waiting times are reduced by 30% for Ω = 5 min. The box plot 
of Fig. 9c shows the case with boarding and alighting times of 3 s, which is not usual 
but observed during the COVID-19 pandemic. In this case, for the bus frequency of 
2 and 3 min, the waiting times are only reduced when the optimization frequency Ω 
is small. The variances of the average waiting times are short for the case of 1 s for 
boarding and alighting (Fig. 9a), but they increase as U = U augment.

Fig. 9   Average user waiting times with respect to optimization process frequency Ω when the bus board-
ing and alighting times are of a 1, b 2, and c 3 s
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Figure 10 allows us to analyze further the average user waiting times when the 
BBP methodology is used. In the figure, there are two percentage ring graphs; 
both have a bus frequency of F = 2 , and boarding and alighting waiting times of 
U = U = 2 correspond to the case study. The inner ring is without holding times 
( Ω = � ), while the outer one has a frequency of holding times computation of 
Ω = 7 min. The user waiting times are classified into five categories: 0–5 min, 
5–10 min, 10–15 min, 15–20 min, and more than 20 min.

From Fig.  10, we observe that computing the holding times via our math-
ematical model every Ω = 7 min positively impacts user waiting time. Indeed, 
15% of the users improved their average waiting times. The bus bunching prob-
lem cannot be eradicated with our BBP method, but now only 11% of the pas-
sengers wait for more than 20 min to board a bus.

4.5 � Bus loads

When two buses arrive at a station simultaneously, most of the waiting users decide 
to board the first bus. This behavior causes the load on the first bus to be signifi-
cantly higher than on the bus following it, creating unbalanced occupancy rates 
among the buses serving the system. The users in a crowded bus are uncomfortable 
and perceive poor service quality.

Figure 11 shows the load of each bus from the initial station (Lincoln) to the final 
station (Valle Soleado). Each line represents a bus trip in a setting with a departure 
frequency of F = 2 and boarding and alighting waiting times of U = U = 2 . The 

Fig. 10   Average user waiting times with respect to optimization process frequency Ω = � (inner ring) 
and Ω = 7 (outer ring) with a bus frequency of F = 2 , and boarding and alighting waiting times of 
U = U = 2
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blue trips do not apply the holding times computed by our model ( Ω = � ), while the 
red trips compute the holding times every Ω = 5 min.

Fig. 11   Bus load at each station when the optimization process is Ω = � (blue trips) and Ω = 5 (red trips) 
with F = 2 and U = U = 2 (color figure online)

Fig. 12   Values of the holding time variables obtained by H-BBP(t
0
 ) when they are a continuous, and b 

discrete
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Figure 11 reveals that when the optimization process is not applied (blue trips), 
there is more variability in the bus loads compared to the case where the optimiza-
tion is performed every 5 min (red trips). Thus, by minimizing the bus bunching we 
also obtain a more balanced bus load pattern since we observe less variability.

4.6 � Holding times analysis

In this section, we analyze if there is a consequence of considering integer holding 
times which are easier to communicate to the drivers. Thus, Fig. 12 considers both 
cases, the holding times in the H-BBP(t0 ) model are integer (Fig. 12b) or continu-
ous values (Fig. 12a). The boarding and alighting waiting times are U = U = 2 , and 
we consider all the optimization frequencies Ω and all the different headways F. In 
both figures, the pentagon’s vertices indicate the different values the holding times 
can take (accumulated values of all instances and different parameters). In Fig. 12a, 
vertex i = 1,… , 4 groups all values in [i − 1, i) , while vertex 5 groups the values of 
the holding times between [4, 5]. Each colored pentagon represents the number of 
occurrences of a holding value type differentiated by the different bus frequencies F.

Figure 12 shows that the integer holding times are less applied than real ones, 
which is a great advantage for the practical implementation of our methodology. 
Indeed, Fig. 12a exhibits holding times have values ranging between [0, 60] s, which 
can be challenging to apply in a real case. Independently of the nature of the holding 
time variables in the H-BBP(t0 ) model, the value of 5 min is the one with the highest 
recurrence regardless of service frequency.

We did not notice a significant solving time difference when the holding variables 
take discrete or continuous values in the H-BBP(t0 ) model. On average, the running 
times for both cases were 15 s. Moreover, the number of bus-bunching pairs is not 
affected by the nature of the holding variables. We also analyzed the running times 
when solving the mathematical model with and without valid inequalities (13) and 
(14), considering discrete or continuous holding time variables. A slight improve-
ment in the running time was observed when using valid inequalities, especially 
with discrete holding variables.

It is also interesting to analyze at which stations the holding times are more recur-
rent. We could determine the necessity of applying holding times at all the stations 
or only at some of them with this information. Figure 13 consists of 12 histograms 
whose horizontal axis corresponds to the stops (stop 14 is Mitras), while the verti-
cal one corresponds to the number of times that holding times were needed. We 
consider the bus frequency F (1,2, 3, and 4 min, corresponding to the columns of the 
figure) and the boarding and alighting times (1, 2, and 3 s, corresponding to the lines 
of the figure). The colors represent the different optimization frequencies Ω . This 
figure shows the case with integer holding time values.

In Fig.  13, the case study is when the bus frequency is F = 2 and the board-
ing and alighting times are 2 s. Before the Mitras stop, there is a large number of 
holding times needed. This behavior holds when U = U = 2 and when F = 2 and 
F = 3 . Nevertheless, when the boarding and alighting times are short, U = U = 1 , 
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the holding times are more uniform through the stops. Thus, the whole Ecovía BRT 
is affected by the users’ boarding and alighting times and ideal headways. When the 
boarding and alighting times are equal to 2 or 3 s, the tendency is to hold the buses 
only in the first half of the stops.

4.7 � Optimization at every stop

This section aims to compare our methodology with other literature approaches that 
compute the holding times each time a bus arrives at a stop as in Delgado et  al. 
(2009, 2012) and Sánchez-Martínez et  al. (2016). In Delgado et  al. (2012), they 
compute the holding times for all buses at all future stops. However, they only keep 
the holding time value that affects the bus arriving at the station. All other hold-
ing time values found by the model are discarded. We compare the Delgado et al. 
(2012) policy against our case, which performs the optimization stage every 5 min. 
We consider the real parameters of our case study, U = U = 2 s and F = 2 min. Our 
comparison is only on the number of times the optimization stage is called. While 
we implicitly reduce bus bunching to decrease user waiting times, the model by Del-
gado et al. (2012) directly minimizes the user waiting times, which employs a quad-
ratic objective function that is more time-consuming to solve.

The comparison between the two policies is in Fig. 14. Figure 14a shows the bus 
bunching events, while Fig. 14b shows the user waiting times over 2 h. We use our 
beam-search heuristic with a relative optimality gap of 5% to solve our model for 
both policies.

Fig. 14   Comparison between optimizing every 5 min and optimizing every time a bus arrives at a stop 
concerning a amount of bus-bunching pairs, and b average user waiting times
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From Fig.  14a, we observe that the median for Ω = 5 is just under 375 bus 
bunching-pairs, while for the other case, the median is close to 435. Thus, making 
fewer optimization calls is better in terms of bus bunching events than making opti-
mization calls almost every 10 s (optimization every time a bus arrives at a stop). 
From Fig. 14b, we can observe that the average user waiting time is between 52 and 
55 min for Ω = 5 , which is already a long time (we have validated this time in the 
Ecovía). When the optimization process is performed every time a bus arrives at a 
stop, there are average waiting time values lower than 50 min, but there are also val-
ues higher than 60. The variance is much higher than in the previous case, implying 
a less reliable service.

4.8 � Beam‑search results

As explained in Sect.  3.4, there is a trade-off between running time and solution 
quality that depends on the relative optimality gap parameter � and the used search 
strategy. This section assesses this trade-off by carrying out the following experi-
ment based on the real case corresponding to a frequency of F = 2 , boarding and 
alighting times of U = U = 2 , and 40 stops.

We execute the beam-search heuristic using � ∈ {0.2, 0.1, 0.05, 0.01, 1 × 10−5} . 
The last � value corresponds to the optimal solution case for comparison purposes. 
We implement our beam search by directly using the branch-and-bound library of 
the Gurobi solver by using three different node exploration strategies: (1) depth-
first search chooses the most recently created node and explores as far as possible 
along each branch before backtracking; (2) breadth-first search explores each node 
by level; (3) family of internal heuristics to improve the node search.

The running times can be found in Table 3, where the first column displays the 
beam-search exploration strategy. DFS, BFS, and HEU denote depth-first search, 
breadth-first search, and heuristic, respectively. The second indicates the � value 
used. The remaining columns show the running times and the number of explored 
nodes for instances with 20, 30, 40, 50, and 60 buses. Each value is the average of 
ten instances. The symbol “–” indicates that the time limit of 10,800 s was reached.

There are several interesting observations. First, as expected, the smaller the value 
of � , the larger the computational effort; however, the increment in time is marginal, 
kept in the same order of magnitude. Going from an � value of 0.05–0.01, the incre-
ment in time is slightly more, also depending on the search strategy. For instance, 
going from 0.05 to 0.01 produces around 70–100% increment under the breadth-
first search and heuristic strategies, but merely 15–20% under the depth-first search 
search strategy. When strategies are compared, for the 20- and 30-bus instances, the 
heuristic search strategy works slightly better than the other two; however, for the 
40-, 50-, and 60-bus instances, the depth-first search strategy yields the best results. 
Now, comparing the running times obtained by the different versions of the beam 
search with the exact method (corresponding to � equal to 1 × 10−5 ), we can observe 
that under the depth-first search strategy, there were three cases where the algorithm 
was unable to optimally solve the problem reaching the time limit of 10,800 s.
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Note that in most cases, when there are more buses, the execution times are 
lower, probably because there is less flexibility in the values of the decision vari-
ables. In instances with 60 buses, we can find excellent quality solutions in less than 
5 s. Moreover, the best performance is found with the heuristic strategy.

5 � Conclusions

With the BBP methodology, we minimize the amount of bus bunching, that is, the 
number of buses of the same line cruising head-to-tail or arriving at a stop simulta-
neously by determining holding times at the bus stops.

Our BBP solution approach presents an optimization stage that determines the 
holding times of each bus at the stops by considering the actual information along 
the bus line and predicting the future events in the line. This stage is a novel quad-
ratically constrained integer linear programming model that yields the holding 
times, which are immediately communicated to the drivers to recover quasi-regular 
headways between the buses. We also present a discrete-event simulation program 
representing a bus rapid transit system. In this manner, we can retrieve simulated 
real-time data from the system to validate the efficiency of our mathematical model.

The experimental results show that our methodology mitigates bus bunching by 
reducing it up to 45%, especially in scenarios with high bus frequency. Moreover, 
the user waiting times also decrease considerably in scenarios where the dwelling 
and alighting times are 1 or 2 s, reduced by up to 30%. Every 5 min is the frequency 
in which the holding times must be computed to have the best quasi-regular head-
ways between the buses and a balanced bus load. In addition, it leads to a more 
reliable transport service than optimizing every time a bus arrives at a station, as 
many works in the literature do. Furthermore, we used a beam-search heuristic using 
different search strategies and relative optimality gap parameters. We obtained solu-
tions for instances up to 60 buses with a gap of less than 5% in less than 3 s.

Even if our methodology is based on the Ecovía, it can be easily adapted to differ-
ent BRT systems. For example, in our case study, there is only one door for board-
ing and alighting actions. Simultaneous boarding and alighting will only impact 
the model and simulation parameters corresponding to a similar behavior with the 
U = U = 1 (Figs. 7a, 9a).

The impact of the values, such as the headway tolerance from the ideal headway, 
the importance between bus bunching events, and separated buses (slopes of the 
penalty function), will lead to a better understanding of the problem. Future research 
lines may consider additional strategies, such as bus insertion at stations with a high 
passenger flow. Besides, we have considered 40 one-way stations. Nevertheless, the 
corridor has the functionality of a round-trip one. Only available buses leave at Valle 
Soleado (the end station). Thus, when bus bunching is severe, there could be depar-
ture times that cannot be fulfilled. This framework may be enhanced by considering 
uncertainty in the user’s travel and arrival times, bus speeds, and scenarios where 
accidents or bus breakdowns may occur. Finally, one may implement heuristic meth-
ods to determine holding times for larger BRT systems.
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