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Abstract
In the industrial Internet of Things (IIoT), digital platforms have recently received significant attention. Although IIoT 
platforms revolve around similar business objectives, they address various use cases and, thus, differ considerably in their 
architectural setup. While research has already investigated IIoT platforms from a business or design perspective, little is 
known about their underlying technology stack and its implications. To unveil different IIoT platform configurations and bet-
ter understand their architectural design, we systematically develop and validate a taxonomy of IIoT platforms’ architectural 
features based on related literature, real-world cases, and expert interviews. On this foundation, we identify and discuss five 
IIoT platform archetypes (Allrounder, Device Controller, Data Hub, Service Enabler, Connector). Our findings contribute to 
the descriptive knowledge in this ambiguous research field while also elucidating the interplay of IIoT platforms’ architec-
tural setup and their purpose. From a managerial viewpoint, our results may guide practitioners in comparing and selecting 
a suitable IIoT platform.
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Introduction

In recent years, a large number of digital platforms emerged 
across industries. Digital platforms and their surround-
ing ecosystem form complex socio-technical systems that 
build on developing and managing an appropriate IT archi-
tecture and governance regime (Bazarhanova et al., 2020; 
Hein et al., 2020; Tiwana, 2018). In the uprising industrial 
Internet of Things (IIoT), the concept of digital platforms 
has received significant attention, leading to the emergence 
of more than 620 IoT and IIoT platforms by today (Lueth, 
2019) and building a market that is growing by more than 
26% a year until 2024 (Industry ARC 2019). Such IIoT plat-
forms provide a digital infrastructure to connect industrial 
devices into digital networks to collect and process the gen-
erate data and consequently facilitate data-driven services 
(Pauli et al., 2020; Petrik & Herzwurm, 2020). Thus, Pauli 
et al. (2021) define IIoT platforms as middleware systems 
to support and integrate heterogeneous hardware, on top of 
which third parties can develop complementary applications. 
Such applications cover manifold solutions, such as produc-
tion optimization through asset monitoring and advising, 
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machine health monitoring through anomaly detection, or 
customer transparency through better traceability.

Addressing a variety of use cases, IIoT platforms differ 
considerably in terms of their underlying technology stack 
and architectural setup (Guth et al., 2018; Mineraud et al., 
2016). This is partly due to the technical complexity in 
business-to-business (B2B) environments and the lack of 
established standards in the IIoT, leading to rather siloed 
development (Khan et al., 2020). Consequently, the IIoT 
platform landscape, while revolving around similar business 
objectives, is scattered. This creates several issues: first, it 
creates issues for companies that must understand the IIoT 
platform market to select a vendor that successfully inte-
grates into their existing IT infrastructure. Companies lack 
a comprehensive scale to organize and guide decisions in the 
scattered IIoT platform landscape (Hoffmann et al. 2019). 
Second, it creates issues for complementors that need to 
understand the internal architecture of platforms when they 
are synthesizing their code (i.e., application) with platform 
resources to create new offerings that are competitively far-
ing (Tiwana, 2018). Last, it creates issues for researchers and 
strategists that seek to understand the interplay of IIoT plat-
forms’ architecture and business models, which are strongly 
interwoven in the context of digital business, in enabling a 
competitive advantage (cf. Cennamo, 2021; Zhu & Iansiti, 
2012). Research has already put effort into investigating 
IIoT platforms, focusing on their business model (Hodapp 
et al., 2019; Petrik & Herzwurm, 2018), analytics framework 
(Moura et al., 2018), or design criteria (Werner & Petrik, 
2019). However, we still miss a unified classification of IIoT 
platforms’ fundamental building blocks, which we subsume 
as architectural design options, to enable a transparent evalu-
ation and comparison of existing IIoT platforms. Thus, we 
ask:

How can IIoT platforms be classified by their archi-
tectural features?

To answer this research question, we develop a taxonomy 
of IIoT platforms’ architectural features following Nickerson 
et al. (2013) guidelines. Taxonomies are well suited to lay 
the groundwork for emergent research fields and serve as a 
first step toward systematizing the fundamental design deci-
sions (Williams et al., 2008). For taxonomy development, 
we use both the literature and empirical knowledge from 
22 IIoT platforms as well as seven semi-structured expert 
interviews. For taxonomy evaluation, we classify 78 IIoT 
platforms and, thus, identify and conceptualize five arche-
types of IIoT platforms.

Our taxonomy contributes to the descriptive knowledge in 
this ambiguous research field by explaining the architectural 
dimensions and prevalent manifestations of digital platforms 
in the IIoT. Further, we contribute to the prescriptive knowl-
edge by elucidating the interplay between IIoT platforms’ 

architectural setup and their purpose. Lastly, our results pro-
vide a comprehensive overview of architectural dimensions 
that may guide managers in comparing and selecting a suit-
able IIoT platform to use as well as developers understand-
ing a platforms’ architecture when developing applications.

Domain background

Digital platforms

Originally viewed as multi-sided markets that enable inter-
actions between different actors, the digital platform con-
cept increasingly captured innovation activities (Gawer & 
Cusumano, 2014). Today, digital platforms are a pivotal 
element for technological innovation, as the examples of 
Apple, Facebook, or Microsoft show. Capturing this essence, 
Tiwana et al., (2010, p. 675) see digital platforms as the 
“extensible codebase of a software-based system that pro-
vides core functionality shared by the modules that inter-
operate with it and the interfaces through which they inter-
operate.” Adding to this view, the network of third-party 
providers (i.e., complementors) that builds around a digital 
platform is often referred to as a digital platform ecosystem 
(Hein et al., 2020; Reuver et al., 2018). We adopt this view 
and see a digital platform as an extensible technological 
foundation on top of which third parties can build platform-
augmenting applications. Within this view, architecture 
plays a significant role in the overall design of a digital plat-
form (Spagnoletti et al., 2015; Tiwana, 2018). Generally, 
the architecture of a system refers to the structure of inter-
actions among subsystems that constitute it (Tiwana, 2018; 
Ulrich, 1995). The architecture of a digital platform serves 
thereby as the “conceptual blueprint that describes how the 
ecosystem is partitioned into a relatively stable platform 
and a complementary set of modules that are encouraged to 
vary, and the design rules binding on both” (Tiwana et al., 
2010, p. 677). Digital platforms’ varying architecture makes 
it possible to differentiate between them and determines their 
respective evolutionary path (Agarwal & Tiwana, 2015; 
Cennamo, 2018).

Digital platforms bring together three important stake-
holders: the platform owner, complementors, and users. 
The platform owner runs and governs the digital platform. 
Complementors build on the digital platform and broaden 
its functionality with applications. The users consume the 
functionalities provided by the digital platform (van Alstyne 
et al., 2016).

Industrial Internet of Things

The Internet of Things (IoT) integrates technology-ena-
bled physical objects into a global cyber-physical network 
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(Oberländer et al., 2018). It uses recent advances in digi-
tal technology such as ubiquitous communication, perva-
sive computing, or ambient intelligence to connect these 
objects based on standardized communication protocols. 
With the help of these technologies, everyday objects turn 
into so-called smart things (Püschel et  al. 2020). Prior 
research examines the IoT in terms of its architecture, for 
example, as a layered reference model. This often results 
in a multi-layer description of services offered at different 
architectural levels, depending on the business needs, tech-
nical requirements, and technologies (Fleisch et al., 2015; 
Porter & Heppelmann, 2015; Sisinni et al. 2018; Yoo et al., 
2010). A common three-layer IoT architecture differentiates 
the perception, network, and application level (Jing et al., 
2014). The perception level controls objects and collects 
data, the network level enables information exchange of the 
data, and the application level supports business services 
by analyzing the data. The application of the IoT concept 
in an industrial context received particular interest in recent 
years as it proved to be a prime example of its applicability 
and its underlying economic potential (Papert & Pflaum, 
2017; Wortmann & Flüchter, 2015). Current trends in the 
manufacturing industry point towards combining traditional 
production, automation, and computational intelligence into 
a complex system known as the industrial IoT. The litera-
ture describes the IIoT concept with different names such 
as Industry 4.0, Industrial Internet, or Internet of Produc-
tion (Boyes et al., 2018; Wortmann & Flüchter, 2015). The 
terms IoT and IIoT are occasionally also used synonymously 
(Hanelt et  al., 2020; Hodapp & Gobrecht, 2019; Pauli 
et al., 2021). Sisinni et al., (2018, p. 4725) describe it as 
being about “connecting all the industrial assets, including 
machines and control systems, with the information sys-
tems and the business processes.” Thus, IIoT leverages the 
mechanical engineering industry into the digital era (Kiel 
et al., 2017). Through extraction and utilization of machine 
data, it is a key enabler for the creation of digital networks in 
manufacturing processes and ultimately lays the foundation 
for a smart production system (Pauli et al., 2020; Rehman 
et al., 2019).

Industrial Internet of Things platforms

IIoT platforms function as a middleware that orchestrates the 
heterogeneous device landscape in the IIoT and provides a 
technological infrastructure fostering connectivity and inter-
operability between smart machines, control systems, and 
enterprise software systems (Petrik & Herzwurm, 2020). 
On top of the technological infrastructure, applications 
provide data-driven services to platform users (Hodapp & 
Gobrecht, 2019; Pauli et al., 2021). These applications con-
sequently extend the machines’ functionality by collecting 
and processing the generated data, thus generating additional 

value. The recent literature on digital platforms has largely 
abstracted on the technological characteristics of different 
platforms, treating all technological platforms as a rather 
homogenous group (Reuver et al., 2018). However, IIoT 
platforms significantly differ from other kinds of platforms, 
in particular those studied by the IS community so far. For 
one thing, IIoT platforms operate in a B2B environment. 
This entails higher technological complexity due to heterog-
enous industrial assets and devices, IT infrastructures, and 
processes compared to business-to- consumer (B2C) markets 
in which most digital platforms operate (Hein et al., 2019; 
Pauli et al., 2020). Further, this implies additional actors 
involved (e.g., developer, machine manufacturer, or sen-
sor manufacturer) for integrating third-party solutions into 
users’ IT and business processes resulting in higher organi-
zational complexity. For another thing, applications devel-
oped on IIoT platforms are often fragmented, addressing 
only one or few customers, or even being developed by cus-
tomers for their own use (Pauli et al., 2020). This contradicts 
digital platforms’ underlying assumption of efficiently serv-
ing a heterogenous market and in this way attracting com-
plementors and ignite network effects, respectively. Even 
though IIoT platforms operate in similar context, they spe-
cialize in different service offerings (e.g., equipping devices 
with digital technology and connecting them to the Internet, 
managing the machinery for more flexible production, or 
deriving new insights through analyzing data). To realize 
these services, they require different architectural features. 
As a result, the IIoT platform landscape is scattered among 
different manifestations, making it challenging to compare 
IIoT platforms with each other and understand the value they 
can create. Research just recently began investigating IIoT 
platforms, covering different aspects such as their business 
model (Endres et al., 2019; Hodapp et al., 2019), frameworks 
for classification (Moura et al., 2018), design characteristics 
(Abendroth et al., 2021), or their design criteria (Werner & 
Petrik, 2019). Regarding the business model, Hodapp et al. 
(2019) focused on constituent elements of a business model 
and developed a taxonomy to understand the IoT platform 
market. Similarly, Endres et al. (2019) explored IIoT busi-
ness models to identify their IIoT specific components and 
overall business model archetypes. One of the archetypes 
they identified is the “IIoT platform business model” which 
is characterized by data-driven analyses through platforms 
and the applications on them. Regarding IIoT frameworks, 
Moura et al. (2018) proposed a framework that is divided 
into layers responsible for describing and accommodating 
key elements for IIoT implementation in an organization. 
Lastly, researchers investigated how IIoT platforms can be 
set up by elucidating their design criteria (Werner & Petrik, 
2019) or the concept of boundary resources (Petrik & Her-
zwurm, 2019, 2020). However, we still miss a unified clas-
sification of architectural features and a understanding how 

929



	 L. Arnold et al.

1 3

they interact with each other to enable a transparent evalu-
ation and comparison of existing IIoT platforms. We deem 
this a practical approach to uncover underlying differences 
of IIoT platforms that research thus far has not demonstrated.

Method

Taxonomy development

According to Glass and Vessey (1995, p. 66), taxonomy 
development refers to a method of “assigning members to 
categories in a complete and unambiguous way.” Taxono-
mies are schemes with which specific amounts of knowledge 
can be structured, analyzed, and organized, thus fostering the 
understanding of the phenomenon (Glass & Vessey, 1995). 
Embedded in the field of design science research, taxono-
mies can contain both descriptive and prescriptive knowl-
edge and represent artifacts in the form of models (Nicker-
son et al., 2013). In information systems research, taxonomy 
development is well received and has already been success-
fully applied in different contexts when exploring emerg-
ing research fields such as predictive maintenance business 
models (Passlick et al., 2021), smart things (Püschel et al., 
2020), or agile IT setups (Jöhnk et al., 2017). In line with 
this exemplary work, we follow the iterative taxonomy 
development method proposed by Nickerson et al. (2013). 

This method integrates conceptual and empirical perspec-
tives into one comprehensive method and, thus, fosters 
the iterative usage of both paradigms. Figure 1 shows the 
seven-step-structure: (1) determination of a meta- character-
istic that reflects the purpose of the taxonomy and its target 
group, (2) determination of ending conditions, (3) choice of 
either an empirical-to-conceptual (E2C) or conceptual-to-
empirical (C2E) approach, (4) conceptualization of char-
acteristics and dimensions, (5) examination of objects, (6) 
initial design or revision of the taxonomy, and (7) testing of 
ending conditions. The taxonomy’s purpose is reflected in its 
meta - characteristic, which the researcher defines, together 
with ending conditions, at the beginning of the development 
process. Several iterations of taxonomy design and revision, 
choosing either a C2E or an E2C approach, follow. After 
each approach, the researcher tests the resulting taxonomy 
against the ending conditions until they are met.

For step (1), we define our meta-characteristic as follows: 
Architectural features of IIoT platforms. Thus, our meta-
characteristic reflects that we seek to guide both further 
research and practitioners. For step (2), we determine objec-
tive as well as subjective ending conditions of the taxonomy 
development process (Nickerson et al., 2013). As for the 
formal correctness of the taxonomy development, we test 
against the following objective criteria after each iteration: 
(I) every dimension is unique, (II) every characteristic is 
unique within its dimension, and (III) at least one object 

Fig. 1   Taxonomy development 
process as of Nickerson et al. 
(2013)
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is classified under each characteristic of every dimension. 
Following Nickerson et al. (2013), we define our subjective 
ending conditions that taxonomy development is finished 
after the evaluation sees it to be concise, robust, comprehen-
sive, extensible, and explanatory. Besides, we follow Jöhnk 
et al. (2017) and (Püschel et al., 2020) in combining mutu-
ally exclusive (ME) and non-exclusive (NE) dimensions to 
allow for a parsimonious taxonomy.

For steps (3) to (7), we alternately conducted two C2E 
and two E2C iterations. In the first iteration (C2E), we 
searched relevant literature following the guidelines of 
Webster and Watson (2002) and vom Brocke et al. (2015). 
We deliberately decided to start with a C2E iteration to 
account for the growing amount of literature as a means to 
initially structure the field. Thus, we considered research 
on IoT, IIoT, and digital platforms to gain a comprehensive 
perspective on the emerging phenomenon of IIoT platforms 
and to populate initial dimensions and characteristics in 
our taxonomy. We searched the scientific databases ACM 
Digital Library, AIS Electronic Library, IEEE Xplore Digital 
Library, and SpringerLink with the following search string: 
TITLE (“IoT platform*” OR “IIoT platform*” OR “internet 
of things platform*” OR “industrial internet of things plat-
form*” OR “digital platform*”) AND ABSTRACT (“archi-
tecture” OR “taxonomy” OR “classification”). This search 
string resulted in 281 publications which we subsequently 
screened regarding information on architectural features 
of digital or (I)IoT platforms. Screening the results’ titles, 
abstracts, and – where necessary – full-texts, we reduced the 
results to 91 remaining relevant publications. We used this 
knowledge base and additional literature from a forward- and 
backward search to extract and consolidate architectural fea-
tures in a table. Drawing on this list in joint discussions, we 
developed the first increment of our taxonomy consisting of 
19 dimensions and related characteristics organized in four 
overarching layers. Considering that the literature only rarely 
focuses on IIoT’s specifics compared to the IoT and most 
architectural features in the literature revolve around security 
aspects, we decided to continue the taxonomy development 
process.

In the second iteration (E2C), we sought to back the pre-
liminary insights with empirical evidence. Thus, we exam-
ined 22 IIoT platforms for their architectural features. We 
selected platforms identified through market research (e.g., 
from Gartner’s Magic Quadrant and practitioner reports) and 
those mentioned in literature from the first iteration. For 
instance, Guth et al. (2018) describe architectural features 
for AWS IoT and Microsoft Azure IoT Hub, among oth-
ers. Thus, the descriptions and analyses from previous work 
helped us to confront our emerging taxonomy with existing 
renowned IIoT platforms. We obtained relevant informa-
tion for our taxonomy development from platform provid-
ers’ technical documentation, websites, whitepapers, and 
relevant press releases. These insights helped us to identify 
new architectural dimensions and characteristics as well as 
to substantiate and improve the existing ones. By the end of 
the second iteration, our taxonomy consisted of 21 dimen-
sions organized in four layers.

In the third iteration (C2E), we returned to the literature 
to ground the new observations in prior work. Thereby, 
we strengthened and verified the findings from the second 
iteration. Specifically, we searched for theoretical concepts 
describing our observations of IIoT platforms’ architectural 
features and dropped or consolidated dimensions and char-
acteristics in line with our meta-characteristic. For instance, 
while we found information on IIoT platforms’ governance 
in the second iteration, it does not describe their architectural 
features in the narrower sense, which is why we removed 
them from the taxonomy. The third iteration resulted in a 
taxonomy of 13 dimensions and related characteristics that 
are organized in four overarching layers.

In the fourth iteration (E2C), we collected and analyzed 
additional primary data from seven expert interviews (see 
Table 1). We deemed this iteration necessary to account for 
IIoT platforms’ novelty and peculiarities in developing and 
evaluating our taxonomy. Our interviews were semi-struc-
tured, following an interview guide to ensure coverage and 
comparability between the interviews (Myers & Newman 
2007). Each interview consisted of four building blocks: 
introduction (participants, research project, taxonomy 

Table 1   Overview of the seven 
expert interviews

Role of interviewee Industry Employees
(2019)

Revenue
(2019)

Duration

1 Customer Engineer Technology 119,000 141bn € 59 min
2 Software Developer Automotive 133,000 104bn € 58 min
3 Emerging Tech. Specialist Automotive 133,000 104bn € 55 min
4 Software Architect Software

Development
20 1 m € 58 min

5 Head of AI/Data Analytics Manufacturing 20,000 3.3bn € 61 min
6 Founder/CEO Technology 5 - 78 min
7 Data Scientist Automotive 90,000 55bn € 69 min

931



	 L. Arnold et al.

1 3

research, and clarification of focal terms and concepts), 
discussing the layers and dimensions of the taxonomy, dis-
cussing the characteristics for each dimension in the tax-
onomy, and overall feedback. We selected interviewees 
from our industry network (expert sampling) according to 
their knowledge in the field of IIoT and/or IIoT platforms. 
Our experts contribute perspectives from different back-
grounds and industries to offset potential biases. The inter-
views lasted between 55 and 78 minutes, and at least two 
of the authors were present in each interview. We recorded 
all interviews with the experts’ consent and analyzed them 
systematically. Thus, all authors engaged in discussing the 
experts’ feedback and further developing the taxonomy. We 
incorporated the proposed changes between interviews to 
discuss the improved taxonomy iteratively.

Cluster analysis and archetype identification

Based on our taxonomy, we seek to identify, conceptualize, 
and elucidate typical architectural setups of IIoT platforms 
(i.e., typical combinations of architectural features). This is 
to understand better the current IIoT platform landscape and 
guide scholars as well as practitioners in this field. We iden-
tified distinct IIoT platform archetypes using cluster analy-
sis. This statistical technique groups objects with similar 
characteristics and aims for a high degree of homogeneity 
within each cluster group and a high degree of heterogeneity 
between cluster groups (Hair et al., 2010).

For this step, we collected data on 78 IIoT platforms 
that provided real-world cases for cluster analysis. We used 
the publicly accessible IIoT supplier database of the mar-
ket research company IoT ONE to obtain a comprehensive 
list of relevant IIoT platforms (IoT One 2021). Follow-
ing a structured selection process, this platform sampling 
approach helped us to gain a larger number of IIoT platforms 
for classification compared to the taxonomy development 
phase. At the same time, this approach was detached from 
any focus and platform selection choices in previous work 
to increase the transparency and comprehensibility of our 
cluster analysis.

The IoTONE database contained information on 2,873 
companies at the time of the data collection. We narrowed 
down the search results using the databases’ filter options 
to select “platform-as-a-service” entries, resulting in a list 
of 560 elements. Subsequently, we filtered the list by the 
five available revenue categories (>$10bn, $1bn–$10bn, 
$100m-$1bn, $10m-$100m, <$10m) to cover IIoT platforms 
of different sizes, popularity levels, and with different value 
propositions. We classified every IIoT platform of the rev-
enue categories 1 to 3 (see Table 2) that provided sufficient 
publicly available information (i.e., technical documenta-
tion, whitepaper, press release, website description etc.). For 
revenue categories 4 and 5, we limited the number of cases 

that we classified since we aimed at a balanced sample with 
respect to the different revenue categories. Thus, we delib-
erately emphasized the comprehensive sampling across rev-
enue categories (i.e., potentially resulting in greater variety 
regarding the archetypes) over a ‘representative’ sampling 
that mirrors the relative number of IIoT platforms per rev-
enue category (i.e., potentially resulting in archetype domi-
nance that may not reflect the IIoT platform market). The 
selected IIoT platforms are listed in Table 5 in the Appendix.

Authors jointly engaged in IIoT platform classifica-
tion, frequently discussing ambiguities within the research 
team to allow for alignment in applying the taxonomy. We 
choose agglomerative hierarchical clustering with the Ward 
algorithm and Manhattan distance function as our cluster-
ing approach for two main reasons. For one thing, Ward 
algorithm’s characteristic to minimize intra-cluster varia-
tion and maximize inter-cluster variation (Strauss & Maltitz, 
2017) helps us to delineate clearly distinguishable arche-
types, especially considering the plethora of potential plat-
form manifestations from our taxonomy (see Püschel et al. 
(2020) for an explanation of theoretical manifestations from 
taxonomies). For another thing, this combination of cluster 
algorithm and distance function is an established approach 
in extant research which has proven to be a valid and effec-
tive means to cluster taxonomy classifications (cf. Hodapp 
et al., 2019; Püschel et al., 2016). We coded every character-
istic as binary (1: the IIoT platform offers this architectural 
feature; 0: the IIoT platform does not offer this architectural 
feature; see Table 6 in the Appendix for a detailed exam-
ple of the coding process) and normalized the dimensions’ 
distance as [0;1] to avoid overrating dimensions with more 
characteristics (Püschel et al., 2016). Thereby, we accounted 
for both the dimensions’ exclusivity (mutually exclusive or 
non-exclusive characteristics) and number of characteristics. 
Agglomerative hierarchical clustering shows solutions for 
all possible number of clusters. Thus, we used triangulation 
to choose the optimal number of clusters based on different 
statistical measures, visual graph interpretation, as well as 
interpretability and meaningfulness based on our real-world 
observations (Jick, 1979). Regarding statistical measures, no 
cluster solution was dominant, but we were able to narrow 
the sensible number of clusters to a solution between three 

Table 2   Distribution of IIoT Platforms across revenue categories

Revenue category Hits Selected

Category 1: > $10 bn 28 18
Category 2: $1bn—$10bn 33 15
Category 3: $100 m—$1bn 26 13
Category 4: $10 m—$100 m 112 17
Category 5: < $10 m 361 15
Total 560 78
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and nine clusters (e.g., C- Index proposing a four cluster 
solution). As established visual graph interpretations, we 
used the dendrogram and the average silhouette width to 
better understand the agglomeration in our hierarchical clus-
tering. This step showed that the solutions for four, five, 
six, and seven clusters performed very similarly statistically. 
Thus, we engaged in joint discussions with all authors to 
review all four of these cluster solutions for their cluster 
composition and meaningful interpretation. Considering ear-
lier work on IIoT platforms’ architectural features [blinded 
for review], we finally decided on the final five cluster solu-
tion (see Figure 3 in the Appendix for the dendrogram). 
Subsequently, we conceptualized the archetypes’ specifics 
and implications.

Taxonomy of architectural setups of industrial IoT 
platforms

In the following, we present our final taxonomy (see Fig. 2) 
and describe the dimensions and characteristics in detail. 
The taxonomy consists of 13 dimensions encompassing 38 
characteristics that we defined according to the pre-specified 
meta-characteristic. To improve our taxonomy’s comprehen-
sibility and real-world fidelity, we structure the dimensions 
in four layers, i.e., infrastructure, network, middleware, and 
application layer.

Infrastructure layer

Industrial IoT platforms are created and cultivated on top 
of digital infrastructures (Constantinides et al., 2018). In 

the context of IIoT platforms, such digital infrastructure is 
represented by the smart things that are connected to the 
platform and the technical resources on which the platform 
operates. In this layer, we found three relevant dimensions.

Hardware support  Regarding the devices that IIoT plat-
forms allow to be connected to it, we found that some IIoT 
platforms constrain the connectivity to certified hardware 
(e.g., proprietary or selected third-party devices) which are 
approved by the platform owner, while others are hardware-
agnostic, meaning they support any hardware as long as it 
fits the platforms’ rough technical specifications.

Platform hosting  Another differentiation of the infra-
structure is how the IIoT platform is hosted. While defin-
ing requirements for IIoT platforms, Petrik and Herzwurm 
(2018) name three ways of how IIoT platforms can be 
hosted: on-premise, in a cloud, or in a hybrid way using 
both approaches. We adopt these characteristics and extend 
them by differentiating between public and private cloud 
specifications as experts repeatedly pointed out the differ-
ence during the interviews.

Data processing  Our taxonomy research process revealed 
that IIoT platforms process data on different boundaries of 
the platform. We found that most IIoT platforms process 
their data on-platform, meaning that depending on the level 
of platform hosting, this happens on-premise or in the cloud. 
Many IIoT platforms though also offer to process data on the 
edge, meaning that processing happens in a local network or 
within the smart things without all generated data being sent 

Fig. 2   Taxonomy of IIoT 
platforms’ architectural features 
(ME: dimension is mutually 
exclusive; NE: dimension is 
non-exclusive)
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to the IIoT platform. As some IIoT platforms offer a mixture 
of both approaches, we also included fog as a situation-based 
data processing characteristic.

Network layer

As connectivity and interoperability of devices and applica-
tions are core capabilities of any IIoT platform, we defined 
a network layer to collect the respective dimensions. Gener-
ally, two prominent frameworks can be found in the litera-
ture to describe the structure of networks: OSI and TCP/
IP model. We used these models to derive two dimensions 
that describe the network layer of an IIoT platform, similar 
to the proposed stack-lower and stack-upper layer of Sisinni 
et al. (2018).

Physical data transportation  These options can be catego-
rized into wired, meaning a cable-bound transmission, and 
wireless, therefore cable-unbound transmission. While the 
former represents a homogeneous group of transmission 
methods, the latter contains heterogeneous groupings of 
different wireless transmission methods. Therefore, we dis-
tinguish wireless transmission methods into three sub-cate-
gories: short-range wireless, which includes protocols with 
high performance but high power consumption and limited 
range (e.g., WiFi or Bluetooth), cellular, which have high 
performance, high power consumption, and long range (e.g., 
5G or LTE), and low power wide area networks (LPWAN), 
which have low performance, low power consumption and 
medium to high range (e.g., SigFox or LoRa).

Logical data transmission  Consequently, we found that IIoT 
platforms use different protocols to ensure a common data 
structure for information exchange. We distinguish between 
internet protocols, which emerged from the conventional 
internet (e.g., HTTP, XMPP, or Websockets), IoT-specific 
protocols, which meet specific requirements of the IoT and 
thus overcome many drawbacks of internet protocols (e.g., 
MQTT, AMQP, or CoAP), and industry-specific proto-
cols, summarizing existing industry standards to connect 
machines (e.g., Modbus, CAN, or BACnet).

Middleware layer

Integrating data with applications on the IIoT platform leads 
to different specifications, which we summarize in the mid-
dleware layer. It is responsible for the accumulation and fur-
ther processing of collected data (e.g., to applications) and 
consists of all functionalities required by a cyber-physical 
system. Thus, the layer is integrating the connected hardware 
to the platform and the software built upon it (Guth et al., 
2018).

Data structure  When generating data in the IIoT, data can 
be collected and streamed in different formats and structures. 
Some IIoT platforms explicitly state that they can deal with 
unstructured data, while others can only process structured 
ones.

Analytics types  Making use of generated data is a central 
feature of every IIoT platform. We distinguish four types of 
analytics methods in the domain of IIoT: descriptive ana-
lytics, which is the most basic form, and which analyzes 
historical data to reconstruct events, real-time analytics that 
focuses on current data to identify events, predictive analyt-
ics, which uses both historical and real-time data to predict 
future events, and prescriptive analytics, which takes the 
predictive approach even a step further to advise on how to 
deal with upcoming events.

Analytics technology  Consequently, IIoT platforms use 
different kinds of technology to analyze data. We found 
that they can be categorized into basic technologies, such 
as statistical modeling, and advanced technologies such as 
machine learning and neural networks.

External integration  IIoT platforms can not only analyze 
data collected from devices directly connected to the 
platforms but also include data from external sources. 
We found that platforms differ in their offerings to 
integrate other (enterprise) systems. Business integra-
tion includes systems that deal with business processes 
and data from ERP, CRM, or SCM systems, machine 
integration includes legacy systems that are used in 
factories such as existing PLC or SCADA systems, and 
web services integration include internet-based data 
sources.

Platform source code  The examination of exemplary IIoT 
platforms revealed that they leverage different approaches 
to further develop their software. We distinguish between 
open source, meaning that platforms provide their complete 
source code to the public, open components, meaning that 
platforms release single modular parts of the platform source 
code to the public or leverage components already being 
open source, and closed source, meaning that platforms keep 
their source code proprietary.

Application layer

Based on the collected data as well as functionalities pro-
vided within the middleware layer, IIoT platforms offer the 
possibility of integrating applications developed internally 
or by third parties. We summarize the architectural specifics 
of this provision in the application layer.
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Application Programming Interfaces (APIs)  To integrate 
not only external systems but also applications, IIoT 
platforms offer different APIs. While on some platforms 
we only found standardized APIs which are maintained 
by the platform owner, we found other cases where plat-
forms offered possibilities to build custom APIs based 
on predefined syntax and specifications (e.g., via an API 
Manager).

Application deployment  The empirical analysis of IIoT 
platforms revealed that platforms use different approaches 
to deploy applications built internally or by third-party 
contributors. In most cases, applications are platform-
native, meaning that applications have been built with 
tools provided by and directly running on the platform 
(e.g., rules engines). In other cases, we found that appli-
cations were containerized, meaning that the applications 
have been developed in an external environment but are 
deployed on the platform in a containerized environment 
(e.g., Docker), and in few cases, we found that applications 
were deployed off-platform, meaning that the applications 
are developed and hosted on different infrastructure (e.g., 
Cloud Foundry).

Marketplace  For the provision of applications to platform 
users, we found that IIoT platforms use different approaches. 
They either run an internal marketplace, which can be 
understood like an app-store on a mobile phone, or they 
make use of an external marketplace, which integrates the 
app-store of another digital platform (e.g., Eclipse Kura 
Marketplace) into the IIoT platform, or they have no mar-
ketplace at all.

Industrial IoT Platform archetypes

Drawing on our sample of 78 IIoT platforms, we demon-
strate the applicability and usefulness of our taxonomy.

Thus, we first derive overarching observations on IIoT 
platforms’ architectural features (see Table 3).

Overall, most platforms are hardware-agnostic (87.2%) 
and hosted via a public cloud service (96.2%), even though 
many platforms offer to choose other settings (on-premise 
64.1%, private cloud 55.1%, hybrid 37.2%) as well. While 
almost all IIoT platforms can process data on-platform 
(97.4%) or on the edge (66.7%), we found that only a minor-
ity is capable of situation-based data processing (fog 17.9%). 
Most IIoT platforms rely on wired (85.9%) or short-range 
wireless (89.7%) data transportation technologies (cellular 
59.0%, LPWAN 67.9%). Further, they use different com-
binations of protocols (internet 61.5%, IoT-specific 56.4%, 
industry-specific 71.8%). Note that we only considered this 
characteristic as existing if the IIoT platform offered more 
than one protocol to account for the diversity of data trans-
mission. Regarding data analysis, most IIoT platforms can 
handle structured (91.0%) as well as unstructured (75.6%) 
data. Further, all IIoT platforms can analyze data descrip-
tively (100%), with that number declining, the more complex 
analysis gets (real-time 89.7%, predictive 56.5%, and pre-
scriptive 20.5%). Accordingly, our sample shows a fair split 
between basic analytics technology used (50%) and advanced 
methods (50%) used. For external integration of data, most 
IIoT platforms can integrate web services (89.7%, business 
65.4%, machine 52.6%). As for source code openness, two-
thirds (71.8%) are closed source (open source 7.7%, open 
components 21.8%). Further, we found a majority of IIoT 

Table 3   Classification of IIoT platform sample (n = 78)

Dimension Characteristics

Hardware Support Certified Hardware 12.8% Hardware-Agnostic 87.2%
Platform Hosting On-Premise 64.1% Public Cloud 96.2% Private Cloud 55.1% Hybrid 37.2%
Data Processing Edge 66.7% Fog 17.9% On-Platform 97.4%
Physical Data Transportation Wired

85.9%
Short-Range Wireless
89.7%

Cellular
59.0%

LPWAN
67.9%

Logical Data Transmission Internet Protocols
61.5%

IoT-Specific Protocols
56.4%

Industry-Specific Protocols
71.8%

Data Structure Structured 91.0% Unstructured 75.6%
Analytics Types Descriptive 100% Real-Time 89.7% Predictive 56.4% Prescriptive 20.5%
Analytics Technology Basic 50.0% Advanced 50.0%
External Integration Business 65.4% Machine 52.6% Web Services 89.7%
Platform Source Code Open Source 7.7% Open Components 21.8% Closed Source 71.8%
APIs Standardized APIs 82.1% Custom APIs 17.9%
Application Deployment Platform-Native 94.9% Containerized 23.1% Off-Platform 34.6%
Marketplace Internal Marketplace 33.3% External Marketplace 5.1% No Marketplace 62.8%
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platforms offering standardized APIs (82.1%) and deploying 
applications on the platform (94.9%) (containerized 23.1%, 
off-platform 34.6%). Lastly, more than half (62.8%) of IIoT 
platforms do not offer a marketplace for applications.

Based on the cluster analysis among the IIoT platforms, 
we identified five archetypes, which we describe hereinaf-
ter. These archetypes indicate typical combinations of IIoT 
platforms’ architectural features. We emphasize distinctive 
characteristics per cluster and conceptualize the archetypes 
with real-world insights. Table 4 provides an overview of 
the different archetypes as well as their most frequent char-
acteristics per dimension. For non-exclusive dimensions, we 
included all characteristics that cover more than one-third 
of the cluster. The Appendix shows to which cluster each 
platform of the total sample was assigned.

Archetype 1 – Allrounder  IIoT Platforms of this archetype 
typically have strong markedness in many (non- exclusive) 
characteristics. While they are strong in different platform 
hosting options, they also offer various network data trans-
portation options and data transmission protocols. Further, 
they stand out for strong analytics capabilities and exter-
nal system integration possibilities. As the only cluster, 
these IIoT platforms strongly leverage external innovations 
through open components and deploy applications through 
various ways on the platform, while also maintaining an 
internal marketplace. IIoT platforms in this cluster offer a 
full-stack solution to their users. Our data sample shows that 
these platforms provide comprehensive services and cover 
a wide range of application scenarios, ranging from device 
connectivity and monitoring, over data visualizations and 
prescriptive processes, to over-the-air updates or command 
execution. Due to the broad coverage across all dimensions, 
we call this archetype Allrounder. Two prominent examples 
for this archetype are GE Digitals’ Predix or Siemens’ Mind-
Sphere platform. Both platforms provide edge-to-cloud data 
connectivity, processing, analytics, and distributed applica-
tion services to support industrial applications to optimize 
operations, create better quality products, and deploy new 
business models. Thereby, they leverage the latest big data 
and machine learning technologies for analytics-driven out-
comes. Further, they provide the possibility to self-develop 
and distribute (via an internal marketplace) application 
microservices to extend the platforms’ functionalities in 
analysis, data visualization, case management, and other 
areas.

Archetype 2 – Device Controller  This archetype comprises 
IIoT platforms that typically have strong markedness in only 
a few characteristics. As they strongly focus on public cloud 
hosting, they also tend towards on-platform data processing. 
Further, they offer only selected data transportation options 
and transmission protocols. Most IIoT platforms in this 

cluster utilize basic analytics technology, leading to less-
developed data analysis. However, to connect the platform 
with other Web Services, it often provides the relevant inter-
faces. Lastly, most platforms of this archetype do not main-
tain a marketplace for applications. IIoT platforms in this 
cluster focus on a narrow use and, thus, provide only neces-
sary functionalities. They can be extended mostly through 
applications that are built with platform-native tools such 
as rules engines or low-code/no-code development envi-
ronments. Due to its strong focus on data transportation in 
combination with limited data analytics capabilities, leading 
to pertinent use cases of these platforms, we call this arche-
type Device Controller. Two examples of this archetype are 
Airtel IoT and KITE platform. Both platforms have a strong 
focus on various connectivity technologies, especially in the 
cellular area, to enable real-time information, analysis, and 
control over devices for e.g., asset tracking or vehicle tele-
matics. Therefore, the platforms are hosted in public clouds, 
deploy data analysis purely on-platform, and leverage pri-
marily Internet or IoT-specific protocols. Finally, interfaces 
for Web-Service integration are offered to allow for further 
data distribution.

Archetype 3 – Data Hub  IIoT platforms in this cluster 
show strong markedness in specific characteristics. They 
are characterized by specifications on data processing and 
analysis. Consequently, they focus not only on edge and on-
platform but also on fog data processing. Their focus is on 
industry-specific protocols, while different data transpor-
tation options are offered. Regarding data analysis, these 
IIoT platforms provide strong analytics options backed 
by advanced technologies and comprehensive integration 
of other company systems. Further, their source code is 
mostly closed, applications are deployed internally, and 
they don´t maintain a marketplace for applications. Data 
Hubs are IIoT platforms that place a specific focus on data-
driven insights and decision-making using high-end analyt-
ics technology. A widespread use case for this archetype is 
the linkage of production lines and their optimization. We 
also found that many platforms offer their own sensors or 
edge devices in an as-a-service model to make better use 
of data-gathering. As the platforms of this cluster focus 
strongly on data collection and analysis, we call this arche-
type Data Hub. Two examples of this archetype are Fog-
horn and Foghub. Both platforms concentrate on edge or 
fog data processing and primarily support a range of indus-
trial protocols to transfer data from (industrial) machines. 
In addition, they offer extensive possibilities to analyze the 
data utilizing advanced analytics (i.e., machine learning 
algorithms). Furthermore, they provide the capability of 
various integrations, most notably machine integration, and 
feature only an internal deployment of applications without 
operating any marketplaces.
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Archetype 4 – Service Enabler  This archetype comprises 
IIoT platforms that combine characteristics of archetypes 
2 and 3. They are characterized by a strong focus on plat-
form hosting options, as well as physical data transportation 
and logical data transmission possibilities, enabling either 
data processing on the edge or on- platform. Further, they 
provide strong analytics capabilities, including predictive 
and partially prescriptive analytics, backed by advanced 
technologies. Regarding their external integration, Service 
Enabler platforms rather integrate into web services, lever-
aging standardized APIs and primarily rely on closed source 
platform development. Compared to the other archetypes, 
they build and deploy applications not only internally but 
also in parts on external infrastructures. Consequently, they 
often also provide an internal or external marketplace for 
application distribution. Due to their focus on strong data 
analytics options and their possible deployment as services 
within an ecosystem, we call this archetype Service Enabler. 
Two examples of this archetype are Relayr and Starhubs’ 5G 
IoT Platform. They not only focus on routine maintenance 
and remote device access but also on service integration 
of IoT solutions that is either self-developed or externally 
deployed and integrated via APIs.

Archetype 5 – Connector  This archetype comprises IIoT 
platforms with strong markedness in the network layers’ 
and middleware layers’ characteristics. These IIoT platforms 
are more critical regarding the connected hardware, with 
every second platform only supporting certified hardware. 
Data processing is possible in multiple ways, with a strong 
focus on fog processing. Data transportation possibilities 
and logical transmission protocols are widely offered and are 
supplemented by rich external system integration options. 
Regarding data analysis, this archetype uses basic technolo-
gies and offers only limited analytics types. Applications can 
be deployed either on or off the platform while using mostly 
a marketplace. Connectors are IIoT platforms that special-
ize in integrating devices into their platforms to extract 
and gather data. They put stronger restrictions on hardware 
support or only offer standardized APIs to comply with the 
technological complexity and provide a reliable basis for 
additional contributions of platform actors. As their focus is 
on these topics, they rely on other services and solutions to 
make use of the data and provide advanced analytics tools, 
which other users can adopt through the marketplace. As the 
primary goal of the platform of this cluster is to enable net-
work integration of devices to the IoT, we call this archetype 
Connector. Examples of this archetype are Telits’ device-
WISE and Ciscos’ IoT Control Center. The distinct focus of 
these two platforms is on extensive connectivity options, as 
both platforms offer all possible protocols in the dimensions 
of physical data transportation and logical data transmission. 
The analytics options are less advanced, as the platforms 

only offer basic analytics using non-complex analysis meth-
ods. However, in the area of external integration options, 
they again offer a wide variety of capabilities, as both plat-
forms fulfill all possible options in the corresponding dimen-
sions in accordance with their archetype. Furthermore, both 
platforms allow themselves to be expanded by an internally 
operated marketplace.

Discussion of cluster results

While exploring the five archetypes and the associated IIoT 
platforms in detail, we unveiled some specialties that we 
discuss in the following. Allrounders represent the most 
holistic archetype, characterized by an extensive list of 
architectural features that enable a wide range of possible 
application scenarios. However, this entails increased tech-
nical complexity, resulting in higher initial investment for 
end-users owing to the necessity of external system integra-
tors, which are usually already partnered with Allrounders. 
IIoT platforms of this archetype are suitable for end-users 
that pursue a comprehensive approach to their IIoT strategy 
and require an end-to-end solution. Device Controllers, in 
contrast, are defined by a lower technical complexity and 
selection of architectural features. Thus, while they focus 
on narrow application scenarios that involve device admin-
istration and management, they also foster a user-friendly 
experience and faster implementation. Hence, they are also 
suitable for smaller companies and applications where the 
available resources are scarce. Data Hubs are specialized 
IIoT platforms focusing on advanced data analysis through 
high-end technology (e.g., artificial intelligence). They often 
rely on users to provide adequate infrastructure to enable 
data transmission to the platform and are, thus, particularly 
suitable for users that already have a multitude of data that 
they want to exploit. Service Enablers provide advanced data 
analytics options and IoT solution enablement to enhance 
business processes. Thereby, self-developed solutions may 
also be deployed and distributed within the ecosystem of 
platform participants., thus advancing the functionality of 
the IIoT platform. Lastly, Connectors focus on connecting 
heterogeneous devices to their IIoT platform. As they tend to 
have less developed analytics tools, they rely on third-party 
developers to provide (individual) solutions via an internal 
marketplace to the users.

While these findings rest upon the platforms’ architectural 
features, they indicate relevant implications for platforms’ 
business models and evolution. Previous research already 
provides some insights regarding typical characteristics 
(Abendroth et al., 2021) or business model archetypes for 
IIoT platforms (Hodapp et al., 2019). Comparing our tax-
onomy to respective dimensions of Abendroth et al. (2021), 
we find confirmation in selected architectural characteristics 
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(e.g., platform openness, options for extensibility). The “core 
value propositions” further display stark similarities to our 
archetypes. Comparing the findings of Hodapp et al. (2019) 
and ours, we find parallels between archetypes. For instance, 
Connectors in our sample may contribute to ‘device con-
nectivity enablement’ business models, Device Controller 
may contribute to “device data storage” business models 
because they facilitate the integration and monitoring of IIoT 
devices, and Allrounders, naturally, enable “multi capabil-
ity” business models. In fact, we even found overlaps in 
the specific IIoT platforms across architecture and business 
model clusters. However, despite these overlaps, we argue 
that the interplay of IIoT platform architecture and business 
model is less apparent than the archetype labels suggest. As 
platforms’ architecture constitutes “an information technol-
ogy artifact´s virtually irreversible DNA” (Tiwana, 2018, 
p. 829), architecture decisions and investments are more 
persistent than the business models that are built on this 
foundation. Hence, IIoT platforms from all archetypes may 
use their specific architectural configuration to define and 
advertise individual business models. This may result in IIoT 
platforms from the same architectural archetype offering dif-
ferent business models. A comprehensive understanding of 
IIoT platforms’ architectural features is thus beneficial to a 
better understanding of the actual value they can offer.

Taking a broader perspective, this understanding may also 
be relevant for broader IS literature on digital platforms. While 
digital platforms’ conceptualization in two broad types (trans-
action versus innovation platforms, cf. Gawer and Cusumano 
(2014)) is helpful to demarcate their general foci, our results 
extend this notion by taking a closer look at the different archi-
tectural configurations of IIoT platforms as specific innovation 
platform manifestations. Thereby, we show that technological 
platforms that are currently treated as a homogenous group 
are in fact very heterogenous which bears important implica-
tions for their orchestration. For instance, we see in many of 
the archetypes that development activities happen within the 
platform users’ organization for their own use. Schreieck et al. 
(2019) refer to this as “customers as developers” and show how 
platform orchestration must change to, among other, account 
for indirect network effects being not applicable anymore. 
Understanding such differences thereby also helps to clarify 
the distinction between B2C and B2B platforms.

Last, considering the different revenue categories in our 
data sample, we find that Allrounders are typically rather 
big (over 70% of our Allrounders make at least $1bn), while 
Data Hubs are often smaller IIoT platforms (almost 60% of 
our Data Hubs make less than $100 m). Thus, IIoT plat-
forms’ architectural features also help to better understand 
the antecedents and contingencies of platform evolution 
(Henfridsson & Bygstad, 2013). For instance, IIoT platforms 
architecture may constitute the foundation to enable business 
model changes over time. In addition, IIoT platforms may 

proceed from one architectural archetype to another over 
time, also enabling new or extended business models. We 
leave it to further research to apply our findings and inves-
tigate how the five archetypes may complement each other 
and how they enable the business models that build upon the 
architectural features.

Conclusion and outlook

Despite IIoT platforms’ increasing importance for busi-
nesses, we still miss an understanding of different archi-
tectural setups and associated consequences of such digital 
platforms. Further, selecting the right IIoT platform in the 
heterogeneous solution landscape has become increasingly 
challenging for practitioners. To bridge this research gap 
and address the underlying practical problem, we developed 
a taxonomy of IIoT platforms’ architectural features. In the 
development process, we built on empirical data from both 
analyzing IIoT platforms and conducting semi-structured 
expert interviews with practitioners involved with the IIoT, 
as well as conceptual data from the literature on IoT, IIoT, 
and digital platforms. Our final taxonomy comprises 13 
dimensions organized in four layers that help researchers 
and practitioners to better understand this emerging phe-
nomenon. Further, we identify and conceptualize four IIoT 
platform archetypes from 78 real-world cases that help us to 
systematize the IIoT platform landscape and add an architec-
tural perspective to recent discourse.

Thus, our theoretical contribution is threefold. First, our 
taxonomy adds to the descriptive knowledge in this rela-
tively young research field by structuring and explaining 
what architectural features constitute prevalent manifestations 
of IIoT platforms. Thereby, we follow Reuver et al. (2018) 
recommendation to foster the development of contextualized 
theories on digital platforms as well as to conduct data-driven 
research. This may guide not only researchers in the field but 
also IIoT platform complementors, seeking to understand a 
platform´s architecture to align their app to the available plat-
form resources (cf. Tiwana, 2018). Second, we offer research-
ers and practitioners a mutual nomenclature that specifies IIoT 
platforms’ architectural features. With this, we extend current 
research, which is largely limited to rather simple category 
lists built through vague development processes. Third, we 
elucidate typical architectural setups of IIoT platforms and 
how this shapes their business logic. We see this as the neces-
sary foundations to better understand the reciprocal interplay 
of both aspects, i.e. , how architectural design options enable 
IIoT platform business models and vice versa. From a mana-
gerial perspective, our taxonomy and the five archetypes help 
practitioners in comparing different IIoT platform solutions 
and enable them to select the one that not only fits the existing 
IT infrastructure but also provides desired solution capabilities.
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We acknowledge some limitations in our research that open 
promising avenues for further research. Our taxonomy rests 
on the data used and the sequence of iterations. Although our 
dataset covers a fair amount of IIoT platforms of different 
sizes and with different foci in terms of their value proposi-
tion, we did not cover the exhaustive sample of the more than 
620 available IIoT platforms. Future research may incorpo-
rate additional IIoT platforms and conduct further iterations to 
validate and update our proposed taxonomy and the resulting 
archetypes. In this regard, we also acknowledge the potential 
to substantiate our findings with additional qualitative empiri-
cal data to better control for potential specifics of platform 

users from different industries and their implications for plat-
forms’ architectural setup. Further, we did not address potential 
dependencies between dimensions and characteristics or the 
architectural success criteria of IIoT platforms. Investigating 
these aspects may help in the successful design and use of IIoT 
platforms. Further, it may help to answer some of the funda-
mental strategy questions such as how to earn a competitive 
advantage based on a distinct technological architecture (cf. 
Cennamo, 2021; Schilling, 2003; Zhu & Iansiti, 2012). Lastly, 
future research may test our archetypes’ external validity to 
ensure their generalizability and to explore their evolutionary 
paths (e.g., IIoT platform sizes within and across clusters).

Table 5   IIoT Platform sample with name, website URL, and cluster membership

ID Name Website Cluster

1 Watson IoT Platform https://​inter​netof​things.​ibmcl​oud.​com/ 1
2 Siemens MindSphere https://​sieme​ns.​minds​phere.​io/​en 1
3 Predix Platform https://​www.​ge.​com/​digit​al/​iiot-​platf​orm 1
4 AIP +  https://​www.​accen​ture.​com/​us-​en/​servi​ces/​appli​ed-​intel​ligen​ce/​aip-​plus-​index 1
5 AT&T Control Center https://​www.​att.​com/​iotpl​atform 2
6 EcoStruxure https://​www.​se.​com/​ww/​en/​work/​campa​ign/​innov​ation/​platf​orm.​jsp 3
7 Azure IoT https://​azure.​micro​soft.​com/​de-​de/​overv​iew/​iot/ 1
8 Google Cloud IoT https://​cloud.​google.​com/​solut​ions/​iot 4
9 AWS IoT https://​aws.​amazon.​com/​iot/ 4
10 IoT Intelligent

Applications Cloud
https://​www.​oracle.​com/​inter​net-​of-​things/ 1

11 HPE Universal IoT Platform https://​www.​hpe.​com/​us/​en/​solut​ions/​iot-​platf​orm.​html 1
12 SAP Internet of Things https://​www.​sap.​com/​produ​cts/​iot-​data-​servi​ces.​html 1
13 Huawei Cloud https://​www.​huawe​icloud.​com/​intl/​en-​us/​solut​ion/​pdm/ 1
14 IoTConnect Platform https://​www.​avnet.​com/​wps/​portal/​emea/​solut​ions/​iot/​softw​are/​iot-​platf​orm/ 1
15 Cloud of Things https://​iot.​telek​om.​com/​en/​solut​ions/​platf​orm 4
16 Ericsson IoT Platform https://​www.​erics​son.​com/​en/​inter​net-​of-​things/​platf​orm 2
17 KITE Platform https://​iot.​telef​onica.​com/​en/​solut​ions/​conne​ct/​kite-​platf​orm/ 2
18 Airtel IoT https://​www.​airtel.​in/​busin​ess/​b2b/​airtel-​iot 2
19 ThingWorx IIoT Solutions

Platform
https://​www.​ptc.​com/​en/​produ​cts/​thing​worx 5

20 Cumulocity IoT https://​www.​softw​areag.​cloud/​site/​produ​ct/​cumul​ocity-​iot.​html#/ 1
21 Alibaba Cloud IoT Platform https://​www.​aliba​baclo​ud.​com/​produ​ct/​iot/​prici​ng 4
22 Infor IoT https://​www.​infor.​com/​produ​cts/​infor-​iot 3
23 Informatica https://​www.​infor​matica.​com/​platf​orm.​html 1
24 Blackberry IoT Platform https://​docs.​iot.​black​berry.​com/ 3
25 Salesforce IoT https://​www.​sales​force.​com/​ap/​inter​net-​of-​things/ 4
26 Red Hat Edge https://​www.​redhat.​com/​de/​topics/​inter​net-​of-​things 1
27 Lumada Software for IIoT https://​www.​hitac​hivan​tara.​com/​en-​us/​produ​cts/​iot-​softw​are-​solut​ions/​lumada-​softw​are-​for-​iiot.​

html
3

28 TeamViewer IoT https://​www.​teamv​iewer.​com/​en/​iot/​featu​res/ 3
29 WISE-PaaS https://​wise-​paas.​advan​tech.​com/​en-​us/​marke​tplace 3
30 Pelion https://​pelion.​com/ 5
31 Fanuc FIELD System https://​www.​fanuc.​co.​jp/​en/​produ​ct/​field/​index.​html 4
32 AGIL IoT Platform https://​www.​stengg.​com/​iot-​platf​orm 2
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Table 5   (continued)

ID Name Website Cluster

33 Telit deviceWISE https://​www.​telit.​com/​m2m-​iot-​produ​cts/​iot-​platf​orms/​telit-​devic​ewise-​for-​facto​ry-​iiot-​platf​orm/ 5
34 Cisco IoT Control Center https://​www.​cisco.​com/c/​en/​us/​solut​ions/​inter​net-​of-​things/​iot-​contr​ol-​center.​html 5
35 Itron https://​www.​itron.​com/​na/​solut​ions/​what-​we-​enable/​indus​trial-​inter​net-​of-​things 5
36 Bosch IoT Suite https://​devel​oper.​bosch-​iot-​suite.​com/ 1
37 Altair SmartWorks https://​www.​altair.​com/​smart​works/ 3
38 Ubiqweise 2.0 https://​www.​ltts.​com/​solut​ions/​ubiqw​eise-​20 3
39 Eplan Platform https://​www.​eplan.​co.​uk/​solut​ions/​eplan-​platf​orm/ 3
40 Fusion Connect https://​knowl​edge.​autod​esk.​com/​search-​result/​caas/​Cloud​Help/​cloud​help/​ENU/​FUSIO​NCONN​

ECT-​Help/​What-​Is-​Fusion-​Conne​ct-​html.​html
2

41 Ascalia https://​ascal​ia.​io/ 3
42 Exact https://​www.​exact.​com/​us/​indus​try/​manuf​actur​ing 4
43 Splunk https://​www.​splunk.​com/ 1
44 Cloudera https://​www.​cloud​era.​com/ 1
45 IoT Sense https://​iotse​nse.​io/ 2
46 Onesait things Platform https://​www.​onesa​it.​com/​produ​cts/​things 1
47 Particle https://​www.​parti​cle.​io/ 5
48 Relayr https://​relayr.​io/ 4
49 Foghorn https://​www.​fogho​rn.​io/ 3
50 Zenon Software Platform https://​www.​copad​ata.​com/​en/​produ​ct/​zenon-​softw​are-​platf​orm-​for-​indus​trial-​autom​ation-​energy-​

autom​ation/
4

51 Exosite https://​www.​exosi​te.​com/ 3
52 Aeris https://​www.​aeris.​com/​eu/​iot-​solut​ions/ 4
53 Everyware Cloud https://​www.​eurot​ech.​com/​en/​produ​cts/​iot/​iot-​edge-​manag​ement-​platf​orm/​every​ware-​cloud 4
54 Telia IoT https://​busin​ess.​telia​compa​ny.​com/​inter​net-​of-​things/​iot-​conne​ctivi​ty/​Telia-​IoT-​Platf​orm 2
55 Asavie Platform https://​www.​asavie.​com/​produ​cts/​asavie-​platf​orm/ 4
56 Boomi AtmoSphere Platform https://​boomi.​com/​platf​orm/#/​d48d01/​home 3
57 KORE https://​www.​korew​irele​ss.​com/ 2
58 Inductive Automation https://​induc​tivea​utoma​tion.​com/​solut​ions/​iiot 3
59 Electric Imp https://​www.​elect​ricimp.​com/​platf​orm/​how-​it-​works/ 4
60 Blynk https://​blynk.​io/ 4
61 Kaa IoT Platform https://​www.​kaaiot.​com/ 1
62 Losant Enterprise IoT Platform https://​www.​losant.​com/
63 Ayla IoT Platform https://​www.​aylan​etwor​ks.​com/ 3
64 DeviceHive https://​devic​ehive.​com/ 2
65 Synap IoT https://​www.​synap​iot.​com/ 3
66 WolkAbout IoT Platform https://​wolka​bout.​com/​platf​orm/ 3
67 XMPro https://​xmpro.​com/​platf​orm/ 3
68 Datonis https://​altiz​on.​com/ 3
69 Foghub https://​foghub.​io/ 3
70 Cybus Connectware https://​www.​cybus.​io/​en/ 3
71 Thinger.io Platform https://​thing​er.​io/ 2
72 Ubidots https://​ubido​ts.​com/​platf​orm/ 2
73 Akenza https://​akenza.​io/ 2
74 IXON Cloud https://​www.​ixon.​cloud/ 3
75 StarHub 5G IoT Patform https://​www.​starh​ub.​com/​busin​ess/​produ​cts-​and-​servi​ces/​digit​alisi​ng-​my-​busin​ess/​5g-​iot-​platf​

orm.​html
4

76 Blue Pillar https://​www.​bluep​illar.​com/ 4
77 Cloudleaf Platform https://​www.​cloud​leaf.​com/​platf​orm/ 2
78 Decisyon https://​decis​yon.​com/ 3
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Table 6   Coding example for IIoT platform cluster analysis (ME: dimension is mutually exclusive; NE: dimension is non-exclusive). Siemens 
mindsphere classification and coding (prevalent characteristics in bold)

Dimension Coded Characteristics

Infrastruc-
ture

Layer

Hardware
Support

ME Certified Hardware
1

Hardware-Agnostic
0

Platform
Hosting

NE On-Premise 
1

Public Cloud
1

Private Cloud
1

Hybrid 0

Data
Processing

NE Edge 1 Fog
0

On-Platform
1

Network
Layer

Physi-
cal Data 
Transpor-
tation

NE Wired 1 Short-Range Wireless 1 Cellular
1

LPWAN 1

Logical Data
Transmission

NE Internet Protocols 1 IoT-Specific Protocols
0

Industry-Specific 
Protocols 1

Middleware
Layer

Data Struc-
ture

NE Structured 1 Unstructured 1

Analytics 
Types

NE Descrip-
tive 1

Real-Time 1 Predictive 1 Prescrip-
tive

1
Analytics
Technology

ME Basic 0 Advanced
1

External
Integration

NE Business
1

Machine
1

Web Services
1

Platform
Source Code

ME Open Source 0 Open Components 1 Closed Source 0

Application
Layer

APIs ME Standardized APIs
1

Custom APIs
0

Application
Deployment

NE Platform-Native 1 Containerized
1

Off-Platform
1

Marketplace NE Internal Marketplace
1

External Marketplace 0 No Marketplace 0

Fig. 3   Cluster dendrogram
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