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Abstract
Group formation is a critical factor which influences collaborative processes and 
performances in computer-supported collaborative learning (CSCL). Automatic 
grouping has been widely used to generate groups with heterogeneous attributes and 
to maximize the diversity of students’ characteristics within a group. But there are 
two dominant challenges that automatic grouping methods need to address, namely 
the barriers of uneven group size problem, and the inaccessibility of student char-
acteristics. This research proposes an optimized, genetic algorithm-based grouping 
method that includes a conceptual model and an algorithm module to address these 
challenges. Through a quasi-experiment research, we compare collaborative groups’ 
performance, processes, and perceptions in China’s higher education. The results 
indicate that the experimental groups outperform the traditional grouping methods 
(i.e., random groups and student-formed groups) in terms of final performances, 
collaborative processes, and student perceptions. Based on the results, we propose 
implications for implementation of automatic grouping methods, and the use of col-
laborative analytics methods in CSCL.
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Introduction

Grounded upon the socio-cognitive constructivism (Sawyer, 2005), computer-sup-
ported collaborative learning (CSCL) is a socio-cultural process completed by a 
group of students with the support of purposeful instructions and technologies and 
formed through emergent interactions and communications (Hernández-Sellés et al., 
2019; Jeong et  al., 2019; Stahl et  al., 2014). To achieve a high quality of CSCL, 
group members need to pool together their expertise and knowledge, build mutual 
understandings of shared goals, and form sustained interactions and dialogues 
(Hernández-Sellés et al., 2019; Ludvigsen, 2016; Wang & Hwang, 2012). Therefore, 
the group’s formations and structures are critical factors that can significantly influ-
ence the group’s collaborative processes and performances (Chen & Kuo, 2019; Lin 
et al., 2016; Moreno et al., 2012; Reis et al., 2018). Due to the importance of the 
group formation for assuring the CSCL quality, varied grouping methods have been 
studied in the CSCL field (Chen & Kuo, 2019; Lin et al., 2016; Moreno et al., 2012; 
Reis et  al., 2018). A widely used approach is using automatic grouping methods 
to generate groups with heterogeneous attributes within a group, that is to maxi-
mize the diversity of students’ characteristics (Lambić et al., 2018; Lin et al., 2016; 
Moreno et  al., 2012). But there are two major challenges the automatic grouping 
methods need to address, as previous studies indicated, namely the barriers of une-
ven student numbers within groups (i.e., the uneven group size problem) (Ahmad 
et al., 2021; Holenko Dlab et al., 2020), and the inaccessibility of student character-
istics at the starting point (i.e., the “Cold Start” problem) (Lika et al., 2014; Pliakos 
et al., 2019). To address those two challenges, this research proposed an optimized, 
genetic algorithm-based grouping method that includes a conceptual model named 
Feature Categorization Model (FCM) to cope with the “Cold Start” problem and a 
GA-enabled module named Insert Virtual Members (IVMGA) to address the group 
size problem. Furthermore, this research conducted a quasi-experiment in small 
groups’ collaborative writing activities in China’s higher education context and used 
a multi-method approach to compare the groups’ collaborative processes, final per-
formances, and student perceptions towards collaboration. Groups were generated 
by the proposed grouping method and two traditional grouping methods, namely, the 
random groups and student-formed groups. The empirical research results indicated 
that our proposed method outperformed traditional grouping methods. Based on the 
results, we proposed implications for design and implementation of grouping meth-
ods, and the use of collaborative analytics methods in CSCL.

Literature review

Existing grouping methods in CSCL

CSCL requires a group of students to pool knowledge and skills together, get to 
know and learn from peers, and share and construct ideas to achieve shared goals 
that cannot be completed by any individual alone (Chen & Kuo, 2019; Jeong 
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et al., 2019; Stahl et al., 2014). One of the core issues in CSCL is grouping for-
mation, because a group’s learning atmospheres, processes, and performances are 
determined by how well the group members work together (Ahmad et al., 2021; 
Chen & Kuo, 2019; Uto et  al., 2020). The traditional, non-automatic grouping 
methods include random grouping, student-formed groups, and the instructor-
assigned groups. Simple random grouping may result in merely a few members in 
a group to complete the collaborative task while others work as free riders, which 
does not allow all group members to contribute their knowledge, capacities, and 
skills (Chen & Kuo, 2019; Costaguta, 2015). The student-formed groups are 
structured by students themselves, such that they usually form groups based on 
their prior acquaintance, without fully considering educational factors (Krouska 
& Virvou, 2020; Srba & Bielikova, 2015). In addition, although the instructor-
assigned groups are determined by the instructor who might mix different stu-
dents’ characteristics to some extent, they only focus on a few characteristics such 
as gender or grade (Lin et  al., 2016). The primary disadvantage of those tradi-
tional grouping methods is that the diversity of students’ characteristics such as 
communication skills, leadership capacities, and knowledge levels, are not ade-
quately taken into account, which may result in undesired collaborative outcomes 
(Costaguta, 2015; Huxham & Land, 2000; Lin et al., 2016). In other words, those 
non-automatic grouping methods merely take into consideration some charac-
teristics from students, but cannot find a global optimal solution (Chen & Kuo, 
2019). When group members’ characteristics and capacities cannot supplement 
each other, the group’s collaborative potential could be weakened, in some cases 
even resulting in negative effects of collaboration (Alfonseca et al., 2006).

Considering the complexity of grouping in actual educational situations, it is dif-
ficult to generate optimal groups through traditional grouping methods by consider-
ing multiple factors, and to cope with the large size of students manually in a short 
period of time (Lin et al., 2010; Takači et al., 2017; Yannibelli & Amandi, 2012). To 
address these limitations, a series of studies have successfully used automatic group-
ing methods to form optimized groups in the K-12 and higher education settings. For 
example, Jong et  al. (2006) used the dynamic-grouping or partial-grouping meth-
ods to support students find the most suitable partners based on individual student’s 
knowledge structures, which is represented by a conceptual graph tool. Lin et  al. 
(2010) proposed an enhanced particle swarm optimization to form well-structured 
collaborative learning groups. Lambić et al. (2018) used the variable neighborhood 
search (VNS) algorithm to automatically generate heterogeneous groups based on 
students’ pretest scores, interpersonal relationships, prosocial behaviors, and open-
ness characteristics. In addition, Chen and Kuo (2019) used genetic algorithms (GA) 
to transfer the group composition problem into a multi-objective optimized prob-
lem in order to generate optimized groups. They used a fitness function to evalu-
ate the availability and then generated the globally optimized solution by assigning 
different weights to student characteristics. Overall, compared to traditional group-
ing, the automatic grouping methods have advantages to generate optimized groups 
to improve teaching and learning quality in higher education, by taking multiple 
student characteristics as input variables and addressing the increasing class size 
challenge.
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Critical factors in automatic grouping methods

As stated in previous studies, individual characteristics, grouping criteria, and 
grouping method have critical influences on the group performance (Chen & Kuo, 
2019; Moreno et al., 2012; Qiu & McDougall, 2015). There are three critical factors 
to consider in the automatic grouping methods, namely (1) What student character-
istics to be used, (2) What grouping criteria are adopted, and (3) What algorithms to 
be used for generating groups. First, student characteristics include static character-
istics and dynamic characteristics. The static characteristics usually do not change or 
at least do not change within a short period of learning, such as gender, age, prior 
knowledge levels, or learning styles. For instance, learning style reflects the learn-
er’s preferred way of learning, do not change in a short-term process (Alfonseca 
et al., 2006; Gibbs & Bernas, 2007). In contrast, the dynamic characteristics—can-
not be captured at a static point—tend to continuous change during the students’ 
learning processes, such as interactive levels or emotional status. Previous studies 
do not explicitly distinguish static and dynamic characteristics from students. A 
combination of student characteristics is usually used in previous group formation 
research. For example, Moreno et al. (2012) considered student’s subject knowledge 
levels, communicative levels, and leadership levels to generate optimized groups. 
Chen and Kuo (2019) argued that interaction and gender were important factors for 
the grouping composition. Krouska and Virvou (2020) considered seventeen factors 
from academic, cognitive, and social aspects to form groups. However, the assump-
tion is weakened when some dynamic characteristics are not available. For example, 
students’ social interactions cannot be observed at the beginning of a course, which 
raises a “Cold Start” problem for the grouping method. Therefore, relevant studies 
should consider the explicit distinguish between static and dynamic characteristics 
from students, and carefully consider the availability of students’ characteristics in 
the research.

Second, there are at least three types of grouping criteria, namely random group-
ing that does not consider specific student characteristics, homogeneous grouping 
where members with similar characteristics are grouped, as well as heterogene-
ous grouping where members with different or complementary characteristics are 
grouped (Chen & Kuo, 2019; Lou et  al., 1996; Van der Laan & Spindle, 2007). 
Although previous studies reported discrepancies about the effect of different 
grouping criteria on collaborative learning, most studies argue that compared to 
randomly-selected and homogeneous groups, heterogeneous groups are beneficial 
to promote mutual learning and peer interactions between students with different 
levels of knowledge and capacities. For example, Wang et al. (2007) described the 
experimental results of heterogeneous groups based on students’ thinking styles. 
Compared to random groups, the heterogeneous groups had a statistically signifi-
cant capability to complete the course requirements and had a smaller inter-group 
variation in the final performance. Takači et  al. (2017) compared the heterogene-
ous groups with random groups, and the result reported that heterogeneous groups 
had a higher average grades and pass rates than the random groups. Compared to 
traditional grouping methods, Chen and Kuo (2019) concluded that heterogene-
ous groups supported the goal of group formation in collaborative learning, where 
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learners learned from each other, met different learners, and shared ideas to achieve 
optimal learning outcomes. In summary, heterogeneous grouping is becoming a 
widely adopted grouping criterion as it can better cater for diverse educational sce-
narios to achieve desirable collaborative effects.

The third critical factor is the algorithms used to automatically generate groups 
(including the choice of the types of input variables). In previous research, the algo-
rithms used to automatically generate groups include clustering, decision tree, and 
rank segmentation, etc. (Costaguta, 2015). These algorithms usually require a higher 
level of computing power to sustain computational accuracy and efficiency or exter-
nal interventions from the instructors such as providing expert knowledge (Lin et al., 
2010). Compared with those methods, genetic algorithm (GA) is proved to be an 
effective method to solve optimized grouping problem, since it transfers the problem 
of how to get an optimized group into a multi-objective optimization problem (Chen 
& Kuo, 2019; Kumar et al., 2010; Moreno et al., 2012). Specifically, GA can obtain 
an optimized solution for a task facing numerous solutions in a limited time. Group 
formation is a typical optimization problem requiring a suitable solution from tens 
of thousands of grouping solutions. GA-enabled grouping methods can take mul-
tiple student characteristics as input to generate optimized heterogeneous groups 
(Chan et al., 2010; Chen et al., 2012; Moreno et al., 2012). In addition, compared 
to other methods, GA is more flexible to generate groups under different criteria, 
and also maintains a certain level of computational efficiency (Chen & Kuo, 2019; 
Krouska & Virvou, 2020; Sukstrienwong, 2017). GA has been proved to be effective 
for forming groups with desirable learning outcomes and experiences (e.g., Chen 
& Kuo, 2019). In addition, when feeding student characteristics to the grouping 
algorithms, the input variable includes the continuous numerical type (e.g., Moreno 
et al., 2012) and the categorical variable type (e.g., Chen & Kuo, 2019; Krouska & 
Virvou, 2020). The continuous numerical type is usually used as input to a genetic 
algorithm, since it not only improves the computational efficiency, but also increases 
the robustness (Srba & Bielikova, 2015). In summary, three critical factors are con-
sidered in the automatic grouping methods in this research: a combination of student 
characteristics, heterogeneous grouping criteria, and the enhanced GA algorithms 
with continuous numerical type as input.

Challenges encountered in the automatic grouping methods

As previous studies indicated, there are two major challenges that automatic group-
ing methods need to address, namely the uneven group size problem (Holenko Dlab 
et al., 2020), and the data inaccessibility (“Cold Start”) problem (Lika et al., 2014; 
Pliakos et al., 2019). In CSCL, instructors usually configure a group with the size of 
3 or 4 members, as prior research results have showed that a large group size would 
weaken the group performance (Gibbs et al., 2001). But in actual educational situ-
ations, a challenge is raised: the class size cannot be divided evenly (i.e., the une-
ven grouping size problem). Previous studies usually reported the student size that 
can be evenly assigned into groups, e.g., 135 participants of five students per group 
(Moreno et al., 2012), 32 participants with the group size of 4 (Sadeghi & Kardan, 
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2016), 48 students with 3 members per group (Krouska & Virvou, 2020). Chen and 
Kuo (2019) selected 83 students in which 27 students are divided into the experi-
ment group with different group sizes (size = 4 and size = 5). In this study, they 
admitted that it was impossible to assure all groups with an even student population 
as well as an even distribution of roles. Although many studies have demonstrated 
the effect of the GA-enabled algorithms when groups can be equally assigned with 
student numbers (Krouska & Virvou, 2020; Moreno et al., 2012; Wang et al., 2007), 
it is often impossible to evenly split the number of students in the practical educa-
tional contexts. To address this practical challenge, it is necessary to assure that the 
grouping algorithm module can achieve a similar effect, including collaborative per-
formance, engagement process, and student perception, when the student numbers 
cannot be evenly split.

Another challenge in group formation is the “Cold Start” problem, namely the 
difficulties of acquiring student characteristics data at the start of the collaborative 
learning (Lika et  al., 2014; Pliakos et  al., 2019). As we mentioned above, unlike 
static characteristics such as gender, age, learning style, some other characteristics 
are not available at the beginning, such as cognitive changes, social interactions, and 
emotions. Under this circumstance, the automatic grouping algorithms encounter 
the intractable challenge of “Cold Start” problem. The “Cold Start” problem is a 
common challenge in data-driven applications. For example, Schein et  al. (2002) 
described that their naive Bayes classification system did not work well when the 
new products were not rated and fed into the algorithm. Lika et  al. (2014) also 
reported the recommendation system did not have enough information to make rec-
ommendations when new users were entered. Similarly, in the education field, Plia-
kos et al. (2019) elaborated a challenge that adaptive learning systems faced, that is, 
they did not have enough information at the starting point about new students when 
they initially entered a learning environment. Since the automatic grouping method 
is a typical data-driven method that heavily depends on the student characteristics 
dataset, it is critical to obtain expected input variables of student characteristics in 
order to generate desirable grouping. However, due to the complexity of educational 
contexts, obtaining data of student characteristics is not an easy task, and it is par-
ticularly difficult to acquire the dynamic characteristics during the learning process. 
A solution is obtaining available static features for group formation, such that to 
some extent overcoming the “Cold Start” problem, encountered with data-driven 
algorithms. In summary, to achieve optimized solution, the uneven group size prob-
lem and the inaccessibility of student characteristics are two challenges need to be 
addressed in the automatic grouping methods.

Analytical methods used to examine the effect of CSCL

With the support of quantitative methods, relevant work has collected and analyzed 
process-oriented and performance-oriented data to reveal groups’ final performances, 
perceptions, and collaborative processes in order to understand the complex effect of 
CSCL. First, to examine the groups’ final performance, statistical analysis methods 
(e.g., ANOVA and t-test) are usually used to examine the significant differences of 
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the groups’ collaborative performance (Moreno et al., 2012; Wang et al., 2007). The 
final performance analysis focuses on the summative evaluations of the group or indi-
vidual scores, rather than the process-oriented evaluation. Second, self-report methods 
are usually used to examine student perceptions about the collaboration. For example, 
Delaney et al. (2019) adopt a survey to explore students’ attitudes toward the group-
based collaborative work. Chen and Kuo (2019) adopted the semi-structured interview 
approach to analyze the perception of group members about the collaboration in the 
groups. Extant studies have compared the differences of grouping methods on final stu-
dent achievements and individual perceptions, but there is a lack of the comparison of 
groups’ collaborative processes (Takači et al., 2017; Wang et al., 2007).

The interactive, collaborative process is a critical aspect to demonstrate groups’ 
collaborative quality (Chen & Kuo, 2019). According to Stahl (2009a, 2009b, 
2009c), the qualitative, ethnographic approaches (e.g., conversation or discourse 
analysis) have been used to examine micro-level turn-taking relevancies between 
interactional, behavioral, and cognitive activities during a short time period of col-
laborative learning. Damşa (2014) used in-depth qualitative analysis to investigate 
the nature of productive interactions, the joint efforts to co-construct knowledge and 
the shared epistemic agency that emerged during groups’ problem-solving processes 
over time. With the development of learning analytics and educational data min-
ing techniques, recent work has used quantifiable methods, such as social network 
analysis, or quantifiable content analysis to analyze the CSCL process. An impor-
tant advantage of quantitative approaches is that they can be applied in large size 
of data or long discourse sequences to investigate the structures, patterns, or order-
ings based on standardized procedures (Cohen et al., 2013). For example, Chen and 
Kuo (2019) used the social network analysis to assess the collaborative processes 
of groups with different group methods. Moreover, since cognitive engagement is 
a critical factor to reflect a group’s collaboration, either at the individual level or 
group level, we argue that it is important to examine the cognitive engagement in the 
collaborative learning process. Considering the multi-dimensional characteristics of 
the collaborative learning, merely focusing on the final performance or perceptions 
of collaboration may cause incomprehensive results. A comprehensive quantitative 
method can be used to analyze both performance-oriented and process-oriented data 
with an aim to provide a more holistic, multilevel, and multidimensional analysis of 
groups’ collaborative characteristics (Janssen et al., 2013; Joksimović et al., 2018; 
Suthers et al., 2013). Echoing this trend, this research collects both performance and 
process data during CSCL and uses a multi-method approach to analyze groups’ 
final products, student perceptions, and the processes on the social and cognitive 
engagement dimensions, in order to gain a deep understanding of the effect of differ-
ent grouping methods on CSCL.

The proposed grouping method

There are two modules in the overarching framework of the proposed group-
ing method, namely a conceptual module and a GA-enabled algorithm module. 
The conceptual model is Feature Categorization Module (FCM) that captures and 



797

1 3

Examining the effect of a genetic algorithm‑enabled grouping…

divides student characteristics into static and dynamic attributes in order to address 
the “Cold Start” problem (see Fig. 1, part 1). To address the unbalanced group size 
challenge, an algorithm module is designed based on genetic algorithm, namely GA-
enabled Insert Virtual Members (IVMGA) to insert virtual members with the average 
level of the actual measures of student characteristics (see Fig. 1, part 2).

First, to address a “Cold Start” problem, the conceptual module Feature Catego-
rization Module (FCM) is proposed. Prior studies have indicated that student char-
acteristics related to group work include gender, major, age, leadership (Moreno 
et al., 2012; Yilmaz et al., 2020), communication skills (Moreno et al., 2012), col-
laborative learning skills (Soller et al., 1998), learning styles (Alfonseca et al., 2006; 
Sukstrienwong, 2017), knowledge levels (Chen & Kuo, 2019), and social interaction 
(Chen & Chang, 2014; Chen & Kuo, 2019). However, some characteristics are not 
always accessible at the beginning of the course, such as social interaction levels, 
which cause a “Cold Start” problem. To address this challenge, FCM classifies stu-
dent characteristics into the static and dynamic categorizations: the static category 
indicates students’ fixed characteristics that are not changing; the dynamic category 
indicates students’ characteristics that cannot be captured at the beginning of the 
class which is changing throughout the learning process. Since static characteristics 
do not change in a short period and are always available, those characteristics can be 
used to initiate grouping when dynamic characteristics are not available. In this way, 
the “Cold Start” problem can be addressed to some extent.

In addition, to address the unbalanced group size challenge, an algorithm mod-
ule GA-enabled Insert Virtual Members strategy (IVMGA) is proposed (see Fig. 1, 
Part 2). When the number of students can be equally assigned into groups with the 
same group size, IVMGA activates the FCM module to capture students’ static and 
dynamic characteristics and then automatically generate optimized groups. But in 
actual educational situations, students usually cannot be equally divided into groups 
with an equal size, which cause the unbalanced group size problem. When groups 
cannot be assigned with the same group size, IVMGA first generates several virtual 
members in terms of the average level of actual students’ characteristics and then 

Fig. 1   The overarching framework of the proposed grouping method
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generates optimized groups with the same group size by inserting virtual members 
(see Fig. 1, Part 3). Particularly, IVMGA aims to generate virtual members to sustain 
a certain level of heterogeneity within the group and sustain a certain level of homo-
geneity among groups. There are four steps in the IVMGA module. The first step is 
to create student characteristic matrix to describe a student with variable character-
istics and then preprocess the student data as input data for the grouping algorithm 
(see Fig. 2). The input student data is a N ×M matrix, where a row represents one 
student in the class and a column represents the measurements of characteristics of 
the student. Since different scales of the characteristic impact the final result, IVMGA 
normalizes all characteristic data into the same scale of 0–1. Fn,m represents a stu-
dent’s value of a specific characteristic after normalization.

The second step is to generate a global characteristic matrix. If virtual students 
are needed, the IVM module generates a characteristic matrix of those virtual stu-
dents with appropriate characteristic data. The IVM module first calculates the num-
ber of virtual members that need to be generated and then generates virtual students’ 
characteristic matrices. The STUIVM represents a virtual member’s characteristic, 
with  Fm representing the m-th characteristic (see Eq. 1).

Then the module inserts the virtual member STUIVM into the global characteris-
tic matrix, which includes all actual students and all virtual students generated (see 
Eq. 2).

In this step, IVMGA is used to generate students’ global characteristic matrix (see 
Algorithm 1). Then, the IVMGA uses the global characteristic matrix to generate a 
group population that includes many random group methods. Next, a fitness function 
will assess these group methods to find the better group genes and process crossover 
and mutation operation. This is an iterative process to find a better grouping scheme, 
and this process ends with the maximum iterations.

(1)STUIVM =

{

F1,F2, ...,Fm

}

(2)FM =

{

F1,F2, ...,Fm

}
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Fig. 2   The student characteristic matrix
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The third step is to generate a matrix to represent each characteristic’s average 
value (see Eq. 3). For one group (1 <= g <= G) under a group scheme, the group is 
a small matrix consisting of team’s students. Ti

g,m
 indicates the average of the char-

acteristic at each dimension.

(3)IM
i
g
=

{

Ti
g,1
,Ti

g,2
, ..., Ti

g,m

}
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The fourth step is to calculate each group schema’s fitness value (see Eq. 4). 
The fitness value can be used to estimate the suitability of the grouping method.

Moreover, the IVMGA method also can form random groups when we lower the 
value of “iteration times”. In our experiment, we use IVMGA to generate random 
groups. The global parameter of the number of initialized populations is also consid-
ered. The higher the parameter we set, the larger the solution space is and the longer 
execute duration we get. We used the IVMGA algorithm to generate both IVMGA 
groups and GR groups; the difference was that a reduced number of iterations (a 
parameter configuration) was used to generate GR groups, while a larger optimiza-
tion space was required (i.e., more iterations) to generate IVMGA groups.

The research methodology

The research purposes and questions

The quasi-experimental design aims to examine whether there are significant dif-
ferences of the collaborative performances, perceptions, and processes under dif-
ferent grouping methods, namely the experimental groups, and the control group 
of student-formed groups, and the control group of randomly-assigned groups. 
There are three research questions as follows:

(1)	 To what extent did three grouping methods differentiate in terms of the groups’ 
final performance?

(2)	 To what extent did three grouping methods differentiate in terms of the social 
and cognitive engagement during the collaborative processes?

(4)Fi =

G
∑

g=1

[(F1 − Ti
g,1
)2 + (F2 − Ti

g,2
)2 +

(

Fm − Ti
g,m

)2
]

Fig. 3   Screenshots of DingTalk (a) and ZheDaYunPan (b)
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(3)	 To what extent did three grouping methods differentiate in terms of students’ 
perceptions?

The instructional context, participants, and procedure

The research context was an undergraduate-level course titled “Modern Edu-
cational Technologies” offered at a Chinese research-intensive university. This 
course focused on learning theories, instructional design, educational technolo-
gies, emerging tools, and trending topics. This course was typically offered in 
the face-to-face, classroom environments; due to COVID-19, all courses moved 
online through an online learning management system XueZaiZheDa. This course 
was co-taught by three instructors, taking responsibilities to facilitate different 
weekly topics. 68 undergraduate sophomore students (51 females, 17 males) 
enrolled in this course.

Table 1   Statistics of groups based on three grouping methods

Grouping methods Number of 
groups

Number of 3-person 
groups

Number of 4-person 
groups

Num-
ber of 
students

IVMGA 6 1 5 23
GR 8 3 5 29
GS 4 0 4 16
Total 18 4 14 68

Table 2   The descriptions of SNA metrics

SNA metrics Description

APL The average number of the shortest paths for all possible pairs of nodes
Density The ratio of actual links between any nodes to all potential possible links), and it 

represents the whole network structure’s cohesion
Average degree Degree denotes the number of links pointing to or away from a node, includ-

ing out-degree and in-degree; average degree indicates the mean of all group 
members’ degree

Average closeness Closeness is the length of paths from a student to all others in the network, 
defined as the inverse total length; average closeness is the mean of all group 
members’ closeness

Average betweenness Betweenness is the number of shortest paths that passes through a student; aver-
age betweenness is the mean of all group members’ betweenness

Reciprocity Ratio of symmetric dyads to non-null dyads in a network
GCC​ GCC reflects the degree of connectedness between this node and its neighbor-

hood, ranged between 0 and 1
ICV The inverse of the standard deviation of student–student interaction frequency 

divided by its mean
Centralization The extent to which degree centrality is concentrated within a small number of 

participants in a network, ranged between 0 and 1
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There were two phases of this course: collaborative forum discussions during 
the first phase (Week 1—Week 8) and the small group collaborative writing dur-
ing the second phase (Week 9—Week 16). The experiment carried out during 
the second phase, where students were grouped into 18 small groups to complete 
four collaborative writing tasks about emerging educational technology topics 
(2  weeks/task). Four collaborative writing tasks included “How Learning Ana-
lytics Influence the Learning Assessments”, “Artificial Intelligence Education: 
Opportunities and Challenges”, “STEM Education”, and “K-12 Programming 
Education”. These discussion topics were closely related to the course content. 
Students created small groups in DingTalk (a social communication tool) to dis-
cuss the topics (see Fig. 3a). Students conducted discussions within the DingTalk 
group in the synchronous or asynchronous ways. During the discussion, if the 
students responded to a partner’s points of view, they could use the @ symbol 
to specify the peer they responded to. The first author (as a teaching assistant) 
joined the groups to provide instructional and technical supports. The online col-
laborative writing platform was ZheDaYunPan (see Fig. 3b), where students can 
view, edit, and revise their peers’ writing content. During the collaborative pro-
cess, the instructor and teaching assistant did not provide any instructional inter-
ventions related to the writing tasks.

The experimental design and procedures

The participants were divided into an experimental group (IVMGA), control group of 
student-formed groups (GS), and control group of randomly-assigned groups (GR). 
Before grouping, an online questionnaire was delivered to students in order to collect 
students’ static characteristics, including gender, age, major, communication skill 
level, collaborative capacity level, and leadership level (see Appendix 1). A dynamic 
characteristic, namely students’ interactive levels, was measured by the social net-
work analysis method, based on student degree (in-degree and out-degree) in the 
large group forum discussion (Week 1—Week 8). The instructor informed 68 stu-
dents about the three types of grouping. IVMGA created heterogeneous groups tak-
ing students’ static and dynamic characteristics as input; GR used a random group-
ing method to form groups by changing a parameter in the IVMGA; GS groups asked 
students to form their own groups autonomously. There were 6 IVMGA groups, 8 GR 

Table 3   The coding framework of discussion content (Garrison et al., 1999; Malmberg et al., 2017)

Code Description

Cognitive engagement (CE) Students’ sharing of information, as well as idea explanations and elabora-
tions

Task regulation (TR) Students’ task-related discourses, including planning, monitoring, man-
agement, and reflection

Social chatting (SC) Students’ social chatting irrelevant to the collaborative topics, or students’ 
social encouragements to peers
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groups, and 4 GS groups. Most groups were configured with 4 members, but some 
groups had only 3 members. Specifically, there were four groups, namely group 9 
(in IVMGA) and groups 5, 10, and 12 (in GR), consisted of only three students (see 
Table 1).

Analysis procedures and strategies

We collected data from three sources, the collaborative writing documents from 
ZheDaYunPan, the collaborative discussion data from DingTalk, and the students’ 
questionnaire data from an online questionnaire platform WJX (www.​wjx.​cn). First, 
to evaluate the collaborative writing documents, three external experts were invited 
to evaluate groups’ final collaborative write-ups (four write-up documents for each 
group). An evaluation standard was provided to three experts, including two dimen-
sions of content quality (85 points) and formats (15 points) (see Appendix 2). The 
result of Cohen’s Kappa interrater reliability of three experts was � = 0.98 , which 
indicated a high reliability. The average score of four write-up files was used as an 
indicator to measure the groups’ final performance.

Table 4   The comparison of performance among three grouping methods

*p ≤ 0.05;  **p ≤ 0.01; ***p ≤  0.001

Grouping method Mean Std F p Multiple comparison

IVMGA 81.45 5.48 4.16 0.02* IVMGA > GR
GR 70.38 23.71 GS > GR
GS 81.69 4.39

Table 5   The comparison of performance among three grouping methods in four tasks

*p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001

Tasks Grouping method Mean (Std.) F p Multiple comparison

Task 1 IVMGA 78.74 (11.69) 1.54 0.22
GR 75.91 (11.08)
GS 82.77 (10.23)

Task 2 IVMGA 83.83 (7.27) 3.31 0.04* IVMGA > GR
GR 69.01 (27.94)
GS 80.88 (8.31)

Task 3 IVMGA 81.47 (7.95) 2.21 0.12
GR 75.96 (10.65)
GS 81.39 (9.21)

Task 4 IVMGA 81.77 (8.48) 4.72 0.01** IVMGA > GR
GR 60.64 (36.20) GS > GR
GS 81.73 (8.19)

http://www.wjx.cn


805

1 3

Examining the effect of a genetic algorithm‑enabled grouping…

Second, to examine the collaborative process, this research focused on the 
social interaction and discussion content dimensions. This research used social net-
work analysis (SNA) and quantitative content analysis (QCA) to analyze those two 
dimensions. On the social interaction dimension (see Table  2), this research used 
the group-level SNA metrics to uncover groups’ social attributes, including average 
path length (APL), density, average degree, average closeness, average between-
ness, reciprocity, global clustering coefficients (GCC), the inverse coefficient of 
variation (ICV) of student interaction, and centralization (see Ouyang, Chen, et al., 
2021; Ouyang, Ling, et al., 2021; Ouyang & Scharber, 2017). Since students some-
times did not refer to a specific peer during the online discussions, it was difficult 
to identify the receiver; in this situation, the receiver was denoted as “all” when the 
network data was processed. For SNA metrics of reciprocity and ICV that needed to 
consider interactions between two identified members, we excluded the data of “all” 

Table 6   The comparison of 
the social interaction of three 
grouping methods

*p ≤ 0.05; **p ≤ 0.01; ***p ≤  0.001

SNA metrics Grouping method Mean value F p

APL IVMGA 1.10 1.34 0.27
GR 1.02
GS 1.15

Density IVMGA 5.49 1.03 0.36
GR 6.19
GS 3.55

Average degree IVMGA 22.97 0.58 0.56
GR 22.68
GS 16.94

Average closeness IVMGA 0.10 2.16 0.12
GR 0.12
GS 0.07

Average betweenness IVMGA 0.26 0.79 0.46
GR 0.31
GS 0.44

Reciprocity IVMGA 1.00 1.98 0.15
GR 0.91
GS 1.00

GCC​ IVMGA 0.57 3.39 0.04*
GR 0.57
GS 0.32

ICV IVMGA 1.27 1.84 0.17
GR 1.06
GS 0.69

Centralization IVMGA 0.18 0.89 0.42
GR 0.22
GS 0.16
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in the SNA measure processes. R packages sna, igraph and tnet were used to meas-
ure those SNA metrics.

On the discussion content dimension, a coding framework was used to analyze 
students’ discussion content in DingTalk, including cognitive engagement (CE), task 
regulation (TR), and social chatting (SC) (see Table 3). The first author and another 
research assistant coded the discussion content based on the framework. They coded 
the content separately and reached a Cohen’s Kappa’s interrater reliability of 0.96.

Third, we designed an online questionnaire (with 5-Likert Scale), including six 
items about students’ attitudes, emotions, and feedback (see Appendix 3) to collect 
student perceptions about the group’s collaboration.

Finally, this research compared the effects of three grouping methods (i.e., 
IVMGA, GR, GS) on the final performances, the collaborative processes, and stu-
dents’ perceptions through using the statistical analysis approaches (ANOVA, 
T-test). In addition, we also compared the IVMGA and GR with two group sizes (i.e., 
size = 3 or size = 4); we excluded the GS groups since it had the same group size 
of 4. Overall, a multi-method approach (including statistic methods, social network 
analysis, quantitative content analysis) was used in this research.

Table 7   The comparison of the social interaction of IVMGA and GR with two group sizes

*p ≤ 0.05; **p ≤ 0.01; ***p ≤  0.001

SNA metrics Size IVMGA GR

Mean value p Mean value p

APL 3 1.03 0.16 0.99 0.70
4 1.12 1.04

Density 3 7.45 0.30 9.94 0.04*
4 5.10 3.94

Average
Degree

3 23.83 0.89 31.15 0.12
4 22.80 17.60

Average closeness 3 0.17 0.02* 0.14 0.27
4 0.09 0.11

Average betweenness 3 0.06 0.18 0.14 0.04*
4 0.30 0.42

Reciprocity 3 1.00 0.67 0.92 0.88
4 1.00 0.90

GCC​ 3 0.64 0.62 0.52 0.53
4 0.55 0.60

ICV 3 0.85 0.35 1.05 0.99
4 1.35 1.06

Centralization 3 0.08 0.19 0.22 0.96
4 0.20 0.23
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Results

To what extent did three grouping methods differentiate in terms of the groups’ 
final performance?

ANOVA results showed that there were significant differences among three 
grouping methods (see Table  4). The result showed that the IVMGA and GS 
groups achieved a significant higher score compared with the GR groups 
(p = 0.02). However, there was no statistical significance between IVMGA and GS 
groups, where GS groups, in average, achieved a slightly higher score than the 
IVMGA groups. The standard deviation in the GR groups was the largest among 
three grouping methods (Std. = 23.71), indicating that the final performance of 
the GR groups was highly polarized, with some groups performed extremely well 
and others performed poor.

Table 5 showed the result of comparing the average performances among three 
different grouping methods under the same writing task. The result showed that 
the GS groups had the highest average score in Task 1, while the IVMGA groups 
had the highest average score in Task 2, Task 3, and Task 4. In Task 2 and Task 4, 
significant differences were detected among three grouping methods.

Table 8   The comparison of 
content analysis codes among 
three grouping methods

*p ≤ 0.05; **p ≤ 0.01; ***p ≤                0.001

Content Grouping method Mean Std F p
codes

CE IVMGA 51.33 37.09 0.31 0.73
GR 57.20 54.16
GS 46.63 32.12

TR IVMGA 36.75 20.17 0.24 0.78
GR 33.07 26.22
GS 27.50 37.80

SC IVMGA 57.29 37.30 0.54 0.58
GR 49.57 46.42
GS 47.80 63.16

Table 9   The comparison of 
content analysis codes of 
IVMGA and GR with two group 
sizes

*p ≤ 0.05; **p ≤ 0.01; ***p ≤  0.001

Content codes Size IVMGA GR

mean p mean p

CE 3 21.25 0.00*** 66.33 0.51
4 57.35 51.11

TR 3 31.75 0.65 31.00 0.75
4 37.75 34.44

SC 3 64.25 0.77 62.58 0.29
4 55.90 40.89
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Moreover, this research also examined whether there were differences among 
groups with two different sizes (i.e., group size = 3 or group size = 4). No statisti-
cal differences were identified in the GR and IVMGA groups. Analyses were also 
carried out to assess whether there were significances in GR and IVMGA groups 
with two different group sizes on each task. There was no significant difference 
in the IVMGA groups in the four tasks, while the GR groups showed a significant 
difference of performance in Task 2.

To what extent did three grouping methods differentiate in terms of the social 
and cognitive engagement during the collaborative processes?

The social interaction dimension

ANOVA was used to assess whether there were differences of the SNA measure-
ments among three grouping methods. Table 6 showed that there were no signifi-
cant differences in most SNA measurements, except GCC​ (p = 0.04). The IVMGA 
and GR groups had the same value of GCC​ (value = 0.57), followed by GS groups 
(GCC value = 0.32). Although there were no statistical significances in other 
SNA measurements, three grouping methods had different SNA results. Specif-
ically, the GR groups had the shortest APL (value = 1.02), the highest density 
(value = 6.19) and closeness (value = 0.12); the GS groups had the lowest central-
ization (value = 0.16) and closeness (value = 0.07), and the highest betweenness 

Table 10   Comparison of student 
perceptions of three grouping 
methods

*p ≤ 0.05; **p ≤ 0.01; ***p ≤  0.001

Item Grouping method Mean value Std F p

Q1 IVMGA 3.76 0.70 0.05 0.95
GR 3.73 0.60
GS 3.80 0.68

Q2 IVMGA 3.10 0.30 0.56 0.57
GR 3.08 0.39
GS 3.20 0.41

Q3 IVMGA 4.33 0.80 3.58 0.03*
GR 3.73 1.04
GS 4.33 0.62

Q4 IVMGA 4.10 1.09 1.18 0.32
GR 3.65 0.98
GS 3.93 0.88

Q5 IVMGA 3.33 0.80 0.56 0.57
GR 3.35 0.89
GS 3.60 0.74

Q6 IVMGA 3.43 0.75 1.23 0.30
GR 3.42 1.14
GS 3.87 0.83
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(value = 0.44) and reciprocity (value = 1); the IVMGA groups had the highest 
degree (value = 22.97), reciprocity (value = 1), and ICV (value = 1.27).

Furthermore, this research used T-tests to examine whether there were statis-
tical differences in the SNA measurements between two group sizes under the 
GR and IVMGA, respectively. Table  7 showed that in the IVMGA groups, there 
was a statistical significance of closeness (p = 0.02) between the two group sizes. 
The groups with three members had higher closeness centrality than the groups 
with the size of four members. In the GR groups, two measurements, namely den-
sity (p = 0.04) and betweenness (p = 0.04), had significant differences between 
two different group sizes. The groups with three members had a higher density 
(value = 9.94), and the groups with four members had a higher betweenness cen-
trality (value = 0.42). Overall, only one metric revealed statistical significance in 
the IVMGA groups, whereas two metrics had statistical significance in the GR 
groups. Therefore, the IVMGA grouping method had a competitive advantage 
in solving the unbalanced group size problem based on the comparison of SNA 
measurements. The IVMGA method still maintained the approximate capacity 
among groups in the collaborative process with different group sizes.

The discussion content dimension

The results indicated that there was no significant difference among three group-
ing methods on CE, TR and SC (see Table 8). Among three grouping methods, the 
IVMGA groups had a medium level of cognitive engagement (CE = 51.33), the high-
est level of task regulation (TR = 36.75) and social chatting (SC = 57.29). In addi-
tion, for TR and SC codes, the standard deviation values of IVMGA groups were the 
lowest, indicating a balanced attribute within IVMGA groups on those two codes.

Table 9 indicated there was a significant difference in IVMGA groups with differ-
ent group sizes on CE. The mean value of CE within groups of three members was 
significantly lower than groups of four members.

To what extent did three grouping methods differentiate in terms of students’ 
perceptions?

The reliability test of questionnaire responses was the Coefficient value = 0.80 , indi-
cating a high reliability. Table 10 showed the average score and standard deviation of 
each questionnaire question and then revealed the one-way ANOVA analysis results. 
There was only one item (Q3), regarding the satisfaction of the grouping result, had 
a significant difference (p = 0.03). The result indicated that students were satisfied 
with the IVMGA and GS grouping methods. Although there was no significant dif-
ference in Q4 regarding fluency, the IVMGA groups reported the highest value of 
fluency, which indicated that conflicts can be resolved and tasks can be coordinated 
more efficiently within the groups. Furthermore, different group sizes did not lead to 
differences in student perceptions of the collaborative experiences, either under the 
IVMGA or GR groups.
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Discussions

Addressing research questions

To address the two issues of uneven group sizes and the inaccessibility of student 
characteristics, this research proposed an optimized, genetic algorithm-based group-
ing method and conducted a quasi-experiment research. Results showed that the 
experimental groups outperformed the traditional grouping methods (i.e., random 
groups and student-formed groups) in terms of the groups’ final performances, col-
laborative processes, and student perceptions. Regarding the first research question, 
the result showed that in the final collaborative writing performance, the IVMGA 
groups outperformed the GR groups to a statistically significant extent, which 
was consistent with other research using the GA-enabled grouping methods (e.g., 
Chen & Kuo, 2019; Moreno et al., 2012; Takači et al., 2017). In addition, the GR 
groups’ standard deviation values were highly polarized, indicating the unbalanced 
performance results in GR groups. Further analysis revealed two groups in GR had 
extremely poor performances, namely G11 (4-person group) and G12 (3-person 
group). The poor performance of these two groups in task 2 and task 4 caused the 
unbalanced performance issue. The results justified that the GR method was more 
likely to generate poor performing groups, compared to other two grouping meth-
ods. Moreover, although the IVMGA groups had different group sizes, this difference 
did not impair their group performances. When we compared the 3-person groups in 
IVMGA and GR, there were no significant differences; when both the 3-person and 
4-person groups were taken into account, a significant difference emerged between 
the grouping methods of IVMGA and GR. The reason was that the IVMGA strat-
egy minimized the differences of groups with different sizes, while the GR group-
ing method could not achieve similar effects (Holenko Dlab et al., 2020). Overall, 
IVMGA was conducive to improve the groups’ collaborative performances while did 
not weaken the group performances due to differences of the group sizes.

Regarding the second research question, the comparison of the groups’ collabo-
rative processes provided additional evidence to support the advantage of our pro-
posed grouping method. On the social interaction dimension, the results showed that 
the IVMGA and GR groups had the highest GCC​ value, indicating the high levels of 
connectedness. A possible reason was that unfamiliar students in the IVMGA and GR 
groups tended to create connections with each other, while familiar students in GS 
groups were likely to interact with their acquaintance but tended not to sustain inter-
actions with other members in the group (Gazelle et al., 2005). The highest metrics 
of degree and ICV also indicated that the IVMGA groups had the most active, bal-
anced, evenly-distributed interaction because our grouping method mixed the dif-
ferent levels of students to avoid the formation of the extremely unbalanced groups. 
The ICV results indicated that the IVMGA method achieved a competitive advan-
tage in keeping a balanced group when the group sizes were different. Therefore, 
the IVMGA was beneficial to cultivate collaborative interactions and minimize the 
groups’ differences, particularly when groups had different sizes. On the discussion 
content dimension, no significant differences were found on cognitive engagement 
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(CE), task regulation (TR), and social chatting (SC) among three grouping methods. 
Compared to other two grouping methods, IVMGA groups achieved relatively low 
scores of standard deviations, which indicated IVMGA groups kept a certain level of 
balance within groups. But the balance did not maintain in the IVMGA groups when 
we compared between the different group sizes. Overall, from a collaborative pro-
cess perspective, the IVMGA grouping method did facilitate groups to achieve better 
social interaction and cognitive engagement during the collaborative processes.

Regarding the third research question, the questionnaire results provided positive 
feedback about student perceptions. IVMGA and GS groups significantly exceeded 
GR on students’ satisfaction level, which was consistent with previous studies (e.g., 
Lin et al., 2016). Students’ satisfaction had critical influence on their willingness to 
collaborate in a group, since if group members engaged in collaborative tasks with a 
negative attitude, it was almost impossible to acquire preferred outcomes (Lavy, 2017; 
Reis et al., 2018). Moreover, fluency was commonly used for evaluating the group per-
formance in creative tasks (Clark & Mirels, 1970). IVMGA groups reported the highest 
score of fluency, which indicated that conflicts could be resolved and tasks could be 
coordinated more efficiently within the groups. In addition, different group sizes did 
not lead to differences of student perceptions of the collaborative experiences. There-
fore, the IVMGA grouping method was beneficial to improving students’ satisfaction 
and collaborative fluency. Overall, the proposed grouping method indicated competi-
tive advantages to improve the group collaboration performances, increase collabora-
tive engagement, and improve student satisfaction about the group work.

Implications for the implementation of grouping methods

In this research, two common challenges namely the uneven group sizes and inac-
cessibility of student characteristics were resolved to enhance the adaptability of the 
grouping methods. In order to further extend the study of GA-enabled grouping meth-
ods, three implications were proposed on the implementation of automatic grouping 
methods. First, regarding the input variables of student characteristics, the essential 
of heterogeneous grouping is the mixture of participants’ characteristics at multiple 
dimensions. The selection of group characteristics is a complicated issue, since we can-
not ensure that all characteristics that would impact the group performance were con-
sidered. A combination of static and dynamic characteristics from students not only 
achieve better collaborative effect than merely using one type of student characteris-
tics (Krouska & Virvou, 2020; Moreno et al., 2012), but also facilitates the solution of 
“Cold Start” problems. Our research used social interaction metrics as the dynamic stu-
dent characteristics; future research can consider other dynamic characteristics such as 
the changing of cognitive or emotional levels. In addition, a continuous numerical vari-
able would show a certain level of flexibility in a complicated educational environment 
and decrease the unbalanced characteristics distribution. Second, the heuristic search 
algorithm aims to search for an optimized solution from a larger solution space in a 
limited period of time (Cruz & Isotani, 2014). The IVMGA grouping method proposed 
in this research can efficiently generate the optimized groups, compared to traditional 
grouping methods. IVMGA still has some disadvantages, particularly as the numbers 



812	 X. Li et al.

1 3

of groups and the student characteristics increase, the solution set space of the algo-
rithm becomes very large and it is impossible to iterate the whole solution set space 
in the limited time (Lambić et  al., 2018; Sukstrienwong, 2017; Takači et  al., 2017). 
Future work can consider combine some other algorithms (e.g., genetic programming) 
to reduce the dimensionality of the student features and improve the computational 
efficiency. Third, this research requires the researchers to process the student charac-
teristics data and manually used the grouping algorithm to generate groups. Future 
implementations should integrate the grouping function in online learning platforms 
to support automatic grouping in online or blended learning (Alfonseca et al., 2006). 
Without the technical support, it would be extremely time-consuming and labor-inten-
sive for the instructor to conduct the grouping work (Sukstrienwong, 2017; Takači 
et al., 2017). With the support of automatic groups in online platforms, the instructors 
can further modify groups with other factors such as task types, difficulty levels, and 
course content (Wang et al., 2007). Moreover, online platforms can help instructors to 
automatically acquire student data via drop-in quiz and online questionnaire tools and 
convert discussion content information into dynamic social interactive characteristic 
data (e.g., Chen et al., 2018; Ouyang, Chen, et al., 2021; Ouyang, Ling, et al., 2021). 
In summary, future design and implementation of grouping methods should consider 
three critical factors, namely input variables of student characteristics, choice of other 
algorithms and integration of grouping function in online platforms.

Implications for collaborative analytics

Most previous studies focus on the evaluation of groups’ summative performance 
rather than the process-oriented analytics (Lambić et al., 2018; Lin et al., 2016; Moreno 
et al., 2012; Takači et al., 2017), which may result in a lack of a comprehensive, holistic 
understanding of the CSCL process. There is an analytical trend in the learning science 
and collaborative learning fields to examine both performance and process data and to 
reveal the multi-dimensional characteristics of CSCL (Janssen et al., 2013; Schneider 
et al., 2021). The multi-method approaches have been used to conduct the multi-dimen-
sional analyses of collaborative learning processes, such as using the statistical analysis, 
sequential analysis, and social network analysis approaches to investigate the sequences 
of students’ knowledge contributions (Chen et al., 2018) and social interaction struc-
tures (Ouyang, 2021; Ouyang & Chang, 2019; Ouyang & Scharber, 2017). Considering 
the multi-dimensional characteristics of the collaborative learning, merely focusing on 
the final performance of collaboration may cause inconclusive and incomprehensive 
understandings. Therefore, studies have used a multi-method approach to complement 
each other in order to provide a more holistic, multilevel, multidimensional analysis 
of the collaborative process. For example, Chen and Kuo (2019) and Joksimović et al. 
(2018) used a multi-method approach to reveal the depth of the learning process and 
the experiment details to enhance the validation of the conclusion. Taking a step for-
ward, this research took cognitive engagement analysis as an additional supplement to 
further explore the collaborative process. Furthermore, Schneider et al. (2021) stated 
that collaborative learning analytics is the intersection of collaborative learning and 
learning analytics, which expands the learning analytics method to focus on analytics 
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of groups of students. Overall, using multiple learning analytics methods, collaborative 
analytics can provide feedback on similarities and differences of CSCL results at the 
group level to improve the understanding of groups’ collaborative work.

Conclusions, limitations, and future directions

One of the core issues in CSCL is grouping formation, because a group’s learning 
atmospheres, processes, and performances can be determined by how well the group 
members work together (Chen & Kuo, 2019; Reis et  al., 2018; Uto et  al., 2020). 
GA-enabled grouping algorithms have been used to cope with the complexity and 
diversity of educational contexts (Chen & Kuo, 2019; Krouska & Virvou, 2020; 
Moreno et al., 2012), such as enhancing the grouping optimization effect, improv-
ing the computational efficiency, and meeting the diversity of educational needs. 
However, two common challenges, including the uneven group size problem and 
unavailability of student characteristics, weaken the effects of the grouping methods 
in practices. To overcome two challenges, this research proposes a feature categori-
zation module and an enhanced genetic algorithm module, and further applied this 
proposed method in an educational context where group sizes could not be equally 
divided. The experiment result shows that the experimental groups outperformed the 
random or self-selected grouping methods. And the experimental groups maintained 
a relatively balanced capacity to complete collaborative tasks, kept an active interac-
tion among peers, and perceived a satisfied collaborative perception.

Future directions of this line of inquiry include algorithm optimizations, inte-
gration in online platforms, and further empirical validation in different scenarios 
using collaborative analytics methods. First, future research can focus on improving 
grouping algorithm’s computing efficiency by using advanced algorithms to perform 
dimensionality reduction and extract key characteristics as input in the algorithm 
model (Jolliffe & Cadima, 2016). Second, this research merely applied the grouping 
methods in an undergraduate course; further research should expand the educational 
activities to broader instructional scenarios to further test the effect of this group-
ing method on collaborative learning. Although we used multiple rounds of tasks 
to enhance its representativeness, future studies should increase the number of sam-
ple sizes and expand the educational activities to broader instructional scenarios in 
order to test and verify the effectiveness of grouping methods. Third, in addition to 
evaluations of final performance, future work should use multiple learning analytics 
to conduct the collaborative process-oriented analytics in order to enhance the inter-
pretation of group work (Dindar et al., 2020; Schneider et al., 2021).

Appendix 1

See Table 11.
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Table 11   The pre-course questionnaire of student information

Questionnaire

Basic information
1.   Name 2. Gender 3. Age 4. Major
Communicative skill
5. When my thoughts are different from others, I still express my points of view
6. I am open with other people’s points of view about my thoughts
7. I often try to figure out what other people is going to say before they finish the conversation
8. When I don’t understand what other people is saying, I will take the initiative to ask questions
9. In the conversation, I pay attention to the facts and details as well as the emotional tone of the speaker
10. When communicating with other people, I tend to think from the perspectives of others
11. I am willing to listen to or accept constructive criticism from others
12. I will avoid saying things that I think will make others unhappy
13. When there is a disagreement, I can still communicate objectively and rationally with others
14. When I know that I am wrong, I am willing to admit my mistakes
Collaborative skill
15. I like to collaborate with my peers, and I am willing to actively initiate collaboration with my peers
16. I think teamwork allows me to better organize my ideas (such as refining my opinions)
17. I feel that teamwork promotes my understanding of others and my respects of others
18. I think teamwork should encourage all members to actively participate in the activity
19. I think people are equal individuals when exploring information, constructing knowledge, or com-

pleting tasks together in a group
20. When evaluating other members’ work in a group, I usually express my opinions with reasons, rather 

than merely expressing my intuitions
21. When completing tasks with my peers, I am willing to listen to my peers’ opinions, even if I disagree 

with these opinions
22. I think that the completion of any work is inseparable from the help and collaboration of others
23.  When discussing group work, I am willing to actively put forward my own views, ideas or plans
24. Although teamwork is sometimes time-consuming, it can help produce the high-quality results in the 

long run
Leadership skill
25. I can usually understand the reaction of others to an opinion in advance
26. I am very good at solving problems
27. It is very easy for me to make plans and deal with details
28. Management is my strengths
29. I enjoy responding to other people’s requests and concerns
30. I like to make plans for the team
31. I think the key to successfully handling conflicts is to respect each other
32. I am good at obtaining resources to support the collaborative projects
33. I try my best to find consensus in different situations
34. I can flexibly adjust myself when the teamwork needs some changes
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Appendix 2

See Table 12.

Appendix 3

See Table 13.
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