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Abstract

This profiling study deals with the self-regulated learning skills of online learners
based on their interaction behaviors on the learning management system. The learn-
ers were profiled through their interaction behaviors via cluster analysis. Following
a correlational model with the interaction data of learners, the post-test question-
naire data were used to determine self-regulated learning skills scores during the
learning process. Regarding the scores, the clusters were named through the promi-
nent interactions of the learners yielding three clusters; actively engaged (Clusterl),
assessment-oriented (Cluster2), and passively-oriented (Cluster3), respectively. The
profiles in the clusters indicate that assessments were mostly used by the learners
in Cluster2, while the frequency of the content tools was high in Clusterl. Surpris-
ingly, some tools such as glossary, survey, and chat did not play a prominent role
in discriminating the clusters. Suggestions for future implementations of self-regu-
lated learning and effective online learning in learning management systems are also
included.
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Introduction

Learners need to have more self-regulated learning (SRL) skills to be successful in
online learning. However, understanding the actions, strategies, and goals of SRL is
a more challenging task. Since learners have different abilities and knowledge, they
employ different strategies through their SRL skills in online learning settings. Thus,
increasing attention has been shown to online SRL over the last few years (Broad-
bent, 2017; Broadbent & Poon, 2015; Eggers et al., 2021). In the field of learning
analytics (LA), recent techniques in LMSs provide possibilities to understand self-
regulation in online learning. Using LA techniques, researchers are still studying
how to reveal or measure SRL in online settings. The studies are ongoing answering
the questions of what to trace, how to collect data, and what kind of techniques are
useful for revealing SRL (Viberg et al., 2020). For example, some LA studies ana-
lyze online interaction behaviors and create indicators of SRL phases from learners’
trace data (Kia et al., 2021).

In recent years, attention has been focused on grouping learners having similar
interaction behaviors in LMSs. These studies are limited in number and use interac-
tion data (Sun et al., 2023) to analyze some variables among these groups (eg. learn-
ing performance). Although some of the research reported some information about
the groups’ SRL behaviors, studies explaining these behaviors covering interactions
with LMS tools are still nascent. Thus, this study highlights the importance of the
use of LMS tools and associating the tools with groups’ SRL behaviors. The present
study grouped learners’ regarding Zimmerman’s (2000) three-phase model and cap-
tured their interaction behaviors with LMS tools.

Theoretical background

Many studies have captured online SRL behaviors (Ye & Pennisi, 2022) and per-
ceived online SRL strategies (Sun et al., 2018) by applying appropriate SRL models.
Some SRL models focus on specific dimensions such as emotions and motivation
(Boekaerts, 2011), on cognition (Winne & Hadwin, 1998) and some others focus on
specific contexts such as collaborative learning (Jarvela & Hadwin, 2013). In addi-
tion, Pintrich’s (2000) model focuses on the role of cognition and metacognition
processes and learning behaviors through resource management. Despite the differ-
ent conceptualizations in the models, the SRL is generally considered a temporal
dynamic process that covers planning and forethought, performance and monitoring,
and reflection and evaluation phases (Alonso-Mencia et al., 2020; Saint et al., 2020;
Zimmerman, 2000).

As one of the most cited SRL models, Zimmerman’s model (2000) described the
SRL in three cyclical phases including forethought, performance, and self-reflection
(Broadbent et al., 2020). In the forethought phase, learners analyze the task and set
goals and plans accordingly. This phase is strengthened by several variables such as
motivation, self-directed learning, and self-efficacy. It is useful to elaborate on this
point by considering the relevant variables. Self-directed learning and self-efficacy
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play important roles in the energizing forethought phase of SRL. Self-directed learn-
ing refers to the process in which learners take responsibility for their learning and
actively monitor their academic progress (Knowles, 1975). The motivation toward
an activity is also a contributing factor to self-directed change (Usher & Schunk,
2017). It entails translating psychological capacities into task-related skills and is
crucial for adeptly adapting to academic activities. On the other hand, self-efficacy
is an individual’s assessment of their capabilities to complete a specific task (Ban-
dura, 1997). It impacts students’ choices, efforts, perseverance, and achievements.
Students with high self-efficacy who participate in self-directed learning are more
likely to regulate their learning effectively (Bandura, 1997; Parveen et al., 2023).
Self-efficacy helps students to actively engage in the learning process, while self-
directed learning empowers them to take control of their learning and apply effec-
tive strategies. Then, the performance phase takes place in which learners manage
their learning process by working on the task using several self-control and self-
observation strategies to monitor their progress. In the self-reflection phase, learners
evaluate their work and react to the result (Broadbent et al., 2020). The SRL models
guide educators to design learning environments for activating learners to display
self-regulated behaviors to achieve their learning goals (Bannert et al., 2014). In the
current study, SRL strategies were derived from Zimmerman’s SRL model (2000) as
presented in Fig. 1.

During the last three decades, a wide variety of self-reporting tools have been
used to determine learners’ SRL. Roth et al. (2016) in a systematic literature review
reported the following instrument types: questionnaires, interviews, think-aloud

Self-control
Task strategies, self-instruction
imagery, time management,
environmental structuring
help-seeking

Self-observation
Metacognitive monitoring
Self-recording

Forethought Phase Seif-Reflection Phase

Task Analysis Selfjudgement
Goal setting Self-evaluation
Strategic planning Casual attribution
Self-Motivation Beliefs <€ Self-reaction
Self-efficacy Self-satisfaction/affect
Outcome expectations Adaptve/defensive
Task interestvalue

Goal orientations
Fig.1 Zimmerman’s cyclic SRL model
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protocols, and learning diaries. However, researchers have some criticisms of some
of these self-reported tools in online contexts. For instance, Duncan and McKeachie
(2005) pointed out that the Motivated Strategies for Learning Questionnaire covers a
range of scales from the performance phase but does not measure self-regulation in
the preparatory and appraisal phases (Li et al., 2020). The Metacognitive Awareness
Inventory does not include time and environment management. In addition, these
instruments are generally appropriate for the SRL deployment in traditional face-
to-face education (Cho & Summers, 2012). Furthermore, “the self-regulated online
learning questionnaire” is accepted as being specifically designed for use in online
learning (Jansen et al., 2017). Accordingly, to profile learners regarding their SRL,
we used this questionnaire to provide learners with steady SRL measures.

Learning analytics for understanding online self-regulated learning

Understanding SRL in online learning is vital for better online instruction. However,
it is difficult to reveal the deployment of SRL strategies (Efklides, 2011; Winne &
Perry, 2000; Liz-Dominguez, 2022) because of their dynamic and temporal nature
in the online learning process. An emerging literature has used online learners’
interaction behaviors to understand in online learning platforms (Kokog et al., 2021)
and LMSs (e.g., Baker et al., 2020; Cicchinelli et al., 2018; Jansen et al., 2020; Li
et al., 2020).

The data stored in LMS covers the logs of interaction behaviors (Lerche & Kiel,
2018). Interaction behaviors are any kind of meaningful interactions about learning
such as delivering learning materials (e.g., lecture video, navigation in a web page),
engaging in learning activities (e.g., quizzes, assignments, and discussion, forum,
chat), and acting in assessment activities (e.g., exams, and surveys) (Lewis et al.,
2005). The interaction data are used as indicators of learners’ SRL skills (Viberg
et al., 2018) and linked to metrics (e.g. clicks) of SRL strategies. For instance, a
study focused on interaction behaviors and found that using metacognitive prompts
supported learners’ SRL in learning activities (Siadaty et al., 2016). Another study
included the number of posted forum messages per week and the number of forum
views to provide information about the learners’ future behaviors in the course (Xing
et al., 2016). Similarly, Xing and Du (2019) used online learners’ interaction data
such as accessing the course, using the grade books, calendar, or other activities.

To understand the relationship between the deployment of SRL strategies; learn-
ers’ use of tools for the SRL strategies comes to the fore (Carless & Boud, 2018;
Carless et al., 2011). In this case, researchers generally, suggest profiling (Lust et al.,
2011) which may offer some important insights into relations between SRL skills
and interaction behaviors, and contribute to a deeper understanding of the SRL skills
of online learners. Some previous studies profile learners first and then identify their
SRL. They examine SRL profiles in specific contexts and rely on interaction data
instead of learners’ self-reported measures of self-regulatory strategies. Learn-
ers shift their learning profiles across different domains and even within a course
in response to contextual factors. Researchers have proposed that SRL profiles are
dynamic per se (Jang et al., 2017; Shell & Soh, 2013). According to Panadero et al.
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(2016), this type of assessment takes SRL as an event (time-based and task-related
of known start and end), rather than considering it a steady feature of the learner.
Nonetheless, it is also important to consider SRL as a feature of the learner and
confirm the indicators of online SRL as an event. Additionally, previous studies also
highlighted that the analytical methods to detect SRL need to be tested for the extent
and conditions (Kia et al., 2021). Thus, some new profiling studies are needed to
understand how learners act in the LMS regarding their SRL profiles. Namely, stud-
ies that provide detailed explanations about the types of SRL strategies and learning
tools of LMSs that the learners use.

Previous studies showed that learning tools of LMSs were generally used for
resource sharing, communication, or information searching in forums, blogs, wikis,
or chat platforms (Cicchinelli et al., 2018; Dabbagh & Kitsantas, 2012; Jansen et al.,
2020; Maldonado-Mahauad et al., 2018). The resource-sharing tools, search tools,
and help tools were also found particularly helpful for self-evaluation, task strate-
gies, and goal setting (Chou et al., 2018; Kitsantas, 2013). There are very few stud-
ies examining learning tools and self-regulation together, and these studies do not
include profiling. In one of these studies, Selvi and Panneerselvam (2012) used a
web-based system that allows learners to monitor their learning process, manage
their time, and assess their knowledge through the system using a set of digital tools.
They found that there was considerable development in self-regulation skills at the
end of the course. Another study found that learners who reported stronger SRL
skills were more likely to visit course materials (Kizilcec et al., 2016).

Motivation for the research

Previous studies suggested that a poor understanding of SRL leads to a wasted
opportunity for improving students’ learning processes (Nilson, 2013). Thus, edu-
cators need to benefit more from the tools supporting learners’ learning in the
LMSs (Araka et al., 2020; Cakiroglu et al., 2019; Song & Kim, 2020; Viberg et al.,
2020). Interventions for enhancing SRL can be successful when the instructional
designers or instructors know more about how learners know, use, engage, or adopt
LMS learning tools (Li et al., 2020). Applying LA techniques, learners may know
what they can do within the LMS learning tools for better learning outcomes (Roll
& Winne, 2015). Accordingly, instructors can be informed about the relationship
between active learning strategies for deploying SRL skills and the use of LMS
learning tools, and students to understand how well online learners regulate several
aspects of their learning processes. Understanding the use of LMS tools for pro-
moting SRL strategies may provide hints for instructional designers to use interac-
tions reflecting self-regulatory strategies in their course designs. In sum, still, there
are still many difficulties in accessing necessary data or using appropriate analysis
methods in the LA studies to better understand SRL in online learning settings. This
study fills the gap in understanding the use of the LMS learning tools and their rela-
tions with SRL. This study profiled students’ SRL skills as they perceived in the
self-report data and associated the profiles with their interactions with LMS learning
tools and the following research questions are formulated:
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e What are clusters constructed through online learners’ interaction behaviors on
LMS tools?

e Which SRL skills of online learners reflected on their most used LMS learning
tools?

Method

The current profiling study was conducted employing clustering analysis to answer
the research questions. The clustering method provides powerful algorithms to pro-
file learners into appropriate groups based on their attributes and features available
in educational datasets (Liu & Koedinger, 2017).

This study used convenience sampling to select the participants due to the dif-
ficulties of conducting a large-scale online course with a wider range of learners. A
total of 65 undergraduate students who enrolled in a third-year course participated
in the study at the beginning of the study. Five students did not log in to the online
learning environment (Moodle LMS) at least once and never participated in any
course activities and learning tasks. Those students who dropped out of the course
due to unknown reasons were excluded from further analysis. Thus, the study data
were collected from 60 out of the 65 enrolled undergraduate students (33 male, 27
female) with the age range from 20 to 24. The average age was 22.03 (SD=1.43).
They had taken at least one online course in university before the study. The data
were collected in the first term of the 2019 academic year. The participants answered
an online scale about their online self-regulation. All participants agreed to partici-
pate in the study voluntarily. They were assured about the anonymity and confidenti-
ality of the study data.

Procedure

The context of the study was a third-year computing course titled Operating Sys-
tems and Applications in an Instructional Technology teacher education program
at a large-scale public university in Turkey. The study was conducted in a blended
16-week undergraduate course planned to introduce the teacher candidates to basic
operation systems concepts. The course aimed to provide basic knowledge, founda-
tion concepts, and principles of operating systems for evolving directions in sys-
tem architecture. The instructional package included process and thread manage-
ment, deadlocks, input/output device management, memory management, central
process unit, scheduling algorithms, and file management in operating systems. The
course was delivered three hours per week through Moodle LMS asynchronously.
The learners studied with Scorm packages, short course videos, presentations, and
books in PDF format each week. These contents were supported with visuals and
audio materials in some weeks. During the course, learners were able to interact
with each other and with the instructor using Moodle tools such as forums, glos-
sary, and messaging. They were given weekly assignments and allowed to use tools
including forums and chat for discussions about these assignments and to work
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collaboratively. The instructor who is also one of the researchers guided the learning
process and encouraged the learners to follow learning activities. He also presented
them with how to search for information for their learning tasks.

Measures
Interaction data indicating online learning behavior

We used learner-generated interaction data derived from Moodle time-stamped
logs, the aim of which was to understand the SRL skills extracted from the learn-
ers’ online learning experiences in Moodle. Data reflecting the online learning expe-
riences of learners in the online learning process were extracted from the Moodle
database by using MySQL queries. The interaction data consists of learners’ interac-
tions with Moodle components such as forum, assignment, content, chat, glossary,
assessment, and survey tools. Raw data were pre-processed and named in a suitable
format. Adjusted variables reflecting a list of activities in the learning process in
Moodle are presented in Table 1.

As seen in Table 1, seven variables reflecting learners’ online interaction behav-
iors were calculated with the accumulated number of events for each type of activ-
ity. Some of the variables were re-organized by the researchers by the nature of the
relevant events. For example, the total of assessment-related actions such as quiz
attempt, quiz submission, quiz view, and access quiz report was considered as
assessment interaction data, as these actions are learners’ clicking events in the quiz
activity.

Online SRL scale

Considering Zimmerman’s SRL model (2000), we used the Online SRL Scale
developed by Barnard et al. (2009) and translated to Turkish by Kilis and Yildirim
(2018) for measuring perceived SRL skills at the end of the study. The scale
includes six subscales and 24 items in the form of a five-point Likert type rang-
ing from 1=_Strongly Disagree to 5=Strongly Agree. Regarding reliability, internal
consistency values were measured via Cronbach alpha 0.95 for the whole instru-
ment and ranged between 0.67 and 0.87 for its six sub-factors. All the factors have
Cronbach alpha values higher than 0.70 except one which is very close to 0.70 and
therefore, all the sub-factors yielded acceptable values (Hair et al., 2010) regard-
ing internal consistency and found acceptable. According to the findings, with a Xz/
df ratio value of 2.45, the translated instrument was acceptable. The worth of fit
values was found to be X2/df= 2.45, RMSEA =0.06, RMR=0.08, SRMR =0.06,
TLI=0.89, CFI=0.90, GFI=0.86, AGFI=0.84 and NFI=0.80. According to these
values, it can be said that GFI, AGFI, CFI, TLI and NFI observable fit values were
slightly lower than acceptable value, but very close to good fit values while RMSEA,
SRMR, and RMR fit values indicated an acceptable and good fit. The scale items
and description of the factors are presented in Table 2. All of the learners completed
the scale and it took approximately 20 min on average.
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Data analysis

The study data were analyzed according to the research questions. To investigate
the relationship between SRL skills and the number of interactions with tools, cor-
relation analysis was conducted in the study. Clustering analysis was employed to
explore online learner profiles based on their interaction data. One-way analysis of
variance (ANOVA) was run to investigate whether there were differences among
clusters in terms of SRL sub-skills. Effect sizes were calculated to see the practical
significance of ANOVA results. Recommendations of Cohen (1988) were consid-
ered to interpret effect sizes.

Clustering is beneficial to discover meaningful subgroups and latent patterns in a
data set (Han et al., 2011) and to classify samples into many groups using an associ-
ation measure for exploring clusters with the highest inter-group distances and intra-
group similarity (Kantardzic, 2011). In the study, k-means clustering algorithm was
performed to explore different profiles of the learners based on their interaction data
in terms of using LMS tools. K-means clustering algorithm that assumes Euclidean
space can be used for finding clusters in the data set, where the groups are identified
by their cluster centers which are the typical representatives of the groups (Alpay-
din, 2009). This algorithm enabled researchers to reveal different profiles of online
learners based on their interaction with LMS tools. Similarly, several researchers
have explored online interaction patterns of learners using k-means clustering algo-
rithm as an educational data mining method (Cerezo et al., 2016; Lust et al., 2011).
Before k-means clustering analysis, hierarchical clustering analysis was employed
to decide an optimal number of clusters in the data set considering the dendrogram
as recommended by Zhou et al. (2017). The Calinski-Harabaz (CH) index was used
to determine to evaluate k-means clustering algorithm in the study. Additionally, a
one-way ANOVA with Tukey post hoc test was conducted to determine whether the
learners in the clusters differ from each other and validate the analysis.

Results
Clusters constructed through the learners’ interaction behaviors on LMS tools

The correlations between SRL scores and the number of interactions with tools in
Moodle are presented in Table 3.

Table 3 shows that goal setting is positively correlated with assessment inter-
action (r=0.447, p<0.01). However, goal setting has a negative correlation with
forum interaction (r=0.475, p<0.01), content interaction (r=0.447, p<0.01),
assignment interaction (r=0.447, p <0.01) significantly. The self-evaluation is posi-
tively correlated with assessment interaction (r=0.437, p<0.01) but it has a nega-
tive correlation with forum interaction (r=— 0.599, p<0.01), content interaction
(r=- 0.540, p<0.01), assignment interaction (r=— 0.369, p<0.01), chat interac-
tion (r=-— 0.487, p<0.01), survey interaction (r=— 0.383, p<0.01) and glossary
interaction (r=— 0.318, p <0.05) significantly. The environment structuring showed
a statistically significant relation to content interaction (r=0.318, p<0.05) and
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Table 3 Descriptive statistics and correlation analysis results

SRL dimensions Assessment Forum Content Assignment Chat Survey Glossary

Goal setting 0.447%* —0.475%* —0.409*%* —0.318* -0330* -0.250 —-0.214

Self-evaluation ~ 0.437%* —0.599%*  —0.540%* —0.369%*  —0.487** —0.383%* —0.318*

Environment —0.166 192 0.318%* 0.250 0.023 0.140 0.260*
structuring

Task strategies ~ — 0.043 0.046 0.020 0.107 0.149 0.046 0.051

Time manage-  —0.132 0.201 0.186 0.239 0.124 0.060 0.066
ment

Help-seeking 0.011 0.094 0.162 0.272% 0.172 0.136 0.156

Mean 80.58 98.91 152.76 15.88 11.18 13.25 6.73

SD 57.24 79.26 112.42 11.68 6.11 4.71 8.25

Minimum 3 10 11 1 5 1 1

Maximum 209 301 450 29 30 25 42

##p <0.01, *p <0.05

glossary interaction (r=0.260, p <0.05). The help-seeking is positively correlated
with assignment interaction (r=0.272, p<0.05). The task strategies and the time
management did not show statistically significant relation to all interaction variables.

SRL skills of the online learners reflected on the clusters

A k-means clustering analysis was conducted to identify subgroups of the learners
with similar patterns. The cluster analysis results showed that a three-cluster solu-
tion was explored based on the value of the squared Euclidean distance between
clusters. The clustering analysis results are shown in Table 4.

Table 4 indicates that the learners were profiled based on their interaction behav-
iors into three groups: Cluster 1 (Actively engaging, N=16), Cluster 2 (Assessment-
oriented, N=27), and Cluster 3 (Passively engaging, N=17). Learners in Cluster 2
engaged more frequently with assessment activities than those in the other clusters.

Table 4 Summary statistics of the three-cluster solution

Variables Cluster Cluster 2 Cluster 3 F p Effect size (%)
1 (N=6) (N=27) (N=17)
mean mean mean

Assessment interaction 72.06 107.70 45.53 7.88 0.00 0.21

Forum interaction 201.63 30.67 110.65 114.60 0.00 0.79

Content interaction 304.44 62.04 154.12 108.31 0.00 0.78

Assignment interaction ~ 29.25 8.59 14.88 3285 0.00 0.53

Chat interaction 16.44 7.74 11.71 15.16 0.00 0.34

Survey interaction 17.75 10.63 13.18 18.15 0.00 0.38

Glossary interaction 16.13 2.48 4.65 27.53 0.00 0.49
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Learners in Cluster 1 were the most active learners who interacted with course con-
tents and forum/discussion activities more frequently. Learners in Cluster 3 moder-
ately engaged with all learning resources and activities. Significant differences were
also found among the three clusters in all interaction variables with a large effect
size of Eta squared according to Cohen’s (1988) guidelines (n?>0.138).

To determine whether the learners in the clusters differ from each other concern-
ing their SRL skill scores, a one-way ANOVA with Tukey post hoc test was con-
ducted. Table 5 shows the one-way ANOVA and post-hoc test results.

As shown in Table 5, the clusters differed significantly in their scores of goal
setting (F(2,57)=44.26, p<0.001, n2=0.60) and self-evaluation (F(2,57)=52.57,
p<0.001, 1?=0.64) with large effect sizes. Environment structuring (F=1.957,
p>0.05), task strategies (F=0.31, p>0.05), time management (F=1.35, p>0.05)
and help-seeking (F=0.65, p>0.05) did not have statistically significant contrasts
between the three clusters of learners with scores. The Tukey results showed that
Cluster 2 was able to get higher goal-setting scores statistically significantly further
than Cluster 1 and Cluster 2 group learners had significantly higher goal-setting
scores than Cluster 3. While there was no statistically significant difference between
the self-evaluation scores of Cluster 1 and Cluster 3, the significant difference in
self-evaluation scores was derived from the self-evaluation scores of Cluster 2 which
is significantly higher than both of the two groups; Cluster 1 and Cluster 3.

As an interesting result, the learners in Cluster 2 had the highest scores in goal
setting and self-evaluation, while the lowest score was in environment structuring
and task strategies. Learners in Cluster 1 had the highest scores in environment
structuring, task strategies, and help-seeking. They had relatively lower scores in
goal setting and self-evaluation. Also, they had relatively lower scores in environ-
ment structuring, task strategies, and time management scores compared with the
learners in the other clusters. Concerning sub-skills, while the learners in Cluster
3 had the lowest scores in goal setting, self-evaluation, and help-seeking, the time
management skills, environment structuring, and task strategies scores are the

Table 5 ANOVA results on SRL sub-skills scores among the clusters

(1) Actively (2) Assess-  (3) Pas- ANOVA Post- Effect size (%)
engaging ment sively hoc test
(N=16) oriented engaging (Tukey)
(N=27) N=17)
SRL Skills Mean SD Mean SD Mean SD F
Goal setting 9.87 332 17.85 447 17.17 3.45 4426% 2>1 0.60
2>3
Self-evaluation 6.43 2.63 1451 3.63 576 281 5257* 2>1 0.64
2>3
Environment structur- 16.31 2.52 14.11 3.88 14.94 3.71 195 - -
ing
Task strategies 125 352 11.66 394 11.82 248 0.31 - -
Time management 8.68 227 744 283 829 222 135 - -
Help-seeking 135 289 1251 346 1229 327 0.65 - -
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Cluster 2

Assessment

Forum
Content
Assignment

Cluster 3 Cluster 1

Fig.2 Clusters and mostly used LMS tools

lowest among Cluster 2 learners. Cluster 1 learners mostly had the highest scores in
the sub-skills except for two (goal setting and self-evaluation).

Both Tables 3 and 4 illustrate that while some of the Moodle tools are promi-
nent in discriminating learners’ SRL skills, some others are not remarkable. Figure 2
visualizes this association between Moodle tools and SRL skills.

Figure 2 indicates that assessment plays a discriminative role for three clusters.
Surprisingly, forum, content, and assignment components are commonly used by all
clusters. Namely, these components are not decisive for profiling learners, but they
can influence the clustering through their usage frequencies.

Discussion

This study explored the learners’ profiles through their interaction behaviors in
Moodle about SRL skills. SRL skills have been taken into consideration through
Zimmerman’s model. We found that goal setting and self-evaluation were associ-
ated with the interaction behaviors of online learners significantly. Remarkably,
there were significant correlations between assessment interaction and three self-
regulation skills goal setting, self-evaluation, and help-seeking. These results further
support the idea of contextualizing interaction data derived from learners’ online
learning behaviors to explore their self-regulation patterns (Cicchinelli et al., 2018;
Jovanovic et al., 2017).
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The clusters constructed through online learners’ interactions

It will be insightful to explore the LMS tools playing a discriminant role in the pro-
filing of the learners into three clusters. It was found that assessment, forum, and
content tools were important for the clusters. This result supports other studies in
this field linking learners’ interaction with online learning tools with online learn-
ing experience (Koko¢ & Altun, 2019; Cerezo et al., 2016; Li & Tsai, 2017). In
this sense, Koko¢ and Altun (2019) revealed that the learners’ interaction with
assessment tools is an important component of their online learning experiences.
The fact that most of the participants can be profiled based on their interaction with
the assessment tool came to the forefront of the study. A possible explanation for
this result may be the dominant role of the quizzes that were used in the LMSs. In
the study, various types of questions were used in the quizzes to measure the learn-
ing performances of the learners. Learners might use these tools to determine their
comprehension regarding course materials or assignments. Thus, they check their
progress and try to adapt their learning for necessary situations. On the other hand,
the online learners interacted with assessment activities based on a specific learning
task asked by the instructor. One can infer that the online learners profiled based on
the assessment interaction can be assigned as assessment-oriented learners.

It is seen that a survey is a common tool for both of the clusters to be actively
engaged, passively engaged, and assessment-oriented. Considering the nature of the
surveys prepared by the instructor, it is seen to be inevitable for learners dealing
with instructor-oriented tools. Similarly, Cerezo et al. (2016) explored different pat-
terns of learners’ interaction with the LMS and profiled learners into four clusters,
namely, non-procrastinators, socially focused, individually focused, and procras-
tinators. In addition, even if learners are alone in the learning process and should
have high SRL skills, sometimes they need someone to trigger their deal with the
course. At this point, surveys may be put in place to support SRL skills. Assessment
tool which has higher interactions than others came to the forefront in this study,
which may be due to the learners in all clusters who can use these tools that contrib-
ute positively to the evaluation-based SRL skills, which results in some learners in
these clusters being goal-oriented learners. The assignment tool in this study also
supported the learners who have high help-seeking skills in the process of doing
homework and seeking help from different sources in the process. In this study, the
assignment tool appears as a functional tool that needs to be employed to increase
learners’ help-seeking skills. Similarly, another study pointed out improved help-
seeking skills because of the importance of improving these skills in online learn-
ing environments (Chou et al., 2018). They found that one of the important differ-
ences in the clusters is the groups being separated about the learners’ task-oriented
and non-task situations. Similarly, in the current study, some online learners tended
to experience task-oriented learning during the process. The frequency of interact-
ing with other online tools such as forums, content, and assignments was prominent
in forming clusters. Surprisingly, while these tools are frequently used by actively
engaged and passively engaged learners, assessment-oriented learners use these
tools less frequently. This finding is in accord with the studies in which the clus-
ters were assigned through the frequencies of using learning resources, accessing
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the tools, and the level of interaction together (Khalil & Ebner, 2017; Li & Tsai,
2017). At this point, some researchers argue that online learners engaging in assess-
ment activities such as quizzes mostly desire to receive feedback about their learning
extents rather than getting informed about the learning process (Verbert et al., 2014).

SRL skills reflected on mostly used LMS learning tools

The results highlight that there was a reflection of learners’ result-oriented
approaches to learning processes. A statistically significant difference between
the goal-setting and self-evaluation scores of the online learners in Cluster 2 and
other learners’ scores in the other clusters was found. This result supports the claim
that learners’ interaction with tools in online learning is associated with the online
self-regulation skills of learners (Pérez-Sanagustin et al., 2018). This may also be
explained by the relationship between goal setting and self-evaluation in a theoreti-
cal sense. Thus, online learners with higher goal-setting skills set specific learning
task goals and plan their process toward achieving them (Onah & Sinclair, 2017)
while online learners with higher self-evaluation skills are aware of their learning
behavior and judge their learning performances and outcomes according to their
learning goals (Alonso-Mencia et al., 2020). Goal setting has a positive relationship
with assessment interaction, while it has a negative relationship with content inter-
action, forum interaction, and assignment interaction. Online learners with higher
goal-setting levels define their learning goals and strategies to achieve them in the
online learning environment (Alonso-Mencia et al., 2020). In addition, they are
more likely to attain their goals and consider measurable learning outcomes such as
quiz results, and exam points rather than learning activities (Kizilcec et al., 2016).
Thus, one can infer that learners’ high-level assessment interaction is appropriate for
the nature of the goal setting. Remarkably, goal setting has a negative relationship
with forum interaction, content interaction, and assignment interaction. This result is
contrary to previous studies which have suggested that collaborative and communi-
cation tools and content creation or delivery tools in LMSs also support goal-setting
skills of learners in the online learning process (Dabbagh & Kitsantas, 2013; Wong
et al., 2019).

It is interesting to note that there are some other issues affecting the interaction
behaviors in Moodle. Our study revealed that using quizzes is associated with higher
goal-setting and self-evaluation skills of learners. This result is in line with the
study of Kizilcec et al. (2017) who revealed that learners with stronger goal-setting
and self-evaluation skills were more likely to visit assessment activities and spend
more time on assessments. Similarly, Yang and Tsai (2010) concluded that assess-
ment activities may develop SRL-related skills of learners. The nature of the online
course can also be thought to influence the development of time management and
help-seeking skills. The interaction frequency of the chat glossary and survey tools
was the lowest when compared to the other tools. At this point, because the interac-
tion of the learner-learner or learner-lecturer was low, the frequency of using this
chat tool was low.
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Conclusions and recommendations

The results indicated that content, assessment, forum, chat, and assignment com-
ponents are seen as important for environment structuring, task strategies, time
management, help-seeking which cover Cluster 2, namely, the assessment-oriented
group. Thus, instructors may pay attention not to ignore the assessment-based activ-
ities and to take care of making learners use these tools. On the other hand, the find-
ings of the prior studies presented that someone interacting less with the LMS tools
has the potential to drop out or have less academic achievement. This study provides
hints that one reason for the improvement of online learning performance may be
using SRL strategies derived from interacting with the tools.

The findings about the interaction with the LMS tools may present new insights
into how learners regulate themselves in their online learning journeys. The study
will extend previous research by covering some aspects of students’ experience,
including their interactions using online learning tools, as well as the links between
the tools and their regulation skills. By taking profiles into account, educators could
provide meaningful design for learners by referring to the answer to the question of
what tools they use to do what. Thus, instructional designers should take care of the
affordances of the LMSs which can prioritize learner needs and instructors should
encourage learners to monitor their interactions and go on the journey.

The study has several limitations that should be noted. First, the sample size was
small, and the instructional unit was specific. The selection and size of the study
subjects may limit the generalization of the study findings. Another limitation is the
tools of Moodle, 7 of which were analyzed for supporting self-regulation in online
environments. So, a larger sample size and more tools would increase the sensitivity
of the analysis and the construction of the clusters. This study also confirmed that
data from online environments that capture learners’ actual interaction behaviors are
interrelated with the data from self-report instruments (Bannert et al., 2014; Ellis
et al., 2017).

In sum, the most often used components of Moodle were found as assessment,
forum, content, and assignment. Thus, future studies may focus on developing how
the LMSs support interacting more with these tools. The functional tools consid-
ering the nature of the SRL strategies may be integrated into the LMSs. Further
studies can suggest interventions regarding these tools. To conclude, we hope that
the findings of this study will assist in the future design and implementation of log-
based profiling and behavior analysis studies for LMSs.
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