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Abstract On-line evolution of robot controllers allows

robots to adapt while they perform their proper tasks.

In our investigations, robots contain their own self-suf-

ficient evolutionary algorithm (known as the encapsu-

lated approach) where individual solutions are evalu-

ated by means of a time sharing scheme: an individual

controller is given the run of the robot for some amount

of time and fitness corresponds to the robot’s task per-

formance during that period.

In this paper, we propose and provide a detailed

analysis of two on-the-fly control schemes to set the

evaluation time in highly dynamic scenarios with com-

pletely different tasks. One scheme, called the roulette-

wheel selection scheme, stochastically selects evalua-

tion time from promising intervals similar to multi-

armed bandit schemes. The other scheme, named H-

Rule, tweaks the evaluation time using specific heuris-

tics. Our experiments show that H-Rule gives stable

performance in different scenarios and can serve as a vi-

able alternative to pre-selected optimal evaluation time.

Keywords on-line evolution · parameter control ·
evolutionary robotics · racing · on-board evolution ·
heuristics

1 Introduction

Evolutionary robotics incorporates the principles of evo-

lution to develop controllers for autonomous robots.
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Conventional evolutionary robotics focuses on off-

line evolution, where controllers are optimized in a sep-

arate development stage before proper development of

the robots and there is no subsequent adaptation – at

least not through evolution of those controllers [Haas-

dijk et al., 2011]. In off-line training includes selec-

tion, variation and evaluation of genomes, which is usu-

ally done through computer simulations, results in a

nearly optimized controller that is ultimately deployed

on robots to tackle their actual task. Alternatively, eval-

uations could be done by uploading the controller onto

a real robot and fitness is calculated from the deployed

controller’s actual performance. This latter form of evo-

lution is commonly termed as ’embodied evolution’.

Strictly speaking, a complete evolutionary process is

not truly embodied in this form of evolution since both

selection and variation do not occur on-board, i.e. inside

robot [Eiben et al., 2010].

On-line evolution, on the other hand, provides con-

tinuous adaptation as the robots perform their tasks

after deployment. The major difference with off-line

evolution is that in this case controllers are evaluated,

selected, and modified as they perform their tasks and

not in a separate training phase. When dealing with

the implementation of on-line evolution in robotics, one

finds three different flavors, namely: encapsulated, dis-

tributed or hybrid [Eiben et al., 2010]. Some work on

on-line evolution in robotics include the works by [Nordin

and Banzhaf, 1997], [Floreano and Mondada, 1998] and

[Watson et al., 1999]. The authors describe physical

robots with controllers are designed on-the-fly through

an evolutionary process driven by feedback from the

on-board sensors.

The on-line flavor of evolution poses a number of

challenges. One of these challenges includes the design-

ers’ inability to foresee all the operational complexi-

ties of unknown and possibly highly dynamic environ-

ments, in which robots must adapt autonomously. Be-
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cause the performance of evolutionary algorithms de-

pends on proper parameter settings [Hart and Belew,

1991], on-line evolution requires either very robust pa-

rameter settings that perform well over a wide range

of problems or some way to control parameter settings

on-the-fly, as evolution progresses.

An important parameter in on-line evolution of robot

controllers is the evaluation time of robot controllers.

A robot’s evolving population contains multiple con-

trollers, but at any given time only one of them can

actually control the robot. Therefore, a time-sharing

mechanism is commonly used to activate and evaluate

controllers one by one. A selected controller runs for

a certain amount of time and the robot’s task perfor-

mance over that period determines the controller’s fit-

ness. Subsequently, another controller is activated and

evaluated, and so on. The duration of these evaluations

has a profound effect on the quality of the evolving

solutions [Haasdijk et al., 2012]. Too short evaluation

times would not give controllers enough time to prove

their mettle and even good candidates may be ignored

frequently. Overly lengthy evaluations could cause the

algorithm to spend a lot of time on bad genotypes; good

genotypes would get less time to evaluate and develop

further. Finding good values for evaluation time on-

the-fly is of vital importance for on-line evolution, par-

ticularly in dynamic scenarios, where no single param-

eter value may be appropriate. Even with improving

hardware, the performance of an agent remains highly

dependent on the time for which each controller is eval-

uated or used. For example, if bad controllers are evalu-

ated 40% of the overall time, an agent will not appear to

perform well, as only in 60% of the time it does its job

well, even on fast hardware. This is because evaluation

time is independent from how fast any computation is

actually done, rather it depends on how often and how

long controllers are evaluated.

In this paper we propose and assess two schemes to

set evaluation time on-the-fly. We use simulated robot

experiments to investigate whether these provide a vi-

able alternative to pre-set static evaluation times in dy-

namic environments. We extend the (µ+1) on-line al-

gorithm as presented in [Haasdijk et al., 2011] to include

these schemes and run a series of experiments where

agents adapt to changing tasks. The real-world scenar-

ios present us with various challenges, since a dynamic

and non-stationary system exhibit the randomness of

real-world phenomena. This make it nearly impossible

to estimate what might happen in the future during

the task execution nor can this be interpolated from a

model based on historical data [Sayed-Mouchaweh and

Lughofer, 2012]. Modeling a real-world system to un-

predicted chaotic events, especially relevant if the task

changes over time [Kasabov, 2007].

Dynamic scenarios, where an agent is faced with

multiple tasks and a changing environment is closer to

real-life situations a robot will face. The research in the

paper is based on the premise that dynamic adaptation

of evaluation time will be beneficial to a wide range of

tasks that a robot needs to resolve. This is in contrast

to a single, static parameter, as that setup is optimal for

a selected subset of objectives. As it can be seen from

the results, different evaluation time values best suited

for different tasks, while a single dynamic scheme (H-

Rule) allows the agent to adapt to the changing goals

with outside interaction.

2 Related work

Evolutionary robotics is a novel technique for the auto-

matic creation of autonomous robots. Inspired by the

Darwinian principle of selective reproduction of the fittest,

it views robots as autonomous artificial organisms that

develop their own skills in close interaction with the en-

vironment and without human intervention. Each robot

is free to act according to its genetically specified con-

troller. At the same time, its performance on various

tasks is evaluated. The best performing robots then re-

produces, creating a process ”death” and ’birth” cycle

[Nolfi and Floreano, 2000]. Algorithms such as MONEE

allow the robots to learn adapt to their dynamic envi-

ronment, as well as to drive task-driven adaptation. In

such approaches, the robots become increasingly profi-

cient at their assigned tasks [Noskov et al., 2013].

Early example of Evolutionary Computing appli-

cations in robotics include the work of [Nordin and

Banzhaf, 1997] on Genetic Programming for real-time

robot control. The idea behind the developed method

is to use evolutionary techniques to generate the actual

code for the robot controller. The system evolves over

time driven by feedback from the environment. Later

development is the work of [Watson et al., 1999], where

the authors describe a new methodology for evolution-

ary robotics called Embodied Evolution. It makes use of

a population of robots, which reproduce autonomously,

while executing predefined tasks. The described method-

ology is a form of a fully distributed evolutionary al-

gorithm and it was implemented on physical robots

[Watson et al., 2002]. Similar work by [Floreano and

Mondada, 1998] describe a methodology for evolving

an Artificial Neural Network-based controller for mo-

bile robots.
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2.1 Parameter Control

Parameter optimization for evolutionary algorithms is

done either through parameter tuning or through pa-

rameter control. Parameter tuning means that param-

eter values are static and set beforehand, based on a –

possibly extensive– set of preliminary experiments [Eiben

and Smit, 2011]. Parameter Control is a process where

parameter values are set during the course of the evo-

lutionary process: the algorithm’s settings are modified

during the run [Eiben et al., 2007].

In on-line evolutionary robotics, researchers cannot

always pre-determine appropriate parameter values for

the algorithm because the circumstances under which

the algorithm must perform may be incompletely known

or changing. Therefore, parameter control seems a suit-

able technique.

Eiben et al. [2007] identify three approaches to Pa-

rameter Control:

– Deterministic parameter control This technique

involves using a predetermined set of static rules to

modify the parameter. The actual performance of

the algorithm is not taken into account.

– Adaptive parameter control The changes to the

parameters are based on feedback delivered by the

running Evolutionary Algorithm. It is important to

note that this technique involves using a heuristic

mechanism to adapt the parameter values based on

the performance of the Evolutionary Algorithm.

– Self-adaptive parameter control This approach

eliminates the need of an external heuristics for the

parameter selection. Instead, the parameters them-

selves are part of the genotype of the Evolutionary

Algorithm.

There is a multitude of techniques for parameter

tuning of evolutionary algorithms, while on-the-fly pa-

rameter control is a relatively sparse field. Most of the

existing parameter control techniques focus on common

evolutionary algorithm parameters such as crossover

rate, mutation rate and mutations step-size [Eiben and

Smit, 2011]. Davis’ adaptive operator, for instance, mod-

ifies the crossover rate by rewarding operations that

create better offspring [Davis, 1989]. There are some

computational intelligence systems that tackle dynamic

world problems, such as fuzzy systems, artificial neural

networks, evolutionary computation (the latter two are

also used in the design proposed in this paper), yet they

all face challenges in complex evolving processes. These

include: difficulty in preselecting the systems architec-

ture, catastrophic forgetting, excessive training time re-

quired and lack of knowledge representation facilities

[Kasabov, 2007]. A more practical solution is to rely

on online learning, where learning and prediction pro-

cesses alternate. This is contrary to an off-line system,

where the learning processes on sample training data

precedes the evaluation [Kasabov, 2007][Angelov et al.,

2010].

Karafotias et al. [2012] propose a generic parameter

control process that integrates both on-line parameter

adjustments and off-line tuning. This scheme aims at

repetitive applications and can be applied to any nu-

meric parameter. It has been tailored to specific classes

of problems through an off-line calibration process. Be-

cause evaluation time is such a specific parameter for

on-line evolution with a time-sharing approach, it is un-

certain that this technique is suitable. Haasdijk et al.

[2011] introduced a racing scheme that goes some way

towards a control method for evaluation time. Racing

aborts the evaluation of apparently poor genomes by

estimating their potential survival probability. While

racing triggers an early abort of poor individuals and

accelerates convergence, it does not remove the need

to pre-select a value for the standard evaluation time

(τmax). Haasdijk et al. [2012] showed that even with the

racing scheme, algorithm performance is very sensitive

to τmax settings.

The Multi-armed bandit problem, first introduced

by Robbins [1952], can be seen as a form of the the ex-

ploration versus exploitation dilemma - trying to find

optimal balance between exploring the environment and

taking the so-far empirically best action [Auer et al.,

2002]. The multi-armed bandit problem is possibly the

most generic setting in which this trade-off can be mod-

elled [Berry and Fristedt, 1985]. Similar to the problem

a gambler faces when playing on slot machines (”one-

armed bandits”) when deciding which machines to play,

depending on the choices made, one receives a stochas-

tic reward [Gittins, 1989]. The goal is to maximize the

sum, or some other function, of the series of rewards.

One of the control schemes we propose in this paper

(the roulette-wheel selection scheme) is modelled after

the Multi-armed bandit problem.

3 Algorithms

The evaluation time selection schemes we propose in

this paper are generic: they are not particular to any on-

line evolutionary algorithm. Our experiments employ

the (µ+1) on-line algorithm. This algorithm employs

standard evolutionary operators on a population of size

µ to develop new individuals. That new individual, the

challenger, is then evaluated by letting it take the con-

trol of the robot for a period of (τmax) time steps, mea-

suring the robot’s task performance over that particular

period. If the challenger proves to perform better than
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the current worst of the population, the challenger re-

places the current worst. As described above, the eval-

uation may be aborted ahead of time through a racing

procedure. The (µ+1) on-line algorithm re-evaluates

genomes in the population to combat noisy fitness eval-

uations and changing circumstances with a probability

ρ: it chooses to either re-evaluate an already existing

genome or it generates a new genome by using vari-

ation mechanisms and evaluates that [Haasdijk et al.,

2012].

In this paper we extend and analyse in detail the

Roulette-wheel and H-Rule τmax control schemes Arif

et al. [2013] propose.

for j ← 1 to r do
//initialize τ intervals
τinterval[j] ← 1;

end
for ever do

τinterval[current] ←
RouletteWheelSelection(τinterval[r]);
τmax ← random(τinterval[current]);
//Do (re-)evaluation with current τmax

Fitness.current ← RunAndEvaluate(τmax);
// performing heuristics
if Fitness.current ≥ Fitness.worst and
Fitness.current > Fitness.previous then

τinterval[current] ← τinterval[current]+1;

else
τinterval[current] ← τinterval[current]-1;

end

end

Algorithm 1: Pseudocode for Roulette-wheel τmax
selection

3.1 Roulette-wheel τmax selection scheme

This evaluation time selection scheme is inspired by the

Roulette-wheel selection mechanism that selects parent

individuals proportionate to their performance. Roulette-

wheel selection assigns sections of a virtual wheel to

each individual and the area of these sections reflects

their performance. Better individuals obtain a greater

area and thus have a higher chance of selection. How-

ever, there is always some probability to select any in-

dividual: none of the portions has the probability equal

to zero.

We take 50 and 1000 as theoretical limits for τmax,

where value 1000 is considered to be a large enough

maximum evaluation time for the considered tasks. We

divide this limit into r equal-sized τmax intervals, where

r determines the granularity of the intervals. For in-

stance r = 4 implies four equal-sized intervals. This

τmax-selection scheme initializes the weights of all in-

tervals with a constant value 1 so that each interval has

an equal probability of being selected. To set a τmax
value at the outset of an evaluation, standard roulette

wheel selection is used: the likelihood of an interval be-

ing selected is proportionate to its weight, i.e. an inter-

val with a higher weight has higher probability of being

selected. When an interval has been selected, a value is

drawn from a uniform random distribution across the

interval. Upon the end of the evaluation, the fitness of

that particular interval is updated by a simple rule. If

the resulting performance turns out to be better than

or equal to the worst in the population and better than

the previously reported fitness, the weight of the se-

lected interval is increased by a value of 1. Otherwise

it is decreased by a value of -1. The weight of an inter-

val cannot decrease below 1, and consequently, at any

point of evolutionary process, no interval is completely

disregarded. Unlike racing in (µ+1) on-line algorithm,

which is applied only when a new genome is generated

and evaluated, this control scheme is applied also when

re-evaluating a genome in the population. The pseu-

docode of this technique is provided in Algorithm 1.

3.2 H-Rule for τmax selection

The H-Rule (Heuristic-Rule) scheme relies on monitor-

ing the actual fitness of the genomes after (re-)evaluation.

It considers three consecutive (re-)evaluations: if at least

one evaluation turned out to be better than or equal to

the best in the population, then it is a fair indication

that the currently considered τmax should remain un-

changed. If that was not the case then the current τmax
value is changed by randomly adding or subtracting a

value within the range of 50. At any point of evolution,

the actual τmax does not go beyond its logical lower

and upper bounds i.e. 50 and 1000 respectively. The

pseudocode of this technique is provided in Algorithm

2.

Since the environment and tasks are dynamic, they

could change at any moment, different evaluation time

might be needed. As such, the H-Rule scheme tries se-

lecting a best overall (for the complete run) τmax value.

The probability for a particular τ is increased only when

the measured fitness is better than the worst and the

previous. This interval’s performance is also compared

against the previous best to avoid getting stuck in a

local maximum. In addition to (more or less) elitist ap-

proach, the performance of this interval is compared

against the worst, to avoid increasing its probability

even though it’s performing worse than the worst.
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//initialize τ intervals
τmax ← random(τ);
for ever do

improvement← false;
for i← 1 to 3 do

//Do (re-)evaluation with current τmax

Fitness.current ← RunAndEvaluate(τmax);
if Fitness.current ≥ Fitness.best then

improvement← true;

end

end
if !improvement then

τmax ← τmax ± random (50);

end
improvement← false;

end

Algorithm 2: Pseudocode for H-Rule τmax selection

4 Experimental setup

In order to test the validity and efficiency of the pro-

posed schemes, different experiments were carried out

in a simulated robot environment using Roborobo soft-

ware [Bredeche et al., 2013]. While no physical robots

are used, the target of this research is on-board evolu-

tion. For this purpose the used software package pro-

vides support for independent evolution control over

each of the robotic agents. Thus it is effectively simu-

lating an on-board controller, albeit without the limited

hardware resources associated with the use of a physical

embedded system.

We use the (µ+1) on-line algorithm as described

in [Haasdijk et al., 2011] with slight modifications (the

details of the experiments are listed in Table 1) as a test

bed for the τmax control schemes. Such schemes are in-

tegrated in the algorithm for three completely different

tasks and environments. For experimental purposes, we

considered three tasks: Fast forward, Phototaxis, and

Predator-Prey.

The tasks are switched on and off multiple times to

simulate a dynamic environment in which the task ob-

jective and arena complexities are changed on-the-fly.

Robots need to adapt to the tasks on-line. Keeping in

view the complexity of the Predator-Prey task, we let

it run for the first 300,000 time steps followed by Fast

forward and Phototaxis tasks that run for 100,000 time

steps each. Subsequently, we switched back to Predator-

Prey task again and let it go on for the next 300,000

time steps. However, we have considered two different

scenarios when we switch the Predator-Prey task for

the second time. The first scenario (scenario 1) was

that the Predator and Prey agents keep their same

roles when task-switch happens. While in the second

scenario (scenario 2), the roles of Predator and Prey

are also switched along-with the task i.e. Predator be-

Table 1 Experiment settings

Experiment details

Number of robot agents 2
Number of repeats 52
Simulation Time
Total simulation time 1 million time steps
Predator-Prey 600,000 time steps
Fast forward 200,000 time steps
Phototaxis 200,000 time steps
Evolution Details
Representation Real-valued vector

with -4 ≤ xi ≤ 4
Mutation Gaussian (N, σ)
Mutation Step size De-randomized self-adaptive
Parent Selection Binary Tournament
Crossover Rate 0.0
Survivor Selection Replaces worst in population

if challenger is better
Algorithm Details
µ 6
ρ 0.3
chromosomes length 34
Controller Details
Neural Network type Simple perceptron
Input nodes 8 obstacle sensors +

8 light sensors + bias;
Output nodes 2 (left and right motor values)

comes Prey and vice versa. After that, we changed to

Phototaxis and Fast forward respectively for 100,000

time steps each (in reversed order). A single experi-

ment, consisting of the sequence of these tasks, there-

fore runs for one million time steps. Each experiment

was repeated 52 times, with different random seeds.

Since all the three tasks, considered in our experi-

ments, were completely different in their objectives, we

used specialized sensors and certain logic to tackle these

differences. Next to 8 obstacle sensors, commonly used

in Fast forward experiments [Arif et al., 2013], there

are also 8 multi-purpose sensors that could sense both

light and the absence or presence of another robot in

their range. These additional sensors could detect light

and consequently determine the distance from the light

source. Moreover, the same sensors, in predator-prey

scenario, could detect the presence of another robot in

its range and calculate the distance. The sensor ranges

for all 16 sensors were the same. Signals from each sen-

sor are sent directly to the actuators and the weights

of the simple perceptron neural network controller are

adjusted by the evolutionary algorithm. The main rea-

son we have opted to use a perceptron neural network

is simplicity, as more complex controller will require a

more complex learning function.

Task switching involve changes in fitness function,

due to the different objective for each task, as well as

neural network controller changes, since different sen-
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Fig. 1 Arenas used for experiments: Fast forward arena(left),
phototaxis arena(right)

sors with different interpretations are used. In addition

the arena used in the Fast forward task is very different

from the one used in the other two. As a result the tasks

should be starkly different from one other and this helps

reinforcing the original goal, that agent should be able

to perform well, by adapting to wide selection of envi-

ronments and objectives. Our expectation is that any

adaptation from, for example, the Fast forward task will

not help an agent executing the Phototaxis one, as both

use very different sensors, fitness functions and arenas.

4.1 Fast forward task

In this common task, the objective of the robot is to

move as fast as it can, while avoiding obstacles in an

arena. In an obstacle-restrained environment the task

implies a trade-off between avoiding obstacles and main-

taining speed and forward movement. The fitness func-

tion is listed in Equation 1.

f =

τmax∑
i=1

(vt.(1 − vr)) (1)

where vt and vr are the translational and rotational ve-

locities, respectively. vt is normalized between -1 (full

speed reverse) and 1 (full speed forward). And vr is nor-

malized between 0 (movement in a straight line) and 1

(maximum rotation). In our simulations, whenever a

robot touches an obstacle, vt is set to 0, so the fitness

increment for the time while the it is in collision is 0. A

good controller will turn only when necessary to avoid

collisions and try to find paths that allow it to run in

a straight line for as long as possible. To add sufficient

complexity to this task, we have selected an arena with

dead ends and narrow corridors. For each run of exper-

iments the robot’s initial position is set to a random

location in arena. While performing this task, the 8 ad-

ditional light sensors are fed with a constant low value

of 0.001 and their signals are still sent directly to the

actuators

4.2 Phototaxis task

The objective of robots performing Phototaxis task is

mainly to stay as close as possible to a stationary light

source. The inputs to the artificial neural network are

a set of 8 light (multi-purpose) sensors. The arena is

an empty square with a light source in the middle. The

values of the 8 obstacle sensors, used in the Fast forward

task, were set to a constant low value of 0.001 and their

signals still sent directly to the actuators. The fitness

function for this task is defined in Equation 2.

f =

τmax∑
i=1

maxSensorV alue; (2)

4.3 Predator-Prey task

Predator-Prey is a task in which robots are assigned

specific roles and based on their roles they have different

objectives. A robot assigned a role of predator aims

at following and chasing a robot labeled as prey. The

prey robot, on the other hand, needs to stay away from

the predator. It is evident from this explanation that

their objectives are conflicting since good performance

for one is bad for the other. The competitive nature of

this task is evident when we visualize its evolutionary

development over time (see figure 2). Since the fitness

for both is measured independently, the graph should

be an indication that the task remains competitive and

eventually the performance of both agents levels off.

Initially the prey has an advantage initially since good

performance is measured when there is no predator in

range. Over time the predator evolves and learns how

to find and follow the prey. The gradual slope is an

indication of learning.

Equipped with 8 multi-purpose sensors, both preda-

tor and prey agents could sense each other’s presence

using these sensors. The other 8 obstacle-avoidance sen-

sors were again supplied with an invariable low value of

0.001 and their signals still sent directly to the actua-

tors. The fitness functions for both agents are listed in

Equation 3 and Equation 4.

fpredator =

τmax∑
i=1

maxSensorV alue; (3)

fprey =

τmax∑
i=1

minSensorV alue; (4)

The prey robot has an inherent advantage in our

experimental setup as its performance is maximum if

the predator is not in range. The predator needs to learn

to stay close to the prey agent since its fitness becomes

zero as soon as the predator is out of its sensor range.

The arena used in this task is an empty square.
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Fig. 3 Scenario 1 (Predator agent only): Fitness Comparison plots for the best configurations of static τmax, Roulette-
wheel selection and H-Rule; [Predator Prey (left), Fast forward (middle), and Phototaxis (right)]. Each data-point on x-axis
represents 2000 time steps.
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Fig. 4 Scenario 1 (Prey agent only): Fitness Comparison plots for the best configurations of static τmax, Roulette-wheel se-
lection and H-Rule;[Predator Prey (left), Fast Forward (middle), and Phototaxis (right)]. Each data-point on x-axis represents
2000 time steps.
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Fig. 5 Scenario 2 (Robot 1 only): Fitness Comparison plots for Roulette-wheel selection, H-Rule, and the best configurations
of static τmax for [Predator Prey (left), Fast Forward (middle), and Phototaxis (right)] subsets. Each data-point on x-axis
represents 2000 time steps.

Fig. 2 Evolutionary development of predator-prey task us-
ing (µ+1) on-line algorithm. The plot shows average actual
performance (the higher the better), represented on y-axis, of
52 runs over time, represented on x-axis.

5 Results and discussion

On figures 3, 4, 5 and 6 we have plotted the compari-

son of the change of fitness (the higher the better) over

time for all scenarios and tasks. To have a cleaner visual

comparison we have only included the best performing

schemes - in each comparison we have picked the best

static τmax scheme, for a specific task and scenario,

and plotted it against the two dynamic schemes with

best overall performance. In this regard, static schemes
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were hand-picked with τmax ensuring maximum fitness

for each task separately, rather than such suited for

best overall performance for all tasks throughout evo-

lution. This comparison serves to demonstrate if dy-

namic schemes are applicable in wider number of tasks

and scenarios.

During the whole evolutionary cycle we toggle each

task two times at different moments and in different

orders. These transitions of the tasks are depicted by

drawing a blue dashed line in the middle of the plots

(see figures 3, 4, 5 and 6). Left and right sides of this line

show the robots’ actual average performance for certain

tasks during their first and second period respectively.

Similarly, horizontal axes represent the time steps dur-

ing the first and second period of the same tasks in

that order. Moreover, in our experiments, we let two

robots perform different tasks over the time. Specifi-

cally during Predator-Prey task, both robots had dif-

ferent (competitive) tasks to perform. Therefore, graphs

for both Predator-agent and Prey-agent have been pre-

sented separately as aggregated performance plots were

not possible.

As seen in most cases the results are quite similar

for the measured fitness through the runs of the best

static and the selected dynamic schemes. In some occa-

sions the pre-selected static schemes have measurable

better performance than both dynamic schemes. For

the Predator-Prey task in all variations, the results are

too close to point out any clear winner. This holds for

both the setup when the robot is only a predator or

prey, and when the role changes after the tasks switch.

For Fast forward, in all selected Scenario 2 compar-

isons, static evaluation time scheme performed better

(Figures 5 middle and 6 middle). For the Phototaxis

the results are mostly similar, with only in Scenario 2,

Robot 2 comparisons (Figure 6 right) we can observe

that selected static evaluation time has better perfor-

mance than the dynamic schemes.

Our results showed that Roulette-wheel selection

scheme had comparable performance to the best static

ones in many cases. However, we see a great decrease

in its performance even in (simple) Phototaxis task

in both scenarios. Similarly, in scenario 2, when the

roles were switched for predator and prey, this scheme

did not show any clear performance improvement (left-

most picture in figure 6). Moreover, this scheme intro-

duced a new parameter r, denoting the number of in-

tervals to use for selection. A one-way analysis of vari-

ance between r=4 and r=50, for example in scenario

1 for predator robot, illustrated that both settings of r

could significantly affect the performance of the algo-

rithm (F(1,19998) = 60.41, p-value = 8.1×10−15) and

more investigation is required to find an optimum value

of r. For both scenarios of experiments, we considered

r=4,12,20,50 for Roulette-wheel selection. r=50 and

r=4 turned out to be best in the first and second sce-

narios respectively. The evaluation of all r paper was

done ”off-screen”. It was not included in the paper since

it would only provide a distraction. In addition one-way

analysis of variance between the r values showed that

they could be quite influential. As such, the scheme is

not as stable as we hoped. In the end we put more in-

fluence on H-rule due to the lack of such parameters.

Besides the influence of the parameter r on the per-

formance of the algorithm in both scenarios, we also

see an odd behavior of the actual development of τmax
over time. Our analysis shows that, even with totally

different r values, the actual τmax stays within a cer-

tain range always and we do not see any visible trend

in the change of actual τmax values (see figure 7). At

the same time we also cannot imply that the scheme

is selecting τmax completely randomly since the actual

τmax values are mostly in the range of 600 and 800 and

not all over the total τmax considered domain. This un-

usual behavior of τmax selection and the sensitivity of

the newly introduced parameter do not give a promis-

ing evidence to consider this scheme for highly dynamic

and uncertain scenarios.

It is evident from the performance plots that, in

nearly all tasks, the best values of τmax were found to

be different (see figures 3, 4, 5 and 6). That re-confirms

the importance of proper selection of τmax in different

tasks and scenarios. Obviously, it is hard to find any

constant value which could serve as a global optimum

value for all the tasks throughout the evolutionary pro-

cess; especially when differences between the best set-

tings of τmax for several tasks are reasonably big.

Figures 8 and 9 present the average mean perfor-

mance boxplots of the corresponding best settings of

τmax (as depicted in figures 5 and 6 for individual sub-

sets tasks) and H-Rule. This comparison is performed

for the whole evolutionary run and not only for cer-

tain tasks’ subsets. Keeping in view the inconsistency

and sensitivity of Roulette-wheel τmax selection scheme

(as mentioned earlier in our discussion), we did not in-

clude Roulette-wheel τmax selection in this compari-

son. Instead, we considered random τmax selection in

our comparison to show if our H-Rule scheme is better

than random τmax selection. It is clear from the plots

that although in individual subsets of tasks, the best

static settings for τmax worked marginally better than

both dynamic schemes (as visible in figures 5 and 6),

but their overall average performance throughout the

evolution with same settings of τmax were found to be

statistically less than or comparable to H-Rule (see fig-

ures 8,9). This observation is promising since it makes
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Fig. 6 Scenario 2 (Robot 2 only): Fitness Comparison plots for Roulette-wheel selection, H-Rule, and the best configurations
of static τmax for [Predator Prey (left), Fast Forward (middle), and Phototaxis (right)] subsets. Each data-point on x-axis
represents 2000 time steps.
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Fig. 7 τmax development over time, Roulette-wheel selection vs. H-Rule; Dashed vertical lines indicate task switching. τmax

development over time for predator agent in scenario 1 (left), τmax development over time for robot 2 in scenario 2 (right).
Each data-point on x-axis represents 1000 time steps.
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Fig. 8 Scenario 2 (Robot 1 only): Fitness Comparison boxplots for the respective τmax values against random τmax

and H-Rule in Predator-Prey, Fast forward and Phototaxis respectively (for complete evolution). Y-axis represents fitness.
F(2,29997)=20.53, p-value=1.23×10−009(left), F(2,29997)=20.92, p-value=8.31×10−10(middle), and F(2,29997)=18.21, p-
value=1.25×10−008(right)

us to believe that H-Rule could serve as a viable and

robust scheme to control the evaluation time in highly

dynamic and uncertain scenarios. Partially in different

phases or tasks during the complete evolutionary cy-

cle, its performance could be less or comparable to one

of the best static ones but, in general, it maintains a

reasonably good and stable performance. The lower ex-

treme notches of H-Rule boxplots seem to always stand

above the upper notches of different static τmax and

random τmax settings. Therefore, we can say by 95%

certainty that the median performance of H-Rule is not

only better than random τmax selection but also from

all the considered best static settings for τmax for spe-

cific tasks. The plots also list the ANOVA statistics re-

spectively for different variants showing that differences

between the obtained results were statistically signifi-

cant. We have presented the comparison box-plots of
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Fig. 9 Scenario 2 (Robot 2 only): Fitness Comparison boxplots for the respective τmax values against random τmax

and H-Rule in Predator-Prey, Fast forward and Phototaxis respectively (for complete evolution). Y-axis represents
fitness. F(2,29997)=194.76, p-value=0.000(left), F(2,29997)=178.53, p-value=0.000(middle), and F(2,29997)=163.84, p-
value=0.000(right)

scenario 2 only because this scenario is more difficult

and dynamic in nature.

It is worth noting that H-Rule relies on evaluating

last three consecutive performance evaluations and this

might be considered as some parameter. Evaluating last

three evaluations seems a reasonable number since re-

lying on too many evaluations may well result in slower

convergence. Nevertheless, a better exploration about

the number of evaluations to be considered during H-

Rule could be investigated further. Our current analysis

does not cover this aspect and keeping in view differ-

ent tasks and scenarios we examined, and number of

repeats we performed for experiments, it is safe to as-

sume that H-Rule is more generic and has the ability

to give more stable performance in highly dynamic and

uncertain scenarios.

Figure 7 shows the distribution of τmax for Roulette-
wheel selection and H-Rule. In Roulette-wheel selection

scheme, it is evident that most of the actual τmax selec-

tions are done from a specific range and this behavior

does not change even upon multiple task switch occur-

rences. For the sake of clarity in the plots, we plot-

ted dotted graph for the τmax selections. The peaks

in changes in selected τmax for H-Rule are generally

more smooth and relatively more visible changes in

τmax over time are observable. Nevertheless, in both

dynamic schemes, a vigilant and rapid change in the

actual τmax upon task switch for multiple times is not

noticeable, which was initially expected. The optimum

τmax value is different for each task, as tested with the

static values are runs. While it is possible that the se-

lected dynamic τmax values (plotted on figure 7) to

converge to the best previously evaluated τmax, it is

not guaranteed. In addition the probabilities for τmax
selected also have an effect on the next task. Our as-

sumption is that the algorithm does not try to select

either very smaller or larger evaluation times at task

switches. It rather relies on the so-far best performing

value, instead of swiftly exploring new ones. This be-

havior could be an obvious outcome of incorporating

racing, since it generally does not favor higher values of

evaluation time.

As shown on the comparison figures, a different static

τmax value gives best overall fitness for each of the task.

At the same time, the same H-Rule dynamic scheme

shows comparable performance to the static one in each

task. The advantage of H-Rule in this case is that it al-

lows the agent to adapt to the objectives and environ-

ment changes without the need of additional tuning or

outside assistance, unlike when a static scheme is used.

6 Conclusion and Future Research

In this paper we set as a goal to demonstrate that pre-

sented heuristic techniques are viable control schemes,

better than pre-selecting influential parameters for on-

line on-board evolutionary robotics. Both evaluation

time selection schemes presented in this paper were

evaluated against multiple tasks with diverse objectives

and required sensors. Our analysis demonstrates that,

in general, the H-Rule managed to give stable perfor-

mance even during task switching and had performance

comparable to that of the best static evaluation time for

a particular task. This heuristic scheme also allowed

for a reasonable fitness recovery upon task switching.

Not only it showed comparable performance during par-

ticular tasks but it also maintained a reasonably good

overall performance during the whole evolutionary run.

Moreover, H-Rule in particular has demonstrated being

better than a random evaluation time selection.

At the same time Roulette-wheel selection performed

less consistently during task switching and did intro-

duce a new parameter. Using H-Rule instead of Roulette-

wheel selection also avoids the use of parameter r, de-
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noting the number of intervals that divide the evalu-

ation time value space. This indicated that the new

higher-level heuristic can be used as true dynamic eval-

uation time selection scheme and does not introduce

new parameter(s). These results also indicate that dy-

namic schemes, in general, can be applied to a wider

selection of task with less effort. Unlike static schemes,

which are best suited to single static task experiments,

the proposed H-Rule scheme does not require tuning at

task switching, as it allows the agent to adapt to the

new objective. That reduced the need of outside inter-

action and would give an advantage to robots operat-

ing independent from humans, while using a dynamic

scheme.

Another observed behavior was that both dynamic

schemes, though performed reasonably well, did not

manage to visibly control τmax, and contrary to ex-

pected, they did not opt for exploring reasonably higher

or lower τmax values after task switching. This behav-

ior was more obviously evident in Roulette-wheel τmax
selection, which continued to select τmax values mostly

from a specific domain only. Both schemes frequently

relied on exploiting the values or domains for τmax that

gave fair performance and did not swiftly explore new

ones after task switching. Our theory is that the generic

dynamic τmax selection scheme clashes with the use to-

gether with Racing, as both try to control or operate on

the same parameter. In other words any higher values

for evaluation time are cut short when Racing aborts

the run and we are more likely to get a wrong indi-

cation of was it the selected τmax value that was not

good or the genome. This indication may mislead our

search process for a proper τmax and it seems very hard

to achieve good results with the simple heuristics used.

Keeping in view the profound effect on accelerating the

convergence rate of algorithm, switching Racing off and

only relying on the currently examined τmax control

schemes might not be a good idea either. A detailed

study on their collaborated effort might open a new

vista of robust and reliable parameter control mecha-

nisms for on-line and on-board evolution.

Despite this observed behavior for the examined dy-

namic τmax selection schemes, the results are promis-

ing and one of the presented schemes, i.e. H-Rule, was

found to perform consistently across multiple scenar-

ios and tasks. The robustness of this scheme make it

a viable alternative to setting τmax separately for each

task and scenario. However, further tests are required

to verify the theory whether using two evaluation time

control schemes are causing some of the observed is-

sues or not. Future research involving H-Rule should

also evaluate if dynamic schemes have advantage over

static schemes, especially when it comes to even more

advanced experiments. The assumption this further re-

search will try to prove is that dynamic τmax schemes

allow an agent to adapt to a wider range of task. For ex-

ample, a very different class of tasks are such involving

Physical Robotics [Pollack et al., 2000]. One physical

task could be Control of Walking Robots, similar to the

experiment presented in [Mitobe et al., 2000]. A Phys-

ical Robotics task would be a significantly more com-

plex than the three executed in the context of this pa-

per, as it requires the development of a more advanced

controller with numerous additional sensors and actua-

tors. At the same time another software suite will most

likely be used for the task, working further to test the

application of the H-Rule dynamic scheme in a wider

range of tasks. A step further can be poring the H-Rule

scheme to a physical robot, verifying the advantages of

the dynamic τmax control scheme in a real embedded

system.

Alternatively more complex scenarios could be used

for the experiments with a higher number of tasks exe-

cuted in various order. Such experiments can test if the

order of task execution influences the average perfor-

mance.

Another potential point of further research is work-

ing on studying alternative and relatively complex heuris-

tic techniques that have robust performance and can

be generalized to work with a multitude of scenarios.

Moreover, further development of the technique would

be to use alternative algorithms – replacing (µ+1) on-

line as evolutionary algorithm. One area of interest

could be to use a distributed algorithm that allows to

parallelize the process. This would mean increasing the

number of robot agents in the arena and accounting for

the interaction between them.
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