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Abstract- In order to address high dimensional problems, a new ‘direction-aware’ metric is introduced in this 
paper. This new distance is a combination of two components: i) the traditional Euclidean distance and ii) an 
angular/directional divergence, derived from the cosine similarity. The newly introduced metric combines the 
advantages of the Euclidean metric and cosine similarity, and is defined over the Euclidean space domain. Thus, 
it is able to take the advantage from both spaces, while preserving the Euclidean space domain. The direction-
aware distance has wide range of applicability and can be used as an alternative distance measure for various 
traditional clustering approaches to enhance their ability of handling high dimensional problems. A new 
evolving clustering algorithm using the proposed distance is also proposed in this paper. Numerical examples 
with benchmark datasets reveal that the direction-aware distance can effectively improve the clustering quality 
of the k-means algorithm for high dimensional problems and demonstrate the proposed evolving clustering 
algorithm to be an effective tool for high dimensional data streams processing. 

Index Terms- cosine similarity; distance metric; metric space; clustering; high dimensional data streams 
processing.   

1. Introduction 

The widely used clustering techniques may use different kind of distances to measure the separation 
between data samples. The well-known Euclidean distance is currently the most frequently used metric space 
for the established clustering algorithms [1], [2]. Other metric spaces, using the Mahalanobis [3], city block 
Hamming, Minkowski types of distances, etc., are also widely used in different clustering algorithms for 
different purposes. It is often the case that clustering algorithms employing divergences, i.e. pairwise 
dissimilarity, which does not obey all the properties of distances (e.g. cosine similarity), could generate 
meaningless conclusions.  

One problem the traditional distance metrics are facing is the so-called “curse of dimensionality” [4], [5]. 
Many clustering techniques, which use the traditional distance metrics work well in low dimensional space, 
however, become intractable for high dimensional problems. Research results have shown that in high 
dimensional space, the concept of distance may not even be qualitatively meaningful [5], [6]. This phenomenon 
is frequently seen in the cases that some dimensions of the data are highly irrelevant. This is not hard to 
understand because our intuitions come from a three-dimensional world only, which may not be applicable to 
high dimensional ones.  

Compared with the commonly used distance metrics including the Euclidean, Mahalanobis, Minkowski 
distances, etc., which measure the magnitude of vector difference, cosine similarity focuses much more on the 
directional similarity. Therefore,  it is more often used in the natural language processing (NLP) problems [7]–
[11]. In NLP problems, machine learning algorithms, for example, k-means [7], [10], mean shift [11], etc., are 
used to cluster very high dimensional vectors representing the documents together based on the cosine 
similarity. Nonetheless, the cosine similarity is a pseudo metric because it does not obey the triangle inequality 
(it obeys the Cauchy-Schwarz inequality [12]). Consequently, the cosine similarity between two vectors can be 
misleading and hides information, especially in cases where the vectors are sparse or orthogonal. 

In this paper, a new “direction-aware” distance is introduced. This new metric space is a combination of a 
distance (in this paper, we consider Euclidean), and an angular/directional component, which is based on the 
cosine similarity, where the weights of the Euclidean and angular components are under the user control. 
Therefore, it takes the advantages of the both components while still obeys all the properties of a distance metric 
[13] as we will demonstrate. 

The proposed distance in this paper is applicable to various traditional clustering algorithms as an 
alternative distance measure and can enhance the ability of the algorithms to handle high dimensional problems. 
A new evolving clustering algorithm is also proposed for streaming data processing. This algorithm employs the 
new direction-aware distance only and is able to start from scratch. Therefore, it is very suitable for handling the 
high dimensional data streams.  



Numerical examples using benchmark datasets demonstrate the potential of the direction-aware distance 
against many traditional metrics in high dimensional problems. It is also shown that the proposed clustering 
algorithm is able to produce top quality clustering results on various problems with high computational 
efficiency. 

The remainder of this paper is organised as follows. Section 2 describes the newly proposed direction-aware 
distance and provides the proof for the proposed distance to be a full metric. Section 3 introduces the application 
of the newly proposed direction-aware distance to traditional clustering algorithms. The new evolving clustering 
algorithm based on the proposed distance is presented in section 4. Section 5 presents numerical examples. The 
paper is concluded by section 6. 

2. Direction-Aware Distance and Proof of Metric Axioms 

A. The New Direction-Aware Distance 

In this section, we introduce the direction-aware distance, and prove that it is a distance over the space of 
real numbers. If no specific declaration is provided, all the derivations in this paper are conducted over the real 
numbers.  

First of all, let us define a metric space, mR , x and y  are two data points within the space, m  is the 

dimensionality of the metric space mR . The newly introduced direction-aware distance,  ,DAd x y   consists of 

two terms: 

i) a Euclidean component,  ,Md x y , and  

ii) a direction-aware component,  ,Ad x y ,  

and is expressed as: 
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The direction-aware component  ,Ad x y  is derived based on the cosine similarity expressed by: 

   , 1 cosA xyd  x y                                                                                                                               (2) 
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One can notice that, if x or y   is equal to 0 ,  , 0Ad x y .  

B. Proof of Metric Axioms 

In this subsection, we will prove that the proposed distance is a full metric. For a distance  ,d x y  in the 

space to be a full metric, mR , it is required to satisfy the following properties for ,x y  [13]: 

i) non-negativity:  , 0d x y ;                                                                                                                      (4) 



ii) identity of indiscernibles:  , 0d iff x y x y ;                                                                                     (5) 

iii) symmetry:    , ,d dx y y x ;                                                                                                                (6) 

iv) triangle inequality:      , , ,d d d x z z y x y .                                                                                     (7) 

In this paper, we propose a new theorem as follows: 

Theorem:  ,DAd x y  is a distance within the metric space over the domain Rm. 

In the rest of this subsection, we will prove this theorem by proving that  ,DAd x y  obeys the four distance 

axioms stated in equations (5)-(6) and inequalities (4) and (7) one by one. 

Lemma 1: , m Rx y ,  , 0DAd x y . 

Proof: It can be seen directly from the equation (5) that  ,DAd x y  is always non-negative. 

Lemma 2: , m Rx y ,  , 0DAd x y  iff x y . 

Proof: It is clear that if x y , then  , 1 1 0Ad   x y ,  , 0Md x y  and  , 0DAd x y .  

The directional component  ,Ad x y  alone does not obey this property because as we can see from 

equations (2) and (3), if x  and y  are nonzero and orthogonal,  , 0Ad x y , so it is not true. However, in this 

case due to the fact that if x y ,  , 0Md x y ,  ,DAd x y  will still be non-zero as , 0M A   . Therefore, one 

can still conclude that  , 0DAd x y  if and only if x y . 

Lemma 3: , m Rx y ,  ,DAd x y  ,DAd y x   

Proof: For the Euclidean metric, it is true that: 
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Therefore,     , ,DA DAd dx y y x . 

Lemma 4: , , m  Rx y z ,  ,DAd x z  ,DAd x y   ,DAd y z  

Proof: Firstly, let us assume that there is a triplet data samples , ,x y z , which make DAd  break the triangle 

rule, namely: 

     , , ,DA DA DAd d d x z x y y z                                                                                                                 (9) 

By including equation (3) in equation (2), the direction-aware distance  ,DAd x y  can be rewritten as: 
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T T
T

T 1 2
1 2, , ,..., , , ,...,

2 2 2 2
A mA A A

M M M M m

xx x
x x x

  
   
   

   
      

x
= x

x x x x
  and  



T T
T

T 1 2
1 2, , ,..., , , ,...,

2 2 2 2
A mA A A

M M M M m

yy y
y y y

  
   
   

   
      

y
= y

y y y y
   . 

Similarly, for 

T
T

T ,
2
A

M



 
 
  

z
= z

z
 , we can see that    , ,DA Md dx z   ,    , ,DA Md dy z   . 

Considering an auxiliary algebraic data space 2mR , for , ,   , it follows that: 

     , , ,M M Md d d                                                                                                                     (11) 

As we can see from inequalities (9) and (11), the two equations have the same algebraic form, but there are 
different signs (   and  ). For Euclidean distance in 2mR , the triangle rule is always conformed, therefore, we 

can conclude that  ,DAd x y  always satisfies the triangle inequality:      , , ,DA DA DAd d d x z x y y z . 

Based on the proofs of the four lemmas, the proposed Theorem is proven. Therefore, we can conclude that 
the proposed direction-aware distance, dDA  is a full distance in the Euclidean space.  

C. The Property of the Proposed Distance 

The proposed direction-aware distance metric is a combination of two components: i) the traditional 
Euclidean distance and ii) an angular/directional divergence, derived from the cosine similarity. It defines a 
metric space as a combination of Euclidean metric space and cosine similarity pseudo-metric space, and 
consequently, can effectively combine information extracted from both spaces and takes into account both 
spatial and angular divergences. Therefore, the direction aware distance can serve as a more representative 
distance metric than the traditional distance metric. 

3. The Application of the Proposed Distance to Traditional Clustering Approaches 

In this section, we will describe the applications of the proposed distance to the traditional offline clustering 

approaches. First of all, let us define the dataset in the metric space as    1 2, ,..., m
NN

 Rx x x x , 
i x

T

,1 ,2 ,, , ...,i i i dx x x  
dR , 1, 2, ...,i N , where N  is the number of data samples in the dataset.  

The newly proposed direction-aware distance can be used in various clustering, classification as well as 
regression approaches. For example, the k-means [7], [10], mean-shift clustering [14], k nearest neighbour 
classification [15] algorithms may use the newly introduced direction-aware distance to enhance the ability in 
dealing with high dimensional data.  

Since the traditional offline algorithms have been studied well for many years, in this paper, we will not 
focus on the algorithm themselves. Instead, we will look at the direction-aware distance and introduce the 
strategy of using the proposed distance in the algorithms for different purposes. 

The direction-aware distance has a pair of scaling factors, the values of which can be adjusted for various 
problems. For example, if without losing generality, we want to allocate the same importance to the Euclidean 
and directional components, M  and A  can be set as the inverse of average Md  and Ad  , respectively (the data 

is taken without pre-processing): 
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Alternatively, if the data has been re-scaled to the range  0,1 in advance, the values of Md  and Ad  are 

within the ranges 0, m 
   and  0,1 , respectively, thus, the pair of the scaling coefficients within the proposed 

distance can be set to 
1

M
m

  and 1A   if we aim to allocate the same importance to each component. 

While for some problems like NLP, where the directional similarity plays a more important role compared 
with magnitude differences, we can enhance the importance of the directional component in the distance 
measures by increasing the value of A  , and vice versa. 

4. The Applications of the Proposed Distance to Evolving Clustering 

Similarly, the direction-aware distance can also be employed in the evolving clustering approaches. In this 
section, we propose a new evolving clustering approach with the direction-aware distance. This algorithm is 
able to “start from scratch” and consistently evolve its system structure and update the meta-parameters based 
on the newly arrived data samples.  

The main procedure of the proposed algorithm is described as follows. In this section, we consider 

   1 2, , , m
kk

 Rx x x x  as a data stream and the subscript indicates the time instance that the data sample 

arrives. 

Stage 1. Initialization 

The first data sample 1x  in the data stream is used for initializing the system and its meta-parameters. In the 

proposed algorithm, the system has the following initialized global meta-parameters:  

i. 1k  , the current time instance; 

ii. 1C  , the number of exiting clusters; 

iii.  1M  x , the global mean of  k
x ; 

iv. 
2
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, which is always equal to 1. 

The local meta-parameters of the first cluster are initialized as follows: 

i.  1
1 x  , the first cluster; 

ii. 1
1M f x , the centre of the first cluster, which is also the mean of 1 ; 

iii. 
21

1MX  x , the average scalar product of 1 ; 

iv. 1 1

1
A 

x
f

x
, the normalized mean of 1 ; 

v . 1 1AX  , the normalized average scalar product of 1 , which is always equal to 1 as well; 

vi. 1 1S  , the support (population) of the first cluster. 

After the initialization of the system, the proposed algorithm updates the system structure and meta-
parameters with the arrival of each new data samples. 

Stage 2. System Structure and Meta-Parameters Update 

With each newly arrived data sample, the system’s global meta-parameters, M , MX  and A  are updated 

using the following equations [16]: 
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iv. 1k k                                                                                                                                                 (13d) 

Then, the condition A is checked to see whether the new data sample denoted by kx  is associated with a 

new cluster: 

Condition A: 
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Based on the previous subsection, without a loss of generality, we use the inverse of the average Md   

between the existing data samples as M  and the inverse of the average Ad  as A , correspondingly. However, 

for streaming data processing, it is less efficient to keep all the observed data samples in the memory and 
recalculate M  and A  every time when a new data sample is observed. Therefore we introduce the recursive 

forms for calculating the pair of scaling coefficients as follows [16]: 
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If condition A is satisfied, a new cluster is added with kx  as its centre: 

i. 1C C  , the number of existing clusters; 

ii.  C
k x , the new cluster; 

iii. C
M kf x , the centre of the new cluster/ mean of C ; 

iv. 
2C

M kX  x , the average scalar product of C ; 

v. C k
A

k


x

f
x

, the normalized centre of the new cluster/ normalized mean of C ; 

vi. 1C
AX  , the normalized average scalar product of C , 

vii. 1CS  , the support of the new cluster. 

In contrast, if condition A is not met, kx  is assigned to the cluster with the nearest centre, denoted by n
Mf  

as: 
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The meta-parameters of the cluster with the nearest centre are updated as follows [16]: 
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v. 1n nS S                                                                                                                                              (17e) 

After the update of the global and local meta-parameters, the system is ready for the arrival of the next data 
sample and begins a new processing cycle. 

Stage 3. Clusters Adjusting 

In this stage, all the existing clusters will be examined and adjusted to avoid the possible overlap. For each 

existing cluster i  ( 1, 2, ...,i C ), firstly, we find its neighbouring clusters, denoted by  
neigh

i
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following condition:  
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For each cluster centre, i
Mf  ( 1, 2, ...,i C ), we calculate its weighted unimodal density as [16]: 
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and we also compare  W i
MD f  with the WD of its neighbouring clusters denoted by   

neighb

W

r

i

M
ou

D f , to 

identify the local maxima of the weighted unimodal density, WD : 
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By identifying all the local maxima, denoted by  M o
f  and assigning each data sample to the cluster with 

the nearest centre using equation (16), the whole clustering processing is finished. The parameters of the clusters 
can be extracted post factum. 

The main procedure of the algorithm is summarised in the form of pseudo code as follows. 

i. While a new data sample kx  of the data stream is available (or until interrupted) 

      * If (it is the first data sample) Then 

           - Initialise global meta-parameters: k , C , M , MX , A , AX ; 

           - Initialise local meta-parameters of the first cluster: 1 , 1
Mf , 1

MX , 1
Af , 1

AX , 1S ; 

      * Else 



           - Update M , MX , A  and k  using equation (13); 

           - If (Condition A is met) Then 

                   1. 1C C  ; 

                   2. Initialise local meta-parameters of the new cluster: C , C
Mf , C

MX , C
Af , C

AX , CS ; 

           - Else 

                   1. Find the nearest cluster n  using equation (16); 

                   2. Update the meta-parameter of this cluster using equation (17): n , n
Mf , n

MX , n
Af , nS . 

           - End If 

      * End If 

ii. End While 

iii. Find the neighbouring clusters  i

n
  for each existing cluster i  using equation (18) ( 1, 2, ...,i C ). 

iv. Calculate the weighted unimodal densities at the centres of the clusters using equation (19); 

v. Identify the local maxima of the weighted unimodal density using equation (20); 

vi. Assign each data sample to the cluster with the nearest centre using equation (16). 

5. Numerical Examples and Analysis 

In this section, a number of numerical experiments are conducted to demonstrate the performance of the 
newly proposed direction-aware distance for high dimensional problems. Analysis based on the numerical 
examples will be provided. 

Firstly, we use the standard k-means algorithm as a benchmark. We consider the following problems to test 
the performance of the k-means algorithm with different type of distance/similarity including Euclidean 
distance, cosine similarity, cityblock distance and the proposed direction-aware distance: 

i) Dim256 dataset [17]; 

ii) Dim512 dataset [17]; 

iii) Dim1024 dataset [17]; 

iv) Dim15 dataset [17]; 

v) Steel plate faults dataset [18]; 

vi) Pen-based recognition of handwritten digits dataset [19]; 

vii) Optical recognition of handwritten digits dataset [20]; 

viii) Cardiotocography dataset [21]; 

The dim256, dim512, dim1024 and dim15 datasets are sampled from Gaussian distributions, and, thus, the 
four datasets are ideal for testing the ability of the algorithms in separating high dimensional data samples from 
different classes. The other 5 datasets are real benchmark problems and we use them to evaluate the 
performance of the algorithms on real, non-Gaussian problems. The details of the benchmark datasets are given 
in Table I. 

TABLE I. Details of the Datasets 

Abbreviation Dataset Samples Classes Attributes 
D256 dim256 1024 16 256+1 label 
D512 dim512 1024 16 512+1 label 

D1024 dim1024 1024 16 1024+1 label 
D15 dim15 10125 9 15+1 label 
ST Steel plates faults 1941 5 27+1 label 

PE 
Pen-based 
recognition 

10992 10 16+1 label 



OP 
Optical 

recognition 
5620 64 64+1 label 

CA Cardiotocography 2126 3 22+1 label 
 

Because of the complexity of the high-dimensional problems, the clustering results of the k-means 
algorithm may exhibit some degree of randomness, for each dataset and each type of distance/similarity, we did 
100 Monte Carlo experiments and tabulated the average values of the five different measures in Table II. The 
algorithms used in this paper were implemented within MATLAB 2015b; the performance was evaluated on a 
PC with dual core Intel i7 processor with clock frequency 3.4GHz each and 16 GB RAM. In the experiment, 
without loss of generality, the pair of the scaling parameters of the direction-aware distance is set by equation 
(12) and we consider the Calinski-Harabasz (CH) index [22] to evaluate the quality of the clustering results. 
Higher Calinski-Harabasz (CH) index indicates a better clustering quality. 

TABLE II. Experimental Results 

Dataset Distance/Dissimilarity CH Dataset Distance/Dissimilarity CH 

D256 

Euclidean 405.2386 

ST 

Euclidean 20.2314 
Cosine 448.0036 Cosine 21.769 

Cityblock 424.2804 Cityblock 17.4560 
Direction-aware 509.2634 Direction-aware 25.8675 

D512 

Euclidean 373.8111 

PE 

Euclidean 575.0739 
Cosine 405.8308 Cosine 609.6965 

Cityblock 410.8807 Cityblock 487.6149 
Direction-aware 802.3132 Direction-aware 633.2244 

D1024 

Euclidean 368.2901 

OP 

Euclidean 406.5342 
Cosine 514.7207 Cosine 418.5355 

Cityblock 721.6852 Cityblock 361.4222 

Direction-aware 838.6839 Direction-aware 434.6537 

D15 

Euclidean 30834.3331 

CA 

Euclidean 81.8571 
Cosine 27464.4951 Cosine 109.6599 

Cityblock 19788.1358 Cityblock 84.0488 
Direction-aware 36783.2175 Direction-aware 115.3565 

 

As we can see from Table II, in the previous section, the performance of the k-means algorithm is largely 
influenced by the choice of the type of distance/similarity. Based on the Calinski-Harabasz (CH) indexes of the 
clustering results, one can see that the k-means algorithm with the proposed direction-aware distance can 
produce higher quality clusters compared with the one with traditional distances/dissimilarities. 

Then, numerical experiments for the same benchmark problems as tabulated in Table I are conducted to 
evaluate the performance of the evolving algorithm employing the direction-aware distance. To better 
demonstrate the performance of the evolving algorithm using the direction-aware distance, we involve the 
following algorithms for comparison: 

i) Subtractive clustering algorithm [23]; 

ii) Mean-shift clustering algorithm [14]; 

iii) DBScan clustering algorithm [24]; 

iv) Mode identification based clustering algorithm [25]; 

v) Random swap algorithm [26]; 

vi) Density peak algorithm [27]. 

As the k-means algorithm exhibits certain degree of randomness, we exclude it from the comparison. In the 
experiments, due to the insufficient prior knowledge, we use the recommended settings of the free parameters 
from the published literature. The experimental setting of the free parameters of the algorithms are presented in 
Table III. 

 



 

 TABLE III. Experimental Settings of the Algorithms  

Algorithm Free Parameter(s) Experimental setting 
Subtractive  initial cluster radius, r 0.3r   [23] 

Mean-shift 
i) bandwidth, p 

ii) kernel function type 
i) r= 0.15 [28] 

ii) Gaussian kernel 

DBScan 
i) cluster radius, r 

ii) minimum number of data 
samples within the radius, m 

i) the value of the knee 
point of the sorted m-dist graph 

ii) m=4 [24] 
Mode identification  grid size Default [25] 

Random swap number of class number of class [26] 

Density peak 
i) minimum distance, ρ 

ii) local density, δ 
i) relatively high, ρ 

ii) high, δ [27] 
 

To objectively compare the performance of different algorithms, we consider the following measures: 

i) Number of clusters (C), which should be equal or larger than the number of classes in the dataset. 
However, if C is too large (in our paper, we consider 0.1   C Number of Samples  as too large) or is smaller 

than the number of classes in the dataset, the clustering result should be considered as an invalid one. The 
former case indicates that there are too many trivial clusters generated which are hard for users to understand. 
The latter case implies that the clustering algorithm fails to separate the data samples from different classes.  

ii) Calinski Harabasz index (CH) [22], the higher the Calinski Harabasz index is, the better the clustering 
result is; 

iii) Purity (P) [28],  which is calculated based on the result and the ground truth: 

1

N
i
D

i
S

P
K




                                                                                                                                                      (21) 

where i
DS  is the number of data samples with the dominant class label in the ith cluster. The higher purity the 

clustering result has, the stronger separation ability the clustering algorithm exhibits.  

iv) Davies-Bouldin (DB) index [29], the lower Davies-Bouldin index is, the better the clustering result is. 

v) Time: the execution time (in seconds) should be as small as possible. 

The experiment results obtained by the proposed evolving algorithm as well as other clustering algorithms 
are given in Table IV. The clustering results of the dim15, Pen-based recognition and Cardiotocography datasets 
obtained by the proposed algorithm are depicted in Fig. 1, where dots in different colours represent data samples 
in different clusters. 

TABLE IV. Experimental Results  

Dataset Algorithm C CH P DB Time Validity a 

D256 

The proposed 16 203865.1622 1.0000 0.0248 1.61 O 
Subtractive 16 203865.1622 1.0000 0.0248 2.86 O 
Mean-shift 103 44374.6685 1.0000 0.3728 0.19 O 

DBScan 16 173.1715 0.7598 1.0104 0.21 O 
Mode identification 112 41989.1015 1.0000 0.3736 66.68 × 

Random swap 16 1.0259 0.1221 15.2841 16.03 O 
Density peak 14 597.5327 0.8750 0.6610 1.52 × 

D512 

The proposed 16 330337.8605 1.0000 0.0204 2.15 O 
Subtractive 16 330337.8605 1.0000 0.0204 4.22 O 
Mean-shift 149 56283.7373 1.0000 0.3974 0.52 × 

DBScan 16 203.2336 0.7891 1.0046 0.32 O 
Mode identification 1024 NaN 1.0000 0.0000 724.09 × 

Random swap 16 1.1962 0.1260 15.0519 30.76 O 
Density peak 12 291.1243 0.7500 0.8889 1.66 × 

D1024 The proposed 16 718469.7967 1.0000 0.0132 3.66 O 



Subtractive 16 718469.7967 1.0000 0.0132 11.37 O 
Mean-shift 120 126798.4888 1.0000 0.4496 0.88 × 

DBScan 16 381.3919 0.8721 0.9975 0.57 O 
Mode identification 1024 NaN 1.0000 0.0000 2080.58 × 

Random swap 16 0.9093 0.1152 16.3316 71.11 O 
Density peak 14 529.5497 0.8750 0.6965 3.29 × 

D15 

The proposed 9 302436.3684 1.0000 0.1177 13.18 O 
Subtractive 9 302436.3684 1.0000 0.1177 11.28 O 
Mean-shift 9 302436.3684 1.0000 0.1177 0.04 O 

DBScan 9 20602.0570 0.9586 1.2317 10.82 O 
Mode identification 3 4327.2420 0.3333 0.5837 141.34 O 

Random swap 9 126.0758 0.2575 10.8063 7.54 O 
Density peak 4 4533.2627 0.4444 0.6696 12.23 × 

ST 

The proposed 23 2784.0320 0.5064 1.8149 1.62 O 
Subtractive 4 494.1967 0.3988 0.9100 0.66 × 
Mean-shift 1555 24.7451 0.9948 9.8535 2.92 × 

DBScan 18 57.8279 0.48583 1.7112 0.42 O 
Mode identification 9 690.3357 0.3653 0.3034 69.05 O 

Random swap 5 1.6124 0.4086 13.2612 2.15 O 
Density peak 3 1224.2338 0.3478 0.4226 2.40 × 

PE 

The proposed 161 572.8011 0.9446 1.3937 10.09 O 
Subtractive 187 382.6055 0.8454 1.9995 12.38 O 
Mean-shift 8501 154.0923 0.9999 0.3652 169.14 × 

DBScan 38 312.9177 0.6209 1.4997 14.04 O 
Mode identification 4316 46.6194 0.9968 0.4969 4243.31 × 

Random swap 10 1.1696 0.1160 77.2047 9.24 O 
Density peak 7 2559.6071 0.5993 1.3044 12.65 × 

OP 

The proposed 139 80.4085 0.9247 2.0033 17.46 O 
Subtractive 5620 NaN 1.0000 0.0000 42.07 × 
Mean-shift No result after 10 hours  × 

DBScan 5 80.5137 0.2190 5.5459 3.88 × 
Mode identification 5620 NaN 1.0000 0.0000 27368.18 × 

Random swap 10 1.7029 0.1142 31.2458 14.35 O 
Density peak 8 71.5796 0.2962 1.4627 6.16 × 

CA 

The proposed 113 231.0072 0.8758 1.0824 1.93 O 
Subtractive 254 140.7584 0.9147 1.3239 0.65 × 
Mean-shift 1594 181.2899 0.9962 0.4175 2.91 × 

DBScan 13 35.8486 0.8053 1.5204 0.43 O 
Mode identification 328 63.5207 0.9008 0.6740 40.26 × 

Random swap 3 47.2156 0.7785 5.2548 1.42 O 
Density peak 3 63.5735 0.7813 0.5081 2.71 O 

                                                                                                                       a “×” stands for invalid results, “O” stands for valid result 

 

(a) dim15                                          (b) Pen-based recognition             (c) Cardiotocography 

Fig.1. Visualization of clustering results 



From Table IV one can see that the subtractive clustering algorithm is able to produce high quality 
clustering results on the datasets with Gaussian distribution. However, for the more complex benchmark 
datasets, it fails to give valid results. The mean-shift clustering algorithm is one of the most efficient algorithms, 
but it can only perform high-quality clustering with low dimensional datasets. The DBScan algorithm is very 
efficient as well, but the quality of its clustering results is very limited in terms of the 3 clustering quality 
measures. Mode identification based clustering algorithm is a so-called “non-parametric” clustering algorithm. 
Nonetheless, its performance is very limited on high dimensional problems; its computational efficiency is also 
not very good. The quality of the clustering results obtained by the random swap algorithm is also very limited. 
In addition, this algorithm requires the number of classes to be known in advance in order to perform valid 
clustering results; its computational efficiency is also relatively lower. The density peak clustering algorithm is 
highly efficient, however, based on the recommended input selection, the algorithm failed to separate data 
samples from different classes in many cases. In addition, with the growth of the number of data samples, the 
difficulty of deciding the input selection for the users is also increasing. 

In contrast, the proposed evolving clustering algorithm consistently produces the top quality clustering 
results on various problems. Its computational efficiency does not deteriorate with the increase of 
dimensionality. Therefore, one can conclude that the proposed evolving clustering algorithm is the top one in 
the comparison.  

6. Conclusion 

In this paper, a new type of distance, named “direction-aware”, is proposed and proved to be a full metric. 
The proposed distance is defined as a combination of two components: i) the traditional Euclidean distance and 
ii) a cosine similarity based angular/directional divergence. Therefore, it is able to consider both spatial and 
angular divergences. It is using the advantages of one of them to compensate for the disadvantages of the other. 
The proposed distance is applicable to various traditional machine learning algorithms as an alternative distance 
measure. A new direction-aware distance based evolving clustering algorithm is also proposed for streaming 
data processing. Numerical examples demonstrate that the proposed distance can improve the clustering quality 
of the k-means algorithm for high dimensional problems. They also show the validity and effectiveness of the 
proposed evolving algorithm for handling high dimensional streaming data. 

 As future work, we will apply the proposed distance to various high dimensional problems including, but 
not limited to, the NLP, image processing problems, etc. 
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