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ABSTRACT Bayesian optimization (BO) is an effective optimization technique for solving expensive 

black-box problems. Even though BO has remarkable success, its drawbacks are also obvious. First, the time 

complexity of the Gaussian process inference is higher than O(n3), where n is the number of samples. 

Consequently, the running time of BO increases rapidly with the problem size. Second, due to the non-convexity 

and multimodality of the acquisition function, it costs a lot to achieve good results. To address the above 

problems, we develop a local Bayesian optimization algorithm based on the trust region idea (TRLBO). In 

TRLBO, two trust regions with dynamically changing sizes are used to enhance the algorithm’s exploitation 

ability, while at the same time retaining the exploration ability. Specifically, one trust region is used to reduce 

the number of samples in the Gaussian process. The other is used to restrict the solution space of the candidates. 

Furthermore, some theoretical results were provided to enlighten the efficiency of the proposed algorithm. 

Experimental results on both benchmark functions and real-world problems show that TRLBO compares 

favorably with the state-of-the-art algorithms. 

INDEX TERMS Trust Region, Bayesian Optimization, Gaussian Process, UCB, Local Optimization 

1. Introduction 

Many problems encountered in scientific research and 

engineering are expensive and non-convex, whose 

mathematical formation and the gradient information are 

usually not available. For example, one common problem 

in machine learning is to find the optimal parameters of 

neural networks so that they can perform well in certain 

tasks. The problem is posed as an optimization problem, 

and its mathematical formation is difficult to construct. In 

addition, evaluating one set of parameter values is very 

time-consuming, so traditional optimization algorithms are 

not suitable for this type of problem. In comparison, 

Bayesian optimization (BO) is specifically designed for 

black-box function optimization and very effective. In 

recent years, BO has been successfully applied to 

interactive user-interfaces, robotics, environmental 

monitoring, information retrieval, combinatorial 

optimization, automatic machine learning, sensor networks, 

adaptive Monte Carlo, experimental design, reinforcement 

learning, and so on [1].  

The success of Bayesian optimization is attributed to two 

components: the probabilistic surrogate for modeling the 

objective function, and the acquisition function for 

balancing the exploration and exploitation abilities. The 

Gaussian process is currently the default choice of 

surrogates, and the time complexity of Gaussian process 

inference is O(n3), where n is the number of samples. 

Therefore, Bayesian optimization is mainly used to solve 

the low dimension problems. However, recent years have 

witnessed the rapid growth in the computational power of 

GPUs. A more efficient algorithm that reduces the time 

complexity to O(n2) is developed by resorting the 

computational power of GPUs [2]. The development of the 

new algorithm makes it possible for BO to tackle 

high-dimensional problems. 

But there are still challenges to overcome before BO can 

be successfully extended to the high-dimensional problems. 

First, due to the curse of dimensionality, the search space 



grows exponentially as the dimensionality of the objective 

function increases. Moreover, Brochu et al. [3] found that 

the tendency toward exploration is more salient when BO is 

handling higher dimensional problems, which leads to its 

poor performance. This is the major barrier that limits the 

applicability of BO. In the literature, many attempts have 

been made to extend BO to high-dimensional problems. 

Assuming that the objective function is in D-dimension and 

there are only d active variables, where 𝑑𝑑 ≪ 𝐷𝐷, Chen et al. 

[4] used a hierarchical diagonal sampling method to 

perform both variable selection and objective optimization. 

Rolland [5] decomposed a high-dimensional objective 

function into multiple low-dimensional functions and used 

a graph to represent the dependency between the 

low-dimensional functions. An efficient information 

transfer algorithm is developed to optimize the acquisition 

function. Furthermore, Gibbs sampling method was 

employed to learn the structure of the dependency graph. 

Following the work of Rolland, Mutny et al.[6] proposed a 

quadrature Fourier features method to approximate the 

exponential square covariant function. It is proven that the 

approximation error will decrease exponentially as the 

number of features increase. 

Besides the works  mentioned above, there exist other 

approaches to extend BO to high-dimensional space [7-15]. 

Most of these methods assume the objective function has 

some additive structures. Then, different additive structures 

are adopted to train different Gaussian processes, so it 

becomes very time-consuming to draw a larger number of 

samples. Moreover, one obstacle lying in the way of 

applying BO to highdimensional problems is that the 

acquisition function is non-convex and difficult to optimize. 

Some researchers tried to circumvent the obstacle by 

making use of stochastic feature approximation [16]. In 

contrast, McIntire et al. [17] use a sparse Gaussian process 

as the probabilistic surrogate. More recently, Wang [18] 

proposed an ensemble Bayesian optimization algorithm 

(EBO) that resolves the problems of drawing a large 

number of samples, increasing dimensionality of objective 

functions, and balancing the diversity and accuracy of 

samples. Wang [18] also revealed the relationship between 

EBO and evolutionary algorithms (EAs), which brings 

innovation to the algorithm analysis. Eriksson et al. [19] 

developed a trust region local Bayesian optimization 

algorithm (TuRBO). The numerical results reported in [19] 

show that TuRBO can reach state-of-the-art performance 

when tackling high-dimensional problems, in which case a 

large number of samples are required. This paper follows 

this promising research avenue and makes further 

progresses. The differences between our approach and the 

existing work are as follows. 

(1) During the iteration of TuRBO, all the 

sample-observation data is used to train the Gaussian 

process. In our approach, we extract part of the data to train 

the Gaussian process. 

(2) Thompson sampling is adopted in TuRBO as the 

acquisition function. In our approach, the Gaussian process 

upper confidence bound (GP-UCB) is used instead. 

(3) In TuRBO, one trust region is constructed to 

control the samples’ solution space size. In our approach, 

the solution space size and the number of samples in the 

Gaussian process are controlled by two trust regions. 

(4) We use a simple yet efficient way to extend 

GP-UCB so to draw samples in batches. 

The rest of the paper is organized as follows. Section 2 

gives a brief introduction to the Bayesian optimization 

algorithm, as well as the trust region method. The proposed 

TRLBO algorithm is described in detail under Section 3. 

Section 4 is devoted to the algorithmic analysis of TRLBO. 

The numerical experiments are conducted in Section 5. 

Finally, Section 6 discusses the remaining issues and 

concludes the paper. 

2. Background 

2.1. Bayesian optimization 

Given an optimization problem: min 𝑓𝑓(𝑥𝑥), 𝑥𝑥 ∈ Ω ⊂ ℝD, 

where Ω  is a compact subset of ℝD ,  𝑓𝑓:Ω → ℝ  is a 

deterministic black box function whose mathematical 

formulation, gradient information, and the property 

(convexity) are unknown. Moreover, evaluating the 

function is very expensive. Without making any 

assumptions to the objective function, the only way to find 

the optimum is brute force search. It might happen that 

only small changes are made to the decision variables, but 

the objective function value changes dramatically, e.g., the 

Dirichlet function. In practice, we often introduce several 

assumptions to make the optimization problem more 

tractable. One common assumption is Lipschitz continuity: 

If for any 𝑥𝑥 ∈ 𝒫𝒫,𝑦𝑦 ∈ 𝒫𝒫, there exists a constant ℓ such 

that ‖𝑓𝑓(𝑥𝑥)− 𝑓𝑓(𝑦𝑦)‖ ≤ ℓ‖𝑥𝑥 − 𝑦𝑦‖ , then f is termed 

Lipschitz continuous in region 𝒫𝒫 . DIRECT [20] is an 

algorithm built upon the assumption. DIRECT constantly 

divides the solution space and abandons subspaces that do 



not contain the optimum. In this way, the search space is 

gradually reduced, and the algorithm can eventually find 

the optimum. However, in the process of reducing the 

search space size, numerous function evaluations are 

required. Therefore, the algorithm is not suitable for the 

above scenario. Different from the DIRECT algorithm, BO 

is a stochastic optimization technique. Although it cannot 

guarantee to find the global optimum in each run, it is able 

to find an ideal solution with a relatively small number of 

function evaluations. A more detailed description of BO 

can be found in [1], [21]. BO is composed of a probabilistic 

surrogate model and an acquisition function. In the 

following, we briefly introduce these two components.  

The probabilistic surrogate model is used for modeling 

the objective function. One of the most commonly seen 

surrogate models is the Gaussian process. It is also used in 

our study. Gaussian process GP�𝜇𝜇(𝑥𝑥),𝑘𝑘(𝑥𝑥,𝑥𝑥′)�  is a 

non-parametric model determined by its mean function 𝜇𝜇(𝑥𝑥) and covariant function 𝑘𝑘(𝑥𝑥,𝑥𝑥′). We assume that the 

objective function is sampled from a Gaussian process with 

mean 0 (GP�0,𝑘𝑘(𝑥𝑥,𝑥𝑥′)�), namely, 𝑓𝑓(𝑥𝑥)~GP�0,𝑘𝑘(𝑥𝑥, 𝑥𝑥′)�. 
The observed data is denoted by 𝐷𝐷𝑛𝑛 = {𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡}𝑡𝑡=1𝑛𝑛 , where 𝑦𝑦𝑡𝑡 = 𝑓𝑓(𝑥𝑥𝑡𝑡) + 𝜖𝜖𝑡𝑡  and 𝜖𝜖𝑡𝑡  are independent identically 

distributed variables drawn from Gaussian distribution, 

namely, 𝜖𝜖𝑡𝑡 ∼ 𝑁𝑁(0,𝜎𝜎2). According to the property of the 

Gaussian distribution, it is easy to deduce that the posterior 

distribution is also a Gaussian distribution whose mean and 

covariance are formulated as: 𝜇𝜇𝑛𝑛(𝑥𝑥) = 𝜅𝜅𝑛𝑛(𝑥𝑥)T(𝛫𝛫𝑛𝑛 + 𝜎𝜎2𝛪𝛪)−1𝑦𝑦𝑛𝑛              (2.1) 𝜎𝜎𝑛𝑛2(𝑥𝑥) = 𝜅𝜅(𝑥𝑥 ,𝑥𝑥)− 𝜅𝜅𝑛𝑛(𝑥𝑥)T(𝛫𝛫𝑛𝑛 + 𝜎𝜎2𝛪𝛪)−1𝜅𝜅𝑛𝑛(𝑥𝑥)   (2.2) 

where 𝛫𝛫𝑛𝑛 = �𝜅𝜅�𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗��𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗∈𝐷𝐷𝑛𝑛 , 𝜅𝜅𝑛𝑛(𝑥𝑥) = [𝜅𝜅(𝑥𝑥𝑖𝑖  ,𝑥𝑥)]𝑥𝑥𝑖𝑖∈𝐷𝐷𝑛𝑛 . 

Please refer to [22] for more information about the 

Gaussian process. Modeling an objective function with a 

Gaussian process involves the matrix inversion operation, 

which has a time complexity of O(n3). This precludes the 

application of BO to scenarios where large numbers of 

samples are required. In the Gaussian process, the 

covariance function determines the smooth property of the 

sampling function, as well as the type it can fit. To increase 

the applicability of the Gaussian process, a common 

practice is to add some hyperparameters to the covariance 

function. During the training process, the hyperparameters 

can be tuned to make the surrogate model closer to the real 

objective function. One of the most important 

hyperparameters is the scale parameter. It is a vector that 

shares the same dimensionality as the input of the objective 

function. It is used to determine the degree of importance 

of the input variables. In our study, the scale parameter is 

also used to determine the corresponding trust region of the 

solution space of the acquisition function. Some commonly 

seen covariance functions are exponential covariance 

function, exponential square covariance function, and 

Martern covariance function. 

The acquisition function is adopted to guide the selection 

of promising points for evaluation. There are different 

types of acquisition functions available for use, e.g, 

probability of improvement (PI) [23], expected 

improvement (EI) [24], Thompson search [25], entropy 

search [26-27], predictive entropy search, (PES) [28], 

knowledge gradient (KG) [29], Gaussian process upper 

confidence bound (GP-UCB) [30], and so on. GP-UCB is 

developed based on the idea of upper confidence bound 

(UCB) algorithm [31]. Although its formation is very 

simple, it can effectively strike a balance between 

exploration and exploitation. GP-UCB is formulated as 

follows: 𝒶𝒶ucb(𝑥𝑥;𝐷𝐷𝑛𝑛) = 𝜇𝜇𝑛𝑛(𝑥𝑥) + 𝛽𝛽𝑛𝑛𝜎𝜎𝑛𝑛(𝑥𝑥)             (2.3) 

where 𝜇𝜇𝑛𝑛(𝑥𝑥) and 𝜎𝜎𝑛𝑛(𝑥𝑥) denote the mean and variance of 

the posterior distribution respectively. The hyperparameter 𝛽𝛽𝑛𝑛  is used for balancing exploration and exploitation. 

Intuitively, the algorithm tends to explore when 𝛽𝛽𝑛𝑛  is 

large. Conversely, the algorithm tends to exploit when 𝛽𝛽𝑛𝑛  

is small. 

In Bayesian optimization, we optimize the function to 

generate new evaluation points. In real-world applications, 

we hope that multiple promising points can be evaluated 

simultaneously in each iteration to fully use the 

computational power. Many studies have been conducted in 

this research avenue [32-38]. In this paper, to endow 

GP-UCB with the capability of batch sampling, we discard 

the exhausted optimization of the acquisition function. A 

random search algorithm is adopted instead. For the 

hyperparameter 𝛽𝛽𝑛𝑛 of GP-UCB, Srinivas derived its exact 

expression and proved its effectiveness from a theoretical 

perspective. However, the result is based on the premise 

that GP-UCB is optimized through some exact approach. 

This differs from the situation we face. To set 𝛽𝛽𝑛𝑛 to a 

value that effectively balances exploration and exploitation, 

we normalize 𝜇𝜇𝑛𝑛(𝑥𝑥) and 𝜎𝜎𝑛𝑛(𝑥𝑥). The details are presented 

in section 3. 

2.2. Trust region algorithm 



Generally speaking, it is very difficult to globally fit a 

non-convex function. However, if we concentrate on a local 

region of the objective function at a time, it is easy to fit the 

region with a linear or quadratic function. The basic idea of 

the trust region algorithm is to use an approximation model 

to fit the objective function locally. The accuracy of the 

approximation model in the local region is trustable, and 

therefore the local region is termed “trust region”. Trust 

region is usually a sphere or polytope centered at the 

current best solution, and its size is dynamically adjusted in 

each iteration. In short, the trust region algorithm uses a 

merit function to evaluate the fitting performance of the 

approximation model. If the approximation model fits the 

objective function very well, then the trust region grows. 

Conversely, the trust region shrinks. Instead of directly 

optimizing the objective function, the principle of the trust 

region algorithm is to optimize a simple local 

approximation model of the objective function. Quadratic 

approximation is a widely used approximation model. 

Using quadratic approximation, the original problem is 

reduced to the following constraint optimization problem. 

min 𝑚𝑚𝑘𝑘(𝑑𝑑) = 𝑓𝑓𝑘𝑘 + 𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑 +
12𝑑𝑑𝑇𝑇𝐵𝐵𝑘𝑘𝑑𝑑     (2.4) 𝑠𝑠. 𝑡𝑡. ‖𝑑𝑑‖2 ≤ ∆𝑘𝑘                 (2.5) 

where 𝑓𝑓𝑘𝑘, 𝑔𝑔𝑘𝑘𝑇𝑇, 𝐵𝐵𝑘𝑘 denote the objective function value, the 

gradient, and the Hessian approximation matrix at point 𝑥𝑥𝑘𝑘 

respectively. The notation ∆𝑘𝑘 represents the radius of the 

trust region. It can be seen that the objective function of the 

transformed problem is a convex quadratic function. This 

function is easy to optimize. Assuming that 𝑠𝑠𝑘𝑘  is the 

solution to the transformed problem, we use the following 

evaluation function 𝑟𝑟𝑘𝑘  to determine the point 𝑥𝑥𝑘𝑘+1 and the 

trust region radius ∆𝑘𝑘+1 of the next iteration.  𝑟𝑟𝑘𝑘 = �𝑓𝑓(𝑥𝑥𝑘𝑘)− 𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝑠𝑠𝑘𝑘)� �𝑚𝑚𝑘𝑘(𝑑𝑑)−𝑚𝑚𝑘𝑘(𝑠𝑠𝑘𝑘)��   (2.6) 

The trust region algorithm repeats the above process 

until it meets the predefined termination criterion. The 

algorithm has a good convergence property. For a detailed 

description of the trust region algorithm, please refer to 

[39]. As in TuRBO [19], we use the Gaussian process to fit 

the objective function locally. However, instead of using all 

the data to train the Gaussian process, we use part of the 

data lies within the trust region. 

3. Trust Region based Local Bayesian 

Optimization (TRLBO)  

In this section, the proposed TRLBO is described in 

detail. Same as BO, our algorithm is composed of a 

surrogate model and an acquisition function. In TRLBO, 

the local Gaussian process serves as the surrogate model 

while the local GP-UCB serves as the acquisition function. 

Each component is associated with a trust region. The sizes 

of the two trust regions are controlled by a scale parameter. 

The two regions are different in shapes. The one associated 

with the local Gaussian process has a ball shape, while the 

other associated with the local GP-UCB is a 

hyper-rectangle. The details are presented in the following 

subsections.  

3.1. Local Gaussian Process 

The surrogate model plays an important role in Bayesian 

optimization. A suitable surrogate model can effectively fit 

the objective function and contribute to the good 

performance of the algorithm. Conversely, the algorithm 

will perform poorly if the surrogate model differs 

significantly to the objective function. Gaussian process is 

used for modeling functions, and it has a nice property: all 

joint distribution, marginal distribution, and posterior 

distribution of finite variables are Gaussian distribution. 

Therefore, the Gaussian process is the most commonly seen 

surrogate model in BO and has achieved good results in 

real-world applications. The performance of BO is largely 

attributed to the global Gaussian process that accurately fits 

the objective function. When handling low dimensional 

problems, a small number of samples are sufficient to train 

the global Gaussian process. However, when handling 

high-dimensional problems, a larger number of samples are 

required. This lowers the efficiency of the algorithm. 

Inspired by the trust region algorithm, we abandon the 

attempt to fit the entire objective function and try to fit a 

local region, this approach is similar to TuRBO [20]. The 

major difference is that TuRBO uses the entire data set to 

train the Gaussian process. Only when optimizing the 

acquisition function, it restricts the solution space to a trust 

region. In contrast, we extract part of the data to train the 

local Gaussian process. Specifically, denote the observed 

data as 𝐷𝐷𝑛𝑛 = {(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡)}𝑡𝑡=1𝑛𝑛 , the scale parameter of the trust 

region as ℓ, and the current best solution as 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡. The 

superscript 𝑛𝑛 represents the 𝑛𝑛th iteration of the algorithm. 

We use the following formula to extract point set 𝐷𝐷𝑛𝑛′  from 𝐷𝐷𝑛𝑛 to train the local Gaussian process. 𝐷𝐷𝑛𝑛′ = �(𝑥𝑥 ,𝑦𝑦) | �𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡 − 𝑥𝑥�2 ≤ 𝜂𝜂ℓ , (𝑥𝑥, 𝑦𝑦) ∈ 𝐷𝐷𝑛𝑛�  

(3.1) 

In the formula, 𝜂𝜂 = Max 𝜆𝜆i , 𝑖𝑖 ∈ {1,2. . .𝑑𝑑} , 𝜆𝜆i  is the 



scale hyperparameter of the Gaussian process, and 𝑑𝑑 is the 

dimension of the objective function input. The parameter 𝜂𝜂 

is used to guarantee that the trust region associated with the 

local Gaussian process covers the trust region associated 

with the acquisition function. The scale parameter ℓ of the 

trust region gradually decreases as the number of iterations 

grows. Therefore, during the training process, the number 

of samples used the local Gaussian process will be much 

smaller than that in the global Gaussian process. This way, 

the running time is greatly reduced. In addition, according 

to our experiment, the local Gaussian process has similar or 

even better fitting quality than the global Gaussian process. 

Algorithm 1: Local Gaussian process algorithm 

Input: 𝐷𝐷𝑛𝑛 = {(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡)}𝑡𝑡=1𝑛𝑛 : The observed data: ℓ : The 

scale parameter of the trust region; 𝜂𝜂: The scaling 

factor; 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡: The current best point 

1: n is the number of points in 𝐷𝐷𝑛𝑛, 𝐷𝐷𝑛𝑛′  is the valid points 

set. 

2: for i = 1 to n do 

3:   if �𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡 − 𝑥𝑥𝑖𝑖� ≤ 𝜂𝜂ℓ then 

4:         𝐷𝐷′ = 𝐷𝐷′ ∪ {𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖} 

5:   end if 

6: end for 

7: use the update data 𝐷𝐷′ to train the Gaussian process 

Output: The Posterior of the Multivariate Gaussian 

distribution 

 

3.2. Local GP-UCB  

In the previous subsection, by employing the trust region 

method, we have successfully applied the local Gaussian 

process to the local fitting of the objective function. To 

force the algorithm to pay more attention to local 

exploitation, we need to restrict the solution space of the 

newly generated samples. In other words, we hope that the 

next batch of samples can be generated near the current 

best solution. This is the effect of the trust region 

associated with the acquisition function. The approach used 

in [19] is adopted here to determine the trust region 

associated with the acquisition function. Let ℓ denote the 

scale parameter of the trust region, 𝜆𝜆  denote the 

length-scale hyperparameter of the local Gaussian process, 

and 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡 denote the current best solution. Then, the trust 

region is a hyper-rectangle centered at 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡 , with 

volume ℓ𝑑𝑑 . For each dimension, the side length of the 

hyper-rectangle is computed as 𝐿𝐿(𝑖𝑖) =

𝜆𝜆(𝑖𝑖) ℓ �∏ 𝜆𝜆(𝑗𝑗)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄⁄ , where 𝑑𝑑  is the dimension of the 

input variables of the objective function. We have restricted 

the solution space of the new samples to the 

hyper-rectangle centered at the current best solution. Let Ω 

denote the solution space formed by the hyper-rectangle. 

We now illustrate the method used to generate the samples 

for evaluation. 

The GP-UCB formulated in (2.3) is used in our 

algorithm as the acquisition function. The original 

Bayesian optimization algorithm equipped with GP-UCB 

can only generate one candidate in each iteration. We use a 

simple method to extend the algorithm, so that multiple 

candidate points can be generated at a time. Specifically, 

we generate a point set {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑛𝑛  by uniformly sampling 

points from the solution space Ω  of the acquisition 

function 𝒶𝒶ucb(𝑥𝑥;𝐷𝐷𝑛𝑛). Then, we substitute it into the mean 𝜇𝜇𝑛𝑛(𝑥𝑥) and variance 𝜎𝜎𝑛𝑛(𝑥𝑥) of the posterior distribution of 

the acquisition function and obtain the corresponding 

function value {𝜇𝜇𝑖𝑖}𝑖𝑖=1𝑛𝑛  and {𝜎𝜎𝑖𝑖}𝑖𝑖=1𝑛𝑛 . Subsequently, we use 

max-min normalization to normalize the posterior mean 

and variance. The normalized mean and variance are 

denoted by {𝜇𝜇𝑖𝑖′}𝑖𝑖=1𝑛𝑛  and {𝜎𝜎𝑖𝑖′}𝑖𝑖=1𝑛𝑛  respectively. Finally, the 

acquisition function value is obtained by {𝒶𝒶𝑖𝑖| 𝒶𝒶𝑖𝑖 = 𝜇𝜇𝑖𝑖′ +𝛽𝛽𝑛𝑛𝜎𝜎𝑖𝑖′}𝑖𝑖=1𝑛𝑛 . In order to generate 𝑚𝑚(𝑚𝑚 > 1) candidate points 

at a time, we sort {𝒶𝒶𝑖𝑖}𝑖𝑖=1𝑛𝑛  in ascending order and select the 

first 𝑚𝑚  acquisition function values. The points 

(represented by the input variables 𝑥𝑥𝑖𝑖) corresponding to the 𝑚𝑚  function values are collected to form the point set 

{𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑚𝑚  used for next evaluation. By uniformly sampling 

points in the restricted solution space of the acquisition 

function, we not only avoid optimizing the complex 

acquisition function, but also generate a set of samples 

without much computational cost. The theoretical analysis 

of the method is given in Section 4. 

Algorithm 2: Optimizing GP-USB algorithm 

Input: 𝜇𝜇𝑛𝑛(𝑥𝑥): The Posterior mean function; 𝜎𝜎𝑛𝑛(𝑥𝑥): The 

Posterior variance function; 𝛽𝛽𝑛𝑛 : To balance 

exploration; m: The batch size; n: The uniform 

sampling size 

1: Generate n samples {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑛𝑛  by uniformly sampling 

from the solution space Ω, A=∅, B=∅.  

2: for i = 1 to n do 

3:   𝐴𝐴 = 𝐴𝐴 ∪ 𝜇𝜇𝑛𝑛(𝑥𝑥𝑖𝑖), 𝐵𝐵 = 𝐵𝐵 ∪ 𝜎𝜎𝑛𝑛(𝑥𝑥𝑖𝑖) 

4: end for 

5: Let LA, UA, LB, UB denote the minimal, maximum values 



of set A, B respectively, C=∅. 

6: for i = 1 to n do 

7:    𝐴𝐴𝑖𝑖 =
𝐴𝐴𝑖𝑖−𝐿𝐿𝐴𝐴𝑈𝑈𝐴𝐴−𝐿𝐿𝐴𝐴, 𝐵𝐵𝑖𝑖 =

𝐵𝐵𝑖𝑖−𝐿𝐿𝐴𝐴𝑈𝑈𝐴𝐴−𝐿𝐿𝐴𝐴 // Ai, Bi is the i-th element 

of set A, B respectively. 

8:   𝐶𝐶 = 𝐶𝐶 ∪ (𝐴𝐴𝑖𝑖 + 𝛽𝛽𝑛𝑛𝐵𝐵𝑖𝑖) 

9: end for 

10: we sort C in ascending order and select the first m 

acquisition function values. 

Output: m points {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑛𝑛  corresponding to the m 

acquisition function values. 

  

3.3. Outline of TRLBO 

In the previous two subsections, we introduce trust 

regions into the probabilistic surrogate model and the 

acquisition function of BO. However, there is still one 

important step to emphasize before completing our 

algorithm, that is, the adjustment strategy of trust regions. 

It is worth noting that the trust regions associated with the 

local Gaussian process and the acquisition function are 

controlled by the same scale parameter ℓ  and ℓ ∈
[ℓmin , ℓmax]. The primitive trust region algorithm adjusts 

the trust region according to the merit function formulated 

in (2.6), which represents the ratio between the expected 

decrement and the actual decrement. In contrast, we use the 

stochastic model to locally approximate the objective 

function. Therefore, the adjustment strategy in [19] is 

adopted in TRLBO. In each iteration, among all samples, if 

one sample is better than the current best solution, then we 

termed it a successful trial. Otherwise, a failed trial is 

recorded. We define two threshold values 𝜏𝜏fail and 𝜏𝜏succ 
to trigger the process of adjusting the size of trust regions. 

If the number of successive failed trials reaches 𝜏𝜏fail, we 

shrink the trust region by half: ℓ ← ℓ/2. Similarly, if the 

number of successive successful trials reaches 𝜏𝜏succ, we 

enlarge the trust region by a factor of two: ℓ ←
min{2ℓ ,ℓmax}. The min operator is to guarantee that 𝓇𝓇 

does not exceed the upper limit. Finally, all the procedures 

of our algorithm are shown as follows. 

Algorithm 3: TRLBO algorithm 

1: Initialize the trust region scale parameter ℓ，initialize q 

evaluation points {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑞𝑞
, compute their objective 

function values and store the observation data  𝐷𝐷 =

{(𝑥𝑥𝑖𝑖  ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑞𝑞
. 

2: Train the local Gaussian process (Algorithm 1). 

3: Generate m evaluation points (Algorithm 2), calculate 

their objective function value {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑚𝑚 , and add the new 

observation data to the data set 𝐷𝐷, 𝐷𝐷 = 𝐷𝐷 ∪ {(𝑥𝑥𝑖𝑖  ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑚𝑚 . 

4: Adjust the trust region length ℓ  according to the 

optimization results of Step 3, if ℓ ≤ ℓmin, terminate the 

algorithm; otherwise, go to Step 2. 

 

4. Theoretical Analysis of TRLBO 

4.1. Exploration vs. Exploitation 

Trust region algorithm is a local optimization algorithm. 

Although it cannot guarantee to find the global optimum, it 

has a global convergence property. We introduce the main 

idea of the trust region algorithm to BO. From a theoretical 

point of view, our algorithm possesses the local 

optimization property. In each iteration of our algorithm, it 

is easy to infer from the trust region adjustment strategy 

that the trust region length gradually decreases. This 

property forces our algorithm to pay more attention to local 

exploitation. Overall, we have deduced several theoretical 

results. For the sake of illustration, we first introduce some 

relevant notations. We map the domain of the objective 

function to the space Ω = [0,1]𝑑𝑑. The current best solution 

of the algorithm is denoted by 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡  and the scale 

parameter of the trust region is denoted by ℓ(ℓ ≤ 1). λ is 

the scale hyperparameter of the Gaussian process, and D is 

the observed data set. Moreover, we define the following 

quantities.  Ω𝑔𝑔𝑜𝑜 = �(𝑥𝑥 , 𝑦𝑦) | �𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡 − 𝑥𝑥�2 < ℓ , (𝑥𝑥 , 𝑦𝑦) ∈ 𝐷𝐷�（4.1.1） 

Ω𝑎𝑎𝑎𝑎𝑞𝑞 = �(𝑥𝑥 ,𝑦𝑦) |𝑥𝑥(𝑖𝑖) ∈ [𝑙𝑙𝑖𝑖 ,𝑢𝑢𝑖𝑖], (𝑥𝑥 , 𝑦𝑦) ∈ 𝐷𝐷, 𝑖𝑖
∈ {1,2. . .𝑑𝑑}�（4.1.2） 

𝑙𝑙𝑖𝑖 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡(𝑖𝑖) − 1

2
𝜆𝜆(𝑖𝑖)ℓ �� 𝜆𝜆(𝑖𝑖)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄�      （4.1.3） 

𝑢𝑢𝑖𝑖 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡(𝑖𝑖)
+

1

2
𝜆𝜆(𝑖𝑖)ℓ �� 𝜆𝜆(𝑖𝑖)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄�      （4.1.4） 

Proposition 1 Let y denote the event Ω𝑔𝑔𝑜𝑜 ≠ ∅  and x 

denote the event �(𝑥𝑥𝑖𝑖  ,𝑦𝑦𝑖𝑖)|(𝑥𝑥𝑖𝑖  ,𝑦𝑦𝑖𝑖) ∈ Ω𝑔𝑔𝑜𝑜 , (𝑥𝑥𝑖𝑖  ,𝑦𝑦𝑖𝑖) ∉Ω𝑎𝑎𝑎𝑎𝑞𝑞� ≠ ∅, then we have: 

lim𝓇𝓇→0P(x|y) = 0 

Proof: Note that the trust region associated with the local 

Gaussian process is a sphere centered at the current best 

solution 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡，with radius equals to 𝜂𝜂ℓ. Its volume is 



computed as V = 𝜋𝜋𝑑𝑑 2⁄ (𝜂𝜂ℓ)𝑑𝑑 Γ(1 + 𝑑𝑑 2⁄ )⁄ . The trust 

region associated with the acquisition function is a 

hyper-rectangle with its side length equals to  𝐿𝐿(𝑖𝑖) =𝜆𝜆(𝑖𝑖) ℓ �∏ 𝜆𝜆(𝑗𝑗)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄⁄ , where d is the dimension of the 

objective function. Note also that the domain of the 

objective function is [0,1]𝑑𝑑 . When 𝐿𝐿(𝑖𝑖) ≥ 1 , we 

take  𝐿𝐿(𝑖𝑖) = 1 . Let A = {1,2. . .𝑑𝑑} , we discuss two 

different cases. 

1）For every 𝑖𝑖 ∈ A,𝐿𝐿(𝑖𝑖) < 1. In this case, the volume of the 

hyper-rectangle is ℓ𝑑𝑑, and we assume that the observed 

point set Ω𝑔𝑔𝑜𝑜  used for training the local Gaussian 

process is not empty (there is no need to train if it is 

empty). Furthermore, for simplicity, we assume that the 

sample points not in Ω𝑔𝑔𝑜𝑜 are uniformly distributed in 

the space Ω (the real case will be more complex). The 

probability that there exists observed data not in Ω𝑔𝑔𝑜𝑜 

is computed as:  

P(x|y) =
V− ℓ𝑑𝑑

1
= � 𝜋𝜋𝑑𝑑 2⁄ 𝜂𝜂𝑑𝑑Γ(1 + 𝑑𝑑 2⁄ )

− 1� ℓ𝑑𝑑（4.1.5） 

It is obvious that when ℓ → 0, we have lim𝓇𝓇→0ℙ(x|y) =

lim𝓇𝓇→0 � 𝜋𝜋𝑑𝑑 2⁄ 𝜂𝜂𝑑𝑑Γ(1+𝑑𝑑 2⁄ )
− 1� ℓ𝑑𝑑 = 0 

2）There exists 𝑖𝑖 ∈ A, 𝐿𝐿(𝑖𝑖) ≥ 1. If for every 𝑖𝑖 ∈ A, 𝐿𝐿(𝑖𝑖) ≥
1, since 𝐿𝐿(𝑖𝑖) = 𝜆𝜆(𝑖𝑖) ℓ �∏ 𝜆𝜆(𝑗𝑗)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄⁄ , we have ∏ 𝐿𝐿(𝑖𝑖)𝑑𝑑𝑖𝑖=1 =

∏ �𝜆𝜆(𝑖𝑖) ℓ �∏ 𝜆𝜆(𝑗𝑗)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄⁄ �𝑑𝑑𝑖𝑖=1 = ℓ𝑑𝑑 ≥ 1 , this leads to a 

contradiction. Therefore we can assume that there exists a 

set B ∉ ∅, for every 𝑖𝑖 ∈ B ⊂ {1,2. . .𝑑𝑑},  𝐿𝐿(𝑖𝑖) = 1. At this 

point, the volume of the hyper-rectangle can be calculated 

as  ℓ|A|−|B|∏ 𝜆𝜆(𝑖𝑖) �∏ 𝜆𝜆(𝑗𝑗)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄�𝑖𝑖∈A−B . Let ζ =

∏ 𝜆𝜆(𝑖𝑖) �∏ 𝜆𝜆(𝑗𝑗)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄�𝑖𝑖∈A−B  and α = |A|− |B|  (ζ  and α 

are constants), then P(x|y) = (V− ζℓα) 1⁄ =𝜋𝜋𝑑𝑑 2⁄ (𝜂𝜂ℓ)𝑑𝑑 Γ(1 + 𝑑𝑑 2⁄ )⁄ − ζℓα . It is easy to learn that 

lim𝓇𝓇→0P(x|y) = lim𝓇𝓇→0𝜋𝜋𝑑𝑑 2⁄ (𝜂𝜂ℓ)𝑑𝑑 Γ(1 + 𝑑𝑑 2⁄ )⁄ − ζℓα = 0.  

According to the corollary, as the scale parameter of the 

trust region decreases, our algorithm behaves similarly to 

the primitive Bayesian optimization algorithm whose 

solution space shrinks iteration by iteration. This property 

forces our algorithm to pay more attention to local 

exploitation. Conversely, when the scale parameter of the 

trust region is not so small, the solution space does not 

entirely overlap with the trust region used for determining 

the training data of the local Gaussian process. This 

guarantees the exploration ability of the algorithm. 

4.2. Effect of using random search to optimize the 

acquisition function 

From the theoretical point of view, it is very difficult to 

find the global minimum (maximum) of a non-convex 

function. Therefore, in practice, we change our goal to 

finding a suboptimal solution. Some common algorithms 

for optimizing the acquisition function are DIRECT, 

multi-start quasi-Newton hill-climbing approach, CMA-ES, 

and multi-start local search. In our algorithm, we use 

random search to optimize the acquisition function. In the 

following, we analyze the efficiency of the approach. We 

first provide some basic definitions and illustrations. 

Definition 1 Let 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 = arg min 𝑓𝑓(𝑥𝑥),𝑥𝑥 ∈ Ω , Ω  is a 

compact subset of R𝑛𝑛 , 𝑥𝑥  is termed an ϵ − optimal 

solution if it satisfies the following conditions:  

There exists a hyper-cube A = {𝑥𝑥| ‖𝑥𝑥‖∞ = 𝜖𝜖} ⊂ Ω, such 

that 𝑥𝑥 ∈ A and 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 ∈ A, namely 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑥𝑥 are in the 

same grid. 

Now we regard the scale parameter of the trust region as 

a random variable ℒ, its corresponding value is ℓ. Let d 

denote the dimension of the input variables of the objective 

function. We divide the solution space of the new samples 

into k = �ℓ𝑑𝑑 𝜖𝜖𝑑𝑑⁄ �  grids with size  𝜖𝜖𝑑𝑑 . When 𝜖𝜖  is 

sufficiently small, the dividing error can be omitted. 

Moreover, when using random search to optimize the 

acquisition function, the number of samples is set to 100𝑑𝑑. 

We use 𝑚𝑚 to represent the number. Supposing y is the 

event that an ϵ − optimal solution is obtained by using 

the sampling method, we have 

P(𝑦𝑦|ℒ = ℓ) = 1− �𝑘𝑘 − 1𝑘𝑘 �𝑚𝑚
≈ 1− �1− �𝜖𝜖ℓ�𝑑𝑑�𝑚𝑚（4.2.1） 

The probability is very small. However, P(𝑦𝑦|ℒ = ℓ) 

will increase as ℓ → 𝜖𝜖 . Next, we analyze the expected 

number of iterations the algorithm required to find a local 

optimal solution or successively find solutions better than 

the current best solution. We first assume that when ℓ 

reduces to a threshold value, say 𝜖𝜖, then the algorithm has 

found a local optimal solution. Otherwise, if the current 

solution is not a local optimum, when 𝜖𝜖 is sufficiently 

small, the probability that the random search finds a better 



solution is p ≈ 1/2. When there are 100d sample points, 

the probability of finding a better solution becomes 𝑞𝑞 =

1− (1− 𝑝𝑝)100𝑑𝑑. It can be inferred from the expression of 𝑞𝑞  that, when 𝑝𝑝 = 0.01,𝑑𝑑 = 10 , 𝑞𝑞  exceeds 0.99. 

Therefore, we can take the fact that the current solution is 

the local optimum. 

Note that as the scale parameter ℓ of the trust region 

changes, it only takes two values, ℓ and 2ℓ. Therefore, 

when ℓ is changing within the interval [𝜖𝜖, 1], its choices 

are very limited. We can regard it as a random variable 

whose value are taken from a finite state space  S =

{0,1,2. . .𝑛𝑛}. We denote the random variable as {ℒ𝑖𝑖}. State 𝑖𝑖(𝑖𝑖 ∈ S)  indicates the case ℓ = 2𝑖𝑖𝜖𝜖 . When 𝜖𝜖  is 

sufficiently small, n is approximated as 𝑛𝑛 = ⌈𝑙𝑙𝑙𝑙𝑔𝑔2(1 𝜖𝜖⁄ )⌉. 
For the convenience of analysis, we now take {ℒ𝑖𝑖} as a 

random walking process. Let P𝑖𝑖,𝑖𝑖+1 = 𝑝𝑝  denote the 

probability of moving a step right. Starting from state j, the 

probability that {ℒ𝑖𝑖} reaches state 𝑛𝑛 before reaching state 

0 is α(𝑗𝑗). According to property of random walking, we 

have α(𝑗𝑗) = 𝑝𝑝α(𝑗𝑗 + 1) + (1− 𝑝𝑝)α(𝑗𝑗 − 1)，j = 1,2, . . .𝑛𝑛 − 1， 

It can be simplified to  𝛼𝛼(𝑗𝑗 + 1)− 𝛼𝛼(𝑗𝑗) =
1− 𝑝𝑝𝑝𝑝 �𝛼𝛼(𝑗𝑗)− 𝛼𝛼(𝑗𝑗 − 1)�（4.2.2） 

Given that α(0) = 0，we have， 𝛼𝛼(2)− 𝛼𝛼(1) =
1− 𝑝𝑝𝑝𝑝 �𝛼𝛼(1)− 𝛼𝛼(0)�
=

1− 𝑝𝑝𝑝𝑝 𝛼𝛼(1)        （4.2.3） 

𝛼𝛼(3)− 𝛼𝛼(2) =
1− 𝑝𝑝𝑝𝑝 �𝛼𝛼(2)− 𝛼𝛼(1)�
= �1− 𝑝𝑝𝑝𝑝 �2 𝛼𝛼(1)    （4.2.4） 

. 

. 

. 𝛼𝛼(𝑛𝑛)− 𝛼𝛼(𝑛𝑛 − 1) = �1− 𝑝𝑝𝑝𝑝 �𝑛𝑛−1 𝛼𝛼(1)    （4.2.5） 

Adding the above n-1 equations and substituting α(n) = 1, 

we can deduce that when 𝑝𝑝 ≠ 1/2, 

𝛼𝛼(𝑗𝑗) =
1− �1− 𝑝𝑝𝑝𝑝 �𝑗𝑗
1− �1− 𝑝𝑝𝑝𝑝 �𝑛𝑛                        （4.2.6） 

when 𝑝𝑝 = 1/2, 𝛼𝛼(𝑗𝑗) = 𝑗𝑗 𝑛𝑛⁄                                   （4.2.7） 

Let B denote the number of steps required for {𝐿𝐿𝑖𝑖} to start 

from state j, and finally reach state 0 or n. We then 

compute the expected value of B, namely,  𝐸𝐸(𝐵𝐵|𝐿𝐿0 = 𝑗𝑗). 

Let 𝑋𝑋𝑖𝑖  ∈ {−1,1}, 𝑖𝑖 ≥ 1 denote the outcome of L after the 𝑗𝑗th change, and for 𝐵𝐵 we have,  

𝐵𝐵 = min �𝑚𝑚|�𝑋𝑋𝑖𝑖𝑚𝑚
𝑖𝑖=1 = −𝑗𝑗 𝑙𝑙𝑟𝑟�𝑋𝑋𝑖𝑖𝑚𝑚

𝑖𝑖=1 = 𝑛𝑛 − 𝑗𝑗 �（4.2.8） 

1）when 𝑝𝑝 ≠ 1/2. 

According to Wald equation, we can get 

𝐸𝐸 ��𝑋𝑋𝑖𝑖𝐵𝐵
𝑖𝑖=1 � = 𝐸𝐸(𝑋𝑋𝑖𝑖) ∗ 𝐸𝐸(𝐵𝐵|𝐿𝐿0 = 𝑗𝑗)（4.2.9） 

Given P(∑ 𝑋𝑋𝑖𝑖𝑚𝑚𝑖𝑖=1 = 𝑛𝑛 − 𝑗𝑗) = 𝛼𝛼(𝑗𝑗)，P(∑ 𝑋𝑋𝑖𝑖𝑚𝑚𝑖𝑖=1 = −𝑗𝑗) =

1− 𝛼𝛼(𝑗𝑗)，𝐸𝐸(𝑋𝑋𝑖𝑖) = 2𝑝𝑝 − 1, the expression becomes 

 

E��𝑋𝑋𝑖𝑖𝐵𝐵
𝑖𝑖=1 � = 𝑛𝑛𝛼𝛼(𝑗𝑗)− 𝑗𝑗（4.2.10） 

Substitute the above formula into 4.2.9, the expected value 

of B is given by 

𝐸𝐸(𝐵𝐵|𝐿𝐿0 = 𝑗𝑗) =
1

2𝑝𝑝 − 1⎩⎪⎨
⎪⎧�1− �1− 𝑝𝑝𝑝𝑝 �𝑗𝑗� ∗ 𝑛𝑛

1− �1− 𝑝𝑝𝑝𝑝 �𝑛𝑛
− 𝑗𝑗⎭⎪⎬

⎪⎫
（4.2.11） 

2）when 𝑝𝑝 = 1/2. 

Let 𝐺𝐺(𝑗𝑗) = 𝐸𝐸(𝐵𝐵|𝐿𝐿0 = 𝑗𝑗), it is obvious that 𝐺𝐺(0) =𝐺𝐺(𝑛𝑛) = 0, and consider the case of one step of movement, 

we have 𝐺𝐺(𝑗𝑗) = 1 +
1

2
𝐺𝐺(𝑗𝑗 + 1) +

1

2
𝐺𝐺(𝑗𝑗 − 1)（4.2.12） 

(4.2.12) is an in-homogeneous linear difference equation. 

Solving the equation gives: 𝐺𝐺(𝑗𝑗) = 𝐸𝐸(𝐵𝐵|𝐿𝐿0 = 𝑗𝑗) = 𝑗𝑗(𝑛𝑛 − 𝑗𝑗)（4.2.13） 

Note that the maximum value of 𝑗𝑗(𝑛𝑛 − 𝑗𝑗) is 𝑛𝑛2 4⁄  and 𝑛𝑛 = ⌈𝑙𝑙𝑙𝑙𝑔𝑔2(1 𝜖𝜖⁄ )⌉. Even 𝜖𝜖 takes a very small value, the 

value of 𝑛𝑛 is acceptable. Refer to [40] and [41] for more 

detailed descriptions of random walking. 

From the above analysis it can be seen that even in the 

worst case, the number of iterations taken by our algorithm 

to find a local optimum is acceptable. In addition, 

according to the experimental results, given the same 



number of iterations, the running time spent by our 

algorithm is shorter than other algorithms which perform 

exact optimization of the acquisition function. 

5. Numerical Experiment 

In the experiment, three commonly used synthetic 

functions (i.e., Levy, Griewank, and Ackley) and two 

real-world problems (i.e., a 14D robot pushing problem and 

a 60D rover trajectory planning problem) are used to test 

the performance of algorithms. For the synthetic functions, 

three different numbers of dimensions (i.e., 10, 20 and 50) 

are tested. The main part of our algorithm is built upon the 

framework of TuRBO [19]. Besides the parameters of the 

algorithmic framework, we introduce two new parameters, 

the acquisition function parameter 𝛽𝛽 of GP-UCB and the 

radius 𝑟𝑟 associated with the local Gaussian process. Their 

values are set to 𝑑𝑑ℓ and ‖λ‖∞ℓ respectively, where 𝑑𝑑 is 

dimension of the input variables of the objective function 

and λ is the scale hyper-parameter of the local Gaussian 

process. In addition, we generate new sample points in a 

batch manner and the batch size is fixed at 10. The number 

of the initial sample points is 20. See [19] for more detailed 

descriptions of the other parameters. To evaluate the 

performance of our algorithm, we compare it with TuRBO1, 

TuRBOm, CMA-ES, and RS (Random Search). TuRBO1, 

proposed by Eriksson [19], is a Bayesian optimization 

algorithm with a single trust region. The trust region is used 

to restrict the solution space of the acquisition function. 

TuRBOm extends TuRBO1 by increasing the number of 

trust regions to m. In our experiment, m=5. CMA-ES is one 

of the most successfully evolutionary strategy algorithms. 

It has exhibited good performance in real-world 

applications, especially when handling median-scale 

complex optimization problems. CMA-ES is a random 

search algorithm. Its key idea is to use a multivariable 

Gaussian distribution in the search space to guide the 

search direction, and adjust the mean and covariance matrix 

of the multivariable Gaussian distribution in an adaptive 

manner. In the experiment, we use the CMA-ES 

implementation provided in the pycma library. Random 

search algorithms are algorithms that focus solely on 

exploration. It does not require any information about the 

objective function and has a wide range of applications. It 

performs very well in some types of problems. In the 

experiment, we uniformly sample batches of points in the 

solution space, and the batch size is set to 10. We run the 

algorithms 30 times for each test function. All source code 

is available at https://github.com/agier9/TRLBO. 

 

Fig. 1 10D, 20D, and 50D Ackley function 



 

Fig. 2 10D, 20D, and 50D Griewank 

 

Fig. 3 10D, 20D, and 50D levy 



 

Fig. 4 Minimum value of Ackley function in 30 trials 

 

Fig. 5 Minimum value of Griewank function in 30 trials 



 

Fig. 6 Minimum value of levy function in 30 trials 

 

Fig. 7 Boxplot of the best value found by all algorithms with 30 trials for function Ackley 



 

Fig. 8 boxplot of the best value found by all algorithms with 30 trials for function griewank 

 

Fig. 9 Boxplot of the best value found by all algorithms with 30 trials for function levy 

Synthetic function When handling synthetic function with 10, 

20, and 50 dimensions, the number of function evaluations are 

set to 1000, 2000, and 5000 respectively.  From the 

convergence graphs (Figs. 1-3）TRLBO, Turbo1, and Turbom 



perform much better than CMA-ES and RS. In addition, 

according to the convergence curve of RS, its performance is 

not satisfying, this also shows that the tendency towards 

exploration when BO is handling high-dimensional problems 

is the main reason for its poor performance. Figs. 4-6 shows 

the optima found by the algorithms over the 30 runs and Figs. 

7-9 presents the corresponding box plots. 

Robot pushing. The problem is about controlling a robot to 

push two objectives to their target positions. The moving 

trajectory of the robot is determined by a function with 14 

parameters. The problem is first proposed by Wang [42] in 

2017. Here, we set the number of objective function 

evaluations to 10K. It can be observed from the 

convergence graph that TRLBO, Turbo1, and Turbom are 

superior to CMA-ES and random search. It is surprising 

that the performance of CMA-ES is not as good as the 

random search. Figs. 10-12 give the corresponding results. 

 

 

Fig. 10 robot pushing 

 

Fig. 11 Maximum reward of robot pushing problem in 30 trials. 



 

Fig. 12 Boxplot of the best value found by all algorithms with 30 trials for robot pushing problem. 

Rover trajectory planning. This is a trajectory 

optimization problem in 2D, meant to emulate a rover 

navigation task. The objective function is a non-smooth, 

discontinuous function. More detailed descriptions of the 

problem can be found in [43]. In our experiment, the 

number of objective function evaluations is set to 20K. 

From the convergence graphs depicted in Fig. 5 (the top 

subgraph), it can be seen that TRLBO, Turbo1, Turbom, 

and CMA-ES have similar performance, followed by the 

random search. Fig. 13-15 show the optima found by the 

algorithms over 30 runs and the right subgraph in Figs. 

13-15 present the corresponding box plot. 

 

Fig. 13 Convergence result of the rover trajectory planning problem 



 

Fig. 14 Maximum reward of rover trajectory planning problem in 30 trials 

 

Fig. 15 Boxplot result of the rover trajectory planning problem in 30 trials 

Moreover, we record the best, worst, and mean results of 

the algorithm on all test problems over 30 runs. From the 

numerical results, when solving the majority of the 

synthetic functions, TRLBO is the best among all the 

compared to the rest algorithms. CMA-ES excepts to 

perform extremely well on the Griewank function. Given a 

sufficient number of function evaluations, the solutions 

found by CMA-EA are the near global optimal solution. 

For the 10D, 20D, and 50D problems, the number of 

function evaluations is set to 1000, 2000, and 5000. The 

performance of CMA-EA on low-dimensional problems is 

not as good as in high-dimensional problems. In addition, 

when solving the robot pushing problem, TRLBO performs 

slightly better than Turbo1 and Turbom. For the Rover 



trajectory planning problem, Turbo1 and Turbom perform 

the best, followed by TRLBO and CMA-ES. Random 

Search is the worst among all the algorithms. The median 

performance of TRLBO is probably due to the non-smooth, 

non-continuous property of the objective function. The 

experimental results are listed in Table 1, where the best 

results are marked in bold. 

Table 1 10D synthetic function problems result 

Problem Result TRLBO Turbo1 Turbom CMA-ES Random serach 

Ackley 

Best 0.515 1.11 1.013 18.604 12.608 

Mean 0.802 1.548 1.56 19.54 17.925 

Worst 1.312 1.988 2.028 20.008 19.134 

Griewank 

Best 0.389 0.835 0.759 0.422 49.863 

Mean 0.865 0.978 0.992 0.833 72.141 

Worst 1.005 1.093 1.074 0.988 94.849 

Levy 

Best 0.002 0.028 0.025 0.184 5.41 

Mean 0.089 1.158 0.675 15.464 13.89 

Worst 0.55 3.384 3.78 26.226 21.652 

 

Table 2 20D synthetic function problems result 

Problem Result TRLBO Turbo1 Turbom CMA-ES Random serach 

Ackley 

Best 1.057 1.702 1.592 18.117 18.979 

Mean 1.315 2.089 2.093 19.501 19.702 

Worst 1.863 2.617 2.537 19.843 20.175 

Griewank 

Best 1.012 1.095 1.081 0.284 191.637 

Mean 1.031 1.139 1.149 0.624 233.343 

Worst 1.049 1.229 1.253 0.991 268.245 

Levy 

Best 0.016 0.061 0.234 19.064 39.483 

Mean 0.731 4.02 2.537 35.351 59.969 

Worst 3.478 18.173 11.117 51.794 78.741 

 

Table 3 50D synthetic function problems result 

Problem Result TRLBO Turbo1 Turbom CMA-ES Random serach 

Ackley 

Best 0.842 2.22 1.874 19.273 20.216 

Mean 1.024 2.593 2.533 19.573 20.504 

Worst 1.22 3.04 2.906 19.76 20.64 

Griewank 

Best 1.042 1.27 1.216 0.1 736.473 

Mean 1.053 2.185 2.162 0.21 840.669 

Worst 1.068 5.225 16.073 0.342 902.208 

Levy 

Best 0.729 1.221 1.049 64.608 231.775 

Mean 5.019 4.489 5.291 95.843 280.086 

Worst 10.389 10.086 11.441 123.404 314.921 

 

Table 4 14D Robot pushing problems result 

Problem Result TRLBO Turbo1 Turbom CMA-ES Random serach 

14D Robot pushing 

Best 11.036 11.01 10.962 11.07 8.281 

Mean 10.729 10.627 10.708 5.852 6.41 

Worst 9.752 7.959 10.182 0.958 5.815 

 



6. Conclusion 

Bayesian optimization is an effective black-box 

optimization algorithm. It shows good performance when 

optimizing low-dimensional objective functions. However, 

extending BO to tackle high-dimensional problems is not 

an easy task. In this paper, we proposed a local Bayesian 

optimization algorithm based on the idea of the trust region. 

The algorithm incorporates the local Gaussian process and 

eliminates the need for exact optimization of the 

acquisition function. The experimental result on a number 

of test problems shows that our algorithm has similar or 

even better performance than other Bayesian optimization 

algorithms. Due to the limited computational resources, we 

did not test our algorithm on higher dimensional problems. 

In the future, we intend to adopt multiple local Gaussian 

processes to fit different parts of the search space of the 

objective function. From the optimization point of view, the 

information in local data is not necessarily lower than 

global data. 
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