
A Trust Region Based Local Bayesian Optimization
without Exhausted Optimization of Acquisition
Function
Qingxia Li

Dongguan City College
Anbing Fu

Dongguan University of Technology
Wenhong Wei ( weiwh@dgut.edu.cn)

Dongguan University of Technology
Yuhui Zhang

Dongguan University of Technology

Research Article

Keywords: Trust Region, Bayesian Optimization, Gaussian Process, UCB, Local Optimization

Posted Date: March 9th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1429011/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

https://doi.org/10.21203/rs.3.rs-1429011/v1
mailto:weiwh@dgut.edu.cn
https://doi.org/10.21203/rs.3.rs-1429011/v1
https://creativecommons.org/licenses/by/4.0/

A Trust Region Based Local Bayesian

Optimization without Exhausted Optimization of

Acquisition Function

Qingxia Li1, Anbing Fu2, Wenhong Wei2 and Yuhui Zhang2
1School of Computer and Information, Dongguan City College, Dongguan, 523419, China
2School of Computer, Dongguan University of Technology, Dongguan, 523808, China

Corresponding author: Wenhong Wei (e-mail: weiwh@dgut.edu.cn).

ABSTRACT Bayesian optimization (BO) is an effective optimization technique for solving expensive

black-box problems. Even though BO has remarkable success, its drawbacks are also obvious. First, the time

complexity of the Gaussian process inference is higher than O(n3), where n is the number of samples.

Consequently, the running time of BO increases rapidly with the problem size. Second, due to the non-convexity

and multimodality of the acquisition function, it costs a lot to achieve good results. To address the above

problems, we develop a local Bayesian optimization algorithm based on the trust region idea (TRLBO). In

TRLBO, two trust regions with dynamically changing sizes are used to enhance the algorithm’s exploitation

ability, while at the same time retaining the exploration ability. Specifically, one trust region is used to reduce

the number of samples in the Gaussian process. The other is used to restrict the solution space of the candidates.

Furthermore, some theoretical results were provided to enlighten the efficiency of the proposed algorithm.

Experimental results on both benchmark functions and real-world problems show that TRLBO compares

favorably with the state-of-the-art algorithms.

INDEX TERMS Trust Region, Bayesian Optimization, Gaussian Process, UCB, Local Optimization

1. Introduction

Many problems encountered in scientific research and

engineering are expensive and non-convex, whose

mathematical formation and the gradient information are

usually not available. For example, one common problem

in machine learning is to find the optimal parameters of

neural networks so that they can perform well in certain

tasks. The problem is posed as an optimization problem,

and its mathematical formation is difficult to construct. In

addition, evaluating one set of parameter values is very

time-consuming, so traditional optimization algorithms are

not suitable for this type of problem. In comparison,

Bayesian optimization (BO) is specifically designed for

black-box function optimization and very effective. In

recent years, BO has been successfully applied to

interactive user-interfaces, robotics, environmental

monitoring, information retrieval, combinatorial

optimization, automatic machine learning, sensor networks,

adaptive Monte Carlo, experimental design, reinforcement

learning, and so on [1].

The success of Bayesian optimization is attributed to two

components: the probabilistic surrogate for modeling the

objective function, and the acquisition function for

balancing the exploration and exploitation abilities. The

Gaussian process is currently the default choice of

surrogates, and the time complexity of Gaussian process

inference is O(n3), where n is the number of samples.

Therefore, Bayesian optimization is mainly used to solve

the low dimension problems. However, recent years have

witnessed the rapid growth in the computational power of

GPUs. A more efficient algorithm that reduces the time

complexity to O(n2) is developed by resorting the

computational power of GPUs [2]. The development of the

new algorithm makes it possible for BO to tackle

high-dimensional problems.

But there are still challenges to overcome before BO can

be successfully extended to the high-dimensional problems.

First, due to the curse of dimensionality, the search space

grows exponentially as the dimensionality of the objective

function increases. Moreover, Brochu et al. [3] found that

the tendency toward exploration is more salient when BO is

handling higher dimensional problems, which leads to its

poor performance. This is the major barrier that limits the

applicability of BO. In the literature, many attempts have

been made to extend BO to high-dimensional problems.

Assuming that the objective function is in D-dimension and

there are only d active variables, where 𝑑𝑑 ≪ 𝐷𝐷, Chen et al.

[4] used a hierarchical diagonal sampling method to

perform both variable selection and objective optimization.

Rolland [5] decomposed a high-dimensional objective

function into multiple low-dimensional functions and used

a graph to represent the dependency between the

low-dimensional functions. An efficient information

transfer algorithm is developed to optimize the acquisition

function. Furthermore, Gibbs sampling method was

employed to learn the structure of the dependency graph.

Following the work of Rolland, Mutny et al.[6] proposed a

quadrature Fourier features method to approximate the

exponential square covariant function. It is proven that the

approximation error will decrease exponentially as the

number of features increase.

Besides the works mentioned above, there exist other

approaches to extend BO to high-dimensional space [7-15].

Most of these methods assume the objective function has

some additive structures. Then, different additive structures

are adopted to train different Gaussian processes, so it

becomes very time-consuming to draw a larger number of

samples. Moreover, one obstacle lying in the way of

applying BO to highdimensional problems is that the

acquisition function is non-convex and difficult to optimize.

Some researchers tried to circumvent the obstacle by

making use of stochastic feature approximation [16]. In

contrast, McIntire et al. [17] use a sparse Gaussian process

as the probabilistic surrogate. More recently, Wang [18]

proposed an ensemble Bayesian optimization algorithm

(EBO) that resolves the problems of drawing a large

number of samples, increasing dimensionality of objective

functions, and balancing the diversity and accuracy of

samples. Wang [18] also revealed the relationship between

EBO and evolutionary algorithms (EAs), which brings

innovation to the algorithm analysis. Eriksson et al. [19]

developed a trust region local Bayesian optimization

algorithm (TuRBO). The numerical results reported in [19]

show that TuRBO can reach state-of-the-art performance

when tackling high-dimensional problems, in which case a

large number of samples are required. This paper follows

this promising research avenue and makes further

progresses. The differences between our approach and the

existing work are as follows.

(1) During the iteration of TuRBO, all the

sample-observation data is used to train the Gaussian

process. In our approach, we extract part of the data to train

the Gaussian process.

(2) Thompson sampling is adopted in TuRBO as the

acquisition function. In our approach, the Gaussian process

upper confidence bound (GP-UCB) is used instead.

(3) In TuRBO, one trust region is constructed to

control the samples’ solution space size. In our approach,

the solution space size and the number of samples in the

Gaussian process are controlled by two trust regions.

(4) We use a simple yet efficient way to extend

GP-UCB so to draw samples in batches.

The rest of the paper is organized as follows. Section 2

gives a brief introduction to the Bayesian optimization

algorithm, as well as the trust region method. The proposed

TRLBO algorithm is described in detail under Section 3.

Section 4 is devoted to the algorithmic analysis of TRLBO.

The numerical experiments are conducted in Section 5.

Finally, Section 6 discusses the remaining issues and

concludes the paper.

2. Background

2.1. Bayesian optimization

Given an optimization problem: min 𝑓𝑓(𝑥𝑥), 𝑥𝑥 ∈ Ω ⊂ ℝD,

where Ω is a compact subset of ℝD , 𝑓𝑓:Ω → ℝ is a

deterministic black box function whose mathematical

formulation, gradient information, and the property

(convexity) are unknown. Moreover, evaluating the

function is very expensive. Without making any

assumptions to the objective function, the only way to find

the optimum is brute force search. It might happen that

only small changes are made to the decision variables, but

the objective function value changes dramatically, e.g., the

Dirichlet function. In practice, we often introduce several

assumptions to make the optimization problem more

tractable. One common assumption is Lipschitz continuity:

If for any 𝑥𝑥 ∈ 𝒫𝒫,𝑦𝑦 ∈ 𝒫𝒫, there exists a constant ℓ such

that ‖𝑓𝑓(𝑥𝑥)− 𝑓𝑓(𝑦𝑦)‖ ≤ ℓ‖𝑥𝑥 − 𝑦𝑦‖ , then f is termed

Lipschitz continuous in region 𝒫𝒫 . DIRECT [20] is an

algorithm built upon the assumption. DIRECT constantly

divides the solution space and abandons subspaces that do

not contain the optimum. In this way, the search space is

gradually reduced, and the algorithm can eventually find

the optimum. However, in the process of reducing the

search space size, numerous function evaluations are

required. Therefore, the algorithm is not suitable for the

above scenario. Different from the DIRECT algorithm, BO

is a stochastic optimization technique. Although it cannot

guarantee to find the global optimum in each run, it is able

to find an ideal solution with a relatively small number of

function evaluations. A more detailed description of BO

can be found in [1], [21]. BO is composed of a probabilistic

surrogate model and an acquisition function. In the

following, we briefly introduce these two components.

The probabilistic surrogate model is used for modeling

the objective function. One of the most commonly seen

surrogate models is the Gaussian process. It is also used in

our study. Gaussian process GP�𝜇𝜇(𝑥𝑥),𝑘𝑘(𝑥𝑥,𝑥𝑥′)� is a

non-parametric model determined by its mean function 𝜇𝜇(𝑥𝑥) and covariant function 𝑘𝑘(𝑥𝑥,𝑥𝑥′). We assume that the

objective function is sampled from a Gaussian process with

mean 0 (GP�0,𝑘𝑘(𝑥𝑥,𝑥𝑥′)�), namely, 𝑓𝑓(𝑥𝑥)~GP�0,𝑘𝑘(𝑥𝑥, 𝑥𝑥′)�.
The observed data is denoted by 𝐷𝐷𝑛𝑛 = {𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡}𝑡𝑡=1𝑛𝑛 , where 𝑦𝑦𝑡𝑡 = 𝑓𝑓(𝑥𝑥𝑡𝑡) + 𝜖𝜖𝑡𝑡 and 𝜖𝜖𝑡𝑡 are independent identically

distributed variables drawn from Gaussian distribution,

namely, 𝜖𝜖𝑡𝑡 ∼ 𝑁𝑁(0,𝜎𝜎2). According to the property of the

Gaussian distribution, it is easy to deduce that the posterior

distribution is also a Gaussian distribution whose mean and

covariance are formulated as: 𝜇𝜇𝑛𝑛(𝑥𝑥) = 𝜅𝜅𝑛𝑛(𝑥𝑥)T(𝛫𝛫𝑛𝑛 + 𝜎𝜎2𝛪𝛪)−1𝑦𝑦𝑛𝑛 (2.1) 𝜎𝜎𝑛𝑛2(𝑥𝑥) = 𝜅𝜅(𝑥𝑥 ,𝑥𝑥)− 𝜅𝜅𝑛𝑛(𝑥𝑥)T(𝛫𝛫𝑛𝑛 + 𝜎𝜎2𝛪𝛪)−1𝜅𝜅𝑛𝑛(𝑥𝑥) (2.2)

where 𝛫𝛫𝑛𝑛 = �𝜅𝜅�𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗��𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗∈𝐷𝐷𝑛𝑛 , 𝜅𝜅𝑛𝑛(𝑥𝑥) = [𝜅𝜅(𝑥𝑥𝑖𝑖 ,𝑥𝑥)]𝑥𝑥𝑖𝑖∈𝐷𝐷𝑛𝑛 .

Please refer to [22] for more information about the

Gaussian process. Modeling an objective function with a

Gaussian process involves the matrix inversion operation,

which has a time complexity of O(n3). This precludes the

application of BO to scenarios where large numbers of

samples are required. In the Gaussian process, the

covariance function determines the smooth property of the

sampling function, as well as the type it can fit. To increase

the applicability of the Gaussian process, a common

practice is to add some hyperparameters to the covariance

function. During the training process, the hyperparameters

can be tuned to make the surrogate model closer to the real

objective function. One of the most important

hyperparameters is the scale parameter. It is a vector that

shares the same dimensionality as the input of the objective

function. It is used to determine the degree of importance

of the input variables. In our study, the scale parameter is

also used to determine the corresponding trust region of the

solution space of the acquisition function. Some commonly

seen covariance functions are exponential covariance

function, exponential square covariance function, and

Martern covariance function.

The acquisition function is adopted to guide the selection

of promising points for evaluation. There are different

types of acquisition functions available for use, e.g,

probability of improvement (PI) [23], expected

improvement (EI) [24], Thompson search [25], entropy

search [26-27], predictive entropy search, (PES) [28],

knowledge gradient (KG) [29], Gaussian process upper

confidence bound (GP-UCB) [30], and so on. GP-UCB is

developed based on the idea of upper confidence bound

(UCB) algorithm [31]. Although its formation is very

simple, it can effectively strike a balance between

exploration and exploitation. GP-UCB is formulated as

follows: 𝒶𝒶ucb(𝑥𝑥;𝐷𝐷𝑛𝑛) = 𝜇𝜇𝑛𝑛(𝑥𝑥) + 𝛽𝛽𝑛𝑛𝜎𝜎𝑛𝑛(𝑥𝑥) (2.3)

where 𝜇𝜇𝑛𝑛(𝑥𝑥) and 𝜎𝜎𝑛𝑛(𝑥𝑥) denote the mean and variance of

the posterior distribution respectively. The hyperparameter 𝛽𝛽𝑛𝑛 is used for balancing exploration and exploitation.

Intuitively, the algorithm tends to explore when 𝛽𝛽𝑛𝑛 is

large. Conversely, the algorithm tends to exploit when 𝛽𝛽𝑛𝑛

is small.

In Bayesian optimization, we optimize the function to

generate new evaluation points. In real-world applications,

we hope that multiple promising points can be evaluated

simultaneously in each iteration to fully use the

computational power. Many studies have been conducted in

this research avenue [32-38]. In this paper, to endow

GP-UCB with the capability of batch sampling, we discard

the exhausted optimization of the acquisition function. A

random search algorithm is adopted instead. For the

hyperparameter 𝛽𝛽𝑛𝑛 of GP-UCB, Srinivas derived its exact

expression and proved its effectiveness from a theoretical

perspective. However, the result is based on the premise

that GP-UCB is optimized through some exact approach.

This differs from the situation we face. To set 𝛽𝛽𝑛𝑛 to a

value that effectively balances exploration and exploitation,

we normalize 𝜇𝜇𝑛𝑛(𝑥𝑥) and 𝜎𝜎𝑛𝑛(𝑥𝑥). The details are presented

in section 3.

2.2. Trust region algorithm

Generally speaking, it is very difficult to globally fit a

non-convex function. However, if we concentrate on a local

region of the objective function at a time, it is easy to fit the

region with a linear or quadratic function. The basic idea of

the trust region algorithm is to use an approximation model

to fit the objective function locally. The accuracy of the

approximation model in the local region is trustable, and

therefore the local region is termed “trust region”. Trust

region is usually a sphere or polytope centered at the

current best solution, and its size is dynamically adjusted in

each iteration. In short, the trust region algorithm uses a

merit function to evaluate the fitting performance of the

approximation model. If the approximation model fits the

objective function very well, then the trust region grows.

Conversely, the trust region shrinks. Instead of directly

optimizing the objective function, the principle of the trust

region algorithm is to optimize a simple local

approximation model of the objective function. Quadratic

approximation is a widely used approximation model.

Using quadratic approximation, the original problem is

reduced to the following constraint optimization problem.

min 𝑚𝑚𝑘𝑘(𝑑𝑑) = 𝑓𝑓𝑘𝑘 + 𝑔𝑔𝑘𝑘𝑇𝑇𝑑𝑑 +
12𝑑𝑑𝑇𝑇𝐵𝐵𝑘𝑘𝑑𝑑 (2.4) 𝑠𝑠. 𝑡𝑡. ‖𝑑𝑑‖2 ≤ ∆𝑘𝑘 (2.5)

where 𝑓𝑓𝑘𝑘, 𝑔𝑔𝑘𝑘𝑇𝑇, 𝐵𝐵𝑘𝑘 denote the objective function value, the

gradient, and the Hessian approximation matrix at point 𝑥𝑥𝑘𝑘

respectively. The notation ∆𝑘𝑘 represents the radius of the

trust region. It can be seen that the objective function of the

transformed problem is a convex quadratic function. This

function is easy to optimize. Assuming that 𝑠𝑠𝑘𝑘 is the

solution to the transformed problem, we use the following

evaluation function 𝑟𝑟𝑘𝑘 to determine the point 𝑥𝑥𝑘𝑘+1 and the

trust region radius ∆𝑘𝑘+1 of the next iteration. 𝑟𝑟𝑘𝑘 = �𝑓𝑓(𝑥𝑥𝑘𝑘)− 𝑓𝑓(𝑥𝑥𝑘𝑘 + 𝑠𝑠𝑘𝑘)� �𝑚𝑚𝑘𝑘(𝑑𝑑)−𝑚𝑚𝑘𝑘(𝑠𝑠𝑘𝑘)�� (2.6)

The trust region algorithm repeats the above process

until it meets the predefined termination criterion. The

algorithm has a good convergence property. For a detailed

description of the trust region algorithm, please refer to

[39]. As in TuRBO [19], we use the Gaussian process to fit

the objective function locally. However, instead of using all

the data to train the Gaussian process, we use part of the

data lies within the trust region.

3. Trust Region based Local Bayesian

Optimization (TRLBO)

In this section, the proposed TRLBO is described in

detail. Same as BO, our algorithm is composed of a

surrogate model and an acquisition function. In TRLBO,

the local Gaussian process serves as the surrogate model

while the local GP-UCB serves as the acquisition function.

Each component is associated with a trust region. The sizes

of the two trust regions are controlled by a scale parameter.

The two regions are different in shapes. The one associated

with the local Gaussian process has a ball shape, while the

other associated with the local GP-UCB is a

hyper-rectangle. The details are presented in the following

subsections.

3.1. Local Gaussian Process

The surrogate model plays an important role in Bayesian

optimization. A suitable surrogate model can effectively fit

the objective function and contribute to the good

performance of the algorithm. Conversely, the algorithm

will perform poorly if the surrogate model differs

significantly to the objective function. Gaussian process is

used for modeling functions, and it has a nice property: all

joint distribution, marginal distribution, and posterior

distribution of finite variables are Gaussian distribution.

Therefore, the Gaussian process is the most commonly seen

surrogate model in BO and has achieved good results in

real-world applications. The performance of BO is largely

attributed to the global Gaussian process that accurately fits

the objective function. When handling low dimensional

problems, a small number of samples are sufficient to train

the global Gaussian process. However, when handling

high-dimensional problems, a larger number of samples are

required. This lowers the efficiency of the algorithm.

Inspired by the trust region algorithm, we abandon the

attempt to fit the entire objective function and try to fit a

local region, this approach is similar to TuRBO [20]. The

major difference is that TuRBO uses the entire data set to

train the Gaussian process. Only when optimizing the

acquisition function, it restricts the solution space to a trust

region. In contrast, we extract part of the data to train the

local Gaussian process. Specifically, denote the observed

data as 𝐷𝐷𝑛𝑛 = {(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡)}𝑡𝑡=1𝑛𝑛 , the scale parameter of the trust

region as ℓ, and the current best solution as 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡. The

superscript 𝑛𝑛 represents the 𝑛𝑛th iteration of the algorithm.

We use the following formula to extract point set 𝐷𝐷𝑛𝑛′ from 𝐷𝐷𝑛𝑛 to train the local Gaussian process. 𝐷𝐷𝑛𝑛′ = �(𝑥𝑥 ,𝑦𝑦) | �𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡 − 𝑥𝑥�2 ≤ 𝜂𝜂ℓ , (𝑥𝑥, 𝑦𝑦) ∈ 𝐷𝐷𝑛𝑛�

(3.1)

In the formula, 𝜂𝜂 = Max 𝜆𝜆i , 𝑖𝑖 ∈ {1,2. . .𝑑𝑑} , 𝜆𝜆i is the

scale hyperparameter of the Gaussian process, and 𝑑𝑑 is the

dimension of the objective function input. The parameter 𝜂𝜂

is used to guarantee that the trust region associated with the

local Gaussian process covers the trust region associated

with the acquisition function. The scale parameter ℓ of the

trust region gradually decreases as the number of iterations

grows. Therefore, during the training process, the number

of samples used the local Gaussian process will be much

smaller than that in the global Gaussian process. This way,

the running time is greatly reduced. In addition, according

to our experiment, the local Gaussian process has similar or

even better fitting quality than the global Gaussian process.

Algorithm 1: Local Gaussian process algorithm

Input: 𝐷𝐷𝑛𝑛 = {(𝑥𝑥𝑡𝑡 ,𝑦𝑦𝑡𝑡)}𝑡𝑡=1𝑛𝑛 : The observed data: ℓ : The

scale parameter of the trust region; 𝜂𝜂: The scaling

factor; 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡: The current best point

1: n is the number of points in 𝐷𝐷𝑛𝑛, 𝐷𝐷𝑛𝑛′ is the valid points

set.

2: for i = 1 to n do

3: if �𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡 − 𝑥𝑥𝑖𝑖� ≤ 𝜂𝜂ℓ then

4: 𝐷𝐷′ = 𝐷𝐷′ ∪ {𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}

5: end if

6: end for

7: use the update data 𝐷𝐷′ to train the Gaussian process

Output: The Posterior of the Multivariate Gaussian

distribution

3.2. Local GP-UCB

In the previous subsection, by employing the trust region

method, we have successfully applied the local Gaussian

process to the local fitting of the objective function. To

force the algorithm to pay more attention to local

exploitation, we need to restrict the solution space of the

newly generated samples. In other words, we hope that the

next batch of samples can be generated near the current

best solution. This is the effect of the trust region

associated with the acquisition function. The approach used

in [19] is adopted here to determine the trust region

associated with the acquisition function. Let ℓ denote the

scale parameter of the trust region, 𝜆𝜆 denote the

length-scale hyperparameter of the local Gaussian process,

and 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡 denote the current best solution. Then, the trust

region is a hyper-rectangle centered at 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡 , with

volume ℓ𝑑𝑑 . For each dimension, the side length of the

hyper-rectangle is computed as 𝐿𝐿(𝑖𝑖) =

𝜆𝜆(𝑖𝑖) ℓ �∏ 𝜆𝜆(𝑗𝑗)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄⁄ , where 𝑑𝑑 is the dimension of the

input variables of the objective function. We have restricted

the solution space of the new samples to the

hyper-rectangle centered at the current best solution. Let Ω

denote the solution space formed by the hyper-rectangle.

We now illustrate the method used to generate the samples

for evaluation.

The GP-UCB formulated in (2.3) is used in our

algorithm as the acquisition function. The original

Bayesian optimization algorithm equipped with GP-UCB

can only generate one candidate in each iteration. We use a

simple method to extend the algorithm, so that multiple

candidate points can be generated at a time. Specifically,

we generate a point set {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑛𝑛 by uniformly sampling

points from the solution space Ω of the acquisition

function 𝒶𝒶ucb(𝑥𝑥;𝐷𝐷𝑛𝑛). Then, we substitute it into the mean 𝜇𝜇𝑛𝑛(𝑥𝑥) and variance 𝜎𝜎𝑛𝑛(𝑥𝑥) of the posterior distribution of

the acquisition function and obtain the corresponding

function value {𝜇𝜇𝑖𝑖}𝑖𝑖=1𝑛𝑛 and {𝜎𝜎𝑖𝑖}𝑖𝑖=1𝑛𝑛 . Subsequently, we use

max-min normalization to normalize the posterior mean

and variance. The normalized mean and variance are

denoted by {𝜇𝜇𝑖𝑖′}𝑖𝑖=1𝑛𝑛 and {𝜎𝜎𝑖𝑖′}𝑖𝑖=1𝑛𝑛 respectively. Finally, the

acquisition function value is obtained by {𝒶𝒶𝑖𝑖| 𝒶𝒶𝑖𝑖 = 𝜇𝜇𝑖𝑖′ +𝛽𝛽𝑛𝑛𝜎𝜎𝑖𝑖′}𝑖𝑖=1𝑛𝑛 . In order to generate 𝑚𝑚(𝑚𝑚 > 1) candidate points

at a time, we sort {𝒶𝒶𝑖𝑖}𝑖𝑖=1𝑛𝑛 in ascending order and select the

first 𝑚𝑚 acquisition function values. The points

(represented by the input variables 𝑥𝑥𝑖𝑖) corresponding to the 𝑚𝑚 function values are collected to form the point set

{𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑚𝑚 used for next evaluation. By uniformly sampling

points in the restricted solution space of the acquisition

function, we not only avoid optimizing the complex

acquisition function, but also generate a set of samples

without much computational cost. The theoretical analysis

of the method is given in Section 4.

Algorithm 2: Optimizing GP-USB algorithm

Input: 𝜇𝜇𝑛𝑛(𝑥𝑥): The Posterior mean function; 𝜎𝜎𝑛𝑛(𝑥𝑥): The

Posterior variance function; 𝛽𝛽𝑛𝑛 : To balance

exploration; m: The batch size; n: The uniform

sampling size

1: Generate n samples {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑛𝑛 by uniformly sampling

from the solution space Ω, A=∅, B=∅.

2: for i = 1 to n do

3: 𝐴𝐴 = 𝐴𝐴 ∪ 𝜇𝜇𝑛𝑛(𝑥𝑥𝑖𝑖), 𝐵𝐵 = 𝐵𝐵 ∪ 𝜎𝜎𝑛𝑛(𝑥𝑥𝑖𝑖)

4: end for

5: Let LA, UA, LB, UB denote the minimal, maximum values

of set A, B respectively, C=∅.

6: for i = 1 to n do

7: 𝐴𝐴𝑖𝑖 =
𝐴𝐴𝑖𝑖−𝐿𝐿𝐴𝐴𝑈𝑈𝐴𝐴−𝐿𝐿𝐴𝐴, 𝐵𝐵𝑖𝑖 =

𝐵𝐵𝑖𝑖−𝐿𝐿𝐴𝐴𝑈𝑈𝐴𝐴−𝐿𝐿𝐴𝐴 // Ai, Bi is the i-th element

of set A, B respectively.

8: 𝐶𝐶 = 𝐶𝐶 ∪ (𝐴𝐴𝑖𝑖 + 𝛽𝛽𝑛𝑛𝐵𝐵𝑖𝑖)

9: end for

10: we sort C in ascending order and select the first m

acquisition function values.

Output: m points {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑛𝑛 corresponding to the m

acquisition function values.

3.3. Outline of TRLBO

In the previous two subsections, we introduce trust

regions into the probabilistic surrogate model and the

acquisition function of BO. However, there is still one

important step to emphasize before completing our

algorithm, that is, the adjustment strategy of trust regions.

It is worth noting that the trust regions associated with the

local Gaussian process and the acquisition function are

controlled by the same scale parameter ℓ and ℓ ∈
[ℓmin , ℓmax]. The primitive trust region algorithm adjusts

the trust region according to the merit function formulated

in (2.6), which represents the ratio between the expected

decrement and the actual decrement. In contrast, we use the

stochastic model to locally approximate the objective

function. Therefore, the adjustment strategy in [19] is

adopted in TRLBO. In each iteration, among all samples, if

one sample is better than the current best solution, then we

termed it a successful trial. Otherwise, a failed trial is

recorded. We define two threshold values 𝜏𝜏fail and 𝜏𝜏succ
to trigger the process of adjusting the size of trust regions.

If the number of successive failed trials reaches 𝜏𝜏fail, we

shrink the trust region by half: ℓ ← ℓ/2. Similarly, if the

number of successive successful trials reaches 𝜏𝜏succ, we

enlarge the trust region by a factor of two: ℓ ←
min{2ℓ ,ℓmax}. The min operator is to guarantee that 𝓇𝓇

does not exceed the upper limit. Finally, all the procedures

of our algorithm are shown as follows.

Algorithm 3: TRLBO algorithm

1: Initialize the trust region scale parameter ℓ，initialize q

evaluation points {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑞𝑞
, compute their objective

function values and store the observation data 𝐷𝐷 =

{(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑞𝑞
.

2: Train the local Gaussian process (Algorithm 1).

3: Generate m evaluation points (Algorithm 2), calculate

their objective function value {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑚𝑚 , and add the new

observation data to the data set 𝐷𝐷, 𝐷𝐷 = 𝐷𝐷 ∪ {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)}𝑖𝑖=1𝑚𝑚 .

4: Adjust the trust region length ℓ according to the

optimization results of Step 3, if ℓ ≤ ℓmin, terminate the

algorithm; otherwise, go to Step 2.

4. Theoretical Analysis of TRLBO

4.1. Exploration vs. Exploitation

Trust region algorithm is a local optimization algorithm.

Although it cannot guarantee to find the global optimum, it

has a global convergence property. We introduce the main

idea of the trust region algorithm to BO. From a theoretical

point of view, our algorithm possesses the local

optimization property. In each iteration of our algorithm, it

is easy to infer from the trust region adjustment strategy

that the trust region length gradually decreases. This

property forces our algorithm to pay more attention to local

exploitation. Overall, we have deduced several theoretical

results. For the sake of illustration, we first introduce some

relevant notations. We map the domain of the objective

function to the space Ω = [0,1]𝑑𝑑. The current best solution

of the algorithm is denoted by 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡 and the scale

parameter of the trust region is denoted by ℓ(ℓ ≤ 1). λ is

the scale hyperparameter of the Gaussian process, and D is

the observed data set. Moreover, we define the following

quantities. Ω𝑔𝑔𝑜𝑜 = �(𝑥𝑥 , 𝑦𝑦) | �𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡 − 𝑥𝑥�2 < ℓ , (𝑥𝑥 , 𝑦𝑦) ∈ 𝐷𝐷�（4.1.1）

Ω𝑎𝑎𝑎𝑎𝑞𝑞 = �(𝑥𝑥 ,𝑦𝑦) |𝑥𝑥(𝑖𝑖) ∈ [𝑙𝑙𝑖𝑖 ,𝑢𝑢𝑖𝑖], (𝑥𝑥 , 𝑦𝑦) ∈ 𝐷𝐷, 𝑖𝑖
∈ {1,2. . .𝑑𝑑}�（4.1.2）

𝑙𝑙𝑖𝑖 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡(𝑖𝑖) − 1

2
𝜆𝜆(𝑖𝑖)ℓ �� 𝜆𝜆(𝑖𝑖)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄� （4.1.3）

𝑢𝑢𝑖𝑖 = 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡(𝑖𝑖)
+

1

2
𝜆𝜆(𝑖𝑖)ℓ �� 𝜆𝜆(𝑖𝑖)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄� （4.1.4）

Proposition 1 Let y denote the event Ω𝑔𝑔𝑜𝑜 ≠ ∅ and x

denote the event �(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)|(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) ∈ Ω𝑔𝑔𝑜𝑜 , (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) ∉Ω𝑎𝑎𝑎𝑎𝑞𝑞� ≠ ∅, then we have:

lim𝓇𝓇→0P(x|y) = 0

Proof: Note that the trust region associated with the local

Gaussian process is a sphere centered at the current best

solution 𝑥𝑥𝑜𝑜𝑜𝑜𝑡𝑡，with radius equals to 𝜂𝜂ℓ. Its volume is

computed as V = 𝜋𝜋𝑑𝑑 2⁄ (𝜂𝜂ℓ)𝑑𝑑 Γ(1 + 𝑑𝑑 2⁄)⁄ . The trust

region associated with the acquisition function is a

hyper-rectangle with its side length equals to 𝐿𝐿(𝑖𝑖) =𝜆𝜆(𝑖𝑖) ℓ �∏ 𝜆𝜆(𝑗𝑗)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄⁄ , where d is the dimension of the

objective function. Note also that the domain of the

objective function is [0,1]𝑑𝑑 . When 𝐿𝐿(𝑖𝑖) ≥ 1 , we

take 𝐿𝐿(𝑖𝑖) = 1 . Let A = {1,2. . .𝑑𝑑} , we discuss two

different cases.

1）For every 𝑖𝑖 ∈ A,𝐿𝐿(𝑖𝑖) < 1. In this case, the volume of the

hyper-rectangle is ℓ𝑑𝑑, and we assume that the observed

point set Ω𝑔𝑔𝑜𝑜 used for training the local Gaussian

process is not empty (there is no need to train if it is

empty). Furthermore, for simplicity, we assume that the

sample points not in Ω𝑔𝑔𝑜𝑜 are uniformly distributed in

the space Ω (the real case will be more complex). The

probability that there exists observed data not in Ω𝑔𝑔𝑜𝑜

is computed as:

P(x|y) =
V− ℓ𝑑𝑑

1
= � 𝜋𝜋𝑑𝑑 2⁄ 𝜂𝜂𝑑𝑑Γ(1 + 𝑑𝑑 2⁄)

− 1� ℓ𝑑𝑑（4.1.5）

It is obvious that when ℓ → 0, we have lim𝓇𝓇→0ℙ(x|y) =

lim𝓇𝓇→0 � 𝜋𝜋𝑑𝑑 2⁄ 𝜂𝜂𝑑𝑑Γ(1+𝑑𝑑 2⁄)
− 1� ℓ𝑑𝑑 = 0

2）There exists 𝑖𝑖 ∈ A, 𝐿𝐿(𝑖𝑖) ≥ 1. If for every 𝑖𝑖 ∈ A, 𝐿𝐿(𝑖𝑖) ≥
1, since 𝐿𝐿(𝑖𝑖) = 𝜆𝜆(𝑖𝑖) ℓ �∏ 𝜆𝜆(𝑗𝑗)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄⁄ , we have ∏ 𝐿𝐿(𝑖𝑖)𝑑𝑑𝑖𝑖=1 =

∏ �𝜆𝜆(𝑖𝑖) ℓ �∏ 𝜆𝜆(𝑗𝑗)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄⁄ �𝑑𝑑𝑖𝑖=1 = ℓ𝑑𝑑 ≥ 1 , this leads to a

contradiction. Therefore we can assume that there exists a

set B ∉ ∅, for every 𝑖𝑖 ∈ B ⊂ {1,2. . .𝑑𝑑}, 𝐿𝐿(𝑖𝑖) = 1. At this

point, the volume of the hyper-rectangle can be calculated

as ℓ|A|−|B|∏ 𝜆𝜆(𝑖𝑖) �∏ 𝜆𝜆(𝑗𝑗)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄�𝑖𝑖∈A−B . Let ζ =

∏ 𝜆𝜆(𝑖𝑖) �∏ 𝜆𝜆(𝑗𝑗)𝑛𝑛𝑗𝑗=1 �1 𝑑𝑑⁄�𝑖𝑖∈A−B and α = |A|− |B| (ζ and α

are constants), then P(x|y) = (V− ζℓα) 1⁄ =𝜋𝜋𝑑𝑑 2⁄ (𝜂𝜂ℓ)𝑑𝑑 Γ(1 + 𝑑𝑑 2⁄)⁄ − ζℓα . It is easy to learn that

lim𝓇𝓇→0P(x|y) = lim𝓇𝓇→0𝜋𝜋𝑑𝑑 2⁄ (𝜂𝜂ℓ)𝑑𝑑 Γ(1 + 𝑑𝑑 2⁄)⁄ − ζℓα = 0.

According to the corollary, as the scale parameter of the

trust region decreases, our algorithm behaves similarly to

the primitive Bayesian optimization algorithm whose

solution space shrinks iteration by iteration. This property

forces our algorithm to pay more attention to local

exploitation. Conversely, when the scale parameter of the

trust region is not so small, the solution space does not

entirely overlap with the trust region used for determining

the training data of the local Gaussian process. This

guarantees the exploration ability of the algorithm.

4.2. Effect of using random search to optimize the

acquisition function

From the theoretical point of view, it is very difficult to

find the global minimum (maximum) of a non-convex

function. Therefore, in practice, we change our goal to

finding a suboptimal solution. Some common algorithms

for optimizing the acquisition function are DIRECT,

multi-start quasi-Newton hill-climbing approach, CMA-ES,

and multi-start local search. In our algorithm, we use

random search to optimize the acquisition function. In the

following, we analyze the efficiency of the approach. We

first provide some basic definitions and illustrations.

Definition 1 Let 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 = arg min 𝑓𝑓(𝑥𝑥),𝑥𝑥 ∈ Ω , Ω is a

compact subset of R𝑛𝑛 , 𝑥𝑥 is termed an ϵ − optimal

solution if it satisfies the following conditions:

There exists a hyper-cube A = {𝑥𝑥| ‖𝑥𝑥‖∞ = 𝜖𝜖} ⊂ Ω, such

that 𝑥𝑥 ∈ A and 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 ∈ A, namely 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑥𝑥 are in the

same grid.

Now we regard the scale parameter of the trust region as

a random variable ℒ, its corresponding value is ℓ. Let d

denote the dimension of the input variables of the objective

function. We divide the solution space of the new samples

into k = �ℓ𝑑𝑑 𝜖𝜖𝑑𝑑⁄ � grids with size 𝜖𝜖𝑑𝑑 . When 𝜖𝜖 is

sufficiently small, the dividing error can be omitted.

Moreover, when using random search to optimize the

acquisition function, the number of samples is set to 100𝑑𝑑.

We use 𝑚𝑚 to represent the number. Supposing y is the

event that an ϵ − optimal solution is obtained by using

the sampling method, we have

P(𝑦𝑦|ℒ = ℓ) = 1− �𝑘𝑘 − 1𝑘𝑘 �𝑚𝑚
≈ 1− �1− �𝜖𝜖ℓ�𝑑𝑑�𝑚𝑚（4.2.1）

The probability is very small. However, P(𝑦𝑦|ℒ = ℓ)

will increase as ℓ → 𝜖𝜖 . Next, we analyze the expected

number of iterations the algorithm required to find a local

optimal solution or successively find solutions better than

the current best solution. We first assume that when ℓ

reduces to a threshold value, say 𝜖𝜖, then the algorithm has

found a local optimal solution. Otherwise, if the current

solution is not a local optimum, when 𝜖𝜖 is sufficiently

small, the probability that the random search finds a better

solution is p ≈ 1/2. When there are 100d sample points,

the probability of finding a better solution becomes 𝑞𝑞 =

1− (1− 𝑝𝑝)100𝑑𝑑. It can be inferred from the expression of 𝑞𝑞 that, when 𝑝𝑝 = 0.01,𝑑𝑑 = 10 , 𝑞𝑞 exceeds 0.99.

Therefore, we can take the fact that the current solution is

the local optimum.

Note that as the scale parameter ℓ of the trust region

changes, it only takes two values, ℓ and 2ℓ. Therefore,

when ℓ is changing within the interval [𝜖𝜖, 1], its choices

are very limited. We can regard it as a random variable

whose value are taken from a finite state space S =

{0,1,2. . .𝑛𝑛}. We denote the random variable as {ℒ𝑖𝑖}. State 𝑖𝑖(𝑖𝑖 ∈ S) indicates the case ℓ = 2𝑖𝑖𝜖𝜖 . When 𝜖𝜖 is

sufficiently small, n is approximated as 𝑛𝑛 = ⌈𝑙𝑙𝑙𝑙𝑔𝑔2(1 𝜖𝜖⁄)⌉.
For the convenience of analysis, we now take {ℒ𝑖𝑖} as a

random walking process. Let P𝑖𝑖,𝑖𝑖+1 = 𝑝𝑝 denote the

probability of moving a step right. Starting from state j, the

probability that {ℒ𝑖𝑖} reaches state 𝑛𝑛 before reaching state

0 is α(𝑗𝑗). According to property of random walking, we

have α(𝑗𝑗) = 𝑝𝑝α(𝑗𝑗 + 1) + (1− 𝑝𝑝)α(𝑗𝑗 − 1)，j = 1,2, . . .𝑛𝑛 − 1，

It can be simplified to 𝛼𝛼(𝑗𝑗 + 1)− 𝛼𝛼(𝑗𝑗) =
1− 𝑝𝑝𝑝𝑝 �𝛼𝛼(𝑗𝑗)− 𝛼𝛼(𝑗𝑗 − 1)�（4.2.2）

Given that α(0) = 0，we have， 𝛼𝛼(2)− 𝛼𝛼(1) =
1− 𝑝𝑝𝑝𝑝 �𝛼𝛼(1)− 𝛼𝛼(0)�
=

1− 𝑝𝑝𝑝𝑝 𝛼𝛼(1) （4.2.3）

𝛼𝛼(3)− 𝛼𝛼(2) =
1− 𝑝𝑝𝑝𝑝 �𝛼𝛼(2)− 𝛼𝛼(1)�
= �1− 𝑝𝑝𝑝𝑝 �2 𝛼𝛼(1) （4.2.4）

.

.

. 𝛼𝛼(𝑛𝑛)− 𝛼𝛼(𝑛𝑛 − 1) = �1− 𝑝𝑝𝑝𝑝 �𝑛𝑛−1 𝛼𝛼(1) （4.2.5）

Adding the above n-1 equations and substituting α(n) = 1,

we can deduce that when 𝑝𝑝 ≠ 1/2,

𝛼𝛼(𝑗𝑗) =
1− �1− 𝑝𝑝𝑝𝑝 �𝑗𝑗
1− �1− 𝑝𝑝𝑝𝑝 �𝑛𝑛 （4.2.6）

when 𝑝𝑝 = 1/2, 𝛼𝛼(𝑗𝑗) = 𝑗𝑗 𝑛𝑛⁄ （4.2.7）

Let B denote the number of steps required for {𝐿𝐿𝑖𝑖} to start

from state j, and finally reach state 0 or n. We then

compute the expected value of B, namely, 𝐸𝐸(𝐵𝐵|𝐿𝐿0 = 𝑗𝑗).

Let 𝑋𝑋𝑖𝑖 ∈ {−1,1}, 𝑖𝑖 ≥ 1 denote the outcome of L after the 𝑗𝑗th change, and for 𝐵𝐵 we have,

𝐵𝐵 = min �𝑚𝑚|�𝑋𝑋𝑖𝑖𝑚𝑚
𝑖𝑖=1 = −𝑗𝑗 𝑙𝑙𝑟𝑟�𝑋𝑋𝑖𝑖𝑚𝑚

𝑖𝑖=1 = 𝑛𝑛 − 𝑗𝑗 �（4.2.8）

1）when 𝑝𝑝 ≠ 1/2.

According to Wald equation, we can get

𝐸𝐸 ��𝑋𝑋𝑖𝑖𝐵𝐵
𝑖𝑖=1 � = 𝐸𝐸(𝑋𝑋𝑖𝑖) ∗ 𝐸𝐸(𝐵𝐵|𝐿𝐿0 = 𝑗𝑗)（4.2.9）

Given P(∑ 𝑋𝑋𝑖𝑖𝑚𝑚𝑖𝑖=1 = 𝑛𝑛 − 𝑗𝑗) = 𝛼𝛼(𝑗𝑗)，P(∑ 𝑋𝑋𝑖𝑖𝑚𝑚𝑖𝑖=1 = −𝑗𝑗) =

1− 𝛼𝛼(𝑗𝑗)，𝐸𝐸(𝑋𝑋𝑖𝑖) = 2𝑝𝑝 − 1, the expression becomes

E��𝑋𝑋𝑖𝑖𝐵𝐵
𝑖𝑖=1 � = 𝑛𝑛𝛼𝛼(𝑗𝑗)− 𝑗𝑗（4.2.10）

Substitute the above formula into 4.2.9, the expected value

of B is given by

𝐸𝐸(𝐵𝐵|𝐿𝐿0 = 𝑗𝑗) =
1

2𝑝𝑝 − 1⎩⎪⎨
⎪⎧�1− �1− 𝑝𝑝𝑝𝑝 �𝑗𝑗� ∗ 𝑛𝑛

1− �1− 𝑝𝑝𝑝𝑝 �𝑛𝑛
− 𝑗𝑗⎭⎪⎬

⎪⎫
（4.2.11）

2）when 𝑝𝑝 = 1/2.

Let 𝐺𝐺(𝑗𝑗) = 𝐸𝐸(𝐵𝐵|𝐿𝐿0 = 𝑗𝑗), it is obvious that 𝐺𝐺(0) =𝐺𝐺(𝑛𝑛) = 0, and consider the case of one step of movement,

we have 𝐺𝐺(𝑗𝑗) = 1 +
1

2
𝐺𝐺(𝑗𝑗 + 1) +

1

2
𝐺𝐺(𝑗𝑗 − 1)（4.2.12）

(4.2.12) is an in-homogeneous linear difference equation.

Solving the equation gives: 𝐺𝐺(𝑗𝑗) = 𝐸𝐸(𝐵𝐵|𝐿𝐿0 = 𝑗𝑗) = 𝑗𝑗(𝑛𝑛 − 𝑗𝑗)（4.2.13）

Note that the maximum value of 𝑗𝑗(𝑛𝑛 − 𝑗𝑗) is 𝑛𝑛2 4⁄ and 𝑛𝑛 = ⌈𝑙𝑙𝑙𝑙𝑔𝑔2(1 𝜖𝜖⁄)⌉. Even 𝜖𝜖 takes a very small value, the

value of 𝑛𝑛 is acceptable. Refer to [40] and [41] for more

detailed descriptions of random walking.

From the above analysis it can be seen that even in the

worst case, the number of iterations taken by our algorithm

to find a local optimum is acceptable. In addition,

according to the experimental results, given the same

number of iterations, the running time spent by our

algorithm is shorter than other algorithms which perform

exact optimization of the acquisition function.

5. Numerical Experiment

In the experiment, three commonly used synthetic

functions (i.e., Levy, Griewank, and Ackley) and two

real-world problems (i.e., a 14D robot pushing problem and

a 60D rover trajectory planning problem) are used to test

the performance of algorithms. For the synthetic functions,

three different numbers of dimensions (i.e., 10, 20 and 50)

are tested. The main part of our algorithm is built upon the

framework of TuRBO [19]. Besides the parameters of the

algorithmic framework, we introduce two new parameters,

the acquisition function parameter 𝛽𝛽 of GP-UCB and the

radius 𝑟𝑟 associated with the local Gaussian process. Their

values are set to 𝑑𝑑ℓ and ‖λ‖∞ℓ respectively, where 𝑑𝑑 is

dimension of the input variables of the objective function

and λ is the scale hyper-parameter of the local Gaussian

process. In addition, we generate new sample points in a

batch manner and the batch size is fixed at 10. The number

of the initial sample points is 20. See [19] for more detailed

descriptions of the other parameters. To evaluate the

performance of our algorithm, we compare it with TuRBO1,

TuRBOm, CMA-ES, and RS (Random Search). TuRBO1,

proposed by Eriksson [19], is a Bayesian optimization

algorithm with a single trust region. The trust region is used

to restrict the solution space of the acquisition function.

TuRBOm extends TuRBO1 by increasing the number of

trust regions to m. In our experiment, m=5. CMA-ES is one

of the most successfully evolutionary strategy algorithms.

It has exhibited good performance in real-world

applications, especially when handling median-scale

complex optimization problems. CMA-ES is a random

search algorithm. Its key idea is to use a multivariable

Gaussian distribution in the search space to guide the

search direction, and adjust the mean and covariance matrix

of the multivariable Gaussian distribution in an adaptive

manner. In the experiment, we use the CMA-ES

implementation provided in the pycma library. Random

search algorithms are algorithms that focus solely on

exploration. It does not require any information about the

objective function and has a wide range of applications. It

performs very well in some types of problems. In the

experiment, we uniformly sample batches of points in the

solution space, and the batch size is set to 10. We run the

algorithms 30 times for each test function. All source code

is available at https://github.com/agier9/TRLBO.

Fig. 1 10D, 20D, and 50D Ackley function

Fig. 2 10D, 20D, and 50D Griewank

Fig. 3 10D, 20D, and 50D levy

Fig. 4 Minimum value of Ackley function in 30 trials

Fig. 5 Minimum value of Griewank function in 30 trials

Fig. 6 Minimum value of levy function in 30 trials

Fig. 7 Boxplot of the best value found by all algorithms with 30 trials for function Ackley

Fig. 8 boxplot of the best value found by all algorithms with 30 trials for function griewank

Fig. 9 Boxplot of the best value found by all algorithms with 30 trials for function levy

Synthetic function When handling synthetic function with 10,

20, and 50 dimensions, the number of function evaluations are

set to 1000, 2000, and 5000 respectively. From the

convergence graphs (Figs. 1-3）TRLBO, Turbo1, and Turbom

perform much better than CMA-ES and RS. In addition,

according to the convergence curve of RS, its performance is

not satisfying, this also shows that the tendency towards

exploration when BO is handling high-dimensional problems

is the main reason for its poor performance. Figs. 4-6 shows

the optima found by the algorithms over the 30 runs and Figs.

7-9 presents the corresponding box plots.

Robot pushing. The problem is about controlling a robot to

push two objectives to their target positions. The moving

trajectory of the robot is determined by a function with 14

parameters. The problem is first proposed by Wang [42] in

2017. Here, we set the number of objective function

evaluations to 10K. It can be observed from the

convergence graph that TRLBO, Turbo1, and Turbom are

superior to CMA-ES and random search. It is surprising

that the performance of CMA-ES is not as good as the

random search. Figs. 10-12 give the corresponding results.

Fig. 10 robot pushing

Fig. 11 Maximum reward of robot pushing problem in 30 trials.

Fig. 12 Boxplot of the best value found by all algorithms with 30 trials for robot pushing problem.

Rover trajectory planning. This is a trajectory

optimization problem in 2D, meant to emulate a rover

navigation task. The objective function is a non-smooth,

discontinuous function. More detailed descriptions of the

problem can be found in [43]. In our experiment, the

number of objective function evaluations is set to 20K.

From the convergence graphs depicted in Fig. 5 (the top

subgraph), it can be seen that TRLBO, Turbo1, Turbom,

and CMA-ES have similar performance, followed by the

random search. Fig. 13-15 show the optima found by the

algorithms over 30 runs and the right subgraph in Figs.

13-15 present the corresponding box plot.

Fig. 13 Convergence result of the rover trajectory planning problem

Fig. 14 Maximum reward of rover trajectory planning problem in 30 trials

Fig. 15 Boxplot result of the rover trajectory planning problem in 30 trials

Moreover, we record the best, worst, and mean results of

the algorithm on all test problems over 30 runs. From the

numerical results, when solving the majority of the

synthetic functions, TRLBO is the best among all the

compared to the rest algorithms. CMA-ES excepts to

perform extremely well on the Griewank function. Given a

sufficient number of function evaluations, the solutions

found by CMA-EA are the near global optimal solution.

For the 10D, 20D, and 50D problems, the number of

function evaluations is set to 1000, 2000, and 5000. The

performance of CMA-EA on low-dimensional problems is

not as good as in high-dimensional problems. In addition,

when solving the robot pushing problem, TRLBO performs

slightly better than Turbo1 and Turbom. For the Rover

trajectory planning problem, Turbo1 and Turbom perform

the best, followed by TRLBO and CMA-ES. Random

Search is the worst among all the algorithms. The median

performance of TRLBO is probably due to the non-smooth,

non-continuous property of the objective function. The

experimental results are listed in Table 1, where the best

results are marked in bold.

Table 1 10D synthetic function problems result

Problem Result TRLBO Turbo1 Turbom CMA-ES Random serach

Ackley

Best 0.515 1.11 1.013 18.604 12.608

Mean 0.802 1.548 1.56 19.54 17.925

Worst 1.312 1.988 2.028 20.008 19.134

Griewank

Best 0.389 0.835 0.759 0.422 49.863

Mean 0.865 0.978 0.992 0.833 72.141

Worst 1.005 1.093 1.074 0.988 94.849

Levy

Best 0.002 0.028 0.025 0.184 5.41

Mean 0.089 1.158 0.675 15.464 13.89

Worst 0.55 3.384 3.78 26.226 21.652

Table 2 20D synthetic function problems result

Problem Result TRLBO Turbo1 Turbom CMA-ES Random serach

Ackley

Best 1.057 1.702 1.592 18.117 18.979

Mean 1.315 2.089 2.093 19.501 19.702

Worst 1.863 2.617 2.537 19.843 20.175

Griewank

Best 1.012 1.095 1.081 0.284 191.637

Mean 1.031 1.139 1.149 0.624 233.343

Worst 1.049 1.229 1.253 0.991 268.245

Levy

Best 0.016 0.061 0.234 19.064 39.483

Mean 0.731 4.02 2.537 35.351 59.969

Worst 3.478 18.173 11.117 51.794 78.741

Table 3 50D synthetic function problems result

Problem Result TRLBO Turbo1 Turbom CMA-ES Random serach

Ackley

Best 0.842 2.22 1.874 19.273 20.216

Mean 1.024 2.593 2.533 19.573 20.504

Worst 1.22 3.04 2.906 19.76 20.64

Griewank

Best 1.042 1.27 1.216 0.1 736.473

Mean 1.053 2.185 2.162 0.21 840.669

Worst 1.068 5.225 16.073 0.342 902.208

Levy

Best 0.729 1.221 1.049 64.608 231.775

Mean 5.019 4.489 5.291 95.843 280.086

Worst 10.389 10.086 11.441 123.404 314.921

Table 4 14D Robot pushing problems result

Problem Result TRLBO Turbo1 Turbom CMA-ES Random serach

14D Robot pushing

Best 11.036 11.01 10.962 11.07 8.281

Mean 10.729 10.627 10.708 5.852 6.41

Worst 9.752 7.959 10.182 0.958 5.815

6. Conclusion

Bayesian optimization is an effective black-box

optimization algorithm. It shows good performance when

optimizing low-dimensional objective functions. However,

extending BO to tackle high-dimensional problems is not

an easy task. In this paper, we proposed a local Bayesian

optimization algorithm based on the idea of the trust region.

The algorithm incorporates the local Gaussian process and

eliminates the need for exact optimization of the

acquisition function. The experimental result on a number

of test problems shows that our algorithm has similar or

even better performance than other Bayesian optimization

algorithms. Due to the limited computational resources, we

did not test our algorithm on higher dimensional problems.

In the future, we intend to adopt multiple local Gaussian

processes to fit different parts of the search space of the

objective function. From the optimization point of view, the

information in local data is not necessarily lower than

global data.

Compliance with Ethical Standards statements

Ethical approval This paper does not contain any studies

with human participants or animals performed by any of

the authors.

Funding details This work was supported by the Key

Project of Science and Technology Innovation 2030

supported by the Ministry of Science and Technology of

China (Grant No. 2018AAA0101301), the Key Projects of

Artificial Intelligence of High School in Guangdong

Province (No. 2019KZDZX1011), Innovation Project of

High School in Guangdong Province (No.

2018KTSCX314), Dongguan Social Development Science

and Technology Project (No. 20211800904722) and

Dongguan Science and Technology Special Commissioner

Project (No. 20201800500442).

Conflict of interest The authors declare that they have no

conflict of interest.

Informed Consent The authors declare that they give

informed consent of this paper.

Code availability Codes are available and could be shared

at any time when readers ask. They can send a mail on the

address displayed in the top of the article. Codes are

programmed under Python language.

Authorship contributions

All authors contributed to the study conception and design.

Experiments, data collection and written were performed

by Anbing Fu. The conceptualization and methodology

were performed by Qingxia Li. The reviewing and editing

were performed by Wenhong Wei and Yuhui Zhang. The all

authors read and approved the final manuscript.

Reference

[1] Shahriari, B., Swersky, K.,Wang, Z., Adams, R.P., &

Freitas, N.D. (2016). Taking the Human Out of the Loop: A

Review of Bayesian Optimization. Proceedings of the IEEE,

104, 148-175.

[2] Gardner, J.R., Pleiss, G., Bindel, D.S., Weinberger,

K.Q., & Wilson, A.G. (2018). GPyTorch: Blackbox

Matrix-Matrix Gaussian Process Inference with GPU

Acceleration. NeurIPS.

[3] Brochu, E., Freitas, N.D., & Ghosh, A. (2007). Active

Preference Learning with Discrete Choice Data. NIPS.

[4] Chen, B., Castro, R.M., & Krause, A. (2012). Joint

Optimization and Variable Selection of High-dimensional

Gaussian Processes. ICML.

[5] Rolland, P., Scarlett, J., Bogunovic, I., & Cevher, V.

(2018). High-Dimensional Bayesian Optimization via

Additive Models with Overlapping Groups. ArXiv,

abs/1802.07028.

[6] Mutný, M., & Krause, A. (2018). Efficient High

Dimensional Bayesian Optimization with Additivity and

Quadrature Fourier Features. NeurIPS.

[7] Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N.,

Sundaram, N., Patwary, M.M., Prabhat,& Adams, R.P.

(2015). Scalable Bayesian Optimization Using Deep Neural

Networks. ICML.

[8] Lakshminarayanan, B., Roy, D.M., & Teh, Y.W. (2016).

Mondrian Forests for Large-Scale Regression when

Uncertainty Matters. ArXiv, abs/1506.03805.

[9] Binois, M., Ginsbourger, D., & Roustant, O. (2015).

AWarped Kernel Improving Robustness in Bayesian

Optimization Via Random Embeddings. LION.

[10] Binois, M., Ginsbourger, D., & Roustant, O. (2020).

On the choice of the low-dimensional domain for global

optimization via random embeddings. Journal of Global

Optimization, 76, 69-90.

[11] CGardner, J.R., Guo, C., Weinberger, K.Q., Garnett, R.,

& Grosse, R.B. (2017). Discovering and Exploiting

Additive Structure for Bayesian Optimization. AISTATS.

[12] Kandasamy, K., Schneider, J.G., & Póczos, B. (2015).

High Dimensional Bayesian Optimisation and Bandits via

Additive Models. ICML.

[13] Nayebi, A., Munteanu, A., & Poloczek, M. (2019). A

Framework for Bayesian Optimization in Embedded

Subspaces. ICML.

[14] Wang, Z., Zoghi, M., Hutter, F., Matheson, D., &

Freitas, N.D. (2016). Bayesian Optimization in a Billion

Dimensions via Random Embeddings. J. Artif. Intell. Res.,

55, 361-387.

[15] Wang, Z., Gehring, C., Kohli, P., & Jegelka, S. (2018).

Batched Large-scale Bayesian Optimization in

High-dimensional Spaces. ArXiv, abs/1706.01445.

[16] Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish,

N., Sundaram, N., Patwary, M.M., Prabhat, & Adams, R.P.

(2015). Scalable Bayesian Optimization Using Deep Neural

Networks. ICML.

[17] McIntire, M., Ratner, D., & Ermon, S. (2016). Sparse

Gaussian Processes for Bayesian Optimization. UAI.

[18] Wang, Z., Gehring, C., Kohli, P., & Jegelka, S. (2018).

Batched Large-scale Bayesian Optimization in

High-dimensional Spaces. ArXiv, abs/1706.01445.

[19] Eriksson, D., Pearce, M., Gardner, J.R., Turner, R.D.,

& Poloczek, M. (2019). Scalable Global Optimization via

Local Bayesian Optimization. NeurIPS.

[20] Jones, D.R., Perttunen, C.D., & Stuckman, B.E.

(1993). Lipschitzian optimization without the Lipschitz

constant. Journal of Optimization Theory and Applications,

79, 157-181.

[21] Brochu, E., Cora, V.M., & Freitas, N.D. (2010). A

Tutorial on Bayesian Optimization of Expensive Cost

Functions, with Application to Active User Modeling and

Hierarchical Reinforcement Learning. ArXiv,

abs/1012.2599.

[22] Rasmussen, C.E., & Williams, C.K. (2009). Gaussian

Processes for Machine Learning. Adaptive computation and

machine learning.

[23] Kushner, H.J. (1964). A New Method of Locating the

Maximum Point of an Arbitrary Multipeak Curve in the

Presence of Noise. Journal of Basic Engineering, 86,

97-106.

[24] Mockus, J. (1977). On Bayesian Methods for Seeking

the Extremum and their Application. IFIP Congress.

[25] Thompson, W.R. (1933). ON THE LIKELIHOOD

THAT ONE UNKNOWN PROBABILITY EXCEEDS

ANOTHER IN VIEW OF THE EVIDENCE OF TWO

SAMPLES. Biometrika, 25, 285-294.

[26] Villemonteix, J., Vázquez, E., & Walter, E. (2009). An

informational approach to the global optimization of

expensive-to-evaluate functions. Journal of Global

Optimization, 44, 509-534.

[27] Hennig, P., & Schuler, C.J. (2012). Entropy Search for

Information-Efficient Global Optimization. ArXiv,

abs/1112.1217.

[28] Hernández-Lobato, J., Hoffman, M.W., & Ghahramani,

Z. (2014). Predictive Entropy Search for Efficient Global

Optimization of Black-box Functions. NIPS.

[29] Scott,W.R., Frazier, P.,&Powell,W.B. (2011). The

Correlated Knowledge Gradient for Simulation

Optimization of Continuous Parameters using Gaussian

Process Regression. SIAM J. Optim., 21, 996-1026.

[30] Srinivas, N., Krause, A., Kakade, S.M., & Seeger,

M.W. (2010). Gaussian Process Optimization in the Bandit

Setting: No Regret and Experimental Design. ICML.

[31] Kocsis, L., & Szepesvari, C. (2006). Bandit Based

Monte-Carlo Planning. ECML.

[32] Contal, E., Buffoni, D., Robicquet, A., & Vayatis, N.

(2013). Parallel Gaussian Process Optimization with Upper

Confidence Bound and Pure Exploration. ECML/PKDD.

[33] Desautels, T., Krause, A., & Burdick, J.W. (2012).

Parallelizing Exploration-Exploitation Tradeoffs with

Gaussian Process Bandit Optimization. J. Mach. Learn.

Res., 15, 3873-3923.

[34] Ginsbourger, D., Riche, R.L., & Carraro, L. (2010).

Kriging is well-suited to parallelize optimization.

[35] Snoek, J., Larochelle, H., & Adams, R.P. (2012).

Practical Bayesian Optimization of Machine Learning

Algorithms. NIPS.

[36] Marmin, S., Chevalier, C., & Ginsbourger, D. (2015).

Differentiating the Multipoint Expected Improvement for

Optimal Batch Design. MOD.

[37] Shah, A., & Ghahramani, Z. (2015). Parallel Predictive

Entropy Search for Batch Global Optimization of

Expensive Objective Functions. NIPS.

[38] Wang, J., Clark, S.C., Liu, E., & Frazier, P. (2020).

Parallel Bayesian Global Optimization of Expensive

Functions. Oper. Res., 68, 1850-1865.

[39] Conn, A.R., Scheinberg, K., & Toint, P.L. (1997).

Recent progress in unconstrained nonlinear optimization

without derivatives. Mathematical Programming, 79,

397-414.

[40] Ross, S. M. (1985). Stochastic processes. 2nd ed.

Journal of the American Statistical Association, 80(389).

[41] Lawler, G. F. . (2006). Introduction to Stochastic

Processes, Second Edition. Houghton Mifflin Co.

[42] Zi Wang, Chengtao Li, Stefanie Jegelka, and Pushmeet

Kohli. Batched high-dimensional Bayesian optimization

via structural kernel learning. In International Conference

on Machine Learning (ICML), 2017.

[43] Z. Wang, C. Gehring, P. Kohli, and S. Jegelka.

Batched largescale Bayesian optimization in

highdimensional spaces. In International Conference on

Artificial Intelligence and Statistics, pages 745–754, 2018.

