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Matrix-free Interior Point Method for Compressed
Sensing Problems

Kimon Fountoulakis · Jacek Gondzio? ·
Pavel Zhlobich

Technical Report ERGO 12-006

Abstract We consider a class of optimization problems for sparse signal re-
construction which arise in the field of Compressed Sensing (CS). A plethora of
approaches and solvers exist for such problems, for example GPSR, FPC AS,
SPGL1, NestA, `1 `s, PDCO to mention a few.

CS applications lead to very well conditioned optimization problems and
therefore can be solved easily by simple first-order methods. Interior point
methods (IPMs) rely on the Newton method hence they use the second-order
information. They have numerous advantageous features and one clear draw-
back: being the second-order approach they need to solve linear equations and
this operation has (in the general dense case) an O(n3) computational com-
plexity. Attempts have been made to specialize IPMs to sparse reconstruction
problems and they have led to interesting developments implemented in `1 `s
and PDCO softwares. We go a few steps further. First, we use the matrix-
free IPM, an approach which redesigns IPM to avoid the need to explicitly
formulate (and store) the Newton equation systems. Secondly, we exploit the
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special features of the signal processing matrices within the matrix-free IPM.
Two such features are of particular interest: an excellent conditioning of these
matrices and the ability to perform inexpensive (low complexity) matrix-vector
multiplications with them.

Computational experience with large scale one-dimensional signals con-
firms that the new approach is efficient and offers an attractive alternative to
other state-of-the-art solvers.

Keywords Matrix-free Interior Point, Preconditioned Conjugate Gradient,
Compressed Sensing, Compressive Sampling, `1-regularization.

Mathematics Subject Classification (2000) 90C05, 90C06, 90C30,
90C25, 90C51

1 Introduction

We are concerned with the solution of the incomplete system, m < n, of linear
equations

Ax = b̂, (1)

where A ∈ Rm×n, x ∈ Rn, b̂ ∈ Rm. In particular, we are interested in the
solution x with the smallest possible number of nonzero elements, otherwise
known as the sparsest solution x̂. Such problems arise in the fields of Statistics
[32] and Signal processing [9].

The sparsest solution x̂ of system (1) can be found by solving the following
problem:

min
x∈Rn

‖x‖0
s.t.: Ax = b̂,

(2)

where ‖x‖0 = {# of nonzero entries in x} and ”s.t.” stands for ”subject to”.
The use of zero-norm makes the problem combinatorial and untractable in
practice. Recent advances in the field of CS show that in certain situations
[9] exact recovery of the sparsest solution x̂ of (1) can be achieved with an
overwhelming probability by solving the following Basis Pursuit [14] problem:

BP:
min
x∈Rn

‖x‖1
s.t.: Ax = b̂,

(3)

where ‖x‖1 =
∑n

i=1
|xi|. The problem (3) has a major advantage over (2).

Unlike the zero-norm objective in (2), the `1-norm objective in (3) can be
reformulated as a linear function and therefore the problem (3) may be recast
as a linear problem and becomes computationally tractable. Having a linear
reformulation of (3), standard efficient optimization methods can be used to
recover the sparsest solution x̂.
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In real-life applications the right hand side of (1) is often corrupted with
noise and (1) is replaced with:

Ax = b = b̂+ e, (4)

where e ∈ Rm denotes the error: we assume it has a normal distribution
ei ∼ N (0, σ2) ∀ i = 1, 2, . . . ,m. For the noisy case (4) the sparsest solution x̂
can be found by solving one of the following problems:

BPDN : min
x∈Rn

τ‖x‖1 + ‖Ax− b‖22 (5a)

LASSO:
min
x∈Rn

‖Ax− b‖2
s.t.: ‖x‖1 ≤ ε1

(5b)

BPε2 :
min
x∈Rn

‖x‖1
s.t.: ‖Ax− b‖2 ≤ ε2

(5c)

where τ, ε1 and ε2 are positive scalars that regulate the sparsity and the up-
per bound on the noise error, respectively. Problem (5a) is the well-known
Basis Pursuit Denoising introduced in [14], problem (5b) is the Least Abso-
lute Shrinkage and Selection Operator (LASSO) used frequently in the field of
computational statistics [32]. It can be shown using Theorem 27.4 from [34]
that the problems in (5) are equivalent for specific values of scalars τ , ε1 and
ε2.

Practical problems have large dimensions and off-the-shelf approaches such
as the simplex method or the (standard) IPM are often impractical. However,
matrices A that appear in CS problems display several attractive features
which may be exploited within an optimization algorithm. This has created
an interest in developing specialized approaches to solving such problems.

There have been various first-order methods developed for the solution of
(3) and (5). Let us mention the ones known to be the most efficient.

– Gradient Projection Sparse Reconstruction GPSR [20] defines new variables
u, v ∈ Rn such that

|xi| = ui + vi ∀ i = 1, 2, . . . , n, (6)

where ui = max(xi, 0) and vi = max(−xi, 0). Then linearization of the
`1-norm is performed

‖x‖1 = 1Tnu+ 1Tnv, (7)

with u, v ≥ 0 and 1n ∈ Rn being a column vector of all ones. Using
the above linearization technique, GPSR solves the following constrained
smooth reformulation of problem (5a)

min
z∈R2n

τ1T2nz +
1

2
‖FTz − b‖22

s.t.: z ≥ 0,
(8)
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where z = [u ; v] ∈ R2n, FT = [A − A] ∈ Rm×2n. Once optimal values of
variables u and v are found the solution x of the initial problem is retrieved
by computing

x = u− v.

The price for the linearization is that comparing to the initial BPDN
problem (5a) the dimension of the problem is doubled and 2n new non-
negativity constraints are added. At each step of the algorithm a line search
is performed along the negative gradient direction and the new iterate is
projected to the feasible set defined by the imposed constraints z ≥ 0.

– Fixed Point Continuation Active Set FPC AS [39] solves problem (5a).
FPC AS is a two stage algorithm. At the first stage a shrinkage scheme is
employed which aims to spot quickly the nonzero components of the sparse
representation. Then the second stage is enabled to solve a smooth version
of (5a) limited to the indexes of nonzero components found by the first
stage of the algorithm.

– Spectral Projected Gradient SPGL1 [4] solves any of the problems (3), (5b)
and (5c). The SPGL1 is a spectral projection gradient algorithm which
iteratively solves (5b) for some values of ε1, each approximate solution of
(5b) is used to build a root-finding problem, which is equivalent to (5c),
and is solved by employing a Newton method.

– NestA [3] solves problem (5c) by using a variant of the Nesterov’s smooth-
ing gradient algorithm [33], which has been proved to have the optimal
bound O(1/ε) on the number of iterations, where ε is the required accu-
racy.

Independently there have been several attempts to design suitable IPM
implementations. The most efficient among them, which can also handle large
scale CS problems, are listed below.

– `1 `s algorithm [29] solves a constrained smooth reformulation of problem
(5a) which allows a straightforward preconditioning of the Newton equation
system that is solved with a conjugate gradient method.

– PDCO algorithm [36] solves regularized constrained smooth reformulations
of problems (3) and (5a). The Newton equation system is solved by apply-
ing an LSQR (”Least Squares QR factorization”) method.

Both `1 `s and PDCO have been demonstrated to be robust in comparison
with other IPM implementations. However, they are not as accurate and as
fast as state-of-the-art first-order methods.

In this paper we present a primal-dual feasible IPM specialized to CS
problems. Primal-dual because it iterates simultaneously on primal and dual
variables of a smooth reformulation of problem (5a) and feasible because the
smooth reformulation of (5a) consists only of conic constraints which are al-
ways satisfied. Primal-dual methods have been shown to have the best theo-
retical convergence properties [30] among various IPMs, but they also enjoy
the best practical convergence [24,40]. Here we give a brief introduction of the
structure of primal-dual IPM methods and we discuss important modifications
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that result in the proposed approach. The actual implementation used in this
paper is given in Subsection 5.1.

Primal-dual methods rely on Newton method to calculate primal-dual di-
rections at each iteration. Newton method for primal-dual IPMs finds roots
for linearized KKT (Karush-Kuhn-Tucker) systems or their reduced versions
known as augmented and normal equations systems. These systems arise as
first-order optimality conditions of log-barrier primal-dual pairs. The linearized
KKT systems, referred as Newton linear systems, can be solved in two ways,

– by employing a direct linear solver, or
– by using an iterative solver, such as Krylov subspace methods [28].

The first option delivers a very robust primal-dual IPM where exact New-
ton directions are calculated. Despite its robustness this approach has the
potential drawback of being computationally expensive. Especially in the case
when the Newton linear system does not have an exploitable sparsity pattern
and the computational effort per iteration reaches O(n3).

The second option involves the use of approximate Newton directions. Al-
though this might slightly increase the number of IPM iterations [26,31], one
hopes that the decreased computational effort per iteration should offset such
a disadvantage. The performance of iterative methods depends on the spectral
properties of the Newton linear system [28] and benefit from the use of appro-
priate preconditioning techniques which cluster the eigenvalues of the Newton
linear system. If the Newton linear system is ill-conditioned and no low-cost
preconditioner is applicable, then a direct approach might be more efficient.
To conclude, a criterion to select between the two approaches of solving the
Newton linear systems should take into account

1. the sparsity pattern of the systems,
2. the existence of a computationally inexpensive preconditioner,
3. the memory requirements of storing problem’s data,
4. the existence of fast matrix-vector product implementations with the ma-

trix of the linear system to be solved.

In this paper, we focus on the situation where there is no particular spar-
sity pattern, the memory requirements can be high but conditions 2 and 4
are satisfied. For this reason, a preconditioned conjugate gradient method is
more attractive than a direct method. Indeed, in the approach proposed in this
paper, at each step of the primal-dual IPM the preconditioned conjugate gra-
dient method is applied to compute an approximate Newton direction. Since
we rely on an iterative method for linear algebra, the proposed primal-dual
IPM is matrix-free [25], i.e. the explicit problem formulation is avoided and
the measurement matrix A is used only as an operator to produce results of
matrix-vector products Ax and ATy. Although matrices A used in CS can be
completely dense, i.e. Gaussian, partial Fourier, partial DCT (Discrete Cosine
Transform), partial DST (Discrete Sine Transform), Haar wavelets etc, they do
have interesting (exploitable) features. Arguments 3 and 4 are satisfied because
for many measurement matrices that appear in sparse signal reconstruction
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problems there are super-fast algorithms (e.g. O(n) or O(n log n) complexity)
for multiplication by a vector. For example, for Fourier, DCT and DST ma-
trices there exists the FFTW implementation (”Fastest Fourier Transform in
the West”) [22] with complexity O(n log n), for Haar wavelet and Noiselet ma-
trices there exist algorithms of complexity O(n), see [1] and [15], respectively.
Finally, to satisfy argument 2 we propose a preconditioner efficient on certain
problems that is based on the fact that sub-matrices of A with a given num-
ber of columns are uniformly well-conditioned (this is called the Restricted
Isometry Property, see the discussion in Section 2).

The objective of our developments is to design an IPM which preserves the
main advantage of IPM, that is, it converges in merely a few iterations, and
removes the main drawback of IPM, that is, avoids expensive computations
of the Newton direction. Ideally, we would like to solve the CS problems in
O(log n) IPM iterations and keep the cost of a single IPM iteration as low as
possible and not exceeding O(n log n).

The paper is organized as follows. In Section 2 we discuss the particular
features of CS matrices that are exploited in our approach. In Section 3 we
reformulate sparse recovery optimization problems (3) and (5a) to make them
suitable for matrix-free IPM. Section 4 concerns finding approximate Newton
directions required at each step of the IPM. We calculate the normal equations
system formulation of the above stated problem and analyze its properties.
We propose an efficient preconditioner that can be used in the preconditioned
conjugate gradient method. We prove that under certain conditions (that are
satisfied in practice) eigenvalues of the preconditioned matrix are well clustered
around 1. In Section 5 we compare the proposed matrix-free IPM with other
state-of-the-art first and second-order solvers.

2 Properties of Compressed Sensing Matrices

Matrices which appear in sparse reconstruction problems originate from dif-
ferent bases in which signals are represented. What they all have in common
are the conditions that guarantee recoverability of the sparsest solution of (1)
by means of the `1-norm minimization (3). The restricted isometry property
(RIP) [13] is one of such conditions which shows how efficiently a measurement
matrix captures information about sparse signals.

Definition 1 The restricted isometry constant δk of a matrix A ∈ Rm×n is
defined as the smallest δk such that

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 (9)

for all at most k-sparse x ∈ Rn.

In words, for small δk, statement (9) requires that all column sub-matrices
of A with at most k columns are well-conditioned. Informally, A is said to
satisfy the RIP if δk is small for a reasonably large k. The next theorem
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due to [21] establishes the relation between the RIP property and the sparse
recovery.

Theorem 1 Every k-sparse vector x ∈ Rn satisfying Ax = b̂ is the unique
solution of (3) if

δ2k <
3

4 +
√

6
≈ 0.4652.

The restricted isometry property also implies stable recovery by `1-norm
minimization for vectors that can be well approximated by sparse ones, and it
further implies robustness under noise on the measurements [13].

RIP is a very restrictive condition that depends on the size of the mea-
surement matrix A. Clearly, the more columns n matrix A has (the larger
the size of the vector x to recover) the larger δk in (9) is (the harder it is
to guarantee sparse recovery). On the other hand, number of rows m of A
is the number of measurements taken and, hence, the RIP constant δk de-
creases with m. Currently known measurement matrices satisfying RIP with
small number of measurements fall into two categories [35]: (i) random ma-
trices with i.i.d. sub-Gaussian variables, e.g., normalized i.i.d. Gaussian or
Bernoulli matrices; (ii) random partial bounded orthogonal matrices obtained
by choosing m rows uniformly at random from a normalized n × n Fourier
or Walsh-Hadamard transform matrices. Number of measurements required
to satisfy the RIP property for both classes of matrices is given in the table
below.

Table 1 List of measurement matrices that have been proven to satisfy RIP

m× n measurement matrix RIP regime references

Gaussian m ≥ Ck logn [2,35]

partial Fourier m ≥ Ck log4 n [35]

Although it follows from Table 1 that Gaussian matrices are optimal for
sparse recovery, they have limited use in practice because many applications
impose structure on the matrix. Furthermore, recovery algorithms are signifi-
cantly more efficient when the matrix admits a fast matrix-vector product. Due
to the two former practical reasons, and since we are dealing with large-scale
CS applications we limit ourselves to applications with measurement matrices
A that

– are not stored explicitly,
– admit a low-cost matrix-vector product with A (e.g. O(n log n) or O(n)).

An important broad class of CS matrices comes from random sampling
in bounded orthonormal systems. Partial Fourier matrix mentioned earlier is
just one example of this type. Other examples are matrices related to systems
of real trigonometric polynomials (partial discrete cosine (DCT) and discrete
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sine (DST) matrices), Haar wavelets and noiselets. Quite often in applications
a signal is sparse with respect to a basis different from the one in which
measurements are made. Then it is said that a measurement/sparsity pair is
given [9]. Assume that a vector z is sparse with respect to the basis of columns
of a unitary matrix Ψ (sparsity matrix ), i.e. z = Ψx for a k-sparse vector x.
Further, assume that z is sampled with respect to the basis of columns of a
unitary matrix Φ (measurement matrix ): y = RmΦ

Tz, where Rm is a random
sampling operator which satisfies RmR

T
m = I. Hence, matrix A in (1) is equal

to RmΦ
TΨ and its rows are orthonormal:

AAT = Im. (10)

The recoverability property of matrix A depends on the value of the so-called
mutual coherence µ(Φ, Ψ) of the measurement/sparsity pair (see [16]):

µ(Φ, Ψ) =
√
nmax

i,j
| 〈φi, ψj〉 |, (11)

where φi, ψi are the ith columns of matrices Φ, Ψ , respectively. Coherence sim-
ply measures the largest correlation between any two elements of Φ and Ψ .
Next theorem due to [12] shows that the smaller the value of mutual coher-
ence the better the recoverability property of matrix A.

Theorem 2 Fix z ∈ Rn and suppose that the coefficient sequence x of z in
the unitary n × n basis Ψ is k-sparse. Select m measurements in the unitary
n× n Φ domain uniformly at random. Then if

m ≥ Ckµ(Φ, Ψ)2 log(n/p) and m ≥ C ′ log2(n/p) (12)

for some positive constants C,C ′, then with overwhelming probability exceeding
1 − p, the vector x is the unique solution to the `1-minimization problem (3)
with A = RmΦ

TΨ , where RmR
T
m = I and A has orthonormal rows (10).

Let us note that condition (12) differs from those given in Table 1. Condi-
tions in Table 1 ensure that once the random matrix is chosen, then with high
probability all sparse signals can be recovered (uniform recovery). Although,
(12) only guarantees that each fixed sparse signal can be recovered with high
probability using a random draw of the matrix (nonuniform recovery).

To conclude, CS matrices have many useful properties that must be taken
into account in the development of an efficient matrix-free IPM solver. In the
current paper we make use only of the most general of them that are satisfied
by every CS matrix. First, we weaken a little bit the condition of orthonor-
mality (10) to include random matrices such as Gaussian and Bernoulli:

– P1: Rows of matrix A are close to orthonormal, i.e. there exists a small δ
such that

‖AAT − Im‖2 ≤ δ. (13)

Restricted isometry property (9) on the contrary assumes that columns of
A are normalized. So, our interpretation of the RIP property that will be used
throughout the paper is as follows.
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– P2: Every k columns of A with k � m are almost orthogonal and have
similar norms, i.e. for every matrix B composed of arbitrary k columns of
A ∥∥∥ n

m
BTB − Ik

∥∥∥
2
≤ δk. (14)

By treating property P2 as the chosen RIP, the bound for the RIP constant
in Theorem 1 which relies on RIP in (9) will change. The following theorem is
a modified version of Theorem 1 when property P2 is used as a RIP.

Theorem 3 Every k-sparse vector x ∈ Rn satisfying Ax = b̂ is the unique
solution of (3) if

δ2k <
3mn

1 + 3mn +
√

6
,

where δ2k is the minimum constant such that property P2 holds for every 2k
columns of matrix A, denoted by matrix B in P2.

Proof Let x ∈ Rn have k nonzero components and B in P2 be any k column
submatrix of A. Then from P2 it follows that

m

n
(1− δk)‖x‖22 ≤ ‖Ax‖

2
2 ≤

m

n
(1 + δk)‖x‖22. (15)

Proposition 2 in [21] gives bounds for δ2k by using the RIP in (9). In our case,
we replaced the RIP in (9) with (15). Therefore, the four modified conditions
for δ2k in Proposition 2 in [21] which guarantee that every k-sparse vector

x ∈ Rn which satisfies Ax = b̂ is the unique solution of (3), take the following
forms:

1) δ2k <
1

2

m

n
when k = 1

2) δ2k <
3mn

(1 + 3mn +
√

(6k − 2r)/(k − 1))
when k = 3ω + r and 1 ≤ r ≤ 3

3) δ2k <
4mn

(1 + 4mn +
√

(12k − 3r)/(k − 1))
when k = 4ω + r and 1 ≤ r ≤ 4

4) δ2k <
2mn

(1 + 2mn +
√

1 + k/(8ω + b8r/5c)
when k = 5ω + r and 1 ≤ r ≤ 5,

where ω = 0, 1, . . . is an integer variable. Table 2 shows with bold font which
condition of the above four is the weakest for 2 ≤ s ≤ 8. This table is equivalent
of the table in proof of Theorem 1 in [21]. However, in [21] the table has exact
values, where our Table 2 has functions depending on the ratio m/n instead.
Using the same arguments as in proof of Theorem 1 in [21] and Table 2 we

conclude that every k-sparse vector x ∈ Rn satisfying Ax = b̂ is the unique
solution of (3) if

δ2k <
3mn

1 + 3mn +
√

6
.

This completes the proof.
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Table 2 Weakest RIP constant values for sparsity level 2 ≤ k ≤ 8

Case 2 Case 3 Case 4

k = 2
3m

n

1 + 3m
n

+ 2
√

2

4m
n

1 + 4m
n

+ 3
√

2

2m
n

1 + 2m
n

+
√

5
3

k = 3
3m

n

1 + 3m
n

+
√
6

4m
n

1 + 4m
n

+ 3
√

3
2

2m
n

1 + 2m
n

+ 1
2

√
7

k = 4
3m

n

1 + 3m
n

+
√

22
3

4m
n

1 + 4m
n

+ 2
√
3

2m
n

1 + 2m
n

+
√

5
3

k = 5
3m

n

1 + 3m
n

+
√

13
2

4m
n

1 + 4m
n

+ 1
2

√
57

2m
n

1 + 2m
n

+ 1
2

√
13
2

k = 6
3m

n

1 + 3m
n

+
√

6

4m
n

1 + 4m
n

+
√

66
5

2m
n

1 + 2m
n

+
√

5
3

k = 7
3m

n

1 + 3m
n

+ 2
√

5
3

4m
n

1 + 4m
n

+ 5√
2

2m
n

1 + 2m
n

+ 3
√

2
11

k = 8
3m

n

1 + 3m
n

+ 2
√

11
7

4m
n

1 + 4m
n

+ 2
√
3

2m
n

1 + 2m
n

+
√

5
3

Comparing the two bounds of the RIP constants in Theorems 1 and 3 we ob-
serve that the former is smaller, see Figure 1. For the purpose of the proposed
preconditioner, discussed in Section 4, the smaller bound on δ2k in Theorem 3
results in tighter bounds of the spectral properties of the preconditioned sys-
tems. The former is an advantage of property P2 against RIP in (9), proved
in Lemma 1. However, property P2 and Theorem 3 result in a limitation of
the maximum number of sparsity k for which problem (3) guarantees an ex-

act recovery of the sparsest solution of Ax = b̂. Fortunately, both results in
Theorems 1 and 3 are rather pessimistic. It has been shown in [7] that RIP
conditions of the form (9) and their scaled versions (P2) or (15) provide worst
case scenarios of δ2k and consequently of the sparsity level k such that prob-
lem (3) guarantees exact sparse recovery. To support the former argument,
we refer the reader to [18], where it is shown that for Gaussian measurement
matrices the average maximum sparsity level k that is guaranteed to be re-
constructable by (3) is much greater than the one shown in Theorems 1 and
3. Moreover, it has been shown empirically in [18] that approximately the
same result holds for various types of measurement matrices A, i.e. partial
Fourier, partial Hadamard, Bernoulli etc. In Subsection 5.8 it is shown that
the proposed algorithm satisfies approximately the average maximum spar-
sity k shown in [18]. Therefore, we conclude that by replacing RIP (9) with
property P2:
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Fig. 1 Comparison on the bounds of δ2k constants from Theorems 1 and 3

– improved bounds on the spectral properties of the preconditioned systems
in Section 4 are obtained,

– a better approximation of matrix BTB with a scaled diagonal ρI by choos-
ing appropriate constant ρ is possible and

– the empirical average reconstruction properties as shown in Subsection 5.8
are maintained.

3 Primal–Dual Problems in Matrix-free IPM

Non-smooth Basis Pursuit (3) and Basis Pursuit Denoising (5a) optimization
problems can be reformulated into equivalent linear and convex quadratic
problems, respectively. This is achieved via linearization of the non-smooth
`1-norm in the objective function.

After reformulating the BPDN problem (5a) to (8) as proposed in [20] for
GPSR algorithm, we solve the latter using a primal–dual IPM. The reader
interested in the theory of primal-dual IPMs is referred to the book of Wright
[40]. Aspects of practical implementation have been addressed in a recent
survey [24]. A description of the primal-dual IPM used in this paper is given
in Section 5.1. For the primal problem (8) of interest the dual is

Dual Sep.:

max
z,s∈R2n

−1

2
zTFFTz

s.t.: c+ FFTz − s = 0

z, s ≥ 0

(16)

where c =

[
τ1n −ATb

τ1n +ATb

]
∈ R2n.
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At each step of the primal–dual IPM applied to the primal-dual pair (8)
and (16) the corresponding Newton direction (∆z,∆s) is computed by solving
the following system of linear equations:[

FFT −I2n
S Z

]
×

[
∆z

∆s

]
=

[
fz

fs

]
, (17)

where S and Z are diagonal matrices with vectors s and z on the diagonal,
respectively, I2n denotes an identity matrix of dimension 2n and

fz = s− c− FFTz, fs = σµe− ZS12n, (18)

µ = zTs/(2n) is the barrier term of the IPM and 0 ≤ σ ≤ 1 the centering
parameter. In the matrix-free framework the dual variables ∆s in (17) are
eliminated to get:

(Θ−1 + FFT)∆z = fz + Z−1fs, (19a)

∆s = Z−1fs −Θ−1∆z. (19b)

where Θ = S−1Z ∈ R2n×2n. The reduced Newton system (19a), also known
as augmented system, is solved by an appropriate preconditioned iterative
method for which only matrix-vector product with the constraint matrix F is
allowed. Thus, the matrix-free IPM approach has two major components:

– iterative solver for the augmented system,
– special-purpose preconditioner that exploits matrix structure.

The next section addresses these two issues.

4 Preconditioned Conjugate Gradient Method

The system (19a) has a symmetric positive definite matrix and the conjugate
gradient (CG) method can be employed to solve it in a matrix-free regime.
However, the convergence of the CG method can be too slow when a matrix is
ill-conditioned and/or its eigenvalues are not clustered. In this section we dis-
cuss an efficient spectrally-equivalent diagonal matrix preconditioner for (19a).
In particular, we give theoretical and practical justification of our approach to
fast iterative solution of the system.

The proposed preconditioner for the system of equations (19a) is based
on the exploitation of general properties of CS matrices and the behavior
of the Θ matrix in (19a) close to optimality. Let us recall that in the nota-
tion of primal–dual pair (8)–(16), variable s ∈ R2n is a Lagrange multiplier
associated with the non-negativity constraint z ≥ 0. Hence, at optimality
sjzj = 0 ∀ j = 1, 2, . . . , 2n. IPMs force the convergence to the optimal solution
by perturbing this condition sjzj = µ ∀ j, where µ is the barrier term of the
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IPM, and gradually reducing the perturbation µ to zero. At optimality indices
j ∈ {1, 2, . . . , 2n} are split into two disjoint sets:

B = {j | zj → z∗j > 0, sj → s∗j = 0}
and

N = {j | zj → z∗j = 0, sj → s∗j > 0}
(20)

that determine the activity of constraints. This partitioning has highly unde-
sirable consequences for the diagonal scaling matrix Θ = S−1Z. Indeed, when
µ approaches zero, for indices j ∈ B, Θj goes to infinity and for indices j ∈ N ,
Θj goes to zero.

Recall that z = [u ; v], where u and v are the positive and negative com-
ponents of vector x (see (6)), respectively. For sparse signals there are merely
k (k � 2n) nonzero components in the optimal solution. The positive ones
will contribute a nonzero element in u and the negative ones will contribute
a nonzero element in v. At optimality the cardinality of set B is k. Hence, at
later iterations of an IPM

Θi � 1 ∀ i ∈ B, cardB = k,

Θi � 1 ∀ i ∈ N , cardN = 2n− k.
(21)

Let us now return to the question of preconditioning of the system of
equations (19a). Its matrix is

H = Θ−1 + FFT. (22)

The behavior of matrix Θ near optimality is described by (21). It is clear that
matrix Θ−1 has many large entries and only few small entries well before the
IPM reaches the optimal solution. Let us introduce a number C � 1 that
separates entries of Θ−1 of different magnitudes:

#(Θ−1j < C) = l. (23)

Here l is just the number of small entries in Θ−1 and may be different from the
sparsity k of the optimal solution. In the regime l < m, the second term FFT,
whose rank is exactly m, works as a low-rank pertubation for the matrix Θ−1

in (22). Since, in Frobenius norm the first term Θ−1 dominates the second
term FFT, we propose to replace FFT in the preconditioner by a simple
approximant. First, let us write system’s matrix of (19a) in the block form by
using the facts that Θ = diag(Θu, Θv) and FT = [A −A]:

H =

[
Θ−1u

Θ−1v

]
+

[
ATA −ATA

−ATA ATA

]
. (24)

Our preconditioner is based on the approximation of ATA by the closest (in
Frobenius norm) scaled identity matrix ρIn, ρ = m/n:

P =

[
Θ−1u + ρIn −ρIn
−ρIn Θ−1v + ρIn

]
. (25)
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To simplify the analysis of the preconditioner, we first consider the case of
n×n matrices H and P rather than block 2n×2n ones as defined by (24) and
(25). The following lemma establishes spectral properties of the preconditioned
matrix P−1H in the non-block case.

Lemma 1 Define matrix H as

H = Θ−1 +ATA,

where Θ = diag(Θ1, Θ2, . . . , Θn) — diagonal n×n matrix with Θj > 0, and A
— m×n matrix with m ≤ n/2. Let C be any positive constant and l be defined
as in (23), #(Θ−1j < C) = l. Additionally, let A satisfy property P2 defined
on page 9 for k = l with some constant δl. If matrix A has orthonormal rows
(10), then the eigenvalues of matrix H preconditioned by matrix P :

P = Θ−1 + ρIn, ρ = m/n

are clustered around 1, i.e.

|λ− 1| ≤ δl +
1

4

(3− ρ)2

ρδlC
∀λ ∈ spec(P−1H), (26)

If matrix A has nearly orthonormal rows, i.e. satisfies P1 defined on page 8,
then

|λ− 1| ≤ δl +
1

4

(1 + δ − ρ+ 2
√

1 + δ)2

ρδlC
∀λ ∈ spec(P−1H),

where δ has been defined in P1.

Proof Let C be any positive constant, then the following two disjoint sets of
indices can be defined:

BC = {j ∈ {1, 2, . . . , n} : Θ−1j < C}, NC = {1, 2, . . . , n} \ BC

Let B and N be matrices of columns of A with indices from BC and NC ,
respectively. Without loss of generality we can assume that BC are the first l
indices, then

A = [B N ], B ∈ Rm×l, N ∈ Rm×(n−l).

Let λ be an eigenvalue of the preconditioned matrix P−1H corresponding
to an eigenvector v = [vBC

; vNC
] of norm one, then

P−1Hv = λv ⇐⇒ (H − P )v = τPv, τ = λ− 1, (27)

or, in the block form,[
BTB − ρIl BTN

NTB NTN − ρIn−l

][
vBC

vNC

]
= τ

[
Θ−1BC

+ ρIl 0

0 Θ−1NC
+ ρIn−l

][
vBC

vNC

]
(28)
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Obviously, eigenvalues of P−1H are all real, hence τ is also real. Multiplication
of (28) by [vBC

; vNC
]T from the left gives

τ
[
vTBC

(
Θ−1BC

+ ρIl
)
vBC

+ vTNC

(
Θ−1NC

+ ρIn−l
)
vNC

]
=

vTBC

(
BTB − ρIl

)
vBC

+ vTNC

(
NTN − ρIn−l

)
vNC

+ 2vTBC
BTNvNC

. (29)

Let us denote ‖vBC
‖22 by α, then ‖vNC

‖22 = 1 − α since v = [vBC
; vNC

]
has unit norm. Bounding left hand side of (29) from below is trivial:∣∣∣τ[vTBC

(
Θ−1BC

+ ρIl
)
vBC

+ vTNC

(
Θ−1NC

+ ρIn−l
)
vNC

]∣∣∣ ≥ |τ |(ρα+ C(1− α)
)
.

(30)
Next, let us bound right hand side of (29) from above. We will distinguish

two cases, orthonormal and nearly orthonormal rows of matrix A. First, we
study the case of nearly orthonormal rows of matrix A. For this purpose we
will use the SVD decompositions of matrices B and N :

B = UBΣBV
T
B , ΣB =

[
diag(σ1, σ2, . . . , σl)

Om−l×l

]
and

N = UNΣNV
T
N , ΣN =

[
diag(ς1, ς2, . . . , ςm) Om×(n−m−l)

]
.

Restricted isometry property P2 implies that

σ2
1 ≤ ρ(1 + δl), σ2

l ≥ ρ(1− δl).

First, notice that ∣∣∣vTBC

(
BTB − ρIl

)
vBC

∣∣∣ ≤ ρδlα. (31)

Using property P1 we have

‖AAT − Im‖2 ≤ δ ⇐⇒
‖AAT‖2 ≤ 1 + δ ⇐⇒

‖BBT +NNT‖2 ≤ 1 + δ =⇒
‖NNT‖2 ≤ 1 + δ ⇐⇒

ς21 ≤ 1 + δ. (32)

Next, using (32) obtain

‖NTN − ρIn−l‖2 ≤ max{ρ, 1 + δ − ρ} = 1 + δ − ρ, (ρ = m/n ≤ 0.5)

and, hence, ∣∣∣vTNC

(
NTN − ρIn−l

)
vNC

∣∣∣ ≤ (1 + δ − ρ
)(

1− α
)
. (33)

Finally,

‖BTN‖2 ≤ ‖B‖2‖N‖2 ≤ σ1ς1 =
√

1 + δ
√
ρ(1 + δl) <

√
(1 + δ)
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because our assumptions m ≤ n/2 and δl < 1 imply σ2
i ≤ σ2

1 ≤ ρ(1 + δl) < 1.
We conclude that ∣∣∣2vTBC

BTNvNC

∣∣∣ < 2
√

1 + δ
√
α(1− α). (34)

Bounds (33) and (34) are sharp and can be used to obtain very tight
estimate on τ but we do not need them that sharp to obtain a sufficiently
good estimate. So, we will release them a little bit to simplify the analysis:∣∣∣vTNC

(
NTN − ρIn−l

)
vNC

∣∣∣ ≤ (1 + δ − ρ)(1− α) ≤ (1 + δ − ρ)
√

1− α,∣∣∣2vTBC
BTNvNC

∣∣∣ < 2
√

1 + δ
√
α(1− α) ≤ 2

√
1 + δ

√
1− α.

(35)

Using (30) and (31) and (35) we finally get

|τ | ≤ ρδlα+ (1 + δ − ρ+ 2
√

1 + δ)
√

1− α
ρα+ C(1− α)

≤ δl(1 + ε). (36)

Let us denote ξ = (1 + δ − ρ + 2
√

1 + δ) and show that ε is small for large
values of C. Indeed (36) implies that

ξ
√

1− α ≤ δl
(
C + Cε− ρε

)
(1− α) + ρδlε.

It can be checked by simple calculus, that
√
x ≤ C1x+ C2 on [0, 1] whenever

C1 ≥ 1/(4C2). In our case this implies

δl
ξ

(
C + Cε− ρε

)
≥ ξ

4ρδlε
.

The largest solution of the quadratic equation in ε

4ρδ2l
ξ2

ε
(
C + Cε− ρε

)
= 1

is

ε+ =
1

2
· C

C − ρ

(√
1 +

ξ2

ρδ2l C
· C − ρ

C
− 1

)
≤ ξ2

4ρδ2l C
.

Hence, it is sufficient to take any ε ≥ ξ2/(4ρδ2l C) to satisfy the inequality (36):

|τ | ≤ δl +
ξ2

4ρδlC
= δl +

1

4

(1 + δ − ρ+ 2
√

1 + δ)2

ρδlC
. (37)

This completes the proof for matrix A which satisfies property P1. For the
case of orthonormal rows of matrix A, i.e. AAT = Im simply set δ = 0 in
property P1 to get

|τ | ≤ δl +
1

4

(3− ρ)2

ρδlC
. (38)

This completes the proof.
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For the result of the theorem to be useful we obviously need the bound in
the right-hand side of inequalities in (37) and (38) to be sufficiently smaller
than one. Let us take a closer look at the terms forming this bound. We are free
to choose any value for the constant C we want, the larger the better. However,
according to (23), l increases with the increase in C and, consequently, the
restricted isometry constant δl also increases. Inequalities (37) and (38) hold
for any value of C, hence we can replace it with

|τ | ≤ min
C

(
δl +

1

4

(1 + δ − ρ+ 2
√

1 + δ)2

ρδlC

)
(39)

and

|τ | ≤ min
C

(
δl +

1

4

(3− ρ)2

ρδlC

)
(40)

and choose constant C that delivers the minimum.
For number of measurements m just a fraction ρ = 1/4 of the length n of

the unknown signal, it is natural to assume the restricted isometry constant δ2l
to be less than 1/4 (see Theorem 3), hence, according to [6], δ2l < 1/4, implies
δl < 1/4. Therefore, to have |τ | ≤ 17/20 we need C = 20(0.75+δ+2

√
1 + δ)2/3

in (23). For nearly orthonormal rows of matrix A we can assume that δ ≤ 1,
which gives us C ≈ 139.74 and certainly holds near optimality in the IPM.
For orthonormal rows of matrix A we have δ = 0, hence, C ≈ 50.41.

The bounds in (37) and (38) are rather pessimistic. Computational experi-
ence suggests that eigenvalues of the preconditioned matrix get well clustered
around 1 as long as l = #(Θ−1j < 1) is such that the RIP constant δl < 1. For

example, for the discrete cosine (DCT) matrix with n = 210 and m = 28 the
corresponding l ≤ 74 (this number is obtained in a series of random tests).

Now we are ready to state the spectral properties of the preconditioned
matrix P−1H for the system of equations (19a). We leave the theorem without
a proof as it a straightforward corollary of Lemma 1.

Theorem 4 Let H and P be block matrices defined in (24) and (25), respec-
tively. Then the preconditioned matrix P−1H has

1. the eigenvalue 1 of multiplicity n;
2. remaining n eigenvalues defined in Lemma 1 with Θ = Θu +Θv.

Theorem 4 establishes the clustering of eigenvalues of P−1H around 1.
Hence, iterative method such as conjugate gradient applied to the system of
equations (19a) is expected to converge in just a few iterations if the precon-
ditioner P in (25) is used. The latter theoretical results are also confirmed in
practical experiments. Figure 3 demonstrates clustering of eigenvalues λ(H)
and λ(P−1H) in the case that the A matrix in H (24) is a Discrete Cosine
Transform (DCT) matrix with normalized rows, AAT = I. The parameters
for the size of the problem are set to m = 210, n = 212 and the sparsity level is
fixed to k = 51. In the left sub-Figure 2a the clustering of the eigenvalues λ(H)
is shown. Every vertical line presents the spreading of λ(H) at a particular
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(b) Preconditioned systems, P−1H

Fig. 2 Clustering of the eigenvalues for the matrices H and P−1H as the matrix-free IPM
approaches optimality. The matrix A in H (24) is a DCT matrix with normalized rows. The
parameters of the problem set to m = 210,n = 212 and k = 51. Twenty systems for the
matrices H and P−1H are solved in total

CG call as the matrix-free IPM progresses. One can observe that the cluster-
ing worsens as the matrix-free IPM approaches optimality. On the contrary,
eigenvalues of the preconditioned matrices P−1H show the opposite behavior.
In particular, as the matrix-free IPM progresses eigenvalues λ(P−1H) start
to cluster around one. The latter is depicted with the vertical columns in the
right sub-Figure 2b.

5 Computational Experience

We illustrate our developments by comparing the matrix-free IPM’s efficiency
with those of the state-of-the-art first-order methods, FPC AS and SPGL1 and
with two other interior point based solvers, `1 `s and PDCO. The experiments
are made on Sparco test suite [5].

We use the FPC AS CG version of FPC AS algorithm, where “CG” stands
for the conjugate gradient method. The FPC AS CG has been shown in [39] to
be considerably faster than other versions of FPC and FPC AS software pack-
ages. The FPC AS CG solves problem (5a). The code of FPC AS CG package
can be found at http://www.caam.rice.edu/~optimization/L1/FPC_AS/.
We use the SPGL1 bp version of SPGL1 software package for noiseless signals
and the SPGL1 bpdn version for noisy signals, where “bp” stands for basis
pursuit and “bpdn” for basis pursuit denoising, respectively. The SPGL1 bp
solves problem (3) and the “bpdn” version solves problem (5c). The code of
SPGL1 package can be found at http://www.cs.ubc.ca/labs/scl/spgl1.
Those versions of the FPC AS and SPGL1 software packages were found to
be faster and more accurate than other first-order methods mentioned in
Subsection 5.2. Therefore, GPSR and NestA solvers are excluded from the

http://www.caam.rice.edu/~optimization/L1/FPC_AS/
http://www.cs.ubc.ca/labs/scl/spgl1
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Table 3 Symbols and abbreviations used in tables and figures in Section ”Computational
Experience” 5

m,n, k number of rows and columns of the matrix A and the number of
nonzero elements in the optimal sparsest signal representation

x̂ optimal sparse representation

xW
xWi

= xi if i ∈W ,

otherwise xWi
= 0, where W := {i = 1, 2, . . . , n | x̂i 6= 0}

r.e(xW ) relative error ‖xW − x̂‖2/‖x̂‖2
res(xW ) residual ‖AxW − b‖2, where b should be replaced with b̂ in case of

noiseless signals

n1d(xW ) distance from the optimal value of `1-norm,
∣∣∣‖xW ‖1 − ‖x̂‖1∣∣∣

obj (xW ) objective value of BPDN problem, τ‖xW ‖1 + ‖AxW − b‖22
nMat total number of matrix vector products Ax and ATy

comparison. The `1 `s solver implements problem (5a), it can be found at
http://www.stanford.edu/~boyd/l1_ls/. The PDCO solver is used through
the file SolveFasBP.m of SparseLab software package. The PDCO solver can be
found at http://www.stanford.edu/group/SOL/software/pdco.html and
the SparseLab software package at http://sparselab.stanford.edu/. The
PDCO solver implements problems (3) and (5a).

In addition, three more experiments are performed. The first one tests
the robustness of solvers matrix-free IPM, SPGL1 bpdn, FPC AS CG and
`1 `s, on problems of Sparco test suite, given a fixed level of noise. The sec-
ond, replaces the core of matrix-free IPM, which is the preconditioned CG
with a direct solver and shows how the CPU time required for reconstruction
scales for each case. The third, demonstrates that the empirical phase transi-
tion properties of matrix-free IPM fit the theoretical average phase transition
properties shown in [18].

All solvers used in this section, including the matrix-free IPM are MAT-
LAB implementations. All experiments were performed using MATLAB ver-
sion R2012b (8.0.0.783) 64-bit on a Dual 8 Core Intel Xeon (Sandybridge)
running Redhat Enterprise Linux in 64-bit mode. Finally, the RICE Wavelet
toolbox, included in Sparco test suite, was compiled using gcc compiler ver-
sion 4.4.6 20120305 (Red Hat 4.4.6-4). The matrix-free IPM, the data files
and the MATLAB scripts used to generate the results in this section can be
downloaded from http://www.maths.ed.ac.uk/ERGO/mfipmcs/.

Before proceeding to the following subsections it would be convenient for
the reader to be familiarized with symbols and abbreviations used in the sub-
sequent figures and comparison tables explained in Table 3.

http://www.stanford.edu/~boyd/l1_ls/
http://www.stanford.edu/group/SOL/software/pdco.html
http://sparselab.stanford.edu/
http://www.maths.ed.ac.uk/ERGO/mfipmcs/
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5.1 Single centrality corrector primal-dual matrix-free IPM

The implementation used in this paper is a single-corrector primal-dual IPM
[23]. The original version proposed in [23] makes use of multiple centrality cor-
rectors, however, after computational experimentation it was observed that a
single corrector was enough for the fast convergence of the IPM in few it-
erations. In a standard multiple-corrector variant at every iteration multiple
centrality corrector directions are calculated, which are combined with a pre-
dictor direction in order to produce the final primal-dual direction [23]. To
compute the corrector and predictor directions one needs to solve multiple
linear systems (19) where only the right hand side varies. In case that a di-
rect solver is used to solve the linear systems, the extra cost of solving several
equations instead of one is negligible, because the dominating cost is the de-
composition of the matrix (Θ−1 + FFT). However, this is not the case when
iterative method (PCG) is used to solve systems (19). In particular, the cost
of calculating every term in composite direction is approximately the same. In
order to avoid the high cost of computing extra corrector directions at every
iteration in our single-corrector matrix-free IPM we slightly bias the predictor
direction to point to the central path and perform corrector directions only
when necessary. Like a long-step variant of primal-dual IPM [40] this guaran-
tees that at every iteration the objective function is decreased rapidly while
the algorithm maintains the small distance to the central path. As proposed
in [23], the criterion to decide whether a corrector direction is calculated is the
value of the primal and dual step sizes. When many biased predictor directions
are performed the primal-dual iterates tend to approach the boundary of the
feasible region. This results in small step sizes of the subsequent iterations.
When this happens a strong re-centering corrector is employed which pushes
the next iteration to the vicinity of central path such that next step sizes are
more likely to have large values. Ideally, the values of the step sizes of the
primal and dual directions should be bounded away from zero while global
convergence of the method is guaranteed. This would allow fast practical con-
vergence of matrix-free IPM, which translates into few iterations. Indeed, one
can observe from the computational experience reported in Section 5.7 that
10 to 20 iterations of the matrix-free IPM is enough for convergence. This
behaviour has been observed also in all computational experiments discussed
in Section 5.5. We make our software available to the research community
so that the interested reader can reproduce any numerical experiments from
this paper. The pseudo-code of the implemented single-corrector primal-dual
matrix-free IPM follows.
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Single-Corrector Primal-Dual Matrix-Free IPM

1: Input Choose z0, s0 > 0, 0 < σ1 < σ2 < σ3 ≤ 1 and 0 < α̃ < ᾱ < 1. For k = 1, 2, . . .
generate zk+1 from zk and sk+1 from sk according to the iteration:

2: while Duality Gap of (8) and (16) ≥ ε do

3: if k 6= 1 and (αk−1
P ≤ ᾱ or αk−1

D ≤ ᾱ) then
4: σ = σ2
5: else
6: σ = σ1
7: end if

(* predictor step *)

8: solve (19) using PCG with σ and zk, sk in (18) to obtain (∆z̄k,∆s̄k)

choose primal and dual step sizes αk
P , α

k
D in [0, 1] as the largest values of αP , αD such

that

zk(αk
P ) = zk + αP∆z̄

k > 0

sk(αk
D) = sk + αD∆s̄

k > 0

(* corrector step *)

9: if αk
P ≤ α̃ or αk

D ≤ α̃ then

10: solve (19) using PCG with σ = σ3 and zk(αk
P ), sk(αk

D) in (18) to obtain

(∆z̃k,∆s̃k)

set (∆zk,∆sk)=(∆z̃k,∆s̃k)+(∆z̄k,∆s̄k)

choose primal and dual step sizes αk
P , α

k
D in [0, 1] as the largest values of αP , αD

such that

zk(αk
P ) = zk + αP∆z

k > 0

sk(αk
D) = sk + αD∆s

k > 0

11: end if

12: set (zk+1, sk+1)=(zk(αk
P ), sk(αk

D))
13: end while

The input parameters σ1, σ2 are user-defined and control the centering bias
of the predictor directions, while σ3 parameter controls the strong centering
in the corrector directions. For all experiments they have been set to σ1 = 0.1,
σ2 = 0.5 and σ3 = 0.8. The input parameters ᾱ and α̃ are user-defined,
ᾱ controls whether σ1 or σ2 will be used as a centering parameter for the
predictor directions and α̃ controls the frequency of the corrector updates. For
all experiments they have been set to ᾱ = 0.5 and α̃ = 0.1.

5.2 Benchmarks

In order to have a base of comparison we choose to show the efficiency of
the matrix-free IPM on already existing benchmarks, which have been used
by several researchers including [4,39]. Experiments are performed on 18 real
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valued sparse reconstruction problems, see Table 4, from the Sparco collection
[5]. In total, Sparco collection consists of 26 problems, out of which 6 are
complex valued and 20 real valued. For the experiments in this section, the
complex valued problems with IDs 1, 4, 8, 501 to 503, are ignored since the
matrix-free IPM manipulates only real data. Moreover, 2 out of the 20 real
valued problems, with IDs 703 and 901, are also ignored because of their
difficulty to be generated on any machine in a stand-alone approach, since,
they require external packages such as CurveLab [8] and FFTW [22]. For
problems in Table 4 with IDs 401 to 403, 601 to 603, 701 and 702, the optimal
representation x̂ is not given by Sparco toolbox. Therefore, the SPGL1 bp
solver is used to obtain x̂ with required high accuracy. In particular to obtain
x̂, the parameters of SPGL1 bp are set to

bpTol = 1.0e-15, optTol = 1.0e-15, decTol = 20 000. (41)

where bpTol controls the tolerance for identifying a basis pursuit solution,
optTol controls the optimality tolerance and decTol controls the frequency of
Newton updates. Some of the components of the obtained solution from the
SPGL1 bp might be nearly but not exactly zero, hence, as nonzero components

are considered the ones in the set nnz (x) := {k = 1, 2, . . . , n |
∑k

i=1
|x̄i| ≤

0.999‖x‖1}, where x̄ is the vector x sorted in decreasing order of absolute
values of its components. Then we set x̂i = xi if i ∈ W otherwise x̂i = 0,
where W := {i = 1, 2, . . . , n | i ∈ nnz (x)}.

Noise is introduced to the noiseless measurements b̂ using the following
command in MATLAB:

b = awgn(b̂,SNR, ‘measured’), (42)

The function awgn is a MATLAB function from Communications Systems
Toolbox which adds white Gaussian noise to signal b̂. The SNR is the signal
to noise ratio, measured in dB. The ‘measured’ option specifies that the power
of the signal is calculated first before the addition of the noise.

5.3 Equivalence of BPε2 and BPDN

It has already being stated in Section 1 that problems BPε2 in (5c) and BPDN
in (5a) are equivalent given particular parameters ε2 and τ . In this paper the
tested solvers implement problem BPε2 , i.e. SPGL1 bpdn, or problem BPDN,
i.e. matrix-free IPM, FPC AS CG `1 `s and PDCO. In order to perform a fair
comparison among these solvers it has to be made certain that all codes solve
equivalent problems. Otherwise, different optimal solutions will be obtained,
therefore, a straightforward and clear comparison would be impossible. Un-
fortunately, exact values of ε2 and τ which make problems BPε2 and BPDN
equivalent are not known a priori, except for the case of orthogonal matrix A.
However, given ε2 an approximate τ can be computed such that an approxi-
mate equivalence holds.
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Table 4 18 out of 20 real valued problems of Sparco collection

Problem ID m, n Operator ‖x̂‖1
[16,17] blocksig 2 1 024, 1 024 wavelet 4.5e+02

[16,17] blkheavi 9 128, 128 heaviside 4.1e+01

[16,17] blknheavi 10 1 024, 1 024 normal. heaviside 9.8e+02

[20] blurrycam 701 65 536, 65 536 blurring, wavelet 1.0e+04

[20] blurspike 702 16 384, 16 384 blurring 3.4e+02

cosspike 3 1 024, 2 048 DCT 2.2e+02

gausspike 11 256, 1 024 Gausian ens. 2.4e+01

gcosspike 5 300, 2 048 Gausian ens., DCT 1.8e+02

[27] jitter 902 200, 1 000 DCT 1.7e+00

[10] p3poly 6 600, 2 048 Gausian ens., wavelet 1.7e+03

[11] sgnspike 7 600, 2 560 Gaussian ens. 2.0e+01

[19] spiketrn 903 1 024, 1 024 1D convolution 1.3e+01

[37] soccer1 601 3 200, 4 096 binary, wavelet 4.2e+02

[37] soccer2 602 3 200, 4 096 binary, Haar wavelet 7.4e+02

srcsep1 401 29 166, 57 344 windowed DCT 1.0e+03

srcsep2 402 29 166, 86 016 windowed DCT 7.7e+03

srcsep3 403 196 608, 196 608 blurring, wavelet 1.0e+03

[20] yinyang 603 1 024, 4 096 wavelet 2.6e+02

According to [4] given ε2 the parameter τ which makes problems BPε2 and
BPDN equivalent, is the optimal Lagrange multiplier of the dual problem of
BPε2 . Since, SPGL1 bpdn outputs both the primal iterates and the optimal
Lagrange multiplier of BPε2 , it can be used to approximately find τ . Having
such a parameter τ the BPDN solvers, matrix-free IPM, FPC AS CG `1 `s,
PDCO and the BPε2 solver SPGL1 bpdn can be legitimately compared.

Moreover, in order to be able to compare the quality of the reconstructed
representations for each solver when solving equivalent problems, the optimal
sparsest representation for a particular level of noise needs to be known in
advance. This is definitely not the case when noise is added manually by the
user to a noiseless signal b̂ using (42). Due to manual corruption of signal b̂, the
energy of the added noise ε2 = ‖e‖2 is known in advance. Hence, solving BPε2
will give the optimal sparsest representation for this particular level of noise, ε2.
This solution is obtained by first calling SPGL1 bpdn solver to solve BPε2 by
setting ε2 = ‖e‖2 with required high accuracy, see (41). During this process the
approximate τ which makes problems BPε2 and BPDN equivalent is obtained
from SPGL1 bpdn as has been described before. Hence, it is concluded that
approximate τ and optimal sparse representations can be calculated such that
a fair comparison can be conducted.
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Finally, for noiseless signals b̂, the problem is easier. Problems BP (3) and
BPDN (5a) are almost equivalent for sufficiently small τ , i.e. 1.0e-10. However,
such a small τ can make the `1-norm in BPDN numerically negligible, see
Figure 6.2 in [4] for numerical examples. For the former reason, if such a case
is observed for BPDN solvers, parameter τ is set experimentally to a larger
value, their values are given in Table 6.

5.4 Termination Criteria and Parameter Tuning

Termination of the compared solvers is forced when a solution of similar quality
to the one of matrix-free IPM is obtained. In order to do so, the termination
criteria of the compared solvers are changed. In particular, SPGL1 solver is
terminated when the following criteria are satisfied

n1d(xkW ) ≤ n1d(xmW ), r.e(xkW ) ≤ r.e(xmW ), res = (xkW ) ≤ res(xmW ),

where xkW is the projected representation at the kth iteration of SPGL1 and xmW
is the projected representation obtained by matrix-free IPM. Solvers FPC AS,
`1 `s and PDCO are terminated when the following conditions are satisfied

obj(xkW ) ≤ obj(xmW ), r.e(xkW ) ≤ r.e(xmW ).

Using these criteria for the compared solvers it is made certain that the re-
constructed representations have approximately the same `1-norm, `2-norm of
residual AxW − b and number of non zero elements in xW . The differentiation
of the termination criteria for solver SPGL1 is done because SPGL1 solves
problem BPε2 , unlike all other codes which solve the BPDN problem. Hence,
it is more natural and fair for SPGL1 to be compared with other solvers using
termination criteria in SPGL1 way.

Occasionally, certain solvers required too many matrix-vector products
without achieving a solution of similar quality to the one delivered by the
matrix-free IPM. In this case the solvers were terminated when nMat > 40 000.

Regarding the parameter tuning of the compared solvers, all their param-
eters are set to their default values. For the matrix-free IPM the following
parameters need to be set.

– tol: Relative duality gap of primal-dual pair (8) and (16). For noisy prob-
lems, this parameter varies between 1.0e-6 and 1.0e-10. For noiseless prob-
lems it varies between 1.0e-7 and 1.0e-14.

– maxiters: Maximum number of iterations. For all problems this parameter
is set to 100.

– tolpcg: Tolerance of preconditioned CG method. For noisy problems this
parameter varies between 1.0e-1 and 1.0e-2 and for noiseless ones it varies
between 1.0e-1 and 1.0e-6.

– mxiterpcg: Maximum number of iterations of preconditioned CG method.
For all problems this parameter is set to 200.
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Since a large number of experiments has been performed, the exact parameter
tuning of matrix-free IPM is not given here. However, it can be found in
the MATLAB scripts which reproduce the results in this section, see http:

//www.maths.ed.ac.uk/ERGO/mfipmcs/.
Finally, the parameters ε2 and τ in problems (5c) and (5a), respectively,

for noisy problems are set as described in Subsection 5.3 for ε2 = ‖e‖2. For
noiseless problems τ is set to arbitrarily small values given in Table 6.

5.5 Comparison

In this section we present computational results obtained for the Sparco col-
lection problems discussed in the Benchmarks section. Both noisy and noise-
less measurements are considered. Noise is added to measurements using (42)
by fixing the SNR = 60 dB. A comparison among the previously mentioned
solvers is made in terms of the quality of reconstruction and computational
effort. The results of experiments are shown in Table 5. The first column in
Table 5 shows the IDs of the Sparco problems. For each ID the first and sec-
ond sub-rows give results for noisy and noiseless measurements, respectively.
The second column reports the `1-norm of the projected reconstructed repre-
sentation for matrix-free IPM. The third column shows the relative error r.e,
see Table 3, of the projected reconstructed representation that was achieved
by matrix-free IPM. The forth column shows the `2-norm of the residual, de-
noted by res in Table 3, for matrix-free IPM. The rest of the table shows the
number of matrix-vector products, nMat, that were needed by each solver to
reconstruct a solution of similar quality to the one of matrix-free IPM. In cases
when number of matrix-vector products required by a solver exceeded 40 000,
the solver was terminated with a failure status. To be precise, it is a failure
to converge to a solution similar to the one obtained by matrix-free IPM.
Problems for which the matrix-free IPM converged with the lowest number
of matrix-vector products among all solvers compared are denoted in bold. In
Table 6 are shown the regularization parameters τ for noiseless signals that
were used for BPDN for solvers matrix-free IPM, FPC AS, `1 `s and PDCO.
Finally, for noiseless signals the version SPGL1 bp of SPGL1 solver is called.

One can observe in Table 5 that the matrix-free IPM was the fastest solver
in 11 out of 36 noisy and noiseless problems, while it was the second fastest
for another 14 problems, denoted by italic font. It is important to be men-
tioned that the performance of the compared solvers crucially depends on the
condition number of matrices build of subsets of columns of matrix A with
cardinality κ, less than m, i.e. full-rank sub-matrices of A. Unfortunately, it is
a computational demanding task to check the condition number of every full-
rank sub-matrix for the problems shown in Table 4. Nevertheless, by experi-
menting with a few sub-matrices one can get a picture of how well-conditioned
sub-matrices of A might be.

Based on the previous criterion we observed that on problems that the
matrix-free IPM was first or second, matrix A had relatively ill-conditioned

http://www.maths.ed.ac.uk/ERGO/mfipmcs/
http://www.maths.ed.ac.uk/ERGO/mfipmcs/
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Table 5 Results for noisy and noiseless Sparco problems

mfIPM `1 `s PDCO FPC AS SPGL1
ID ‖x‖1 r.e res nMat

2
4.5e+02 5.3e-04 8.2e-02 61 726 6 611 9 40 000
4.5e+02 1.0e-11 8.4e-10 65 644 40 011 40 002 21

3
2.2e+02 9.9e-04 1.3e-01 195 446 5 115 119 70
2.2e+02 1.8e-08 1.8e-06 387 1 540 40 005 192 146

5
1.8e+02 3.0e-03 2.3e-01 1 367 5 042 28 369 630 510
1.8e+02 2.4e-05 1.8e-03 6 239 20 758 41 479 636 40 000

6
1.7e+03 2.2e-02 1.7e+01 2 507 2 838 42 125 720 40 000
1.7e+03 4.6e-02 3.6e+01 7 193 40 011 18 685 573 40 000

7
2.0e+01 5.4e-04 2.3e-03 165 452 955 78 63
2.0e+01 5.6e-07 1.1e-06 259 952 709 78 87

9
4.1e+01 1.0e-03 1.7e-01 377 574 579 446 8 855
4.1e+01 5.2e-12 1.6e-10 661 3 860 7 113 40 002 40 000

10
9.0e+02 9.3e-02 3.3e+00 2 431 11 421 1 043 40 001 40 000
9.8e+02 1.0e-09 8.9e-08 4 519 8 192 42 647 40 001 40 000

11
2.4e+01 1.4e-03 1.3e-01 767 2 186 3 291 217 143
2.4e+01 6.8e-05 5.2e-03 1 241 4 542 4 299 219 189

401
1.0e+03 8.9e-02 1.2e-01 2 747 42 622 61 327 40 076 882
1.0e+03 7.7e-02 9.7e-02 3 193 43 512 48 511 40 076 814

402
1.0e+03 1.0e-01 1.9e-01 4 393 46 458 44 169 40 078 517
1.0e+03 8.1e-02 2.0e-01 4 991 49 122 43 845 40 078 617

403
7.6e+03 1.2e-02 7.1e-01 2 841 6 136 40 495 2 305 699
7.7e+03 4.1e-03 9.2e-02 6 031 43 278 69 913 40 046 932

601
3.3e+02 6.1e-02 5.7e+01 1 179 14 684 40 153 40 080 40 000
4.0e+02 3.9e-02 4.8e+00 4 409 9 664 43 369 40 076 1 116

602
5.9e+02 1.0e-01 4.8e+01 1 199 17 097 40 631 40 023 898
6.4e+02 1.1e-01 3.2e+00 4 669 22 392 42 139 40 043 40 000

603
2.6e+02 4.1e-03 4.2e-02 1 777 40 693 50 369 40 002 443
2.5e+02 4.6e-02 5.9e-01 3 545 2 350 40 181 338 95

701
9.1e+03 4.6e-02 1.5e-01 1 217 33 160 91 147 40 044 1 658
1.0e+04 2.4e-07 4.1e-03 1 907 4 722 49 093 40 001 40000

702
3.4e+02 4.8e-03 3.4e-03 711 1 600 5 525 40 001 40 000
3.4e+02 6.4e-08 2.4e-03 1 913 3 030 49 009 40 037 12 388

902
1.7e+00 5.3e-04 5.2e-04 143 498 237 40 49
1.7e+00 2.0e-06 9.6e-07 239 675 279 42 59

903
1.3e+01 2.4e-03 1.4e-01 3 105 8 466 4 775 8 237 6 735
1.3e+01 3.5e-06 1.9e-04 4 163 25 128 30 979 33 529 40 000

sub-matrices, at least for the ones that we experimented with. The previous
implies that the proposed preconditioner was not as efficient as predicted in
Section 4. However, the ill-conditioning also adversely affected the performance
of SPGL1 and FPC AS, as shown in Table 5. On the contrary, on problems that
matrixA seemed to have well-conditioned sub-matrices, the preconditioner was
very efficient, which resulted in a very fast matrix-free IPM. However, SPGL1
and FPC AS were faster. For example, see problems with IDs 2, 3, 7 and 902.
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Table 6 Regularization parameters τ for problem BPDN and noiseless measurements b̂ for
the experiments performed in Table 5

τ Problems

1.0e-10 2, 9, 10, 701, 702

1.0e-08 401, 402, 603

1.0e-07 3, 7, 902

1.0e-05 903

1.0e-04 5, 403, 601, 602

1.0e-03 6

1.0e-02 11

5.6 Robustness to Noise

In this subsection we compare the matrix-free IPM with SPGL1, FPC AS CG,
`1 `s, in terms of their reconstruction capabilities for different levels of noise.
The results collected in Table 5 and analysed in Section 5.5 reveal that PDCO
and `1 `s demonstrate comparable efficiency but the latter is usually faster.
Therefore, solver PDCO will not be used in our further experiment.

For this experiment, the level of noise is varied from SNR = 10 dB to
SNR = 120 dB with a step of 10 dB. The quality of reconstruction for all
solvers is measured using the amplitude criterion [38]

amp(xW ) =

√
1
n‖xW − x̂‖

2
2√

1
m‖e‖

2
2

.

The main purpose of using the amp criterion, instead of r.e, is that the former
amplifies the r.e, the nominator of amp, as ‖e‖2 → 0. Hence, less accurate
representations will be emphasized.

As in Section 5.5 when the optimal representation x̂ of BP is unknown it is
calculated approximately using solver SPGL1 bp with required high accuracy
(41). In order to have a fair comparison it is necessary to know at least approx-
imately the parameter τ which makes problems BPε2 and BPDN equivalent
and moreover, the optimal sparse representation of BPε2 for ε2 = ‖e‖2. The
former issues are solved as described in Subsection 5.3.

To compare the solvers the following criterion is defined

rampd(xW ) =
max(amp(x∗W )− amp(xsW ), 0)

amp(xsW )
, (43)

where rampd stands for relative amplitude difference, x∗W is the reconstructed
projected representation by solvers matrix-free IPM, FPC AS CG, `1 `s, and
xsW is the reconstructed projected representation of solver SPGL1 bpdn. No-
tice that if rampd equals zero, then the representation x∗W is of better quality
than xsW , otherwise the inverse is true.
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Table 7 Average quality reconstruction results over SNR from 10 dB to 120 dB for solvers
matrix-free IPM, FPC AS and `1 `s on Sparco problems in Table 4

Avg. rampd for SNR from 10
dB to 120 dB

Avg. rampd for SNR from 10
dB to 60 dB

ID mfIPM FPC AS `1 `s mfIPM FPC AS `1 `s

2 6.1e-09 2.5e-10 0.0e+00 2.8e-13 2.6e-13 0.0e+00

3 1.3e-04 8.7e-05 0.0e+00 4.0e-09 6.4e-14 0.0e+00

5 5.1e-06 5.0e-07 1.7e-01 7.1e-11 9.8e-07 0.0e+00

6 1.2e-07 2.4e-10 1.1e+00 2.5e-07 4.8e-10 0.0e+00

7 1.5e-02 5.7e-08 0.0e+00 4.3e-06 3.5e-15 0.0e+00

9 1.1e-08 1.1e-01 4.9e-06 2.1e-08 2.1e-01 1.0e-08

10 7.3e-04 1.6e-01 0.0e+00 1.5e-03 2.5e-01 0.0e+00

11 4.2e-05 1.8e-05 0.0e+00 1.4e-10 3.7e-12 0.0e+00

401 8.6e+00 1.2e+01 8.5e+00 1.8e-01 1.9e-01 1.7e-01

402 8.0e+00 2.2e+01 8.0e+00 2.0e-01 1.9e+01 2.1e-01

403 1.9e+00 3.8e+00 1.2e+00 8.1e-03 6.4e-12 1.4e-02

601 3.8e+05 4.0e+03 1.5e+01 4.8e-11 8.1e+03 1.9e-01

602 1.6e+00 2.9e+03 7.4e+00 1.1e-10 5.7e+03 1.3e-01

603 8.1e-01 6.7e+00 7.7e-01 2.2e-08 3.7e-01 1.8e-03

701 6.4e-08 1.9e+00 3.2e-03 0.0e+00 3.8e+00 6.4e-03

702 7.9e-02 2.5e+01 6.2e-03 0.0e+00 5.1e+01 1.3e-03

902 9.1e-02 9.7e-09 0.0e+00 2.1e-07 1.3e-08 0.0e+00

903 1.5e-04 3.8e+00 1.5e-04 1.0e-11 7.5e+00 0.0e+00

In Table 7 is shown the average value of rampd over all SNR for each
solver. The first column of Table 7 reports the ID of every Sparco problem.
From the second to the forth column the average rampd over all SNR for each
solver is shown. The last three columns report the average rampd for SNRs
from 10 dB to 60 dB for each solver. Notice in Table 7 that matrix-free IPM
for problems with IDs 2 to 11 and 701 to 903 was consistently recovering a
high quality solution. For problems with IDs 401 to 603 for SNR > 60 dB
all BPDN solvers, matrix-free IPM, FPC AS CG and `1 `s, were unable to
reconstruct an adequate representation and this is in contrast to SPGL1. A
similar observation has been reported in [4]. In this work the authors mentioned
that this issue of BPDN solvers might be due to very small regularisation
parameter τ , obtained from SPGL1 solver as the energy of noise is decreased. In
this case, the regularization effect of the `1-norm starts to be negligible and the
solvers face considerable numerical difficulties. However, in our experiments we
observed for these problems that not always the τ parameter was small and
additionally, there were other problems were τ was even smaller but successful
reconstruction was possible. Therefore, we conclude that this failure of BPDN
solvers might be problem dependent.
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5.7 Preconditioned Conjugate Gradient Method Against Direct Linear Solver

In this subsection we replace PCG in steps 8 and 10 of matrix-free IPM with a
direct linear solver. It has been mentioned in Section 1 that direct linear solvers
are efficient when the system to be solved is sufficiently sparse. However, for CS
the systems (19) to be solved are completely dense due to density of matrix A.
For this reason, large scale problems are not storable in a moderate computer
with 8 giga byte of random access memory. Even worse, matrix A might be an
algorithmic operator, i.e. DCT, therefore, direct solvers cannot be employed.
Hence, direct linear solvers for CS inside an IPM are only applicable when
the measurement matrix A is explicitly available, i.e. Gaussian matrix, and
only for small scale problems, i.e. n = 212 or smaller. In addition to the
former disadvantages of a direct solver for CS problems, its computational
complexity for systems (19) will be of order O(n3). This is a well known
result, for completely dense linear systems. Therefore, it is expected that for
very small instances the two approaches might require similar CPU time to
converge, while as dimensions grow the CPU time of the IPM version with the
direct linear solver will increase rapidly. Indeed, this is confirmed by Figure
3a.

Despite the higher computational effort required by direct solvers for CS
problems, such an approach will produce exact Newton directions, hence, one
would expect that IPM iterations will be the minimum possible. Suprisingly, in
Figure 3b we show, that matrix-free IPM with PCG requires as few iterations
as its IPM version with a direct linear solver. Indeed, recent analysis of [26]
indicates that allowing the use of inexact Newton directions in an IPM does
not adversely affect the worst-case complexity result of this method.

In the experiments reported in Figures 3a and 3b matrix A is Gaussian, the
sparsity pattern of the optimal representation x̂ is chosen at random, while the
nonzero components follow a standard normal distribution. The noiseless mea-
surements are produced by b̂ = Ax̂. The size of problem n, is varied from 25 to
212 with a step of times 2, the measurements m are varied from 23 to 210 with
a step of times 2 and the sparsity level k is set to dm/20e. Finally, the τ param-
eter in BPDN problem (5a) is set to τ =1.0e-3. To solve the linear systems we
use the mldivide function of MATLAB, which in case of symmetric real ma-
trices with positive diagonal, i.e. (19), performs Cholesky factorisation. For de-
tails of the mldivide function we refer the reader to http://www.mathworks.

co.uk/help/matlab/math/systems-of-linear-equations.html.

5.8 Average Phase Transition

Recently, it has been shown in [18] that for any problem instance (A, b), where
A is Gaussian, there is a maximum ratio ν̄ρ = k/m given ρ = m/n that
below of it the problems (3) or (5a) guarantee on average reconstruction of the
optimal sparse representation. The latter, has been introduced as the notion of
average phase transition for Gaussian matrices. Moreover, it has been shown

http://www.mathworks.co.uk/help/matlab/math/systems-of-linear-equations.html
http://www.mathworks.co.uk/help/matlab/math/systems-of-linear-equations.html


30

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

50

100

150

200

250

300

350

400

450

500

n

C
P

U
 ti

m
e

CPU time of matrix−free IPM and an IPM with a direct solver

 

 

matrix−free IPM
IPM with direct solver

(a) Scaling of CPU time

0 500 1000 1500 2000 2500 3000 3500 4000 4500
11

12

13

14

15

16

17

18

19

20

n
Ite

ra
tio

ns

Iterations of matrix−free IPM and an IPM with a direct solver

 

 

matrix−free IPM
IPM with direct solver

(b) Scaling of number of iterations
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empirically that other measurement matrices such as partial Fourier, partial
Hadamard, Bernoulli etc, have the same average phase transition properties.
Ideally, an efficient `1-regularization solver should have empirical average phase
transition at the same level ν̄ρ.

In this section we show that the empirical phase transition properties of
matrix-free IPM fit the average Gaussian phase transition properties by repro-
ducing a similar experiment as that in Section 2 of [18]. Let us now explain
the experiment. The parameter n is fixed to n = 1 000. The measurements
m are varied from m = 100 to m = 900 with a step of 100. For each of the
nine measurements m the sparsity of the optimal representation is varied from
k = 1 to k = m with a step of one and for each k, 100 trials are conducted. The
sensing matrix A is chosen by taking randomly m rows from an n×n normal-
ized discrete cosine transform matrix. Each nonzero coefficient of the sparse
representation is set to ±1 with equal probability, while the sparsity pattern is
chosen at random. All the generated problems are solved using the matrix-free
IPM solver, the reconstruction is considered successful when r.e ≤ 1.0e-5. For
each ratio νρ we compute the success ratio p(νρ) = S/100, where S is the num-
ber of trials for which the r.e ≤ 1.0e-5. It has been demonstrated empiricaly in
[18] that for any problem instance (A, b), where A is a partial DCT matrix a
solver with average phase transition properties has max{νρ | p(νρ) ≥ 0.5} ≈ ν̄ρ.
The latter means that the empirical average phase transition for 50% success
rate overlaps with the theoretical average phase transition for Gaussian matri-
ces. In Figure 4, we plot the empirical phase transition for 50% success rate of
matrix-free IPM and the theoretical average phase transition. The two curves
overlap.

6 Conclusions

We propose and implement a computationally inexpensive matrix-free primal-
dual interior point method, based on [25] and [23], for the `1-regularized prob-
lems arising in the field of Compressed Sensing. At every iteration of the pro-
posed primal-dual interior point method the direction is obtained by solving
the linear system (19a) using the conjugate gradient method. Unfortunately,
the matrices Θ−1 + FFT in these systems tend to be ill-conditioned as the
algorithm converges, hence, the conjugate gradient method might get slow.
To remedy this ill-conditioning we propose a low-cost preconditioner for the
conjugate gradient method. The proposed preconditioning technique exploits
features of Compressed Sensing matrices as well as interior point methods. Its
efficiency is justified theoretically and confirmed in numerical experiments.

Computational experience presented in this paper shows that although the
Compressed Sensing research community seems to favor first-order methods, a
specialized (matrix-free) interior point method is very competitive and offers
a viable alternative.
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Ö. Yılmaz. Sparco: A testing framework for sparse reconstruction. ACM Trans. Math.
Software, 35(4):1–16, 2009.

6. J. D. Blanchard, C. Cartis, and J. Tanner. Decay properties of restricted isometry
constants. Computational Optimization and Applications, 16(7):572–575, 2009.

7. J. D. Blanchard, C. Cartis, and J. Tanner. Compressed sensing: How sharp is the
restricted isometry property? SIAM Rev., 53(1):105–125, February 2011.

8. E. Candés, L. Demanet, D. Donoho, and L. Ying. Curvelab. http://www.curvelet.

org/software.html.
9. E. J. Candés. Compressive sampling. Proceedings of the International Congress of

Mathematicians, 2006.
10. E. J. Candés and J. Romberg. Practical signal recovery from random projections. In

Wavelet Applications in Signal and Image Processing XI, Proc. SPIE Conf. 5914.,
2004.

11. E. J. Candés and J. Romberg. `1-magic. Technical Report, Caltech, 2007. http:

//users.ece.gatech.edu/~justin/l1magic/.
12. E. J. Candés and J. Romberg. Sparsity and incoherence in compressive sampling.

Inverse Problems, 23(3):969–985, 2007.
13. E. J. Candés, J. Romberg, and T. Tao. Stable signal recovery from incomplete and

inaccurate measurements. Comm. Pure Appl. Math., 59(8):1207–1223, 2006.
14. S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit.

SIAM Journal on Scientific Computing, 20(1):33–61, 1998.
15. R. Coifman, F. Geshwind, and Y. Meyer. Noiselets. Appl. Comput. Harmon. Anal.,

10(1):27–44, 2001.
16. D. L. Donoho and X. Huo. Uncertainty principles and ideal atomic decomposition.

IEEE Trans. Inf. Theory, 47(7):2845–2862, 2001.
17. D. L. Donoho and I. M. Johnstone. Ideal spatial adaptation by wavelet shrinkage.

Biometrika, 81(3):425–455, 1994.
18. D. L. Donoho and J. Tanner. Precise undersampling theorems. Proceedings of the IEEE,

98(6):913–924, 2010.
19. C. Dossal and S. Mallat. Sparse spike deconvolution with minimum scale. In Proceedings

of Signal Processing with Adaptive Sparse Structured Representations, 81(3):123–126,
1994.

20. M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse Problems. IEEE
Journal of Selected Topics in Signal Processing, 1(4):586–597, 2007.

21. S. Foucart. A note on guaranteed sparse recovery via 1-minimization. Applied and
Computational Harmonic Analysis, 29(1):97–103, 2010.

22. M. Frigo and S. G. Johnston. The design and implementation of FFTW3. Proceedings
of the IEEE, 93(2):216–231, 2005.

23. J. Gondzio. Multiple centrality corrections in a primal-dual method for linear program-
ming. Computational Optimization and Applications, 6:137–156, 1996.

24. J. Gondzio. Interior point methods 25 years later. European Journal of Operational
Research, 218(3):587–601, 2012.

25. J. Gondzio. Matrix-free interior point method. Computational Optimization and Ap-
plications, 51(2):457–480, 2012.

http://www.curvelet.org/software.html
http://www.curvelet.org/software.html
http://users.ece.gatech.edu/~justin/l1magic/
http://users.ece.gatech.edu/~justin/l1magic/


33

26. J. Gondzio. Convergence analysis of an inexact feasible interior point method for convex
quadratic programming. SIAM Journal on Optimization, 23(3):1510–1527, 2013.

27. G. Hennenfent and F. J. Herrmann. Random sampling: new insights into the recon-
struction of coarsely-sampled wavefields. In SEG International Exposition and 77th
Annual Meeting, 2007.

28. C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations, volume 16 of
Frontiers in Applied Mathematics. SIAM, Philadelphia, 1995.

29. S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-point method
for large-scale `1-regularized least squares. IEEE Journal on Selected Topics in Signal
Processing, 1(4):606–617, 2007.

30. M. Kojima, N. Megiddo, and S. Mizuno. A primal-dual infeasible-interior-point algo-
rithm for linear programming. Mathematical Programming, 61:263–280, 1993.

31. Z. Lu, R. D. S. Monteiro, and J. W. O’Neal. An iterative solver-based infeasible primal-
dual path-following algorithm for convex quadratic programming. SIAM Journal on
optimization, 17:287–310, 2006.

32. A. J. Miller. Subset selection in regression. Chapmain & Hall/CRC, London, 2002.
33. Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program.,

103(1):127–152, 2005.
34. R. T. Rockafellar. Convex Analysis. Princeton Landmarks in Mathematics and Physics,

Princeton University Press, 1970.
35. M. Rudelson and R. Vershynin. On sparse reconstruction from Fourier and Gaussian

measurements. Communications on Pure and Applied Mathematics, 61(8):1025–1045,
2008.

36. M. Saunders and B. Kim. PDCO: Primal-dual interior method for convex objectives.
Technical Report, Stanford University, 2002. http://www.stanford.edu/group/SOL/

software/pdco.html.
37. D. Takhar, J. N. Laska, M. Wakin, M. Duarte, D. Baron, S. Sarvotham, K. K. Kelly,

and R. G. Baraniuk. A new camera architecture based on optical-domain compression.
In Proceedings of the IS&T/SPIE Symposium on Electronic Imaging: Computational
Imaging, 6065, 2006.

38. A. Thomson. Compressive single-pixel imaging. Proceedings of the 2nd IMA Conference
on Mathematics in Defence, Defence Academy, Shrivenham, UK, 2011.

39. Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang. A fast algorithm for sparse reconstruction
based on shrinkage, subspace optimization and continuation. SIAM J. Sci. Comput.,
32(4):1809–1831, 2010.

40. S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, 1997.

http://www.stanford.edu/group/SOL/software/pdco.html
http://www.stanford.edu/group/SOL/software/pdco.html

	1 Introduction
	2 Properties of Compressed Sensing Matrices
	3 Primal–Dual Problems in Matrix-free IPM
	4 Preconditioned Conjugate Gradient Method
	5 Computational Experience
	6 Conclusions

