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Abstract. Multi-way data arises in many applications such as electroencephal-ography (EEG) classification, face recogni-

tion, text mining and hyperspectral data analysis. Tensor decomposition has been commonly used to find the hidden factors

and elicit the intrinsic structures of the multi-way data. This paper considers sparse nonnegative Tucker decomposition (NTD),

which is to decompose a given tensor into the product of a core tensor and several factor matrices with sparsity and nonneg-

ativity constraints. An alternating proximal gradient method (APG) is applied to solve the problem. The algorithm is then

modified to sparse NTD with missing values. Per-iteration cost of the algorithm is estimated scalable about the data size, and

global convergence is established under fairly loose conditions. Numerical experiments on both synthetic and real world data

demonstrate its superiority over a few state-of-the-art methods for (sparse) NTD from partial and/or full observations. The

MATLAB code along with demos are accessible from the author’s homepage.

Key words. multi-way data, sparse nonnegative Tucker decomposition, alternating proximal gradient method, non-convex

optimization, sparse optimization

1. Introduction. A tensor is a multi-dimensional array. For example, a vector is a first-order tensor,

and a matrix is a second-order tensor. The order of a tensor is the number of dimensions, also called way

or mode. Tensors naturally arise in the applications that collect data along multiple dimensions, including

space, time, and spectrum, from different subjects (e.g., patients), under varying conditions, and in different

modalities. They can also be created by tensorization of lower dimensional data []. Examples include medical

data (CT, MRI, EEG), text data and hyperspectral images. An efficient approach to elicit the intrinsic

structure of multi-dimensional data is tensor decomposition. Two commonly used tensor decompositions

are CANDECOMP/PARAFAC decomposition (CPD) [,] and Tucker decomposition (TD) []. CPD

decomposes an Nth-order tensor M into the product of N factor matrices A1, · · · ,AN , and TD decomposes

M into the product of a core tensor C and N factor matrices A1, · · · ,AN .

This paper focuses on sparse nonnegative Tucker decomposition (NTD) [], which imposes nonnegativ-

ity and uses `1-regularization terms to promote sparsity structure on the core tensor and/or factor matrices.

Nonnegativity allows only additivity, so the solutions are often intuitive to understand and explain. Promot-

ing the sparsity of the core tensor aims at improving the interpretability of the solutions. Roughly speaking,

the core tensor interacts with all the factor matrices, and a simple one is often preferred []. Consider a

three-way tensor, for example. The (1, 1, 1)-th component of the core tensor couples the first columns of

three factor matrices together. If it is not zero, then the three columns interacts with each other. Otherwise,

they have no or only weak relations. Forcing the core tensor to be sparse can often keep strong interactions

between the factor matrices and remove the weak ones. Sparse factor matrices make the decomposed parts

more meaningful and can enhance uniqueness as explained in []. Sparse NTD has found a large number

of applications such as in EEG classification [], hyperspectral data analysis [], text mining [], face

recoginition [], and so on.

1.1. Related work. NTD is a highly non-convex problem, and sparse regularizers make the problem

even harder. A natural and often efficient way to solve the problem is to alternatingly update the core tensor

and factor matrices. It includes, but not limited to, alternating least squares method (ALS) [], column-

wise coordinate descent (CCD) [], higher-order multiplicative update (HONMF) [], and hierarchical

alternating least squares (HALS) []. ALS alternatingly updates the core tensor and factor matrices by

solving a sequence of nonnegative least squares (NLS) problems, which requires to calculate matrix inverse
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and make ALS unsuitable for large-scale problems1. For this reason, [] simply restricts the core tensor

to be super-diagonal in its numerical tests. CCD has closed form update for each column of a factor

matrix. However, to update the core tensor, it still requires to solve a big NLS problem, which makes CCD

unsuitable for large-scale problems either. HONMF is an extension of the multiplicative update method

in [] for nonnegative matrix factorization [,] and has a relatively low per-iteration cost. At each

iteration, it only needs some tensor-matrix multiplications and component-wise divisions. The drawback of

HONMF is its slow convergence, which makes the algorithm often run a large number of iterations to reach

an acceptable data fitting. Like ALS, HALS needs to solve a sequence of NLS problems, but it updates factor

matrices in a column-wise way and the core tensor component-wisely, which enables closed form solutions

for all subproblems. In addition, HALS often converges faster than HONMF. However, as shown in [], the

convergence speed of HALS is still not satisfying.

There are also algorithms that update the core tensor and factor matrices simultaneously, such as the

damped Gauss-Newton method (dGN) in []. It is demonstrated that dGN overwhelmingly outperforms

HONMF and HALS in terms of convergence speed.

Recently, [] proposed an alternating proximal gradient method (APG) for solving NCP, and it was

observed superior to some other algorithms such as the alternating direction method of multiplier (ADMM)

[] and alternating nonnegative least squares method (ANLS) [,] in both speed and solution quality.

Unlike ANLS that exactly solves each subproblem, APG updates every factor matrix by solving a relaxed

subproblem with a separable quadratic objective. Each relaxed subproblem has a closed form solution, which

makes low per-iteration cost. Using an extrapolation technique, APG also converges very fast.

1.2. Overview of tensor. Notation. We use small letters a, x, · · · for scalars, bold small letters

a,x, · · · for vectors, bold capital letters A,B, · · · for matrices and bold caligraphic letters C,M, · · · for

tensors. The components of a tensor X are written in the form of xi1i2···iN , which denotes the (i1, i2, · · · , iN )-

th component of X .

Before proceeding with the model, we overview some tensor related concepts. For more details, we refer

the readers to the nice review paper [].

• A fiber of X is a vector obtained by fixing all indices of X except one.

• The vectorization of X gives a vector, which is obtained by stacking all mode-1 fibers of X and

denoted by vec(X ).

• The mode-n matricization of X is a matrix denoted by X(n) whose columns are mode-n fibers of X
in the lexicographical order.

• The mode-n product of X ∈ RI1×···×IN with A ∈ RJ×In is written as X×nA ∈ RI1×···×In−1×J×In+1×···×IN ,

defined component-wisely by

(X ×n A)i1···in−1jin+1···iN =

In∑
in=1

xi1i2···iNajin .

• The inner product of A,B ∈ RI1×···×IN is 〈A,B〉 ,
∑
i1,··· ,iN ai1···iN bi1···iN . The Frobenious norm

of X is ‖X‖F ,
√
〈X ,X 〉.

• Given M ∈ RI1×···×IN , the Tucker decomposition of M is to find a core tensor C ∈ RR1×···×RN

with Rn ≤ In,∀n and N factor matrices An ∈ RIn×Rn , n = 1, · · · , N such that

M ≈ C ×1 A1 · · · ×N AN . (1.1)

1There appears no exact definition of “large-scale”. The concept can involve with the development of the computing power.

Here, we roughly mean there are over millions of variables or data values.
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It is not difficult to verify that if X = C ×1 A1 · · · ×N AN , then

vec(X ) =
(
⊗1
n=N An

)
vec(C), (1.2)

where

⊗1
n=N An , AN ⊗ · · · ⊗A1, (1.3)

and A⊗B denotes the Kronecker product of A and B. In addition,

X(n) = AnC(n)

(
⊗1
i=N
i 6=n

Ai

)>
. (1.4)

1.3. Contributions. We apply and improve the APG method proposed in [] to the sparse NTD

problem

min
C,A

F (C,A) ≡ `(C,A) + λc‖C‖1 +
N∑
n=1

λn‖An‖1,

s.t. C ∈ RR1×···×RN
+ ,An ∈ RIn×Rn+ , n = 1, · · · , N,

(1.5)

where RIn×Rn+ contains all In ×Rn matrices with nonnegative components, A denotes (A1, · · · ,AN ),

`(C,A) =
1

2
‖C ×1 A1 · · · ×N AN −M‖2F

is a data fitting term that measures the approximation in (), M ∈ RI1×···×IN+ is a given tensor, ‖C‖1 ,∑
i1,··· ,iN |ci1···iN | is used to promote the sparsity of C, and λc, λ1, · · · , λN are parameters balancing the data

fitting and sparsity level.

Our algorithm iteratively updates the core tensor C and factor matrices alternatingly in the order of

C,A1,C,A2, · · · ,C,AN . We analyze the algorithm’s per-iteration complexity and give its global convergence.

The algorithm is modified to sparse NTD with missing values. We also consider some extensions of NTD

including sparse higher-order principal component analysis []. Our algorithm is carefully implemented in

MATLAB and compared to some state-of-the-art methods for solving (sparse) NTD from partial and/or full

observations on both synthetic and real world data. Numerical results show that the proposed algorithm

makes superior performance over all the compared ones in almost all cases.

1.4. Outline. The rest of the paper is organized as follows. Section applies APG to sparse NTD

problem. The algorithm is modified for sparse NTD with missing values in section, and some extensions

are considered in section. Numerical results are shown in section. Finally, section concludes the paper.

2. Sparse nonnegative Tucker decomposition.

2.1. Bound constraints for well-definedness. Note that for any positive scalars sc, s1, · · · , sN such

that their product equals one, (scC, s1A1, · · · , sNAN ) does not change the value of `. Hence, if some λ’s

vanish, the corresponding variables would be unbounded such that the variables with positive λ’s would

approach to zero, and () may not admit a solution. To tackle this problem, if λn = 0, we add

An ≤ max(1, ‖M‖∞) (2.1)

to bound An, where ‖M‖∞ denotes the maximum component of M. If λc = 0, we add

C ≤ max(1, ‖M‖∞) (2.2)
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to bound C. The constraints in () and () are reasonable according to the following proposition, which

is not difficult to show.

Proposition 2.1. If M = C̃ ×1 Ã1 · · · ×N ÃN for some (C̃, Ã1, · · · , ÃN ), then there exists some

(C,A1, · · · ,AN ) satisfying () and () such that M = C ×A1 · · · ×N AN and (C,A1, · · · ,AN ) has the

same sparsity as that of (C̃, Ã1, · · · , ÃN ).

Remark 2.1. If C̃ ×1 Ã1 · · · ×N ÃN is not exactly equal but close to M, one can magnify the bounds

in () and () by multiplying some τ > 1.

2.2. APG for sparse NTD. For convenience, we assume all λ’s to be positive in the derivation of

our algorithm, so there are no constraints as in () and () present. Our algorithm is based on the APG

method proposed in []. Suppose the current iterate is ( C̃, Ã). We update C by

Cnew = argmin
C≥0

〈∇C`(Ĉ, Ã),C − Ĉ〉+
Lc
2
‖C − Ĉ‖2F + λc‖C‖1, (2.3)

= max

(
0, Ĉ − 1

Lc
∇C`(Ĉ, Ã)− λc

Lc

)
, (2.4)

where Lc is a Lipschitz constant of ∇C`(C, Ã) with respect to C, namely,

‖∇C`(C1, Ã)−∇C`(C2, Ã)‖F ≤ Lc‖C1 − C2‖F , ∀ C1,C2,

and Ĉ is an extrapolated point. Similarly, if the current iterate is (C̃, Ã), a factor matrix An is updated by

(An)new = argmin
An≥0

〈∇An`(C̃, Ãj<n, Ân, Ãj>n),An − Ân〉 (2.5)

+
Ln
2
‖An − Ân‖2F + λn‖An‖1,

= max

(
0, Ân −

1

Ln
∇An

`(C̃, Ãj<n, Ân, Ãj>n)− λn
Ln

)
, (2.6)

where Ln is a Lipschitz constant of ∇An`(C̃, Ãj<n,An, Ãj>n) with respect to An, and Ân is an extrapolated

point.

One can perform () and () to update C and A in different manners. Directly applying the APG

method proposed in [] leads to the order of C,A1, · · · ,AN . However, since the core tensor C interacts

with all An’s, updating it more frequently is expected to speed up the convergence of the algorithm. Hence,

a more efficient way would be to update the variables in the order of C,A1,C,A2, · · · ,C,AN . Figure

shows the convergence behavior of APG with two different updating orders on a synthetic tensor and the

Swimmer dataset []. From the figure, we see that APG with the updating order C,A1, · · · ,AN performs

comparably well as that with the order C,A1,C,A2, · · · ,C,AN on the randomly generated data. However,

the former behaves much worse than the latter on the Swimmer dataset. For this reason, we only consider

the latter one, whose pseudocode is shown in Algorithm.

Remark 2.2. We do re-update in Line ReDo to make the objective nonincreasing. The monotonicity of

the objective is important since the algorithm may perform unstably without the re-update. The computational

cost of one objective evaluation is much cheaper than, actually not in the same order as, one gradient

computation. Detailed complexity analysis is listed in Appendix. Moreover, in each one of our experiments,

the re-update occurs only a few times (often less than 10), so it needs only a little more computations.

If some λn and/or λc vanish, we further do projections

Ck,n = min
(

max(1, ‖M‖∞),Ck,n
)

(2.9)
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Fig. 2.1. Results by APG with two different orders of updating the core tensor and factor matrices. (a). APG on a

Gaussian random 20×20×20×20 tensor M with core size 5×5×5×5; (b). APG on the 32×32×256 Swimmer dataset []

with core size 24 × 20 × 20.
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Algorithm 1: Alternating proximal gradient for sparse NTD

Data: tensor M, core dimension (R1, · · · , RN ), parameters λc, λ1, · · · , λN ≥ 0, and (C−1,A−1) = (C0,A0).

for k = 1, 2, · · · do
Set Ck,−1 = Ck,0 = C0 if k = 1 and Ck,−1 = Ck−1,N−1, Ck,0 = Ck−1,N otherwise.

for n = 1, · · · , N do

Choose Lk,nc to be a Lipschitz constant of ∇C`(C,Ak
j<n,A

k−1
j≥n) about C.

Choose ωk,nc ≥ 0 and set Ĉk,n = Ck,n−1 + ωk,nc (Ck,n−1 − Ck,n−2).

Update C by

Ck,n = max

(
0, Ĉk,n − 1

Lk,nc
∇C`(Ĉ

k,n
,Ak

j<n,A
k−1
j≥n)−

λc

Lk,nc

)
; (2.7)

Choose Lkn to be a Lipschitz constant of ∇An`(Ck,n,Ak
j<n,An,A

k−1
j<n) about An.

Choose ωkn ≥ 0 and set Âk
n = Ak−1

n + ωkn(A
k−1
n −Ak−2

n ).

Update An by

Ak
n = max

(
0, Âk

n −
1

Lkn
∇An`(C

k,n,Ak
j<n, Â

k
n,A

k−1
j>n)−

λn
Lkn

)
. (2.8)

if F (Ck,n,Ak
j≤n,A

k−1
j>n) > F (Ck,n−1,Ak

j<n,A
k−1
j≥n) then

ReDo Re-update Ck,n and Ak
n by () and () with Ĉk,n = Ck,n−1 and Âk

n = Ak−1
n , respectively.

Set Ck = Ck,N .

if Some stopping conditions are satisfied then

Output (Ck,Ak
1 , · · · ,Ak

N ) and stop.

after () and

Ak
n = min

(
max(1, ‖M‖∞),Ak

n

)
(2.10)

after () . Omitting the superscript, it is easy to show that () and () respectively solve () and

() with the extra constraints () and () .

2.3. Parameter settings. In our implementation of Algorithm, we set

Lk,nc = max
(
1,
∥∥∥(Ak−1

N )>Ak−1
N ⊗ · · · ⊗ (Ak−1

n )>Ak−1
n ⊗ (Ak

n−1)
>Ak

n−1 ⊗ · · · ⊗ (Ak
1)
>Ak

1

∥∥∥ ),
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where ‖ · ‖ denotes matrix operator norm. Note that computing Lk,nc does not need to form the expensive

Kronecker product because ∥∥A>NAN ⊗ · · · ⊗A>1 A1

∥∥ =

N∏
i=1

∥∥A>i Ai

∥∥ .
In the same way, we set

Lkn = max
(
1, ‖Bk

n(Bk
n)>‖

)
, (2.11)

where

Bk
n = Ck,n

(n)

(
Ak−1
N ⊗ · · · ⊗Ak−1

n+1 ⊗Ak
n−1 ⊗ · · · ⊗Ak

1

)>
. (2.12)

In addition, we take

ωk,nc = min

ω̂k,nc , 0.9999

√
Lk,n−1
c

Lk,nc

 , (2.13)

where ω̂k,nc follows

ω̂k,nc =
tk,n−1 − 1

tk,n
, (2.14a)

t1,0c = 1, tk,0c = tk−1,N
c , for k ≥ 2, (2.14b)

tk,nc =
1

2

(
1 +

√
1 + 4(tk,n−1

c )2

)
, for k ≥ 1, n = 1, · · · , N. (2.14c)

In the same way,

ωkn = min

ω̂k, 0.9999

√
Lk−1
n

Lkn

 , (2.15)

where ω̂k follows

ω̂k =
tk−1 − 1

tk
, (2.16a)

t0 = 1, tk =
1

2

(
1 +

√
1 + 4(tk−1)2

)
, for k ≥ 1. (2.16b)

Remark 2.3. We perform “min” operation in () and () for convergence; see Theorem. The

weights ω̂k,nc in () and ω̂k in () are the same as that used in [] for convex problems. Numerically, we

observe that the extrapolation technique using the weights given in () and () can significantly speed

up our algorithm. We also tested APG with the dynamically updated weight used in [,] for non-convex

matrix completion problem and observed that APG performs as well as that with the above extrapolation

weights.

2.4. Per-iteration complexity. Suppose M ∈ RI1×...×IN and the core tensor C ∈ RR1×...×RN . Then

the per-iteration cost of Algorithm is roughly

N · O

 N∑
j=1

( j∏
i=1

Ri
)( N∏

i=j

Ii
)

+

N∑
j=1

( j∏
i=1

Ii
)( N∏

i=j

Ri
) . (2.17)

The detailed analysis is given in Appendix.

Remark 2.4. If N = O(1) and maxnRn ≤ O(log
∏N
i=1 Ii), then the per-iteration cost of Algorithm

is scalable2 about the data size
∏N
i=1 Ii.

2Here, by scalability, we mean the cost is no greater than s · log(s) if the data size is s.
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2.5. Convergence results. It is shown in [] that the APG method with cyclic block updating rule

has global convergence to a stationary point. Since Algorithm uses a different block updating order, its

convergence cannot be directly obtained from []. However, we can still obtain the global convergence 3,

which is summarized in Theorem. Although the proof idea for Theorem is similar to that in [], some

places need careful modifications. Hence, for completeness, we include a modified proof in the Appendix.

Theorem 2.2. Let
{
Wk , (Ck,Ak)

}
be the sequence generated by Algorithm. If λc, λ1, · · · , λN are

all positive, and

1. There exist positive constants Ld, Lu such that Lk,nc , Lkn ∈ [Ld, Lu];

2. There is a positive constant δω < 1 such that ωk,nc ≤ δω

√
Lk,n−1
c

Lk,nc
and ωkn ≤ δω

√
Lk−1
n

Lkn
for all n and

k, where we use the notation Lk,0c = Lk−1,N
c ;

then Wk converges to a stationary point W̄ of () .

Remark 2.5. Positivity of sparse parameters implies the boundedness of {Wk}, and thus the existence

of Ld and Lu can be guaranteed if Lk,nc and Lkn are taken as in section.

3. Sparse nonnegative Tucker decomposition with missing values. For some applications, M
may not be fully observed. This section modifies Algorithm to handle this case. The problem is formulated

as

min
C,A

FΩ(C,A) ≡ 1
2
‖PΩ(C ×1 A1 · · · ×N AN −M)‖2F + λc‖C‖1 +

N∑
n=1

λn‖An‖1,

s.t. C ∈ RR1×···×RN
+ ,An ∈ RIn×Rn+ , n = 1, · · · , N,

(3.1)

where Ω indexes the observed entries of M, and PΩ(A) keeps the entries of A in Ω and zeros out all others.

As did in [,], we introduce variable X , restrict PΩ(X ) = PΩ(M), and write () equivalently to

min
C,A,X

1
2
‖C ×1 A1 · · · ×N AN −X‖2F + λc‖C‖1 +

N∑
n=1

λn‖An‖1,

s.t. C ∈ RR1×···×RN
+ ,An ∈ RIn×Rn+ , n = 1, · · · , N, PΩ(X ) = PΩ(M).

(3.2)

To modify Algorithm for () or equivalently (), we set X 0 = PΩ(M) in the beginning. At the k-th

iteration of Algorithm, we use M = X k−1, wherever M is referred to. After Line ReDo of Algorithm,

update X by

X k = PΩ(M) + PΩc(Ck ×1 Ak
1 · · · ×N Ak

N ). (3.3)

Compared to Algorithm, the modified method needs extra computation for the update (), which

costs about 2
∑N
j=1

(∏j
i=1 Ii

)(∏N
i=j Ri

)
. Therefore, the per-iteration complexity of the modified algorithm

is still scalable about the data size if N = O(1) and maxnRn ≤ O(log
∏N
i=1 Ii). In addition, following the

proof of Theorem, one can show that the same convergence result holds for the modified algorithm.

4. Extensions. For some applications, the core tensor C may not be required nonnegative []. Algo-

rithm can be modified to handle this case by changing () to

Ck,n = S λc

L
k,n
c

(
Ĉ
k,n
− 1

Lk,nc
∇C`(Ĉ

k,n
,Ak

j<n,A
k−1
j≥n)

)
, (4.1)

where Sµ(X ) is a soft-thresholding operator defined component-wisely as

Sµ(x) = sign(x) ·max(0, |x| − µ).

3Since the problem is non-convex, we only get convergence to a stationary point, and different starting points can produce

different limit points.
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The APG method can also be adapted to solve sparse higher-order principal component analysis (HOPCA),

which imposes orthogonality constraint on each factor matrix. The problem is formulated as

min
C,A

1
2‖C ×1 A1 · · · ×N AN −M‖2F + λc‖C‖1 +

N∑
n=1

λn‖An‖1,

s.t. A>nAn = In, n = 1, · · · , N,
(4.2)

where In is an identity matrix of appropriate size. When λc = 0, the optimal C = M×1 A>1 · · ·×N AN , and

one can eliminate C as shown in []. The concurrency of sparsity and orthogonality constraints makes the

problem much more difficult. The work [] considers rank-1 factor matrix with only one column and relaxes

the orthogonality constraint to A>nAn ≤ 1. Then it applies block coordinate minimization method to solve

the relaxed problem. When some An has more than one columns, we relax () to

min
C,A

1
2
‖C ×1 A1 · · · ×N AN −M‖2F + λc‖C‖1 +

N∑
n=1

λn‖An‖1 + µ
2

N∑
n=1

∑
i6=j

(
a>n,ian,j

)2
s.t. ‖an,j‖2 ≤ 1, n = 1, · · · , N, ∀j,

(4.3)

where an,j denotes the j-th column of An,
∑
i 6=j
(
a>n,ian,j

)2
is used to promote the orthogonality of An, and

µ is a penalty parameter. We want to mention that our orthogonality regularization term is similar to that

used in [] for promoting the discrepancy of dictionaries and also that used on pp. 222 of [].

Our method for () is similar to Algorithm and cycles over the variables by C,A1,C,A2, · · · ,C,AN .

The update of C is done by (), and An is updated one column by one column. Specifically, assume the

current iterate is (Ck,n,Ak
i<n,A

k−1
i≥n). Let Bk

n be the one obtained from (). Using (), we update the

columns of An from j = 1 to Rn by

akn,j = argmin
‖an,j‖2≤1

1

2

∥∥an,jbk,jn + (Ãk
n)jc(B

k
n)j

c

−M(n)

∥∥2

F
+ λn‖an,j‖1 (4.4)

+ µ

(〈
(Ãk

n)jc(Ã
k
n)>jc â

k
n,j ,an,j − âkn,j

〉
+
Lkn,j

2
‖an,j − âkn,j‖22

)
,

where bk,jn denotes the j-th row of Bk
n, (Bk

n)j
c

is the submatrix by taking all rows of Bk
n except the j-th one,

âkn,j = ak−1
n,j + ωkn,j(a

k−1
n,j − ak−2

n,j )

is an extrapolated point, (Ãk
n)jc is short for

(
akn,1, · · · ,akn,j−1,a

k−1
n,j+1, · · · ,a

k−1
n,Rn

)
, and Lkn,j is a Lipschitz

constant of the gradient of

1

2

∑
i<j

(
a>n,ja

k
n,i

)2
+
∑
i>j

(
a>n,ja

k−1
n,i

)2
with respect to an,j . One can easily write the update in () explicitly as

akn,j = PB1

[
S λn
b+µL

(
µL

b+ µL
âkn,j −

(
(Ãk

n)jc(B
k
n)
jc −M(n)

)(
bk,jn

)>
b+ µL

− µ

b+ µL
(Ãk

n)jc(Ã
k
n)
>
jc â

k
n,j

)]
, (4.5)

where b = ‖bk,jn ‖22, L = Lkn,j , and PB1
denotes the projection to unit Euclidean ball.

Following the proof of Theorem, one can show that the method described above has global conver-

gence if the parameters Lkn,j , ω
k
n,j , L

k,n
c , ωk,nc satisfy conditions as those in Theorem. We do not repeat

it here.
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5. Numerical experiments. In this section, we compare Algorithm (APG), HONMF in [], and

HALS in [] for solving (sparse) NTD on both synthetic and real world data. Also, we test the modified

version of Algorithm and HONMF for solving (sparse) NTD with missing values. The code of all compared

solvers is accessible online. There are of course more other solvers for (sparse) NTD such as dGN in [],

ALS in [], and CCD in []. However, we do not get the code of dGN, and the code of CCD and ALS only

handles the case where the core tensor is fixed to identity tensor.

All the tests are performed on a laptop with an i7-620m CPU and 3GB RAM and running 32-bit

Windows 7 and MATLAB 2010b with Statistics Toolbox and Tensor Toolbox of version 2.5 [].

5.1. Implementation details. This subsection specifies the implementation of Algorithm in details

about initialization and stopping criteria. Unless specified, all parameters for HONMF and HALS are set to

their default values.

Initialization. For all the compared algorithms, we use the same starting point. Throughout the tests,

we first randomly generate A0
1, · · · ,A0

N and then process them by the Higher-order Orthogonal Iteration

algorithm in []. Specifically, for (), let

B = M×1 (A0
1)> · · · ×n−1 (A0

n−1)> ×n+1 (A0
n+1)> ×N (A0

N )>, (5.1)

and update A0
n = max(εmachine,Un) alternatively for n = 1, · · · , N , where εmachine stands for machine

precision and Un contains the left Rn singular vectors of B(n). Then set

C0 = M×1 (A0
1)> · · · ×N (A0

N )>. (5.2)

For (), we use the same initialization except replacing M to PΩ(M) in () and (). It is observed that

all the algorithms perform better with this kind of starting point than a random one, in both convergence

speed and chance of avoiding local minima. The use of strictly positive initial points is mainly due to the

consideration that HONMF does not allow its iterates to have zero components.

Stopping criteria. We stop Algorithm and its modified version in section if a maximum number

of iterations or maximum time is reached or one of the following conditions is satisfied

‖PΩ

(
Ck ×1 Ak

1 · · · ×N Ak
N −M

)
‖F

‖PΩ(M)‖F
≤ tol, for some k, (5.3a)

|F kΩ − F
k+1
Ω |

1 + F kΩ
≤ tol, for three consecutive k’s, (5.3b)

where F kΩ , FΩ(Ck,Ak
1 , · · · ,Ak

N ) and tol is a small positive value specified below. Note that for Algorithm1, Ω contains all indices.

5.2. Nonnegative Tucker decomposition. In this subsection, we compare APG, HONMF, and

HALS on solving NTD, i.e., () with all of λc, λ1, · · · , λN set to zero. We first test them on two sets of

synthetic data and then on two image datasets.

Synthetic data. In the first synthetic dataset, each tensor has the form M = C ×1 A1 ×2 A2 ×3 A3,

where C is generated by MATLAB’s command rand(5,5,5) and each Ai by command max(0,randn(80,5)).

Then M is re-scaled to have unit maximum component. Each tensor M in the second test is generated

in the same way but has an unbalanced dimension 10 × 10 × 1000, and the core tensor is 3 × 3 × 30. We

emphasize that uniformly random C makes the problem more difficult4 than Gaussian random one because

4For the case that C is also Gaussian randomly generated, the performance of APG and HALS is similar.
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Table 5.1

Average results over 20 independent runs by APG, HONMF and HALS on two synthetic datasets

APG HONMF HALS

noise level rel. err. # iter rel. err. # iter rel. err. # iter

(I1, I2, I3) = (80, 80, 80), (R1, R2, R3) = (5, 5, 5)

η = 0.00 7.09e-004 467 6.06e-002 87 2.45e-003 758

η = 0.05 2.79e-003 468 6.86e-002 48 3.27e-003 732

η = 0.10 4.78e-003 466 7.15e-002 47 5.44e-003 759

(I1, I2, I3) = (10, 10, 1000), (R1, R2, R3) = (3, 3, 30)

η = 0.00 5.12e-004 653 2.52e-002 287 2.97e-003 737

η = 0.05 1.49e-002 668 3.00e-002 232 1.50e-002 739

η = 0.10 3.02e-002 670 3.84e-002 222 3.01e-002 740

the former is not zero-mean. The true dimension is used in our tests, namely, In = 50, Rn = 5,∀n is set in

() for the first dataset and ( I1, I2, I3) = (10, 10, 1000), (R1, R2, R3) = (3, 3, 30) for the second one.

We add normalized noise to each tensor, namely, we input to each algorithm with Mnois = M +

η ‖M‖F‖N‖F N , where the entries of N follow i.i.d standard Gaussian distribution. We run each algorithm to

tmax (sec) and compare their relative error
‖Cr×1A

r
1×2A

r
2×3A

r
3−M‖F

‖M‖F , where (Cr,Ar
1,A

r
2,A

r
3) is a solution

obtained by running an algorithm. Table shows the average relative error and number of iterations

for the three algorithms over 20 independent runs with tmax = 10 and different η’s. Figure plots how

the relative error changes with respect to the running time for each algorithm with tmax = 20 and also to

iterations.

From the table, we see that APG performs significantly better than HONMF and HALS for noiseless

case. When there is noise, i.e., η > 0, APG is still much better than HONMF and comparable to HALS.

From the figure, we see that HONMF converges very slowly5 in both cases and HALS works well for M with

balanced dimension but converges slowly for the unbalanced one. APG converges faster than both HONMF

and HALS, in particular for the unbalanced case.

To see how the algorithms perform on decomposing nonnegative tensors with larger ranks, we also test

them on random tensors generated in the same way as above with size 80 × 80 × 80 and each mode rank

r, where r varies from 3 to 30 with increment 3. Each algorithm runs to 1,000 iterations. Figure plots

the average relative errors of 10 independent runs for each algorithm. From the figure, we see that APG

performs consistently better than HONMF and HALS and much better when r is small.

Image data. The first test uses the Swimmer dataset constructed in [], which has 256 swimmer

images and each one has resolution of 32 × 32. We form a 32 × 32 × 256 tensor M using the dataset and

then re-scale it to have unit maximum component. The core dimension is set to (24, 20, 20)6. We run APG,

HONMF, and HALS to tmax = 30 (sec) and plot their relative errors on the left of Figure. The second

test uses a brain MRI image of size 181 × 217 × 181, which has been tested in [] for sparse nonnegative

tensor decomposition. We re-scale it to have unit maximum pixel and set the core size to (30, 30, 30). All the

three algorithms run to tmax = 600 (sec), and the relative errors are plotted on the right of Figure. From

the figure, we see that HONMF performs the worst and HALS decreases the objective faster than APG in

the beginning but APG eventually converges faster. In particular for the test with Swimmer dataset, the

overall convergence speed of APG is much faster than that of HALS, and APG reaches much lower relative

5The code of HONMF is implemented for NTD with missing value. Its running time would be reduced if it were implemented

separately for the NTD. However, we observe that HONMF converges much slower than our algorithm.
6The mode-n ranks of M are 24, 14, and 13 for n = 1, 2, 3, respectively. Larger size is used to improve the data fitting.
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Fig. 5.1. Convergence behavior of APG, HONMF and HALS on synthetic data. Left: 80 × 80 × 80 nonnegative tensor

M and 5 × 5 × 5 core tensor C; Right: 10 × 10 × 1000 nonnegative tensor M and 3 × 3 × 30 core tensor C.
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Fig. 5.2. Average relative errors of 10 independent runs for APG, HONMF, and HALS on synthetic tensors of size

80 × 80 × 80 and with each mode rank r.
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errors while HALS seems to be trapped at some local solution7.

5.3. Sparse nonnegative Tucker decomposition. In this subsection, we compare APG and HONMF

for solving sparse NTD, i.e., () with at least one of λc, λ1, · · · , λN set to be positive. HALS is not coded8

for sparse NTD. Hence, we do not include HALS for comparison.

7Sometimes, APG is also trapped at some local solution. We run the three algorithms on the Swimmer dataset to maximum

30 seconds. If the relative error is below 10−3, we regard the algorithm reaches a global solution. Among 20 independent runs,

APG, HONMF, and HALS reach a global solution 11, 0, and 5 times, respectively. We also test the three algorithms with

smaller rank (24,18,17), in which case APG, HONMF, and HALS reach a global solution 16, 0, and 4 times respectively among

20 independent runs.
8In the implementation of HALS, all factor matrices are re-scaled such that each column has unit length after each iteration.

The re-scaling is necessary for efficient update of the core tensor and does not change the objective value of () if all sparsity

paramenters are zero. However, it will change the objective if some of λc, λ1, · · · , λN are positive.
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Fig. 5.3. Convergence behavior of APG, HONMF, and HALS on Swimmer dataset (left) and a brain MRI image (right).
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Table 5.2

Average results by APG and HONMF on a brain MRI image with the core size R1 = R2 = R3 = 30

APG HONMF

time obj. rel. err. fac. den. core den. # iter obj. rel. err. fac. den. core den. # iter

100 1.6622e+3 6.15e-2 32.45% 7.62% 185 6.2934e+3 1.77e-1 32.47% 31.84% 31

200 8.4659e+2 2.94e-2 23.22% 14.45% 370 4.7762e+3 1.48e-1 30.61% 31.01% 48

300 6.8898e+2 2.25e-2 20.49% 16.87% 555 4.0240e+3 1.30e-1 29.14% 29.91% 63

We compare APG and HONMF on the brain MRI image used above and the CBCL face image dataset9

which has been tested in [] for nonnegative tensor decomposition. For the brain MRI image, we set

R1 = R2 = R3 = 30 and λc = λ1 = λ2 = λ3 = 0.5 in (). We run APG and HONMF to tmax = 300

(sec) and report the results at time t = 100, 200, 300 (sec). Table summarizes the average results of 10

independent runs. The “core den.” is calculated by # nonzeros of Cr
303 and “fac. den.” by

∑3
n=1 # nonzeros of Ar

n

30·(181+217+181) .

We see that APG reaches much lower objective values and relative errors than those by HONMF. In addition,

the solutions obtained by APG are sparser than those by HONMF and are potentially easier to interpret.

The CBCL dataset has 6977 face images, and each one is 19 × 19. We use all these images to form a

19× 19× 6977 nonnegative tensor M, which is then re-scaled to have unit maximum component. The core

size is set to (R1, R2, R3) = (5, 5, 50) and the sparsity parameters to λc = 0.5, λ1 = λ2 = λ3 = 0, namely, we

only want the core tensor to be sparse. Table reports the average results obtained by APG and HONMF

at running time t = 25, 50, 75, 100 (sec). We see that APG reaches much lower objective values and also

lower relative errors than those by HONMF. The solutions given by APG are much sparser than those by

HONMF. This may be because APG uses the constraints () while HONMF simply normalizes each factor

matrix after every iteration. However, it somehow validates the use of the constraints ().

5.4. Sparse nonnegative Tucker decomposition with missing values. In this subsection, we test

APG for solving () on synthetic data and compare it to HONMF on the brain MRI image used above.

Performance of APG with different sample ratios. First, we show that APG using partial

observations can achieve similar accuracies as that using full observations. Each tensor has the form

M = C ×1 A1 ×2 A2 ×3 A3 and is re-scaled to have unit maximum component, where C is generated

by MATLAB’s command max(0,randn(R,R,R)) and each factor matrix An by max(0,randn(50,R)) with

R varying among {5, 8, 11, 14, 17, 20, 23, 26}. We choose SR = 10%, 30%, 50%, 100% samples uniformly at

random and compare the performance of APG using different SRs. The maximum number of iterations

9http://www.ai.mit.edu/projects/cbcl
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Table 5.3

Average results by APG and HONMF on CBCL dataset with the core size (R1, R2, R3) = (5, 5, 50)

APG HONMF

time obj. rel. err. core den. # iter obj. rel. err. core den. # iter

25 3.2469e+4 2.72e-1 11.45% 135 5.9824e+4 3.63e-1 90.19% 29

50 3.1453e+4 2.68e-1 7.56% 271 5.3017e+4 3.40e-1 69.26% 57

75 3.1370e+4 2.68e-1 6.78% 408 4.9786e+4 3.28e-1 58.03% 84

100 3.1344e+4 2.67e-1 6.46% 545 4.7289e+4 3.20e-1 51.26% 112

Fig. 5.4. Average relative errors (left) and runnting time (right) by APG using different sample ratios
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is set to 5,000 and the stopping tolerance to tol = 10−5. Figure plots the average relative errors and

running time (sec) of APG over 20 independent trials. We see that APG using 30% and 50% samples gives

similar accuracies as that using full observations. APG with 10% samples can still make relative errors low

to about 1% as R ≤ 14, but 10% samples seem not enough when R ≥ 17. Longer time by APG with partial

observations is due to the extra update () and more iterations. When R ≥ 17, the running time of APG

with 10% samples decreases because it stops earlier.

Comparison with HONMF10. Secondly, we compare APG to HONMF on the brain MRI image used

above. The core dimension is set to R1 = R2 = R3 = 30 and sparsity parameters to λc = λ1 = λ2 = λ3 = 0.5.

We compare the two algorithms using SR = 10%, 30%, 50% uniformly randomly chosen samples and run them

to tmax = 600 (sec). Table shows the average results at time t = 150, 300, 450, 600 for different SRs over

5 independent trials. From the table, we see that HONMF fails with 10% samples while APG can still work

reasonably. In all cases, APG performs better than HONMF in both accuracy and speed. The solutions

given by APG are sparser than those by HONMF for SR = 30%, 50%.

5.5. Sparse higher-order principal component analysis. We use a simple test with synthetic data

to show that () can be better than unregularized HOPCA that sets all of λc, λ1, · · · , λN to zero in ().

We use the APG method described in Section for () and HOOI [] for the unregularized HOPCA. We

set Lkn,j = ‖(Ãk
n)jc(Ã

k
n)>jc‖ in () and ωkn,j in the same way as in ().

We generate a 50× 50× 50 tensor in the form of M = C ×1 A1 ×2 A2 ×A3 + N . Here, C is 3× 3× 3,

and each element is drawn from standard Gaussian distribution. Then 60% components of C are selected

uniformly at random and set to zero. Factor matrices have sparsity patterns shown in Figure, and each

non-zero element is drawn from standard Gaussian distribution. Then each column is normalized. N is

10Although HONMF converges very slowly, it is the only one we can find that is also coded for sparse nonnegative Tucker

decomposition with missing values.
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Table 5.4

Average results by APG and HONMF on a brain MRI image from different samples

APG HONMF

time obj. rel. err. fac. den. core den. # iter obj. rel. err. fac. den. core den. # iter

SR = 10%

150 1.3418e+3 2.32e-1 30.49% 0.72% 208 1.5608e+4 1.00e+0 0.00% 0.00% 67

300 9.3130e+2 1.80e-1 17.03% 0.88% 416 1.5608e+4 1.00e+0 0.00% 0.00% 150

450 7.9761e+2 1.60e-1 14.28% 1.23% 623 1.5608e+4 1.00e+0 0.00% 0.00% 232

600 7.4748e+2 1.53e-1 13.60% 1.40% 831 1.5608e+4 1.00e+0 0.00% 0.00% 315

SR = 30%

150 1.5808e+3 1.27e-1 35.15% 2.31% 191 2.4525e+3 1.88e-1 31.80% 41.87% 40

300 9.0284e+2 8.17e-2 19.65% 4.38% 384 1.9277e+3 1.58e-1 28.90% 38.48% 67

450 7.0151e+2 6.25e-2 17.29% 6.34% 576 1.6362e+3 1.38e-1 26.44% 33.07% 96

600 6.2076e+2 5.34e-2 15.69% 7.60% 769 1.4587e+3 1.25e-1 24.54% 30.12% 129

SR = 50%

150 1.8767e+3 1.08e-1 35.03% 3.64% 184 3.7494e+3 1.91e-1 31.75% 36.66% 40

300 9.5363e+2 5.88e-2 22.42% 7.55% 367 2.8367e+3 1.59e-1 28.70% 40.15% 64

450 7.0877e+2 4.03e-2 19.29% 10.74% 550 2.3369e+3 1.37e-1 26.48% 42.33% 92

600 6.2737e+2 3.32e-2 17.75% 12.41% 733 2.0265e+3 1.23e-1 24.96% 42.58% 124

Fig. 5.5. Sparsity pattern of the orginal C and A and those given by APG method
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Gaussian random noise and makes the signal-to-noise-ratio SNR = 60. The sparsity parameters are set to

λc = λ1 = λ2 = λ3 = 0.02, and orthogonality parameter is tuned to µ = 0.1 in (). The sparsity patterns

of the original C and A and those11 given by APG are plotted in Figure. We see that the solution given

by APG have almost the same sparsity pattern as the original ones. To see how close to orthogonality each

factor matrix is given by APG, we first normalize each column of the factor matrices and then calculate

‖A>nAn− I‖F /‖I‖F , which are 2.95×10−3, 1.36×10−3, 7.24×10−5, respectively for n = 1, 2, 3. Hence, they

are almost orthogonal. Although the solution by HOOI makes a relatively higher data fitting, it is highly

dense with no zero element. Therefore, the relaxed model () can potentially give better solution than

() for some applications such as classification.

11We permute the columns of the factor matrices and do permutations to the core tensor accordingly.
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6. Conclusions. Sparse NTD aims at decomposing a tensor into the product of a core tensor and

some factor matrices with nonnegativity and sparsity constraints. Existing algorithms for this problem

either converge rapidly with very expensive per-iteration cost or have low per-iteration cost with very slow

convergence speed. We have proposed the APG method, which owns both low per-iteration complexity and

fast convergence speed. Moreover, the algorithm has been modified for sparse NTD from partial observations

of a target tensor. The modified algorithm also has low per-iteration cost and can give similar decompositions

from half of or even fewer observations as those from full observations.
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Appendix A. Efficient computation. The most expensive step in Algorithm is the computation

of ∇C`(C,A) and ∇An
`(C,A) in () and (), respectively. Note that we have omitted the superscript.

Next, we discuss how to efficiently compute them.

Computation of ∇C`. According to (), we have

`(C,A) =
1

2

∥∥(⊗1
n=N An

)
vec(C)− vec(M)

∥∥2

2
.

Using the properties of Kronecker product (see [], for example), we have

vec
(
∇C`(C,A)

)
=
(
⊗1
n=N A>nAn

)
vec(C)−

(
⊗1
n=N A>n

)
vec(M). (A.1)

It is extremely expensive to explicitly reformulate the Kronecker products in (). Fortunately, we can use

() again to have (
⊗1
n=N A>nAn

)
vec(C) = vec

(
C ×1 A>1 A1 · · · ×N A>NAN

)
and (

⊗1
n=N A>n

)
vec(M) = vec

(
M×1 A>1 · · · ×N A>N

)
.

Hence, we have from () and the above two equalities that

∇C`(C,A) = C ×1 A>1 A1 · · · ×N A>NAN −M×1 A>1 · · · ×N A>N . (A.2)

Computation of ∇An`. According to (), we have

`(C,A) =
1

2

∥∥AnC(n)

(
⊗1
i=N
i 6=n

Ai

)> −M(n)

∥∥2

F
. (A.3)

Hence,

∇An
`(C,A) = An(BnB>n )−M(n)B

>
n (A.4)

where

Bn = C(n)

(
⊗1
i=N
i 6=n

Ai

)>
. (A.5)

Similar to what has been done to (), we do not explicitly reformulate the Kronecker product in () but

let

X = C ×1 A1 · · · ×n−1 An−1 ×n+1 An+1 · · · ×N AN . (A.6)
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Then we have Bn = X(n) according to ().

Appendix B. Complexity analysis of Algorithm. The main cost of Algorithm lies in computing

∇C`(C,A) and ∇An`(C,A), which are required in () and (), respectively. Note that we have omitted

all superscripts for simplicity. Through (), the computation of ∇C`(C,A) requires

C

 N∑
j=1

R2
jIj +

N∑
j=1

Rj

N∏
i=1

Ri +

N∑
j=1

( j∏
i=1

Ri
)( N∏

i=j

Ii
) (B.1)

flops, where C ≈ 2, the first part comes from the computation of all A>i Ai’s, and the second and third parts

are respectively from the computations of the first and second terms in (). Disregarding 12 the time for

unfolding a tensor and using (), we have the cost for ∇An
`(C,A) to be

C


n−1∑
j=1

( j∏
i=1

Ii
)( N∏

i=j

Ri
)
+Rn

( n−1∏
i=1

Ii
) N∑
j=n+1

( j∏
i=n+1

Ii
)( N∏

i=j

Ri
)

︸ ︷︷ ︸
part 1

+R2
n

∏
i6=n

Ii +R2
nIn︸ ︷︷ ︸

part 2

+Rn

N∏
i=1

Ii︸ ︷︷ ︸
part 3

 , (B.2)

where C is the same as that in (), “part 1” is for the computation of Bn via (), “part 2” and “part

3” are respectively from the computations of the first and second terms in ().

Suppose Ri < Ii for all i = 1, · · · , N . Then the quantity of () is dominated by the third part because

in this case,

R2
jIj <

( j∏
i=1

Ri
)( N∏

i=j

Ii
)
, Rj

N∏
i=1

Ri <
( j∏
i=1

Ri
)( N∏

i=j

Ii
)
.

The quantity of () is dominated by the first and third parts. Only taking account of the dominating

terms, we claim that the quantities of () and () are similar. To see this, assume Ri = R, Ii = I, for

all i’s. Then the third part of () is
∑N
j=1R

jIN−j+1, and the sum of the first and third parts of () is

n−1∑
j=1

( j∏
i=1

Ii
)( N∏

i=j

Ri
)

+Rn
( n−1∏
i=1

Ii
) N∑
j=n+1

( j∏
i=n+1

Ii
)( N∏

i=j

Ri
)

+Rn

N∏
i=1

Ii

=

n−1∑
j=1

IjRN−j+1 +

N∑
j=n+1

Ij−1RN−j+2 +RIN

=

N∑
j=N−n+2

RjIN−j+1 +

N−n+1∑
j=2

RjIN−j+1 +RIN

=

N∑
j=1

RjIN−j+1.

12In tensor-matrix multiplications, unfolding and folding a tensor both happens, and they can take about a half of time in

the whole process of tensor-matrix multiplication. The readers can refer to [] for issues about the cost of tensor unfolding

and permutation.
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Hence, the costs for computing ∇C`(C,A) and ∇An`(C,A) are similar.

After obtaining the partial gradients ∇C`(C,A) and ∇An`(C,A), it remains to do some projections to

nonnegative orthant to finish the updates in () and (), and the cost is proportional to the size of C and

An, i.e., Cp
∏N
i=1Ri and CpInRn with Cp ≈ 4. The data fitting term can be evaluated by

`(C,A) =
1

2

(
〈A>nAn,BnB>n 〉 − 2〈An,M(n)B

>
n 〉+ ‖M‖2F

)
,

where Bn is defined in (). Note that A>nAn, BnB>n and M(n)B
>
n have been obtained during the

computation of ∇C`(C,A) and ∇An
`(C,A), and ‖M‖2F can be pre-computed before running the algorithm.

Hence, we need C(R2
n+ InRn) additional flops to evaluate `(C,A), where C ≈ 2. To get the objective value,

we need C(
∏N
i=1Ri +

∑N
i=1 IiRi) more flops for the regularization terms.

Some more computations occur in choosing Lipschitz constants Lc and Ln’s. When Rn � In for all n,

the cost for computing Lipschitz constants, projection to nonnegative orthant and objective evaluation is

negligible compared to that for computing partial gradients ∇C`(C,A) and ∇An`(C,A). Omitting the neg-

ligible cost and only accounting the main cost in () and (), the per-iteration complexity of Algorithm1 is

N · O

 N∑
j=1

( j∏
i=1

Ri
)( N∏

i=j

Ii
)

+

N∑
j=1

( j∏
i=1

Ii
)( N∏

i=j

Ri
) . (B.3)

Appendix C. Proof of Theorem.

C.1. Subsequence convergence. First, we give a subsequence convergence result, namely, any limit

point of {Wk} is a stationary point. Using Lemma 2.1 of [], we have

F (Ck,n−1,Ak
j<n,A

k−1
j≥n)− F (Ck,n,Ak

j<n,A
k−1
j≥n)

≥L
k,n
c

2
‖Ĉ

k,n
− Ck,n‖2F + Lk,nc

〈
Ĉ
k,n
− Ck,n−1,Ck,n − Ĉ

k,n
〉

=
Lk,nc

2
‖Ck,n−1 − Ck,n‖2F −

Lk,nc
2

(ωk,nc )2‖Ck,n−2 − Ck,n−1‖2F (C.1)

≥L
k,n
c

2
‖Ck,n−1 − Ck,n‖2F −

Lk,n−1
c

2
δ2
ω‖C

k,n−2 − Ck,n−1‖2F , (C.2)

where we have used ωk,nc ≤ δω

√
Lk,n−1
c

Lk,nc
to get the last inequality. Note that if the re-update in Line ReDo

is performed, then ωk,nc = 0 in (), and () still holds. Similarly, we have

F (Ck,n,Ak
j<n,A

k−1
j≥n)− F (Ck,n,Ak

j≤n,A
k−1
j>n)

≥ Lkn
2 ‖A

k−1
n −Ak

n‖2F −
Lk−1
n

2 δ2
ω‖Ak−2

n −Ak−1
n ‖2F .

(C.3)
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Summing () and () together over n and noting Ck,−1 = Ck−1,N−1,Ck,0 = Ck−1,N yield

F (Wk−1)− F (Wk)

≥
N∑
n=1

(
Lk,nc
2
‖Ck,n−1 − Ck,n‖2F −

Lk,n−1
c

2
δ2
ω‖Ck,n−2 − Ck,n−1‖2F

+
Lkn
2
‖Ak−1

n −Ak
n‖2F −

Lk−1
n

2
δ2
ω‖Ak−2

n −Ak−1
n ‖2F

)
=
Lk,Nc
2
‖Ck,N−1 − Ck,N‖2F −

Lk−1,N
c

2
δ2
ω‖Ck−1,N−1 − Ck−1,N‖2F (C.4)

+

N−1∑
n=1

(1− δ2
ω)L

k,n
c

2
‖Ck,n−1 − Ck,n‖2F

+

N∑
n=1

(
Lkn
2
‖Ak−1

n −Ak
n‖2F −

Lk−1
n

2
δ2
ω‖Ak−2

n −Ak−1
n ‖2F

)
.

Summing () over k, we have

F (W0)− F (WK)

≥
K∑
k=1

N∑
n=1

(
(1− δ2

ω)Lk,nc
2

‖Ck,n−1 − Ck,n‖2F +
(1− δ2

ω)Lkn
2

‖Ak−1
n −Ak

n‖2F
)

≥ (1− δ2
ω)Ld

2

K∑
k=1

N∑
n=1

(
‖Ck,n−1 − Ck,n‖2F + ‖Ak−1

n −Ak
n‖2F

)
. (C.5)

Letting K →∞ and observing F is lower bounded, we have

∞∑
k=1

N∑
n=1

(
‖Ck,n−1 − Ck,n‖2F + ‖Ak−1

n −Ak
n‖2F

)
<∞. (C.6)

Suppose W̄ = (C̄, Ā1, · · · , ĀN ) is a limit point of {Wk}. Then there is a subsequence {Wk′} converging

to W̄ . Since {Lk,nc , Lkn} is bounded, passing another subsequence if necessary, we assume Lk
′,n
c → L̄nc and

Lk
′

n → L̄n. Note that () implies Ak′−1 → Ā and Cm,n → C̄ for all n and m = k′, k′− 1, k′− 2, as k →∞.

Hence, Ĉ
k′,n
→ C̄ for all n, as k →∞. Recall that

Ck
′,n = argmin

C≥0

〈
∇C`(Ĉ

k′,n
,Ak′

j<n,A
k′−1
j≥n ),C − Ĉ

k′,n
〉

+
Lk
′,n
c

2
‖C − Ĉ

k′,n
‖2F + λc‖C‖1. (C.7)

Letting k →∞ and using the continuity of the objective in () give

C̄ = argmin
C≥0

〈
∇C`(C̄, Ā),C − C̄

〉
+
L̄nc
2
‖C − C̄‖2F + λc‖C‖1.

Hence, C̄ satisfies the first-order optimality condition〈
∇C`(C̄, Ā) + λcPc,C − C̄

〉
≥ 0, for all C ≥ 0, some Pc ∈ ∂‖C̄‖1. (C.8)

Similarly, we have for all n that〈
∇An

`(C̄, Ā) + λnPn,An − Ān

〉
≥ 0, for all An ≥ 0, some Pn ∈ ∂‖Ān‖1. (C.9)

Note () together with () gives the first-order optimality conditions of (). Hence, W̄ is a stationary

point.
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C.2. Global convergence. Next we show the entire sequence {Wk} converges to a limit point W̄ .

Since all λc, λ1, · · · , λN are positive, the sequence {Wk} is bounded and admits a finite limit point W̄ . Let

E = {W : ‖W‖F ≤ 4ν}, where ‖W‖F ,
√
‖C‖2F + ‖A‖2F and ν is a constant such that ‖(Ck,n,Ak)‖F ≤ ν

for all k, n. Let LG be a uniform Lipschitz constant of ∇C`(W) and ∇An
`(W), n = 1, · · · , N, over E,

namely,

‖∇C`(Y)−∇C`(Z)‖F ≤LG‖Y −Z‖F , ∀Y ,Z ∈ E, (C.10a)

‖∇An
`(Y)−∇An

`(Z)‖F ≤LG‖Y −Z‖F , ∀Y ,Z ∈ E, ∀n, (C.10b)

Let

H(C,A) = `(C,A) + λc‖C‖1 + δ+(C) +

N∑
n=1

(
λn‖An‖1 + δ+(An)

)
and

rc(C) = λc‖C‖1 + δ+(C), rn(An) = λn‖An‖1 + δ+(An), n = 1, · · · , N,

where δ+(·) is the indicator function on nonnegative orthant, namely, it equals zero if the argument is

component-wise nonnegative and +∞ otherwise.

Note that () is equivalent to

min
C,A

H(C,A). (C.11)

Recall that H satisfies the KL property (see [,] for example) at W̄ , namely, there exist γ, ρ > 0, θ ∈ [0, 1),

and a neighborhood B(W̄ , ρ) , {W : ‖W − W̄‖F ≤ ρ} such that

|H(W)−H(W̄)|θ ≤ γ · dist(0, ∂H(W)), for all W ∈ B(W̄ , ρ). (C.12)

Denote Hk = H(Wk)−H(W̄). Then Hk ↓ 0. Since W̄ is a limit point of {Wk} and ‖Ak−Ak+1‖F →
0, ‖Ck,n−1 − Ck,n‖F → 0 for all k, n from (), for any T > 0, there must exist k0 such that Wj ∈
B(W̄ , ρ), j = k0, k0 + 1, k0 + 2 and

T
(
H1−θ
k0

+ ‖Ak0 −Ak0+1‖F + ‖Ak0+1 −Ak0+2‖F + ‖Ck0+2,N−1 − Ck0+2,N‖F
)

+ ‖Wk0+2 − W̄‖F < ρ.

Take T as specified in () and consider the sequence {Wk}k≥k0 , which is equivalent to starting the

algorithm from Wk0 and, thus without loss of generality, let k0 = 0, namely, Wj ∈ B(W̄ , ρ), j = 0, 1, 2, and

T
(
H1−θ

0 + ‖A0 −A1‖F + ‖A1 −A2‖F + ‖C2,N−1 − C2,N‖F
)

+ ‖W2 − W̄‖F < ρ. (C.13)

The idea of our proof is to show

Wk ∈ B(W̄ , ρ), for all k, (C.14)

and employ the KL inequality () to show {Wk} is a Cauchy sequence, thus the entire sequence converges.

Assume Wk ∈ B(W̄ , ρ) for 0 ≤ k ≤ K. We go to show WK+1 ∈ B(W̄ , ρ) and conclude () by induction.

Note that

∂H(Wk) =
{
∂r1(Ak

1) +∇A1
`(Wk)

}
× · · · ×

{
∂rN (Ak

N ) +∇AN
`(Wk)

}
×
{
∂rc(Ck,N ) +∇C`(Wk)

}
,
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and for all n and k

−Lkn(Ak
n − Âk

n)−∇An
`(Ck,n,Ak

j<n, Â
k
n,A

k−1
j≥n) +∇An

`(Wk) ∈∂rn(Ak
n) +∇An

`(Wk),

−Lk,Nc (Ck,N − Ĉ
k,N

)−∇C`(Ĉ
k,N

,Ak
j<N ,A

k−1
N ) +∇C`(Wk) ∈∂rc(Ck,N ) +∇C`(Wk).

Hence, for all k ≤ K,

dist
(
0, ∂H(Wk)

)
≤
∥∥(Lk1(Ak

1 − Âk
1), · · · , Lk1(Ak

1 − Âk
1), L

k,n
c (Ck,N − Ĉk,N ))

∥∥
F

+

N∑
n=1

∥∥∇An`(C
k,n,Ak

j<n, Â
k
n,A

k−1
j≥n)−∇An`(W

k)
∥∥
F

+
∥∥∇C`(Ĉ

k,N
,Ak

j<N ,A
k−1
N )−∇C`(Wk)

∥∥
F

≤Lu
(
‖Ak −Ak−1‖F + ‖Ak−1 −Ak−2‖F

)
+ Lu

(
‖Ck,N − Ck,N−1‖F + ‖Ck,N−1 − Ck,N−2‖F

)
+

N∑
n=1

LG
(
‖Ck,n − Ck,N‖F + ‖Ak −Ak−1‖F + ‖Ak−1 −Ak−2‖F

)
+ LG

(
‖Ck,N − Ck,N−1‖F + ‖Ck,N−1 − Ck,N−2‖F + ‖Ak −Ak−1‖F

)
≤
(
Lu + (N + 1)LG

) (
‖Ak −Ak−1‖F + ‖Ak−1 −Ak−2‖F (C.15)

+‖Ck,N − Ck,N−1‖F +

N−1∑
n=1

‖Ck,n−1 − Ck,n‖F

)
,

where we have used Lkn, L
k,n
c ≤ Lu, ∀k, n and () to have the second inequality, and the third inequality

is obtained from ‖Ck,n − Ck,N‖F ≤
∑N−1
i=n ‖C

k,i − Ck,i+1‖F and doing some simplification. Using the KL

inequality () at W = Wk and the inequality

sθ

1− θ
(s1−θ − t1−θ) ≥ s− t, ∀s, t ≥ 0,

we get

γ

1− θ
dist(0, ∂H(Wk))(H1−θ

k −H1−θ
k+1) ≥ Hk −Hk+1. (C.16)

By (), we have

Hk −Hk+1 ≥
Lk+1,N
c

2
‖Ck+1,N−1 − Ck+1,N‖2F −

Lk,Nc
2

δ2
ω‖C

k,N−1 − Ck,N‖2F (C.17)

+

N−1∑
n=1

(1− δ2
ω)Lk+1,n

c

2
‖Ck+1,n−1 − Ck+1,n‖2F

+

N∑
n=1

(
Lk+1
n

2
‖Ak

n −Ak+1
n ‖2F −

Lkn
2
δ2
ω‖Ak−1

n −Ak
n‖2F

)
.
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Combining (), (), () and noting Lk+1,n
c ≥ Ld yield

γ(Lu + (N + 1)LG)

1− θ
(H1−θ

k −H1−θ
k+1)

[
‖Ak −Ak−1‖F + ‖Ak−1 −Ak−2‖F

+ ‖Ck,N − Ck,N−1‖F +

N−1∑
n=1

‖Ck,n−1 − Ck,n‖F
]

+ δ2
ω

∥∥∥∥(
√
Lk1Ak−1

1 , · · · ,
√
LkNAk−1

N ,

√
Lk,Nc Ck,N−1)

−(
√
Lk1Ak

1 , · · · ,
√
LkNAk

N ,

√
Lk,Nc Ck,N )

∥∥∥∥2

F

≥
∥∥∥∥(

√
Lk+1

1 Ak
1 , · · · ,

√
Lk+1
N Ak

N ,

√
Lk+1,N
c Ck+1,N−1) (C.18)

−(

√
Lk+1

1 Ak+1
1 , · · · ,

√
Lk+1
N Ak+1

N ,

√
Lk+1,N
c Ck+1,N )

∥∥∥∥2

F

+
(1− δ2

ω)Ld
2

N−1∑
n=1

‖Ck+1,n−1 − Ck+1,n‖2F .

By Cauchy-Schwart inequality, we estimate

√
right side of inequality ()

≥1 + δω
2

∥∥∥∥(√Lk+1
1 Ak

1 , · · · ,
√
Lk+1
N Ak

N ,

√
Lk+1,N
c Ck+1,N−1)

−(
√
Lk+1

1 Ak+1
1 , · · · ,

√
Lk+1
N Ak+1

N ,

√
Lk+1,N
c Ck+1,N )

∥∥∥∥
F

+ η

N−1∑
n=1

‖Ck+1,n−1 − Ck+1,n‖F , (C.19)

where η > 0 is sufficiently small and depends on δω, Ld, N , and

√
left side of inequality ()

≤µγ(Lu + (N + 1)LG)

4(1− θ)
(H1−θ

k −H1−θ
k+1) (C.20)

+
1

µ

[
‖Ak −Ak−1‖F + ‖Ak−1 −Ak−2‖F + ‖Ck,N − Ck,N−1‖F +

N−1∑
n=1

‖Ck,n−1 − Ck,n‖F
]

+ δω

∥∥∥∥(
√
Lk1Ak−1

1 , · · · ,
√
LkNAk−1

N ,

√
Lk,Nc Ck,N−1)− (

√
Lk1Ak

1 , · · · ,
√
LkNAk

N ,

√
Lk,Nc Ck,N )

∥∥∥∥
F

,

where µ > 0 is a sufficiently large constant such that 1
µ < min(η, 1−δω

4

√
Ld
2 ). Combining (),(),
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() and summing them over k from 2 to K give

µγ(Lu + (N + 1)LG)

4(1− θ)
(H1−θ

2 −H1−θ
K+1)

+
1

µ

K∑
k=2

[
‖Ak −Ak−1‖F + ‖Ak−1 −Ak−2‖F + ‖Ck,N − Ck,N−1‖F +

N−1∑
n=1

‖Ck,n−1 − Ck,n‖F
]

+ δω

K∑
k=2

∥∥∥∥(
√
Lk1Ak−1

1 , · · · ,
√
LkNAk−1

N ,

√
Lk,Nc Ck,N−1)− (

√
Lk1Ak

1 , · · · ,
√
LkNAk

N ,

√
Lk,Nc Ck,N )

∥∥∥∥
F

≥1 + δω
2

K∑
k=2

∥∥∥∥(

√
Lk+1

1 Ak
1 , · · · ,

√
Lk+1
N Ak

N ,

√
Lk+1,N
c Ck+1,N−1)

−(

√
Lk+1

1 Ak+1
1 , · · · ,

√
Lk+1
N Ak+1

N ,

√
Lk+1,N
c Ck+1,N )

∥∥∥∥
F

+ η

K∑
k=2

N−1∑
n=1

‖Ck+1,n−1 − Ck+1,n‖F .

Simplifying the above inequality, we have

µγ(Lu + (N + 1)LG)

4(1− θ)
(H1−θ

2 −H1−θ
K+1)

+
1

µ

K∑
k=2

(
‖Ak −Ak−1‖F + ‖Ak−1 −Ak−2‖F + ‖Ck,N − Ck,N−1‖F

)
+ δω

∥∥(
√
L2

1A
1
1, · · · ,

√
L2
NA1

N ,

√
L2,N
c C2,N−1)− (

√
L2

1A
2
1, · · · ,

√
L2
NA2

N ,

√
L2,N
c C2,N )

∥∥
F

≥1 + δω
2

∥∥∥∥(

√
LK+1

1 AK
1 , · · · ,

√
LK+1
N AK

N ,

√
LK+1,N
c CK+1,N−1) (C.21)

−(

√
LK+1

1 AK+1
1 , · · · ,

√
LK+1
N AK+1

N ,

√
LK+1,N
c CK+1,N )

∥∥∥∥
F

+
1− δω

2

K−1∑
k=2

∥∥∥∥(

√
Lk+1

1 Ak
1 , · · · ,

√
Lk+1
N Ak

N ,

√
Lk+1,N
c Ck+1,N−1)

−(

√
Lk+1

1 Ak+1
1 , · · · ,

√
Lk+1
N Ak+1

N ,

√
Lk+1,N
c Ck+1,N )

∥∥∥∥
F

+ (η − 1

µ
)

K∑
k=2

N−1∑
n=1

‖Ck+1,n−1 − Ck+1,n‖F .

Note that ∥∥∥∥(

√
Lk+1

1 Ak
1 , · · · ,

√
Lk+1
N Ak

N ,

√
Lk+1,N
c Ck+1,N−1)

−(

√
Lk+1

1 Ak+1
1 , · · · ,

√
Lk+1
N Ak+1

N ,

√
Lk+1,N
c Ck+1,N )

∥∥∥∥2

F

=

N∑
n=1

Lk+1
n ‖Ak

n −Ak+1
n ‖2F + Lk+1,N

c ‖Ck+1,N−1 − Ck+1,N‖2F

≥Ld(‖Ak −Ak+1‖2F + ‖Ck+1,N−1 − Ck+1,N‖2F

≥Ld
2

(‖Ak −Ak+1‖F + ‖Ck+1,N−1 − Ck+1,N‖F )2 (C.22)
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Plugging () to inequality () gives

µγ(Lu + (N + 1)LG)

4(1− θ)
(H1−θ

2 −H1−θ
K+1)

+
1

µ

K∑
k=2

(
‖Ak −Ak−1‖F + ‖Ak−1 −Ak−2‖F + ‖Ck,N − Ck,N−1‖F

)
+ δω‖(

√
L2

1A
1
1, · · · ,

√
L2
NA1

N ,

√
L2,N
c C2,N−1)− (

√
L2

1A
2
1, · · · ,

√
L2
NA2

N ,

√
L2,N
c C2,N )‖F

≥1 + δω
2

√
Ld
2

(‖AK −AK+1‖F + ‖CK+1,N−1 − CK+1,N‖F )

+
1− δω

2

√
Ld
2

K−1∑
k=2

(‖Ak −Ak+1‖F + ‖Ck+1,N−1 − Ck+1,N‖F )

+ (η − 1

µ
)

K∑
k=2

N−1∑
n=1

‖Ck+1,n−1 − Ck+1,n‖F ,

which implies by noting H0 ≥ Hk ≥ 0, Ck+1,0 = Ck,N and Lkn, L
k,n
c ≤ Lu, ∀k, n that

µγ(Lu + (N + 1)LG)

4(1− θ)
H1−θ

0 +
1

µ

(
2‖A1 −A2‖F + ‖A0 −A1‖F + ‖C2,N − C2,N−1‖F

)
+ δω

√
Lu
(
‖A1 −A2‖F + ‖C2,N−1 − C2,N‖F

)
≥1 + δω

2

√
Ld
2

(
‖AK −AK+1‖F + ‖CK+1,N−1 − CK+1,N‖F

)
+ (

1− δω
2

√
Ld
2
− 2

µ
)

K−1∑
k=2

(
‖Ak −Ak+1‖F + ‖Ck+1,N−1 − Ck+1,N‖F

)
+ (η − 1

µ
)

K∑
k=2

‖Ck,N − Ck+1,N−1‖F ,

≥τ
(
‖AK −AK+1‖F + ‖CK,N − CK+1,N‖F

)
(C.23)

+ τ

K−1∑
k=2

(
‖Ak −Ak+1‖F + ‖Ck,N − Ck+1,N‖F

)
,

where τ = min

(
1−δω

2

√
Ld
2 −

2
µ , η −

1
µ

)
. Let

T = max

(
µγ(Lu + (N + 1)LG)

4τ(1− θ)
,

1

2µτ
+
δω
τ

√
Lu

)
. (C.24)

Then () implies

T
(
H1−θ

0 + ‖A0 −A1‖F + ‖A1 −A2‖F + ‖C2,N−1 − C2,N‖F
)

≥‖WK −WK+1‖F +

K−1∑
k=2

‖Wk −Wk+1‖F , (C.25)

from which we have

‖WK+1 − W̄‖F

≤‖WK −WK+1‖F +

K−1∑
k=2

‖Wk −Wk+1‖F + ‖W2 − W̄‖F

≤T
(
H1−θ

0 + ‖A0 −A1‖F + ‖A1 −A2‖F + ‖C2,N−1 − C2,N‖F
)

+ ‖W2 − W̄‖F < ρ.
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Hence, WK+1 ∈ B(W̄ , ρ). By induction, we have Wk ∈ B(W̄ , ρ) for all k, so () holds for all K. Letting

K → ∞ gives
∑∞
k=2 ‖W

k −Wk+1‖F < ∞, namely, {Wk} is a Cauchy sequence and, thus Wk converges.

Since W̄ is a limit point of {Wk}, then Wk → W̄ . This completes the proof.
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