
Noname manuscript No.
(will be inserted by the editor)

A Nonmonotone GRASP

M. De Santis · P. Festa · G. Liuzzi · S.

Lucidi · F. Rinaldi

Received: date / Accepted: date

Abstract A Greedy Randomized Adaptive Search Procedure (GRASP) is
an iterative multistart metaheuristic for difficult combinatorial optimization
problems. Each GRASP iteration consists of two phases: a construction phase,
in which a feasible solution is produced, and a local search phase, in which
a local optimum in the neighborhood of the constructed solution is sought.
Repeated applications of the construction procedure yields different starting
solutions for the local search and the best overall solution is kept as the result.

The GRASP local search applies iterative improvement until a locally op-
timal solution is found. During this phase, starting from the current solution
an improving neighbor solution is accepted and considered as the new current
solution.

In this paper, we propose a variant of the GRASP framework that uses a
new “nonmonotone” strategy to explore the neighborhood of the current so-

M. De Santis
Fakultät für Mathematik, TU Dortmund, Germany.
E-mail: msantis@math.tu-dortmund.de

P. Festa [Corresponding author]
Department of Mathematics and Applications, University of Napoli FEDERICO II, Napoli,
Italy.
Phone/Fax +39081675605
E-mail: paola.festa@unina.it

G. Liuzzi
Istituto di Analisi dei Sistemi ed Informatica - CNR, Rome, Italy.
E-mail: giampaolo.liuzzi@iasi.cnr.it

S. Lucidi
Dipartimento di Ingegneria Informatica Automatica e Gestionale, “La Sapienza” University
of Rome, Italy.
E-mail: lucidi@dis.uniroma1.it

F. Rinaldi
Dipartimento di Matematica, University of Padova, Italy.
E-mail: rinaldi@math.unipd.it

2 M. De Santis et al.

lution. We formally state the convergence of the nonmonotone local search
to a locally optimal solution and illustrate the effectiveness of the result-
ing Nonmonotone GRASP on three classical hard combinatorial optimization
problems: the Maximum Cut Problem (MAX-CUT), the Weighted Maximum
Satisfiability Problem (MAX-SAT), and the Quadratic Assignment Problem
(QAP).

Keywords Combinatorial Optimization, GRASP, Metaheuristics, Local
Search, Nonmonotone Line Search, MAX-CUT, MAX-SAT, QAP.

1 Introduction

Any combinatorial optimization problem involves a finite number of feasible
solutions and is completely defined by a ground set E = 1, . . . , n, an objec-
tive function f : 2E 7→ R, and the set of feasible solution X ⊆ 2E . In case
of minimization (resp. maximization), one searches for an optimal solution
x∗ ∈ X such that f(x∗) ≤ f(x) (resp. f(x∗) ≥ f(x)), ∀ x ∈ X . To illustrate an
example, let us consider the Traveling Salesman Problem, a classical combi-
natorial optimization problem defined on an undirected edge-weighted graph
G = (V,E). In this case, the ground set E is the set of edges connecting nodes
in V to be visited, X is formed by all edge subsets that determine a Hamil-
tonian cycle, and the objective function value f(x) is the sum of the costs of
all edges in solution x. As a further example of how to define a combinatorial
optimization problem through the ground set E , the objective function f , and
the set of feasible solution X , let us consider the Maximum Cut Problem, de-
fined on an undirected edge-weighted graph G = (V,E). Here, the ground set
E is the set of all edges in E, X is the set of all subsets of E made of edges with
endpoints in two different node subsets defining a partition of V , and f(x) is
the sum of the weights of edges in solution x.

Combinatorial optimization problems arise in several and heterogenous do-
mains [87], among many others we recall routing, scheduling, production plan-
ning, decision making process, and location problems. All these problems have
both a theoretical relevance and a practical impact, given their applicability
to real-world scenarios [89].

Many combinatorial optimization problems are computationally intractable,
in the sense that until now, no polynomial-time algorithm is known to exactly
solve them [45]. In the last decades, several optimal seeking methods that
do not explicitly examine all feasible solutions have been developed, such as
Branch & Bound, Cutting Planes, and Dynamic Programming. Nevertheless,
most real-world problems are either computationally intractable by their na-
ture, or sufficiently large so as to preclude the use of exact algorithms. In such
cases, heuristic methods are usually employed to find good, but not necessarily
guaranteed optimal solutions.

Starting from one of the pioneering papers of Kirkpatrick on Simulated
Annealing [69] which appeared in 1984, the most promising heuristic meth-
ods concentrate their effort in the attempt of avoiding entrapments in local

A Nonmonotone GRASP 3

optima and in exploiting the basic structure and properties of the problem
they solve. Such techniques include Tabu Search [47–50], Genetic Algorithms
[54], Variable Neighborhood Search [83,59], and GRASP (Greedy Randomized
Adaptive Search Procedure) [30,31,39–42].

A GRASP is a multi-start or iterative process introduced by Feo and Re-
sende [30], following in the spirit of the pioneering idea proposed in 1973 by
Lin and Kernighan for the Traveling Salesman Problem [77]. Each GRASP it-
eration is usually made up of a construction phase, where a feasible solution is
constructed, and a local search phase which starts at the constructed solution
and applies iterative improvement until a locally optimal solution is found.
Repeated applications of the construction procedure yields diverse starting
solutions for the local search and the best overall locally optimal solution is
kept as the result. Since its proposal, GRASP has been applied to solve de-
cision and optimization problems arising in several contexts. Recent areas of
application include routing [9,11,19], logic [36,93,94], covering and partition
[6,30,92], location [23,25], network optimization [7,85,97], assignment [82,99],
timetabling and scheduling [3,5,4,14,98,73,74], graph and map drawing [37,
38,72,80,97], and very recently computational biology [33–35,28,32,43,51,64].

The aim of this paper is to propose a new variant of the classical GRASP
framework that uses a nonmonotone strategy to explore the neighborhood of
the current solution. Inspired by an idea proposed in 1986 for Newton’s method
[55], this strategy controls uphill solutions without using a “tabu list” but sim-
ply maintaining a set W of a given number of previously computed objective
function values. A new solution is accepted if its function value improves the
worst value in W .

The remainder of this paper is organized as follows. In Section 2, the main
ingredients of a classical GRASP framework are described. In Section 3, we
illustrate a GRASP for three selected hard combinatorial optimization prob-
lems, i.e., the MAX-CUT, MAX-SAT, and QAP problem. Section 4 is de-
voted to the description and analysis of a nonmonotone variant of GRASP
(NM-GRASP). In Section 5, we illustrate the effectiveness of our Nonmono-
tone GRASP by comparing it with the classical GRASP on standard test
problems (from the literature) for the three combinatorial optimization prob-
lems described in Section 3. The experiments empirically show that the new
described GRASP framework results in better quality solutions. Concluding
remarks are given in the last section.

2 The classical GRASP

Given a combinatorial optimization problem specified by the ground set E ,
the real-valued objective function f , and the finite set of feasible solution
X , a classical GRASP metaheuristic is a multi-start or iterative method, in
which each iteration consists of two phases: construction of a solution and local
search. The pseudo-code in Figure 1 illustrates the main blocks of a GRASP

4 M. De Santis et al.

procedure for minimization, in which MaxIterations iterations are performed
and Seed is used as the initial seed for the pseudorandom number generator.

algorithm GRASP(f(·), g(·), MaxIterations, Seed)
1 xbest:=∅; f(xbest):=+∞;
2 for k = 1, 2, . . . ,MaxIterations→
3 x:=ConstructGreedyRandomizedSolution(Seed, g(·));
4 if (x not feasible) then
5 x:=repair(x);
6 endif

7 x:=LocalSearch(x, f(·));
8 if (f(x) < f(xbest)) then
9 xbest:=x;
10 endif

11 endfor;
12 return(xbest);
end GRASP

Fig. 1 Pseudo-code of a classical GRASP for a minimization problem.

The construction phase builds a solution x that can be eventually not
feasible (line 3). In this case, the feasibility of the built solution is obtained by
invoking a repair procedure in line 5. Once a feasible solution x is obtained,
its neighborhood is investigated by the local search until a local minimum is
found (line 7). The best overall local optimal solution is kept as the result (line
12).

procedure ConstructGreedyRandomizedSolution(Seed, g(·))
1 x:=∅;
2 Sort the candidate elements i in a list C according to their incremental

costs g(i);
3 while (x is not a complete solution)→
4 RCL:=MakeRCL(C);
5 v:=SelectIndex(RCL, Seed);
6 x := x ∪ {v};
7 C := C \ {v};
8 Resort remaining candidate elements j ∈ C according to their

incremental costs g(j);
9 endwhile;
10 return(x);
end ConstructGreedyRandomizedSolution;

Fig. 2 Basic GRASP construction phase pseudo-code.

A Nonmonotone GRASP 5

The pseudo-code in Figure 2 illustrates the main ingredients of a typical
GRASP construction phase, which proceeds applying a greedy, randomized,
and adaptive criterion. In the spirit the pioneering semi-greedy idea proposed
by Hart and Shogan in 1987, the construction procedure starts from an empty
solution (line 1) and iteratively, one element at a time, builds a complete
solution (loop in lines 3–9). At each iteration, the choice of the next element to
be added to the partial solution under construction is determined by ordering
all candidate elements (i.e. those that can be added to the solution) in a
candidate list C with respect to a greedy function g : C → R that myopically
measures the benefit in terms of objective function value of selecting each
candidate element. The heuristic is adaptive because the benefits associated
with every element are updated at each iteration of the construction phase
to reflect the changes brought on by the selection of the previous element
(line 8). The probabilistic component of a GRASP construction procedure is
characterized by randomly choosing one of the best candidates in the list, but
not necessarily the top candidate (line 5). The list of best candidates is called
the restricted candidate list (RCL). This choice technique allows for different
solutions to be obtained at each GRASP iteration, but does not necessarily
compromise the power of the adaptive greedy component of the method.

procedure LocalSearch(x, f(·))
1 Let N(x) be the neighborhood of x;
2 H :={y ∈ N(x) | f(y) < f(x)};
3 while (|H | > 0)→
4 x:=Select(H);
5 H :={y ∈ N(x) | f(y) < f(x)};
6 endwhile

7 return(x);
end LocalSearch

Fig. 3 Pseudo-code of a generic local search procedure.

Once a feasible solution x is obtained, its neighborhood is investigated
by the local search until a local minimum is found. Figure 3 illustrates the
pseudo-code of a generic local search procedure for a minimization problem.

As any local search algorithm, a typical GRASP local search procedure
requires the definition of a proper neighborhood structure N for the specific
problem to be solved. The neighborhood structure N relates a solution x of
the problem to a subset of solutions N(x) “close” to x, which is said to be
locally optimal with respect to N(x) if within N(x) there is no better solution
in terms of objective function value.

Once a suitable neighborhood N(x) of the current solution x has been
defined and computed (line 1), a GRASP local search works in an iterative
fashion by successively replacing the current solution x by a better solution in
the neighborhood N(x). It terminates when no better solution is found in the

6 M. De Santis et al.

neighborhood, i.e. when a local minimum is found and returned to the main
algorithm.

It can be easily seen that the key to success for a local search algorithm con-
sists of the suitable choice of a neighborhood structure, efficient neighborhood
search techniques, and the starting solution.

3 A GRASP for the MAX-CUT, the MAX-SAT, and the QAP

We briefly illustrate in this section the main features of state-of-the-art classi-
cal GRASP proposed for three classical hard combinatorial optimization prob-
lems: the MAX-CUT, the MAX-SAT, and the QAP problem.

3.1 MAX-CUT

Given an undirected graph G = (V,E), where V = {1, . . . , n} is the set of
vertices and E is the set of edges, and weights wij associated with the edges
(i, j) ∈ E, the MAX-CUT consists in finding a partition (S, S̄) of V such that
the weight of the cut induced by (S, S̄) defined as

w(S, S̄) =
∑

i∈S,j∈S̄

wij

is maximized.
The problem can be formulated as the following integer quadratic program:

max
1

2

∑

1≤i<j≤n

wij(1− yiyj)

s.t.
yi ∈ {−1, 1}, ∀ i ∈ V.

Each set S = {i ∈ V : yi = 1} induces a cut (S, S̄) with weight

w(S, S̄) =
1

2

∑

1≤i<j≤n

wij(1− yiyj).

In spite of the very easy statement of this well known combinatorial op-
timization problem, its decision version has been proved to be NP-complete
by Karp already in 1972 [68]. In 1991, it has been showed that MAX-CUT
is APX-complete [86], meaning that unless P=NP, it does not allow a poly-
nomial time approximation scheme [108]. Polynomially solvable cases include
planar graphs [58], weakly bipartite graphs with nonnegative weights [57], and
graphs without K5 minors [10].

Given the inner intractability of the problem, many researchers have de-
voted their effort to both more deeply studying the inner computational nature
of the problem and in designing good approximate and heuristic solution tech-
niques (see e.g. [13,22]). Along this research line, the idea that the MAX-CUT

A Nonmonotone GRASP 7

can be naturally relaxed to a semidefinite programming problem was first ob-
served by Lovász [79] and Shor [103]. Goemans and Williamson [53] proposed a
randomized algorithm that uses semidefinite programming to achieve a perfor-
mance guarantee of 0.87856 if the weights are nonnegative. Since then, many
approximation algorithms for NP-hard problems have been devised using SDP
relaxations [56,66,91].

In the following, we describe a classical GRASP proposed by Festa et al.
in 2002 [38]. As any GRASP, it proceeds in iterations. At each iteration, a
greedy randomized adaptive solution is built and used as starting point in a
local search procedure. The best overall locally optimal solution is returned as
an approximation of the global optimal.

The construction procedure uses an adaptive greedy function, a construc-
tion mechanism for the restricted candidate list, and a probabilistic selection
criterion. In the case of the MAX-CUT, it is intuitive to relate the greedy
function to the sum of the weights of the edges in each cut. More formally, let
(S, S̄) be a cut. Then, for each vertex v 6∈ S ∪ S̄, the following two quantities
are computed:

σS(v) =
∑

u∈S

wvu and σS̄(v) =
∑

u∈S̄

wvu.

The greedy function, g(v) = max{σS(v), σS̄(v)}, measures how much addi-
tional weight will result from the assignment of vertex v to S or S̄. The greedy
choice consists in selecting the vertex v with the highest greedy function value.
If σS(v) > σS̄(v), then v is placed in S̄; otherwise it is placed in S. To define
the construction mechanism for the restricted candidate list (RCL), let

wmin = min

{

min
v∈V ′

σS(v), min
v∈V ′

σS̄(v)

}

and

wmax = max

{

max
v∈V ′

σS(v), max
v∈V ′

σS̄(v)

}

= max
v∈V ′

{g(v)},

where V ′ = V \{S∪ S̄} is the set of vertices which are still candidate elements,
i.e. not yet assigned to either subset S or subset S̄. Denoting by µ = wmin +
α · (wmax − wmin) the cut-off value, where α ∈ [0, 1], the RCL is made up by
all vertices whose value of the greedy function is greater than or equal to µ.
A vertex is randomly selected from the RCL.

Once a greedy, randomized, and adaptive solution x is built, the local
search procedure is invoked. Given the current solution x, it implements an
elementary move, that consists in moving each vertex from one subset of the
cut to the other. More formally, let (S, S̄) be the current solution. To each

8 M. De Santis et al.

vertex v ∈ V we associate either the neighbor (S \ {v}, S̄ ∪ {v}) if v ∈ S, or
the neighbor (S ∪ {v}, S̄ \ {v}) otherwise. The value

δ(v) =

{

σS(v)− σS̄(v), if v ∈ S;
σS̄(v)− σS(v), if v ∈ S̄

represents the change in the objective function associated with moving vertex
v from one subset of the cut to the other.

In [38], all possible moves are investigated and the acceptance criterion
follows a monotone strategy, i.e. the current solution is replaced by its best
improving neighbor and the search stops after all possible moves have been
evaluated and no improving neighbor is found.

3.2 MAX-SAT

A propositional formula Φ on a set of n Boolean variables V = {x1, . . . , xn}
in conjunctive normal form (CNF) is a conjunction on a set of m clauses
C = {C1, . . . , Cm}. Each clause Ci is a disjunction of |Ci| literals, where each
literal lij is either a variable xj or its negation ¬xj . Φ can formally be written
as

Φ =

m
∧

i=1

Ci =

m
∧

i=1





|Ci|
∨

j=1

lij



 .

A clause is satisfied if at least one of its literals evaluates to 1 (true), which
means that either one of the unnegated Boolean variables has the value of
1 or a negated variable has the value of 0. Φ is said to be satisfied if all of
its clauses are satisfied. In the satisfiability problem (SAT), one must decide
whether there exists an assignment of values to the variables such that a given
propositional formula is satisfied. SAT was the first problem to be shown to
be NP-complete [24]. The MAX-SAT is a generalization of SAT, where given
a propositional formula, one is interested in finding an assignment of values
to the variables which maximizes the number of satisfied clauses. Generaliz-
ing even further, if we introduce a positive weight wi for each clause Ci, then
the weighted MAX-SAT consists of finding an assignment of values to the
variables such that the sum of the weights of the satisfied clauses is maxi-
mized. The MAX-SAT has many applications both theoretical and practical,
in areas such as complexity theory, combinatorial optimization, and artificial
intelligence [12]. It is an intractable problem in the sense that no polynomial
time algorithm exists for solving it unless P = NP, which is evident since it
generalizes the satisfiability problem [45].

The first approximation algorithms for the MAX-SAT were introduced
in [65], where Johnson presented two algorithms with performance rations
(k−1)/k and (2k−1)/2k, where k is the least number of literals in any clause.
For the general case k = 1 they both translate to a 1/2-approximation algo-
rithm, while it has been shown in [20] that the second algorithm is in fact a

A Nonmonotone GRASP 9

2/3-approximation algorithm. A 3/4-approximation algorithm, based on net-
work flow theory, was presented by Yannakakis in [110] and also in [52] by Goe-
mans and Williamson. Currently, one among the best deterministic polynomial
time approximation algorithm for the MAX-SAT achieves a performance ratio
of 0.758 and is based on semidefinite programming [53], while there is also a
randomized algorithm with performance ratio 0.77 [8]. Better approximation
bounds for special cases of the problem in which, for instance, we restrict the
number of literals per clause or impose the condition that the clauses are sat-
isfiable have also been found [29,67,107]. With respect to inapproximability
results, it is known [60] that unless P = NP there is no approximation algo-
rithm with performance ratio greater than 7/8 for the MAX-SAT in which
every clause contains exactly three literals, thereby limiting the general case
as well. In 1997, to heuristically solve the problem a GRASP has been pro-
posed [95]. In [96] a complete Fortran implementation of the algorithm is given
along with extensive computational runs. In the following, we provide a brief
description of the main ingredients of the classical GRASP for the MAX-SAT.

Given a set of clauses C and a set of Boolean variables V , let x ∈ {0, 1}n

be a truth assignment (i.e., the vector of truth values assigned to the variables)
and let c(x) be the sum of the weights of the satisfied clauses as implied by x.
Without loss of generality, all the weights wi of the clauses are assumed to be
positive integers. Given any two truth assignments x,y ∈ {0, 1}n let ∆(x,y)
denote their difference set, i.e.,

∆(x,y) := {i : xi 6= yi, i = 1, . . . , n} (1)

and their distance

d(x,y) := |∆(x,y)| =
n
∑

i=1

|xi − yi|, (2)

which is the Hamming distance, and will be used as a measure of proximity
between two solutions. As detailed in [95], in the construction phase of the
algorithm a solution is built one element at a time in a greedy randomized
fashion, by maintaining a RCL throughout the procedure, which contains el-
ements that correspond to assignments of yet-unassigned variables to either 1
(true) or 0 (false). Choosing an element to be added to a partial solution
from the RCL corresponds to setting the respective truth value to the given
variable. Given any partial solution, which corresponds to a set of satisfied
clauses, the next element to be added to the solution is chosen taking into ac-
count the total weight of the unsatisfied clauses that become satisfied after the
assignment to the just chosen element. More formally, let N = {1, 2, . . . , n}
and M = {1, 2, . . . ,m} be sets of indices for the set of variables and clauses,
respectively. Moreover, for i ∈ N , let Γ+

i be the set of unassigned clauses that
would become satisfied if variable xi were to be set to true, and Γ−

i be the set
of unassigned clauses that would become satisfied if variable xi were to be set
to false. Let γ+

j and γ−
j be the gain in the objective function value if we set

10 M. De Santis et al.

the unassigned variable xj to 1 and 0, respectively. Formally, they are defined
as follows:

γ+
i =

∑

j∈Γ
+

i

wj and γ−
i =

∑

j∈Γ
−

i

wj .

If X ⊆ V is the set of already assigned variables, the best gain γ∗ is computed
as

γ∗ := max{γ+
j , γ

−
j : j such that xj ∈ V \X}

and RCL keeps only those assignments with γ+
j and γ−

j that are greater or
equal to α · γ∗ where 0 ≤ α ≤ 1 is a parameter. A random choice from the
RCL corresponds to a new assignment xs = 1 (xs = 0), which is added to our
partial solution X = X∪{xs}. After each such addition to the partial solution,
Γ+
i , Γ−

i , γ+
j , and γ−

j are consequently updated, in an adaptive fashion. The
process is repeated until |X | = n.

Having completed a truth assignment x, a local search is applied in order to
guarantee local optimality. The 1-flip neighborhood is used in the local search,
which is defined as

N1(x) := {y ∈ {0, 1}n : d(x,y) ≤ 1}. (3)

If w(x) is the total weight of the satisfied clauses for the truth assignment x,
then x is a local maximum if and only if w(x) ≥ w(y) for all y ∈ N1(x).

3.3 QAP

Given a set N = {1, 2, . . . , n}, the set ΠN of all permutations of the elements
in N and two n × n matrices F and D, such that, for i, j ∈ {1, 2, . . . , n},
fij , dij ∈ R+, the QAP aims at finding a permutation π∗ ∈ ΠN such that

π∗ = arg min
p∈ΠN

n
∑

i=1

n
∑

j=1

fij · dπ(i)π(j).

The QAP was first proposed already in 1957 by Koopmans and Beck-
man [70] while studying the plant location problem. In the location theory
context, one is given a set F = {{1, . . . , {n} of n facilities and a set N of n lo-
cations. Matrices F and D represent the flow matrix and the distance matrix,
respectively, and the objective is to determine to which location each facility
must be assigned so as to minimize the total cost of the assignment. Since
its first formulation, the QAP has appeared in several practical applications,
including economy [61,62], scheduling [46], and numerical analysis [15]. Re-
cent surveys on the QAP are given in [78] and in [26], besides two nice and
comprehensive books ([90], [17]).

The QAP is one of the most difficult combinatorial optimization problems.
In 1976, Sahni and Gonzales [101] had shown that it is NP-hard and that,
unless P = NP, it is not possible to find an ǫ-approximation algorithm, for
any constant ǫ and this result stands even under the hypotheses that F and D

A Nonmonotone GRASP 11

are symmetric coefficient matrices. Due to its high computation complexity,
to find in reasonable running times good quality solutions for the QAP Li et
al. [76] proposed a GRASP, whose Fortran implementation has been described
in [88].

In the GRASP for QAP, the construction phase performs two stages. In
the first stage, only two assignments are produced. Once sorted inter-site dis-
tances in increasing order and inter-facility flows in decreasing order, the idea
in this first stage is to assign facilities with high interaction (i.e., having high
fij values) to nearby sites (i.e., sites with low dkl values). Coherently, among
the pairs of assignments having the smallest dkl · fij products and inserted
in the RCL a pair is selected at random and the corresponding assignment
established. The remaining n − 2 facility-site assignments are then made se-
quentially in the second stage. The idea now is to favor assignments that have
small interaction cost with the set of previously-made assignments. To do this,
at each iteration, the procedure keeps all costs of unassigned facility-site pairs
sorted in increasing order. More specifically, let Γ = {(i1, k1), . . . , (iq, kq)} be
the set of q assignments at a certain iteration of the construction phase. Then,
the cost cjl of assigning facility j to site l, with respect to the already-made q
assignments is computed as follows:

cjl =
∑

(i,k)∈Γ

dkl · fij .

The pairs having the least α·|Γ |, α ∈ (0, 1] costs are inserted in the RCL and
one of them is selected at random and added to Γ . The procedure is repeated
until n−1 assignments are made. The remaining facility is then assigned to the
remaining site. In the local search phase, a simple 2-exchange neighborhood
structure is defined and the local improvement procedure considers all possible
2-swaps of facility-locations. If a swap improves the cost of the assignment,
it is accepted. The procedure continues until no swap improves the solution
value.

4 A Nonmonotone GRASP

For finding approximate solutions of hard combinatorial problems, we propose
a NonMonotone GRASP (NM-GRASP). The main difference between NM-
GRASP and a classical GRASP is in the use of a nonmonotone local search
strategy, based on the ideas described in [55].

The pseudo-code in Figure 4 illustrates how the nonmonotone local search
works for a minimization problem. As in the classical GRASP local search,
the first step of the nonmonotone local search is the computation of a suitable
neighborhoodN(x) of the current solution x (line 1). The search is then carried
out by successively replacing the current solution x by a solution y ∈ N(x)
that improves a given reference objective function value f̄ instead of the best
value obtained so far. Hence, we have f(y) < f̄ which clearly allows for uphill
steps thus giving raise to a nonmonotone local search. In order to avoid cycling

12 M. De Santis et al.

of the local search routine, the reference value must be updated according to
a rigorous criterion. To perform such an update, the routine employs a queue
W of maximum size M containing the least recently accepted function values.
The queue is managed according to a first-in-first-out policy by means of the
following two operations: push(f,W), which inserts into W a new function
value f , and pop(W), which drops from W the least recently inserted function
value.

procedure NonmonotoneLocalSearch(x, f(·))
1 Let M ≥ 1 and let N(x) be the neighborhood of x;
2 W :={f(x)}; f̄ :=f(x); xmin:=x;
3 H :={y ∈ N(x) | f(y) < f̄};
4 while (|H | > 0)→
5 x:=Select(H);
6 if f(x) < f(xmin) then xmin:=x;
7 if |W | = M + 1 then pop(W);
8 push(f(x),W); f̄ :=max{f ∈ W};
9 H :={y ∈ N(x) | f(y) < f̄};
10 endwhile

11 if x 6= xmin then x:=xmin; goto 2;
12 return(xmin);
end NonmonotoneLocalSearch

Fig. 4 Pseudo-code of the nonmonotone local search procedure.

Looking at the pseudo-code in Figure 4, procedure NonmonotoneLocalSearch
successively updates the current solution x by a new one belonging to the
set H of improving solutions with respect to the given reference value f̄ and
(possibly) updates the reference value f̄ itself. The search terminates when
there is no solution in the neighborhood that improves f̄ . More precisely, the
nonmonotone local search terminates at x if

f(y) ≥ f̄ ≥ f(x), ∀ y ∈ N(x). (4)

Note that, condition (4) implies that x is locally optimal with respect to N(x).
In order to show that NonmonotoneLocalSearch cannot indefinitely cycle

between lines 4 and 10 of the while-cycle, we need to explicitly define the
sequences of points and function values generated by the procedure. To this
aim, let us denote by x0 the starting solution of the local search, and by xk

and f̄k the solution and the reference value at the beginning of each iteration
of the while-cycle, respectively. Moreover, let be

Hk = {y ∈ N(xk) : f(y) < f̄k}.

Consequently, line 5 of the while-cycle can be written as

xk+1:= Select(Hk);

A Nonmonotone GRASP 13

We remark that the updating of the reference value performed by the proce-
dure is such that f̄k can formally be written as

f̄k = max
0≤i≤min{k, M}

f(xk−i), (5)

where M ∈ N+ is fixed.
We can now formally introduce the sequences {xk}, {f(xk)}, and {f̄k}

generated by NonmonotoneLocalSearch. Note that, even when

f(xk+1) < f̄k, for every index k,

it results that the sequence {f(xk)} can be nonmonotone.

Proposition 1 Let {xk} be the sequence of solutions generated by the non-
monotone local search, and {f̄k} be the sequence of reference values defined as
in (5).

Then, NonmonotoneLocalSearch cannot cycle and produces a local minimum
point.

Proof. First, we observe that the sequence {f̄k} is bounded from below, since
the number of solutions in the feasible set X is finite.

Moreover, at each iteration k, we have that

f(xk+1) < f̄k. (6)

From (5) and (6), we can write:

f̄k+1 ≤ f̄k. (7)

Then, remembering that |X | < ∞, we can define

0 < δ = min
x,y∈X

{

|f(x)− f(y)| : f(x) 6= f(y)
}

,

so that we have
f̄k+M < f̄k − δ. (8)

By contradiction, let us assume now that the procedure does not terminate
and that a solution x̃ (which is not a local minimum) is generated an infinite
number of times. By (7) and (8), there exists an iteration k̃ such that

f̄ k̃ ≤ f(x̃).

Furthermore, as x̃ is generated an infinite number of times, there exists an
iteration k̂ ≥ k̃ such that

f(x̃) < f̄ k̂.

Hence, we have

f(x̃) < f̄ k̂ ≤ f̄ k̃ ≤ f(x̃),

14 M. De Santis et al.

which shows that the local search procedure cannot cycle. Then, the point
produced is such that |H | = 0, therefore we have

f(x) ≤ f̄ ≤ f(y), for all y ∈ N(x),

which implies that x is a local minimum. ⊓⊔

For the three combinatorial optimization problem considered in section 3,
namely the MAX-CUT, the MAX-SAT, and the QAP, we have designed a
Nonmonotone GRASP (NM-GRASP), that applies the procedure

NonmonotoneLocalSearch(x, f(·)).

NonmonotoneLocalSearch is based on the same neighborhood structure as in
the classical GRASPs. In the case of maximization problems (and this is the
case for the MAX-CUT and the MAX-SAT), we have the sign > in line 3 and
9. Furthermore, f̄ is updated as the minimum among the objective function
values in W, and on line 8 we have f̄ :=min{f ∈ W}.

NonmonotoneLocalSearch accepts a move if it guarantees an improvement
greater than f̄ . The current solution is then successively replaced and the
search stops after all possible moves have been evaluated and no neighbor
that improves f̄ was found.

5 Computational results

In this section, we present our computational experience on the MAX-CUT,
the MAX-SAT, and the QAP. In order to compare the performance of the clas-
sical GRASP and the NM-GRASP we tested the two heuristics on benchmark
test problems from the literature. The instances used for the tests on the MAX-
CUT and the MAX-SAT problems are downloadable from Mauricio G.C. Re-
sende’s webpage at http://mauricio.resende.info/data/index.html. The
instances used for the tests on the QAP problem are downloadable from
http://anjos.mgi.polymtl.ca/qaplib/inst.html#BO.

As for the MAX-CUT, the following problem instances were used:

g problems. These test problems were used by Fujisawa et al. in [44]. They
consist of sparse graphs whose size in terms of number of nodes varies from
10 to 1250.

sg3dl problems. Proposed by Burer, Monteiro, and Zhang [16], these in-
stances correspond to cubic lattice graphs modeling Ising spin glasses. The
graphs vary in sparsity and sizes, in such a way that the larger is the size in
terms of number of nodes (from 1000 to about 3000) the lower is the density
(from 0.60% to 0.22%).

torus problems. This is also a set of instances from the Ising model of spin
glasses. The complete problem library is available from the 7th DIMACS Im-
plementation Challenge and is downloadable as a tar file and compressed with
gzip from http://dimacs.rutgers.edu/Challenges/Seventh/Instances/.

A Nonmonotone GRASP 15

B problems. The graphs in this set of instances are sparse and vary in size
from 5000 to 8000 nodes.

G problems. These test problems were created by Helmberg and Rendl [63].
They consist of toroidal, planar, and randomly generated graphs of varying
sparsity and sizes. These graphs vary in size from 800 to 3000 nodes and in
density from 0.17% to 6.12%.

As for the MAX-SAT, the instances have been generated from the jnh SAT
problems class of the 2nd DIMACS Implementation Challenge by randomly
generating clause weights uniformly between 1 and 1000. In these instances,
the number of variables is 100, while the number of clauses ranges from 800
to 900.

For the QAP, benchmark problem instances have been proposed by Burkard
et al.[18] and are known as QAPLIB - A Quadratic Assignment Problem

Library1:

chr problems. These test problems were used by Christofides and Benavent
in [21]. They are characterized by a n×n adjacency matrix of a weighted tree
and a n× n adjacency matrix of a complete graph, with n varying from 12 to
25.

els19 problem. In this instance, the data describe the distances of n = 19
different facilities of a hospital and the flow of patients between those locations.
It has been used by Mautor in [81].

esc problems. These test problems were used by Eschermann and Wunder-
lich in [27] in a computer science application where to minimize the amount of
additional hardware needed for the testing of self-testable sequential circuits.
In these instances, n varies from 16 to 128.

kra problems. These are real–world instances used to plan the Klinikum
Regensburg in Germany and described by Krarup and Pruzan in [71]. Here,
n = 30.

lipa problems. These test problems were randomly generated by Li and
Pardalos [75]. They are asymmetric instances with known optimal solutions
and n ranging from 20 to 90.

nug problems. These test problems were used by Negent et al. in [84].
They are characterized by a distance matrix containing Manhattan distances
of rectangular grids. The size n ranges from 14 to 30.

rou problems. These instances were used by Roucairol in [100]. The en-
tries of the matrices are randomly generated between 1 and 100 and n =
{12, 15, 20}.

scr, tho, and wil problems. In all these instances, the entries of the ma-
trices are rectangular. It only changes the size. In the scr problems n =
{12, 15, 20} and they were used by Scriabin and Vergin in [102]. In the tho

1 The QAPLIB - A Quadratic Assignment Problem Library has an online version at
http://anjos.mgi.polymtl.ca/qaplib/.

16 M. De Santis et al.

problems, n = {30, 40, 150} and they were used by Thonemann and A. Bölte
in [106]. Finally, in the wil problems, n = {50, 100} and they were used by
Wilhelm and Ward in [109].

sko problems. In these instances, the entries of the distance matricx are
rectangular, the entries in the flow matrix are pseudorandom numbers, and n
ranges from 42 to 100. They were used by Skorin-Kapov in [104].

ste problems. They refer to the backboard wiring problem and have size
n = 36. Totally, they constitute a set of three instances characterized by data
representing Manhattan, squared Euclidean, and Euclidean distances. They
were used by Steinberg in [105].

We performed ten random runs for each instance considered. For each
run, with the time limit of one hour, we stored the solution found with the
best objective function value, the CPU time, and the iteration in which such
solution was found.

The experiments were performed on an Intel Xeon E5-2670 processor, run-
ning at 2.60 GHz with 64 GB of RAM. All runs were done using a single
processor. All codes were written in Fortran 77 and compiled with gfortran
compiler.

About the fine tuning of the parameter M used in the nonmonotone local
search, the best value resulting in our experiments has been 10 for the MAX-
CUT and the QAP instances and 5 for the MAX-SAT instances.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 in

st
an

ce
s

improvement in the objective
0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MAX−CUT

%
 in

st
an

ce
s

improvement in the objective
0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

%
 in

st
an

ce
s

improvement in the objective

NM−GRASP
GRASP

Fig. 5 Performance comparison between NM-GRASP (dashed line) and the original
GRASP (dash-dot line) on the MAX-CUT problems (Worst-left; Average-center; Best-
right).

Figure 5, Figure 6, and Figure 7 plot the performance of the NM-GRASP
and the classical GRASP in terms of objective function value for the MAX-
CUT, the MAX-SAT, and the QAP, respectively. The dashed line gives on
the y-axis the percentage of instances in which the absolute improvement in
terms of objective function value of NM-GRASP with respect to GRASP is
greater than or equal to the value given in the x-axis. Furthermore, the dash-

A Nonmonotone GRASP 17

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 in

st
an

ce
s

improvement in the objective
0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
MAX−SAT

%
 in

st
an

ce
s

improvement in the objective
0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 in

st
an

ce
s

improvement in the objective

NM−GRASP
GRASP

Fig. 6 Performance comparison between NM-GRASP (dashed line) and the original
GRASP (dash-dot line) on Max-sat problems (Worst-left; Average-center; Best-right).

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 in

st
an

ce
s

improvement in the objective
0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
QAP

%
 in

st
an

ce
s

improvement in the objective
0 50 100 150 200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

%
 in

st
an

ce
s

improvement in the objective

NM−GRASP
GRASP

Fig. 7 Performance comparison between NM-GRASP (dashed line) and the original
GRASP (dash-dot line) on quadratic assignment problems (Worst-left; Average-center; Best-
right).

dot line gives on the y-axis the percentage of instances in which the absolute
improvement of GRASP with respect to NM-GRASP is greater or equal than
the value given in the x-axis. More specifically, let fNM

i and fOR
i be the

objective function values found by NM-GRASP and the classical GRASP on
instance i, respectively. Let N be the total number of instances considered for
each problem. The dashed line for the MAX-CUT and the MAX-SAT is the
plot of

y(x) =
|V (x)|

N
, (9)

where V (x) = {i : fNM
i −fOR

i ≥ x}. The dash-dot line for the MAX-CUT and
the MAX-SAT is the plot of

y(x) =
|W (x)|

N
, (10)

18 M. De Santis et al.

where W (x) = {i : fOR
i − fNM

i ≥ x}. For what concerns the QAP, since it is
a minimization problem, we have that the dashed line is the plot of (10) while
the dash-dot line is the plot of (9).

In every figure, we report: 1) on the left, the plot related to the worst
objective function value obtained among the ten runs; 2) on the center, the
one related to the average of the objective function value obtained on the ten
runs, and 3) on the right, the plot related to the best objective function value
obtained among the ten runs by the two heuristics.

On the basis of the figures, we notice that NM-GRASP is generally able
to guarantee better performances than GRASP in all three scenarios (worst,
average, and best scenario).

To deeper investigate and confirm the better performance of NM-GRASP,
Table 2, Table 3, and Table 4 summarize the details of the results obtained
by comparing the two algorithms on the benchmark instances of the three
selected combinatorial optimization problems. The first column of the three
tables reports the name of the instance. The remaining columns report for each
of the two approaches the average CPU time (Time), the average number of
iterations (Iter), the average objective function value (Obj) with the standard
deviation in brackets, and the best objective function value obtained over the
ten runs (Best Obj) with the number of times the best value is obtained in
brackets.

As for the 117 benchmark instances of the MAX-CUT, the 44 instances
of the MAX-SAT, and the 82 instances of the QAP, we notice that the NM-
GRASP found solutions whose objective function value is better than or equal
to the objective function value of the solution found by the classical GRASP
(often strictly better) for the great majority of problems. Moreover, the number
of times NM-GRASP found the best objective function value over only ten runs
is higher for all instances for the QAP, and for almost all instances except for a
very small percentage of cases that is below 5% for the MAX-CUT and below
11% for the MAX-SAT.

In order to see if there exist significant differences in the results, in terms of
solution quality, between NM-GRASP and the original GRASP, we apply the
Friedman non-parametric statistical test followed by the post-hoc test on the
results from the tables. The post-hoc analysis shows that NM-GRASP sta-
tistically outperforms the original GRASP on both MAX-CUT and the QAP
instances with p-values of 1.05973563e-10 and 3.84942067e-09, respectively.
The performance between the two algorithms is statistically less significant
for the MAX-SAT, with a p-value of 6.47928279e-02.

As additional comparison between GRASP and NM-GRASP, we consider their
performance with respect to the average CPU time. We recall that, for each
run, we stored the CPU time needed to find the solution with the best objec-
tive function value in that run. In Figure 8, we report the box plots related to
the distribution of the average CPU time over the ten runs for each problem
(MAX-CUT on the left, MAX-SAT in the center and QAP on the right). On
each box, the central mark is the median, the edges of the box are the 25th

A Nonmonotone GRASP 19

and 75th percentiles, the whiskers extend to the most extreme data points not
considered outliers, and outliers are plotted individually. From each plots, we
see that the median of the NM-GRASP is lower than the median of the clas-
sical GRASP. For the QAP problem, the NM-GRASP find its best solutions
generally much faster than the classical GRASP.

0

500

1000

1500

2000

2500

3000

GRASP NM GRASP

av
er

ag
e

cp
u

tim
e

MAX−CUT

0

500

1000

1500

2000

GRASP NM GRASP

av
er

ag
e

cp
u

tim
e

MAX−SAT

0

500

1000

1500

2000

2500

GRASP NM GRASP

av
er

ag
e

cp
u

tim
e

QAP

Fig. 8 Box plots related to the CPU time (average results over ten runs).

As a further experiment for the MAX-CUT problem, we considered the empiri-
cal distributions of the random variable time-to-target-solution-value (see [1,2]
for further details) considering instances g1250.n, G40, sg3dl142000.mc, and
toruspm3-15-50 using different target values. We performed 100 independent
runs of each heuristic and recorded the time needed to find a solution at least
as good as the target solution. For each run, we considered one hour as the
time limit. The Time-To-Target-plot analysis is reported in Appendix B.

Finally, we compared the solutions obtained by both GRASP and NM-GRASP
with the best known solutions (optimal solutions when available) from the
literature. More specifically, for the MAX-CUT problem we considered the
best known solutions related to sg3dl, torus and G instances; for the MAX-
SAT problem we considered the optimal solutions for all the available in-
stances; for the QAP problem we considered the best known/optimal solutions
for all the QAPLIB instances. We calculated for both MAX-CUT and MAX-
SAT problems the deviation ρmax = (fbest − f)/fbest from the best known so-
lution fbest, where f is the best objective value attained by a given approach.
In the QAP case we instead calculated ρmin = (f − fbest)/fbest. In Table 1,
we report for both approaches the average deviation obtained on the three
classes of instances. As we can easily notice, NM-GRASP always gets a better
average deviation than the classical GRASP.

Summarizing, our computational experience shows that considering a non-
monotone local search in the GRASP heuristic often gives a significant im-
provement in the quality of the solution, and this improvement is achieved
without deteriorating the CPU time.

20 M. De Santis et al.

Table 1 Average deviation from best known/optimal solution

GRASP NM-GRASP

MAX-CUT 0.0066 0.0027
MAX-SAT 0.0018 0.0016
QAP 0.0922 0.0000

6 Concluding remarks

In this paper, we introduced a new nonmonotone strategy to explore the neigh-
borhood of the current solution during a local search phase and formally stated
the convergence of the resulting nonmonotone local search to a locally optimal
solution. To illustrate its effectiveness, we used it as local search procedure
in a GRASP framework and compared the resulting Nonmonotone GRASP
(NM-GRASP) with a classical GRASP on three selected hard combinatorial
optimization problems: the MAX-CUT, the MAX-SAT, and the QAP. The
comparison showed that the new proposed approach is very competitive, out-
performing the classical GRASP.

A Detailed Tables for MAX-CUT, MAX-SAT and QAP

In this appendix, we report the detailed tables related to the comparison between NM-
GRASP and the original version of GRASP for MAX-CUT, MAX-SAT and QAP. The
first column of the three tables reports the name of the instance. The remaining columns
report for each of the two approaches the average CPU time (Time), the average number of
iterations (Iter), the average objective function value (Obj) with the standard deviation in
brackets, and the best objective function value obtained over the ten runs (Best Obj) with
the number of times the best value is obtained in brackets.

A
N
o
n
m
o
n
o
to
n
e
G
R
A
S
P

2
1

Table 2: Comparison between NM-GRASP and the classical GRASP on MAX-
CUT instances (average results over ten runs).

Problem GRASP NM-GRASP

Time Iter Obj Best Obj Time Iter Obj Best Obj

g10.n < 10−3 1 17(0) 17(10) 10−3 1 17(0) 17(10)
g20.n < 10−3 1.3 37(0) 37(10) 10−3 1 37(0) 37(10)
g25.n < 10−3 1 42(0) 42(10) 10−3 1 42(0) 42(10)
g30.n < 10−3 1.5 61(0) 61(10) 10−3 1 61(0) 61(10)
g50.n < 10−3 1.2 105(0) 105(10) 10−3 1 105(0) 105(10)
g100.n < 10−3 4.4 214(0) 214(10) 0.03 1 214(0) 214(10)
g150.n 0.06 7.5 294(0) 294(10) 0.05 1 294(0) 294(10)
g200.n 1.46 98.3 405(0) 405(10) 0.28 5 405(0) 405(10)
g250.n 6.19 286.2 305(0) 305(10) 3.39 33 305(0) 305(10)
g500.n 922.66 13643.1 573.5(0.53) 574(5) 320.58 818 573(0) 573(10)
g1000.n 828.69 3056 1704.3(1.16) 1706(1) 102.88 63 1708(0) 1708(10)
g1250.n 1848.67 1740.5 2546.1(3.38) 2551(1) 2865.98 507 2555(0) 2555(10)
sg3dl051000.mc 0.02 4.6 110(0) 110(10) 0.03 3 110(0) 110(10)
sg3dl052000.mc 0.03 7 112(0) 112(10) 0.25 16 112(0) 112(10)
sg3dl053000.mc 0.01 3.3 106(0) 106(10) 0.02 1 106(0) 106(10)
sg3dl054000.mc < 10−3 2.8 114(0) 114(10) 0.05 4 114(0) 114(10)
sg3dl055000.mc < 10−3 3.4 112(0) 112(10) 0.09 6 112(0) 112(10)
sg3dl056000.mc 0.01 4.4 110(0) 110(10) 10−3 1 110(0) 110(10)
sg3dl057000.mc 0.03 8.3 112(0) 112(10) 0.05 4 112(0) 112(10)
sg3dl058000.mc < 10−3 2.5 108(0) 108(10) 0.01 1 108(0) 108(10)
sg3dl059000.mc < 10−3 2.9 110(0) 110(10) 0.01 1 110(0) 110(10)
sg3dl101000.mc 96.01 4368.9 890.4(3.10) 894(3) 1368.74 1772.3 891(1.05) 892(5)
sg3dl102000.mc 118.33 3092.1 898.6(1.35) 900(4) 1112.46 1451.2 894(0) 894(10)
sg3dl103000.mc 686.75 5064.4 885(2.87) 890(2) 1288.65 1028.4 886(0) 886(10)
sg3dl104000.mc 145.84 3043.4 896(1.33) 898(2) 95.67 283.8 898(0) 898(10)
sg3dl105000.mc 648.32 3363.4 881(1.70) 882(7) 180.24 261.2 882.2(0.63) 884(1)
sg3dl106000.mc 142.68 4354.6 884.6(2.84) 888(3) 448.53 413.8 880.2(0.63) 882(1)
sg3dl107000.mc 37.83 2538.7 895.8(2.20) 900(1) 537.59 584.2 892.2(0.63) 894(1)
sg3dl108000.mc 164.99 2334 879.6(1.58) 882(2) 4.66 456.4 880.2(0.63) 882(1)

continued on next page

2
2

M
.
D
e
S
a
n
tis

et
a
l.
Table 2 – continued from previous page

Problem GRASP NM-GRASP

Time Iter Obj Best Obj Time Iter Obj Best Obj

sg3dl109000.mc 369.95 4004.9 896.2(1.48) 900(1) 267.67 579 898(0) 898(10)
sg3dl141000.mc 757.58 705.1 2395.4(4.12) 2402(1) 550.67 196.1 2414.4(1.58) 2416(4)
sg3dl142000.mc 1014.72 704.3 2403.4(3.89) 2410(1) 220.4 22 2426(0) 2426(10)
sg3dl143000.mc 1222.57 520.6 2394.4(4.70) 2400(1) 938.15 231.6 2413.8(2.39) 2418(1)
sg3dl144000.mc 1139.55 744.9 2398.8(2.70) 2404(1) 13.32 97.1 2419.4(1.35) 2422(1)
sg3dl145000.mc 1245.02 573.9 2392(4.90) 2400(2) 659.22 83.5 2410.2(0.63) 2412(1)
sg3dl146000.mc 856.59 577.6 2402.6(3.78) 2410(1) 1064.98 125.8 2417(3.16) 2426(1)
sg3dl147000.mc 824.15 733.6 2387.6(3.98) 2398(1) 272.13 176.6 2414(2.49) 2418(2)
sg3dl148000.mc 1699.91 611 2396.4(5.23) 2404(2) 1373.20 121 2426.8(1.03) 2428(4)
sg3dl149000.mc 440.21 749.7 2374.6(4.72) 2384(1) 1536.99 161 2398.8(1.03) 2400(4)
sg3dl0510000.mc 0.02 5.1 112(0) 112(10) 0.02 4 112(0) 112(10)
sg3dl1010000.mc 166.29 4875.4 890.2(1.99) 892(5) 193.73 255.5 890(0) 890(10)
sg3dl1410000.mc 607.91 726.3 2408.6(7.18) 2420(1) 943.40 134.6 2426.4(0.84) 2428(2)
torusg3-8.dat 0.01 1 35322378.4(> 100) 36589003(1) 0.23 1 40200626(0) 40200626(10)
torusg3-15.dat 0.8 1 244427176.8(> 100) 254963285(1) 11.87 1 276413144(0) 276413144(10)
toruspm3-8-50.dat 296.99 6969.9 457.2(1.03) 458(6) 83.10 2058.9 456.4(0.84) 458(2)
toruspm3-15-50.dat 799.81 299.6 2950.2(5.12) 2960(1) 570.56 34 2974(0) 2974(10)
B1 11.96 2 10000(0) 10000(10) 37.05 1 10000(0) 10000(10)
B2 16.08 1.6 12000(0) 12000(10) 54.58 1 12000(0) 12000(10)
B3 23.46 1.8 14000(0) 14000(10) 53.54 2 13860(0) 13860(10)
B4 33.48 1.9 16000(0) 16000(10) 111.12 1 16000(0) 16000(10)
G1 2027.46 3002.4 11610.2(5.59) 11619(1) 2212.27 637 11624(0) 11624(10)
G2 1291.09 2155.4 11602.8(7.96) 11620(1) 1568.53 410 11620(0) 11620(10)
G3 2491.38 4004.8 11605.9(5.67) 11613(1) 105.00 29 11622(0) 11622(10)
G4 1769.57 2638.2 11636.5(5.46) 11646(1) 228.21 67 11646(0) 11646(10)
G5 2338.39 3517 11617(5.75) 11627(1) 2930.24 916 11631(0) 11631(10)
G6 1599.98 2556.7 2161.1(5.63) 2174(1) 49.65 15 2178(0) 2178(10)
G7 1769.32 2602.7 1994.5(5.02) 2001(1) 426.72 114 2000(0) 2000(10)
G8 1807.99 2672.7 1991.4(4.58) 1996(2) 212.22 68 2005(0) 2005(10)
G9 1850.68 2707.9 2037.3(8.17) 2048(1) 145.90 43 2054(0) 2054(10)
G10 1460.44 2236.4 1990.7(5.27) 1999(1) 262.57 80 2000(0) 2000(10)

continued on next page

A
N
o
n
m
o
n
o
to
n
e
G
R
A
S
P

2
3
Table 2 – continued from previous page

Problem GRASP NM-GRASP

Time Iter Obj Best Obj Time Iter Obj Best Obj

G11 0.28 495.4 564(0) 564(10) 0.80 62 564(0) 564(10)
G12 1.98 2652.1 554.8(1.03) 556(4) 2.05 569.5 556(0) 556(10)
G13 2.91 2950.5 580.6(1.35) 582(4) 86.63 504.9 581.6(0.84) 582(8)
G14 587.78 6033.4 3052.1(3.60) 3059(1) 823.84 462 3058(0) 3058(10)
G15 155.31 4884.1 3040(4) 3045(1) 516.06 282 3039(0) 3039(10)
G16 784.78 4703.3 3039(3.71) 3048(1) 1473.27 954 3050.2(0.42) 3051(2)
G17 542.66 5171.1 3034.8(2.82) 3039(2) 194.13 764.3 3038(0) 3038(10)
G18 210.25 4614 987.2(2.39) 991(1) 1623.37 780 988(0) 988(10)
G19 672.3 4417.1 898.7(3.06) 905(1) 1362.69 960 903.3(0.48) 904(3)
G20 359.49 3125.5 940(1.89) 941(7) 3098.75 1440 927(0) 927(10)
G21 91.02 3451.8 925.3(5.14) 931(3) 63.31 36 921(0) 921(10)
G22 1643.63 396.9 13242.8(11.04) 13259(1) 647.59 33 13289(0) 13289(10)
G23 1795.59 384.7 13247.5(11.22) 13267(1) 1731.60 94 13317(0) 13317(10)
G24 1325.41 341.6 13250.8(11.23) 13271(1) 1380.06 73 13303(0) 13303(10)
G25 1490.15 282.4 13248.4(12.48) 13270(1) 502.05 30 13322(0) 13322(10)
G26 2187.87 415.7 13229.6(9.36) 13249(1) 44.91 50.8 13293(0) 13293(10)
G27 1184.28 267.6 3239.3(8.90) 3251(1) 1902.83 104 3306(0) 3306(10)
G28 1412.62 267.3 3199.9(8.44) 3214(1) 1316.64 67 3282(0) 3282(10)
G29 1533.36 283 3297.2(7.71) 3306(2) 1130.35 66 3404(0) 3404(10)
G30 1747.62 324 3314.4(6.17) 3324(1) 2764.04 147 3388(0) 3388(10)
G31 2006.52 387.6 3206.6(7.31) 3218(1) 82.56 7 3277(0) 3277(10)
G32 2.59 1182.6 1396.4(2.46) 1402(1) 3.56 296.5 1401.2(1.40) 1404(1)
G33 2.94 1588.2 1370(3.53) 1376(1) 6.44 233.9 1371.8(1.99) 1376(1)
G34 4.04 849 1371(2.71) 1376(1) 54.36 509.7 1377.4(1.65) 1380(1)
G35 1579.03 617.4 7608.5(5.10) 7617(1) 1269.66 92 7639(0) 7639(10)
G36 2063.38 639.3 7597.5(4.14) 7606(1) 168.15 15 7637(0) 7637(10)
G37 708.69 699.4 7610.6(6.24) 7620(1) 1313.85 93 7624(0) 7624(10)
G38 1835.19 674.5 7612.2(4.66) 7619(1) 2422.95 194 7644(0) 7644(10)
G39 1436.41 756.9 2326.1(13.14) 2358(1) 1750.33 99 2356(0) 2356(10)
G40 1028.03 742.5 2319.2(8.92) 2330(1) 2817.61 176 2366(0) 2366(10)
G41 1149.98 637.8 2318.7(6.57) 2328(2) 1554.23 85 2352(0) 2352(10)

continued on next page

2
4

M
.
D
e
S
a
n
tis

et
a
l.
Table 2 – continued from previous page

Problem GRASP NM-GRASP

Time Iter Obj Best Obj Time Iter Obj Best Obj

G42 1039.49 752.1 2400.2(8.59) 2413(1) 1825.54 98 2446(0) 2446(10)
G43 1607.26 1831.3 6643.1(4.61) 6651(1) 1068.16 252 6656(0) 6656(10)
G44 2557.72 2771.7 6630(2.49) 6634(1) 2647.95 638 6649(0) 6649(10)
G45 1491.39 1616.1 6634.4(5.27) 6646(1) 94.59 24 6647(0) 6647(10)
G46 1998.32 2600.7 6633.9(6.15) 6649(1) 81.82 19 6647(0) 6647(10)
G47 1820.72 2167 6639.6(8.03) 6653(1) 61.08 17 6655(0) 6655(10)
G48 3.09 1.4 6000(0) 6000(10) 12.96 1 6000(0) 6000(10)
G49 5.4 3.7 6000(0) 6000(10) 8.35 2 5940(0) 5940(10)
G50 2.46 17.8 5880(0) 5880(10) 45.31 2 5880(0) 5880(10)
G51 770.93 4350 3828.1(4.75) 3835(1) 1506.60 551 3834(0) 3834(10)
G52 399.11 4160.1 3832.8(3.36) 3839(1) 1032.60 359 3835(0) 3835(10)
G53 500.85 3859.9 3831.5(5.78) 3847(1) 2769.37 937 3836(0) 3836(10)
G54 746.42 4137.7 3826.3(2.31) 3830(2) 388.44 136.4 3836(0) 3836(10)
G55 1412.81 51.3 10091.8(12.05) 10113(1) 2865.13 20 10168(0) 10168(10)
G56 1778.39 48 3792.8(11.01) 3816(1) 357.66 1 3930(0) 3930(10)
G57 35.05 268.7 3419.8(4.66) 3432(1) 105.50 62.8 3439.4(2.50) 3444(1)
G58 1688.03 69.2 19024.8(9.98) 19041(1) 1107.63 11 19122(0) 19122(10)
G59 1690.64 78 5788(25.69) 5826(2) 2123.25 20 5959(0) 5959(10)
G60 1901.51 26.8 13875.5(9.41) 13892(1) 948.27 5 14051(0) 14051(10)
G61 1619.66 21.9 5453.9(11.38) 5476(1) 374.96 3 5627(0) 5627(10)
G62 24.22 127.4 4757(4.74) 4764(1) 211.17 26.6 4788.6(1.90) 4792(1)
G63 756.44 31.8 26643(16.06) 26673(1) 976.63 4 26786(0) 26786(10)
G64 1201.17 28.6 8248.7(24.78) 8284(1) 1411.91 4 8482(0) 8482(10)
G65 30.3 100.3 5427.2(9.99) 5446(1) 61.65 17 5470.4(3.63) 5476(2)
G66 30.44 70.5 6193.2(5.90) 6202(1) 133.21 29.6 6252(0.94) 6254(1)
G67 44.43 38.2 6768.2(6.56) 6778(1) 322.77 16 6823(3.56) 6826(4)

A
N
o
n
m
o
n
o
to
n
e
G
R
A
S
P

2
5

Table 3: Comparison between NM-GRASP and the classical GRASP on MAX-
SAT instances (average results over ten runs).

Problem GRASP NM-GRASP

Time Iter Obj Best Obj Time Iter Obj Best Obj

jnh1.sat 1328.3 142441 420877.7(25.68) 420909(2) 1326.92 108931.6 420882(22.26) 420909(1)
jnh4.sat 1353.85 136301.3 420778.5(5.82) 420789(1) 1810.57 144416.1 420785.4(4.65) 420789(6)
jnh5.sat 719.09 66549.1 420663.8(52.43) 420742(2) 1008.64 73242.4 420742(0) 420742(10)
jnh6.sat 379.3 36290.1 420826(0) 420826(10) 260.3 19562.3 420826(0) 420826(10)
jnh7.sat 70.28 6887.3 420925(0) 420925(10) 60.11 4669.6 420925(0) 420925(10)
jnh8.sat 1532.76 139218.2 420345.9(88.72) 420463(3) 2006.08 143432.5 420378(76.95) 420463(4)
jnh9.sat 2177.85 223394.3 420395.1(65.75) 420505(1) 1870.48 148042.7 420446(62.32) 420522(2)
jnh10.sat 1114.76 100633.3 420699.2(71.31) 420758(5) 1737.95 123013.5 420767.7(60.04) 420840(3)
jnh11.sat 1584.34 158770.2 420664.2(33.01) 420728(1) 1637.46 128420.3 420695.6(42.36) 420740(3)
jnh12.sat 720.94 70902.8 420886.2(24.51) 420925(1) 686.21 52092.2 420886.2(24.51) 420925(1)
jnh13.sat 1222.77 113488.8 420805.2(9.30) 420816(4) 1349.27 98403.2 420810.6(8.69) 420816(7)
jnh14.sat 1730.13 169101.2 420740.4(42.45) 420824(1) 1682.6 130176.1 420744.9(40.37) 420824(1)
jnh15.sat 1549.57 144399.3 420654.7(41.11) 420719(2) 1252.27 91906 420683.3(39.50) 420719(5)
jnh16.sat 983.73 97357.6 420900.7(13.50) 420914(4) 1781.32 136140.1 420905.1(11.38) 420914(4)
jnh17.sat 1622.75 164583.5 420918.1(11.11) 420925(7) 1287.66 102744.7 420925(0) 420925(10)
jnh18.sat 1898.91 174732.2 420716.8(67.24) 420795(3) 864.33 62599.7 420779(37.97) 420795(8)
jnh19.sat 1304.29 130933.3 420591(72.67) 420759(1) 1190.26 94283.7 420609.2(74.37) 420759(1)
jnh201.sat 116.17 14155.6 394238(0) 394238(10) 80.55 7428.8 394238(0) 394238(10)
jnh202.sat 1153 127764.7 394023.8(34.92) 394099(1) 1188.47 103056.7 394024.7(44.01) 394100(1)
jnh203.sat 1839.14 184293.7 394103.3(34.08) 394135(2) 2031.74 160281.2 394122.7(11.93) 394135(4)
jnh205.sat 1979.56 210258.2 394233.4(6.96) 394238(5) 2154.06 181150.8 394236.4(4.38) 394238(7)
jnh207.sat 1576.35 177935.5 394210.7(24.79) 394238(1) 1510.65 133834.2 394213.9(24.78) 394238(1)
jnh208.sat 1702.74 176684.2 394104.1(19.29) 394159(1) 1811.67 147571.9 394104.1(19.29) 394159(1)
jnh209.sat 1832.04 202283.3 394216.7(18.02) 394238(3) 1361.69 117263.8 394212.8(17.10) 394238(2)
jnh210.sat 53.46 6181.5 394238(0) 394238(10) 61.66 5539.4 394238(0) 394238(10)
jnh211.sat 2037.73 201069.7 393884.9(48.88) 393954(3) 1804.86 141947.5 393897.8(52.47) 393979(1)
jnh212.sat 1318.64 145918.8 394209.6(26.93) 394227(6) 1561.99 134291.2 394209.3(27.13) 394227(6)
jnh214.sat 1734.67 183986.4 394137.3(19.92) 394163(2) 1364.32 113672.1 394154.9(14.59) 394163(7)
jnh215.sat 1742.73 185872.8 394030(44.37) 394091(2) 1826.16 154193.6 394037.4(40.97) 394091(2)

continued on next page

2
6

M
.
D
e
S
a
n
tis

et
a
l.
Table 3 – continued from previous page

Problem GRASP NM-GRASP

Time Iter Obj Best Obj Time Iter Obj Best Obj

jnh216.sat 316.95 31514.3 394156.5(27.91) 394226(1) 1145.18 90451.2 394185(43.22) 394226(5)
jnh217.sat 819.28 93640.7 394238(0) 394238(10) 558.24 49253.8 394238(0) 394238(10)
jnh218.sat 935.46 102156.5 394237.4(1.90) 394238(9) 962.95 81950.3 394238(0) 394238(10)
jnh219.sat 2378.6 249815.8 393937.3(93.33) 394111(1) 1627.03 134223.1 393966.3(79.15) 394111(1)
jnh220.sat 1456.98 167317.4 394188.4(29.67) 394238(1) 1489.63 132691.9 394190.7(32.01) 394238(1)
jnh301.sat 780.52 66748.3 444792.2(8.28) 444807(1) 884.31 59613.6 444805.6(24.32) 444854(1)
jnh302.sat 1431.94 125142.8 444398.1(63.37) 444459(4) 1168.27 79954.4 444437.4(45.54) 444459(8)
jnh303.sat 1967.02 160225.3 444372.9(47.93) 444503(1) 1119.74 72104.4 444366(0) 444366(10)
jnh304.sat 1423.02 124770 444507(44.74) 444533(7) 1281.37 89894.4 444491.6(48.51) 444533(5)
jnh305.sat 1027.68 85927.6 443985.8(105.90) 444112(3) 725.16 47584.1 444035.8(66.72) 444112(4)
jnh306.sat 2367.91 223524 444802(31.83) 444838(4) 2202.9 161105.4 444808.5(31.39) 444838(5)
jnh307.sat 1827.27 158754.1 444305.5(16.67) 444314(7) 778.54 53181.8 444293.5(20.61) 444314(4)
jnh308.sat 1379.2 118159.7 444530.5(56.21) 444568(4) 1733.12 116605.2 444538.8(36.22) 444568(4)
jnh309.sat 572.28 49806.7 444578(0) 444578(10) 292.8 19910.3 444578(0) 444578(10)
jnh310.sat 1941.09 161933.4 444343.4(33.50) 444391(3) 1619.11 106253.2 444378.8(25.72) 444391(8)

A
N
o
n
m
o
n
o
to
n
e
G
R
A
S
P

2
7

Table 4: Comparison between NM-GRASP and the classical GRASP on QAP
instances (average results over ten runs).

Problem GRASP NM-GRASP

Time Iter Obj Best Obj Time Iter Obj Best Obj

chr12a.dat 0.02 135 9552(0) 9552(10) 0.02 7.8 9552(0) 9552(10)
chr12b.dat < 10−3 25.9 9742(0) 9742(10) < 10−3 2.1 9742(0) 9742(10)
chr12c.dat 0.12 693 11156(0) 11156(10) 0.11 38.1 11156(0) 11156(10)
chr15a.dat 0.59 2045.3 9896(0) 9896(10) 0.52 109.2 9896(0) 9896(10)
chr15b.dat 0.26 800.7 7990(0) 7990(10) 0.16 27 7990(0) 7990(10)
chr15c.dat 1.1 4015.8 9504(0) 9504(10) 0.49 98.7 9504(0) 9504(10)
chr18a.dat 8.73 18842.6 11098(0) 11098(10) 0.28 24.4 11098(0) 11098(10)
chr18b.dat 0.19 328.5 1534(0) 1534(10) 0.08 10.3 1534(0) 1534(10)
chr20a.dat 64.08 98401.6 2192(0) 2192(10) 8.74 972.8 2192(0) 2192(10)
chr20b.dat 1012.67 1574763.6 2298(0) 2298(10) 27.88 2727.8 2298(0) 2298(10)
chr20c.dat 1.6 2282 14142(0) 14142(10) 1.15 121.1 14142(0) 14142(10)
chr22a.dat 391.24 436752 6156(0) 6156(10) 2.79 205.8 6156(0) 6156(10)
chr22b.dat 1218.59 1338050.7 6194(0) 6194(10) 11.95 803.1 6194(0) 6194(10)
chr25a.dat 204.32 144587.4 3796(0) 3796(10) 9.46 479.5 3796(0) 3796(10)
els19.dat 0.33 395.9 17212548(0) 17212548(10) 0.79 113.4 17212548(0) 17212548(10)
esc16a.dat < 10−3 2.7 68(0) 68(10) < 10−3 1.5 68(0) 68(10)
esc16b.dat 0 1 292(0) 292(10) < 10−3 1 292(0) 292(10)
esc16c.dat < 10−3 2.1 160(0) 160(10) < 10−3 1.3 160(0) 160(10)
esc16d.dat < 10−3 2 16(0) 16(10) < 10−3 1.4 16(0) 16(10)
esc16e.dat < 10−3 3.6 28(0) 28(10) < 10−3 3.2 28(0) 28(10)
esc16f.dat < 10−3 1 0(0) 0(10) < 10−3 1 0(0) 0(10)
esc16g.dat < 10−3 2.5 26(0) 26(10) < 10−3 1.7 26(0) 26(10)
esc16h.dat < 10−3 1 996(0) 996(10) < 10−3 1 996(0) 996(10)
esc16i.dat < 10−3 1.1 14(0) 14(10) < 10−3 1 14(0) 14(10)
esc16j.dat < 10−3 1.7 8(0) 8(10) < 10−3 1.5 8(0) 8(10)
esc32a.dat 114.39 39049.4 130(0) 130(10) 5.31 857 130(0) 130(10)
esc32b.dat 0.75 217.6 168(0) 168(10) 0.37 39.6 168(0) 168(10)
esc32c.dat < 10−3 1.8 642(0) 642(10) < 10−3 1.2 642(0) 642(10)
esc32d.dat 0.1 25.7 200(0) 200(10) 0.07 9.3 200(0) 200(10)

continued on next page

2
8

M
.
D
e
S
a
n
tis

et
a
l.
Table 4 – continued from previous page

Problem GRASP NM-GRASP

Time Iter Obj Best Obj Time Iter Obj Best Obj

esc32e.dat < 10−3 1 2(0) 2(10) < 10−3 1 2(0) 2(10)
esc32g.dat < 10−3 1 6(0) 6(10) < 10−3 1 6(0) 6(10)
esc32h.dat 0.42 123.6 438(0) 438(10) 0.12 21.9 438(0) 438(10)
esc64a.dat 0.12 2.9 116(0) 116(10) 0.14 3.3 116(0) 116(10)
esc128.dat 6.58 19.5 64(0) 64(10) 5.06 14.4 64(0) 64(10)
kra30a.dat 15.03 5456.4 88900(0) 88900(10) 0.98 55.6 88900(0) 88900(10)
kra30b.dat 105.81 38123.1 91420(0) 91420(10) 2.62 154.9 91420(0) 91420(10)
lipa20a.dat 0.26 303 3683(0) 3683(10) 0.07 5.6 3683(0) 3683(10)
lipa20b.dat 0.01 12.8 27076(0) 27076(10) 0.03 1.1 27076(0) 27076(10)
lipa30a.dat 6.64 2389.6 13178(0) 13178(10) 0.34 7.9 13178(0) 13178(10)
lipa30b.dat 0.1 23.7 151426(0) 151426(10) 0.15 1.4 151426(0) 151426(10)
lipa40a.dat 1234.74 169235.3 31547.4(29.73) 31538(9) 1.58 12.4 31538(0) 31538(10)
lipa40b.dat 0.35 33.4 476581(0) 476581(10) 0.24 1 476581(0) 476581(10)
lipa50a.dat 1843.91 114771.4 62618.4(27.18) 62572(1) 4.42 15.1 62093(0) 62093(10)
lipa50b.dat 1.44 73.9 1210244(0) 1210244(10) 0.88 1.8 1210244(0) 1210244(10)
lipa60a.dat 1428.77 47338.4 108111.8(15.46) 108076(1) 64.76 119.7 107218(0) 107218(10)
lipa60b.dat 12.14 362.9 2520135(0) 2520135(10) 2.12 2.6 2520135(0) 2520135(10)
lipa70a.dat 1367.48 25895.6 171017.9(30.47) 170950(1) 196.54 209.2 169755(0) 169755(10)
lipa70b.dat 16.11 273.4 4603200(0) 4603200(10) 3.37 2.6 4603200(0) 4603200(10)
lipa80a.dat 1636.88 19263.4 254887.8(23.05) 254845(1) 1718.03 1027.4 253942.6(647.10) 253195(4)
lipa80b.dat 171.88 1811.4 7763962(0) 7763962(10) 11.46 5.1 7763962(0) 7763962(10)
lipa90a.dat 1849.8 14190.6 362912.4(31.84) 362840(1) 1865.28 739.6 361812.2(816.67) 360630(3)
lipa90b.dat 287.74 1970.3 12490441(0) 12490441(10) 12.22 3.8 12490441(0) 12490441(10)
nug12.dat < 10−3 72 578(0) 578(10) < 10−3 3.7 578(0) 578(10)
nug15.dat 0.01 35.1 1150(0) 1150(10) 0.05 11.2 1150(0) 1150(10)
nug20.dat 0.35 420 2570(0) 2570(10) 0.15 10.6 2570(0) 2570(10)
nug30.dat 359.59 121705.1 6124(0) 6124(10) 1.11 27.8 6124(0) 6124(10)
rou12.dat 0.02 118.7 235528(0) 235528(10) 0.02 4.9 235528(0) 235528(10)
rou15.dat 0.086 222.7 354210(0) 354210(10) 0.06 7.7 354210(0) 354210(10)
rou20.dat 5.09 7049.4 725522(0) 725522(10) 3 195.9 725522(0) 725522(10)
scr12.dat < 10−3 17.3 31410(0) 31410(10) 0.01 3.4 31410(0) 31410(10)

continued on next page

A
N
o
n
m
o
n
o
to
n
e
G
R
A
S
P

2
9
Table 4 – continued from previous page

Problem GRASP NM-GRASP

Time Iter Obj Best Obj Time Iter Obj Best Obj

scr15.dat 0.04 97.8 51140(0) 51140(10) 0.03 4.4 51140(0) 51140(10)
scr20.dat 1.58 2060 110030(0) 110030(10) 0.27 16.4 110030(0) 110030(10)
sko42.dat 1317.99 137418 15821.2(11.75) 15812(3) 5.19 44.6 15812(0) 15812(10)
sko49.dat 2077.55 124989.8 23445.4(12.19) 23426(1) 318.15 1744.7 23386(0) 23386(10)
sko56.dat 1505.45 56054.1 34559.4(32.39) 34490(1) 458.64 1539.2 34458(0) 34458(10)
sko64.dat 2111.54 48512.6 48688.4(25.83) 48656(1) 264.69 577.1 48498(0) 48498(10)
sko72.dat 1601.34 24047.8 66597(30.26) 66552(1) 1764.75 2609 66260.2(3.33) 66256(2)
sko81.dat 1613.38 15695.3 91469.2(63.12) 91374(1) 2570.36 2545.1 91012.8(12.73) 90998(2)
sko90.dat 1310.89 8720 116241.4(91.13) 116082(1) 1981.96 1391.9 115562.8(17.21) 115534(1)
sko100a.dat 1803.86 8085.8 152828.6(85.59) 152708(1) 2131.23 1038.7 152050.8(35.35) 152002(3)
sko100b.dat 2391.59 10723.6 154699(129.49) 154494(1) 1853.61 894.8 153914.8(19.28) 153890(2)
sko100c.dat 1918.08 8569.3 148653.2(130.13) 148500(1) 1769.97 863.7 147883.2(15) 147862(1)
sko100d.dat 1803.04 8118.8 150522.8(129.14) 150292(1) 1676.29 811 149607(17.37) 149576(1)
sko100e.dat 1767.35 7878.1 150084.2(139.80) 149856(1) 1655.6 798.8 149166.4(11.81) 149150(2)
sko100f.dat 1448.53 6558 150044.6(112.92) 149802(1) 2116.36 1035 149093(39.26) 149036(1)
ste36a.dat 1373.93 250878.7 9540(10.28) 9526(2) 16.45 276.8 9526(0) 9526(10)
ste36b.dat 168.29 29626.6 15852(0) 15852(10) 1.2 16.4 15852(0) 15852(10)
ste36c.dat 1370.83 246808.8 8247337.2(6728.75) 8239110(2) 3.76 50.8 8239110(0) 8239110(10)
tho40.dat 2347.46 291488.4 240749.6(246.39) 240516(1) 169.75 1230.6 240516(0) 240516(10)
tho150.dat 1829.53 1806.5 8202955.2(9233.59) 8191890(1) 1745.69 147.2 8140210.6(3253.11) 8133398(1)
wil50.dat 2095.1 116930.9 48854.2(19.79) 48828(1) 59.05 315.3 48816(0) 48816(10)
wil100.dat 1978.65 8924.6 273908.6(114.40) 273748(1) 1646.01 836.4 273075.2(18.48) 273038(1)

30 M. De Santis et al.

B Time To Target-Plots analysis on MAX-CUT problems

To plot the empirical distribution, we associate with the i-th sorted running time (ti) a
probability pi = (i− 1

2
)/100, and plot the points zi = (ti, pi), for i = 1, . . . , 100.

For the instances g1250.n, G40, sg3dl142000.mc, and toruspm3-15-50 we fixed as target
values 2518, 2275, 2379, and 2925, respectively. These values represent a standard target for
both heuristics. As we can see in Figure 9, apart from the instance toruspm3-15-50 where
for 3 runs the classical GRASP is better, we can notice that the NM-GRASP is always
superior. It is able to reach the target value in less than 100 seconds CPU time for all the
runs, while in several runs the classical GRASP needs more than 1000 seconds.

Figure 10 depicts the empirical distributions of the random variable time-to-target-solution-
value using as target values 2532, 2293, 2382, and 2932, for the instances g1250.n, G40, sg3-
dl142000.mc, and toruspm3-15-50, respectively. These values are the best objective function
values found by the classical GRASP over 10 runs. As we can see from the plots, also in this
case, the NM-GRASP is able to reach the target value in less than 100 seconds for all the
runs. On the other hand, the classical GRASP failed to reach the target solution within the
time limit in several runs, especially for instances g1250.n and G40.

By using instances g1250.n, G40, sg3dl142000.mc, and toruspm3-15-50, we plot in Figure 11
the empirical distributions of the random variable time-to-target-solution-value using as
target values 2556, 2362, 2420, and 2980, respectively. These target values are the best cuts
found by the NM-GRASP over 10 runs. In this case, the classical GRASP failed to reach
the target solution within the time limit for all runs and all instances. On the contrary,
the NM-GRASP is able to reach the target solution for all runs for instances g1250.n and
sg3dl142000.mc.

References

1. R. M. Aiex, M. G. C. Resende, and C. C. Ribeiro. Probability distribution of solution
time in grasp: An experimental investigation. Journal of Heuristics, 8:343–373, 2002.

2. R. M. Aiex, M. G. C. Resende, and C. C. Ribeiro. Ttt plots: a perl program to create
time-to-target plots. Optimization Letters, 1:355–366, 2007.

3. R. Alvarez-Valdes, F. Parreño, and J.M. Tamarit. Reactive GRASP for the strip-
packing problem. Computers & Operations Research, 35(4):1065–1083, 2008.

4. D.V. Andrade and M.G.C. Resende. GRASP with path-relinking for network migration
scheduling. In Proceedings of the International Network Optimization Conference
(INOC 2007), 2007.

5. C. Andres, C. Miralles, and R. Pastor. Balancing and scheduling tasks in assembly
lines with sequence-dependent setup times. European J. of Operational Research,
187(3):1212–1223, 2008.

6. S. Areibi and A. Vannelli. A GRASP clustering technique for circuit partitioning.
In J. Gu and P.M. Pardalos, editors, Satisfiability problems, volume 35 of DIMACS
Series on Discrete Mathematics and Theoretical Computer Science, pages 711–724.
American Mathematical Society, 1997.

7. J.E.C. Arroyo, P.S. Vieira, and D.S. Vianna. A GRASP algorithm for the multi-criteria
minimum spanning tree problem. Annals of Operations Research, 159:125–133, 2008.

8. T. Asano. Approximation algorithms for MAX-SAT: Yannakakis vs. Goemans-
Williamson. In 5th IEEE Israel Symposium on the Theory of Computing and Systems,
pages 24–37, 1997.

9. J.B. Atkinson. A greedy randomised search heuristic for time-constrained vehicle
scheduling and the incorporation of a learning strategy. J. of the Operational Re-
search Society, 49:700–708, 1998.

10. F. Barahona. The max-cut problem in graphs not contractible to k5. Operations
Research Letters, 2:107–111, 1983.

11. J.F. Bard, L. Huang, P. Jaillet, and M. Dror. A decomposition approach to the in-
ventory routing problem with satellite facilities. Transportation Science, 32:189–203,
1998.

A Nonmonotone GRASP 31

12. R. Battiti and M. Protasi. Approximate algorithms and heuristics for the MAX-SAT.
In D.Z. Du and P.M. Pardalos, editors, Handbook of Combinatorial Optimization,
volume 1, pages 77–148. Kluwer Academic Publishers, 1998.

13. U. Benlic and J.-K. Hao. Breakout local search for maximum clique problems. Com-
puters & Operations Research, 40(1):192–206, 2013.

14. S. Binato, W.J. Hery, D. Loewenstern, and M.G.C. Resende. A greedy randomized
adaptive search procedure for job shop scheduling. In C.C. Ribeiro and P. Hansen, edi-
tors, Essays and surveys on metaheuristics, pages 58–79. Kluwer Academic Publishers,
2002.

15. M.J. Brusco and S. Stahl. Using quadratic assignment methods to generate initial
permutations for least-squares unidimensional scaling of symmetric proximity matrices.
Journal of Classification, 17(2):197–223, 2000.

16. S. Burer and R.D.C. Monteiro. Rank-two relaxation heuristics for max-cut and other
binary quadratic programs. SIAM J. on Optimization, 12:503–521, 2001.

17. R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. SIAM Press, 2009.
18. R.E. Burkard, S.E. Karisch, and F. Rendl. QAPLIB - A Quadratic Assignment Problem

Library. Journal of Global Optimization, 10:391–403, 1997.
19. C. Carreto and B. Baker. A GRASP interactive approach to the vehicle routing

problem with backhauls. In C.C. Ribeiro and P. Hansen, editors, Essays and surveys
on metaheuristics, pages 185–200. Kluwer Academic Publishers, 2002.

20. J. Chen, D. Friesen, and H. Zheng. Tight bound on johnson’s algorithm for MAX-SAT.
In Proceedings of the 12th Annual IEEE Conference on Computational Complexity,
pages 274–281, 1997.

21. N. Christofides and E. Benavent. An exact algorithm for the quadratic assignment
problem. Operations Research, 37(5):760–768, 1989.

22. C.W. Commander. Maximum cut problem, MAX-CUT. In C.A. Floudas and P.M.
Pardalos, editors, Encyclopedia of Optimization, pages 1991–1999. Springer, 2009.

23. I.A. Contreras and J.A. Dı́az. Scatter search for the single source capacitated facility
location problem. Annals of Operations Research, 157:73–89, 2008.

24. S.A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

25. G.L. Cravo, G.M. Ribeiro, and L.A. Nogueira Lorena. A greedy randomized adaptive
search procedure for the point-feature cartographic label placement. Computers and
Geosciences, 34(4):373–386, 2008.

26. Z. Drezner, P.M. Hahn, and É.D. Taillard. Recent advances for the quadratic assign-
ment problem with special emphasis on instances that are difficult for meta-heuristic
methods. Annals of Operations Research, 139:65–94, 2005.

27. B. Eschermann and H.J. Wunderlich. Optimized synthesis of self-testable finite state
machines. In 20th International Symposium on Fault-Tolerant Computing (FFTCS
20), pages 390–397, 1990.

28. A. Facchiano, P. Festa, A. Marabotti, L. Milanesi, and F. Musacchia. Solving biclus-
tering with a GRASP-like metaheuristic: Two case-studies on gene expression analysis.
volume 7548 of Lecture Notes in Computer Science, pages 253–267. Springer-Verlag,
2012.

29. U. Feige and M.X. Goemans. Approximating the value of two proper proof systems,
with applications to MAX-2SAT and MAX-DICUT. In Proceeding of the Third Israel
Symposium on Theory of Computing and Systems, pages 182–189, 1995.

30. T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters, 8:67–71, 1989.

31. T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. J. of
Global Optimization, 6:109–133, 1995.

32. D. Ferone, P. Festa, and M.G.C. Resende. Hybrid metaheuristics for the far from
most string problem. In Proceedings of HM 2013, volume 7919 of Lecture Notes in
Computer Science, pages 174–188. Springer-Verlag, 2013.

33. P. Festa. On some optimization problems in molecular biology. Mathematical Bio-
science, 207(2):219–234, 2007.

34. P. Festa. A biased random-key genetic algorithm for data clustering. Mathematical
Bioscience, 245(1):76–85, 2013.

32 M. De Santis et al.

35. P. Festa and P.M. Pardalos. Efficient solutions for the far from most string problem.
Annals of Operations Research, 196(1):663–682, 2012.

36. P. Festa, P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. GRASP with path-
relinking for the weighted MAXSAT problem. ACM J. on Experimental Algorithmics,
11:1–16, 2006.

37. P. Festa, P.M. Pardalos, and M.G.C. Resende. Algorithm 815: FORTRAN subroutines
for computing approximate solution to feedback set problems using GRASP. ACM
Transactions on Mathematical Software, 27:456–464, 2001.

38. P. Festa, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Randomized heuristics
for the MAX-CUT problem. Optimization Methods and Software, 17(6):1033–1058,
2002.

39. P. Festa and M.G.C. Resende. GRASP: An annotated bibliography. In C.C. Ribeiro
and P. Hansen, editors, Essays and Surveys on Metaheuristics, pages 325–367. Kluwer
Academic Publishers, 2002.

40. P. Festa and M.G.C. Resende. An annotated bibliography of GRASP – Part I: algo-
rithms. International Transactions in Operational Research, 16(1):1–24, 2009.

41. P. Festa and M.G.C. Resende. An annotated bibliography of GRASP – Part II: appli-
cations. International Transactions in Operational Research, 16(2):131–172, 2009.

42. P. Festa and M.G.C. Resende. GRASP: Basic components and enhancements. Telecom-
munication Systems, 46(3):253–271, 2011.

43. R.M.D. Frinhani, R.M.A. Silva, G.R. Mateus, P. Festa, and M.G.C. Resende. GRASP
with path-relinking for data clustering: A case study for biological data. volume 6630
of Lecture Notes in Computer Science, pages 410–420. Springer-Verlag, 2011.

44. K. Fujisawa, M. Fukuda, M. Fojima, and K. Nakata. Numerical evaluation of SDPA
(Semidefinite Programming Algorithm. In High performance optimization, pages 267–
301. Kluwer Academic Publishers, 2000.

45. M.R. Garey and D.S. Johnson. Computers and intractability: A guide to the theory of
NP-completeness. W.H. Freeman and Company, New York, 1979.

46. A.M. Geoffrion and G.W. Graves. Scheduling parallel production lines with changeover
costs: Practical applications of a quadratic assignment/LP approach. Operations Re-
search, 24:595–610, 1976.

47. F. Glover. Tabu search – Part I. ORSA J. on Computing, 1:190–206, 1989.
48. F. Glover. Tabu search – Part II. ORSA J. on Computing, 2:4–32, 1990.
49. F. Glover. Tabu search and adaptive memory programing – Advances, applications

and challenges. In R.S. Barr, R.V. Helgason, and J.L. Kennington, editors, Interfaces
in Computer Science and Operations Research, pages 1–75. Kluwer, 1996.

50. F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.
51. A. Goëffon, J.-M. Richer, and J.-K. Hao. Progressive tree neighborhood applied to the

maximum parsimony problem. IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 5(1):136–145, 2008.

52. M.X. Goemans and D.P. Williamson. A new 3

4
approximation algorithm for the maxi-

mum satisfiability problem. SIAM Journal on Discrete Mathematics, 7:656–666, 1994.
53. M.X. Goemans and D.P. Williamson. Improved approximation algorithms for max-

imum cut and satisfiability problems using semidefinite programming. Journal of
Association for Computing Machinery, 42(6):1115–1145, 1995.

54. D.E Goldberg. Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, 1989.

55. L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique for
Newton’s method. SIAM Journal on Numerical Analysis, 23:707–716, 1986.

56. L. Grippo, L. Palagi, M. Piacentini, V. Piccialli, and G. Rinaldi. Speedp: an algorithm
to compute sdp bounds for very large max-cut instances. Mathematical Programming,
136(2):353–373, 2012.

57. M. Grötschel and W.R. Pulleyblank. Weakly bipartite graphs and the max-cut prob-
lem. Operations Research Letters, 1:23–27, 1981.

58. F. O. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM
Journal on Computing, 4:221–225, 1975.

59. P. Hansen and N. Mladenović. Developments of variable neighborhood search. In C.C.
Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages 415–439.
Kluwer Academic Publishers, 2002.

A Nonmonotone GRASP 33

60. J. Hastad. Some optimal inapproximability results. Journal of the ACM, 48:798–859,
2001.

61. D.R. Heffley. The quadratic assignment problem: A note. Econometrica, 40(6):1155–
1163, 1972.

62. D.R. Heffley. Decomposition of the koopmansbeckmann problem. Regional Science
and Urban Economics, 10(4):571–580, 1980.

63. C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming.
SIAM J. on Optimization, 10:673–696, 2000.

64. M.J. Hirsch, C.N. Meneses, P.M. Pardalos, M.A. Ragle, and M.G.C. Resende. A
continuous GRASP to determine the relationship between drugs and adverse reactions.
In O. Seref, O.E. Kundakcioglu, and P.M. Pardalos, editors, Data mining, systems
analysis, and optimization in biomedicine, volume 953 of AIP Conference Proceedings,
pages 106–121. Springer, 2007.

65. D.S. Johnson. Approximation algorithms for combinatorial problems. Journal of
Computer and System Sciences, 9:256–278, 1974.

66. S.E. Karisch, F. Rendl, and J. Clausen. Solving graph bisection problems with semidef-
inite programming. SIAM J. on Computing, 12:177–191, 2000.

67. H. Karloff and U. Zwick. A 7

8
-approximation algorithm for MAX-3SAT. In Proceedings

of the 38th Annual IEEE Symposium on Foundations of Computer Science, pages 406–
415, 1997.

68. R.M. Karp. Reducibility among combinatorial problems. In R. Miller and J. Thatcher,
editors, Complexity of Computer Computations, pages 85–103. Plenum Press, NY,
1972.

69. S. Kirkpatrick. Optimization by simulated annealing: Quantitative studies. J. of
Statistical Physics, 34:975–986, 1984.

70. T.C. Koopmans and M.J. Beckmann. Assignment problems and the location of eco-
nomic activities. Econometrica, 25:53–76, 1957.

71. J. Krarup and P.M. Pruzan. Computer-aided layout design. Mathematical Program-
ming Study, 9:75–94, 1978.

72. M. Laguna and R. Mart́ı. A GRASP for coloring sparse graphs. Computaional Opti-
mization and Applications, 19:165–178, 2001.

73. R. De Leone, P. Festa, and E. Marchitto. A bus driver scheduling problem: A new math-
ematical model and a GRASP approximate solution. Journal of Heuristics, 17(4):441–
466, 2011.

74. R. De Leone, P. Festa, and E. Marchitto. Solving a bus driver scheduling problem with
randomized multistart heuristics. International Transactions in Operational Research,
18(6):707–727, 2011.

75. Y. Li and P.M. Pardalos. Generating quadratic assignment test problems with known
optimal permutations. Computational Optimization and Applications, 1:163–184,
1992.

76. Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized adaptive search
procedure for the quadratic assignment problem. In P.M. Pardalos and H. Wolkowicz,
editors, Quadratic assignment and related problems, volume 16 of DIMACS Series on
Discrete Mathematics and Theoretical Computer Science, pages 237–261. American
Mathematical Society, 1994.

77. S. Lin and B.W. Kernighan. An effective heuristic algorithm for the traveling-salesman
problem. Operations Research, 21:498–516, 1973.

78. E.M. Loiola, N.M. Maia de Abreu, P.O. Boaventura-Netto, P. Hahn, and Tania
Querido. A survey for the quadratic assignment problem. European Journal of Oper-
ational Research, 176:657–690, 2007.

79. L. Lovász. On the Shannon capacity of a graph. IEEE Trans. of Information Theory,
IT-25:1–7, 1979.

80. R. Mart́ı and M. Laguna. Heuristics and meta-heuristics for 2-layer straight line cross-
ing minimization. Discrete Applied Mathematics, 127(3):665–678, 2003.

81. T. Mautor. Contribution à la résolution des problèmes d’implanation: algorithmes
séquentiels et parallèles pour l’affectation quadratique. PhD thesis, Université Pierre
et Marie Curie, Paris, France. In French., 1992.

34 M. De Santis et al.

82. T. Mavridou, P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A GRASP for the
biquadratic assignment problem. European J. of Operational Research, 105:613–621,
1998.

83. N. Mladenović and P. Hansen. Variable neighborhood search. Computers and Opera-
tions Research, 24:1097–1100, 1997.

84. C.E. Nugent, T.E. Vollman, and J. Ruml. An experimental comparison of techniques
for the assignment of facilities to locations. Operations Research, 16:150–173, 1968.

85. I.H. Osman, B. Al-Ayoubi, and M. Barake. A greedy random adaptive search pro-
cedure for the weighted maximal planar graph problem. Computers and Industrial
Engineering, 45(4):635–651, 2003.

86. C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity
classes. Journal of Comput. System Science, 43(3):425–440, 1991.

87. C.H. Papadimitriou and K. Steiglitz. Combinatorial optimization: Algorithms and
complexity. Prentice-Hall, 1982.

88. P.M. Pardalos, P.S. Pitsoulis, and M.G.C. Resende. Algorithm 769: Fortran subroutines
for approximate solution of sparse quadratic assignment problems using GRASP. ACM
Transactions on Mathematical Software, 23:196–208, 1997.

89. P.M. Pardalos and M.G.C. Resende, editors. Handbook of Applied Optimization. Ox-
ford University Press, 2002.

90. P.M. Pardalos and H. Wolkowicz. Quadratic assignment and related problems. In
P.M. Pardalos and H. Wolkowicz, editors, High performance optimization. American
Mathematical Society, 1994.

91. S. Poljak, F. Rendl, and H. Wolkowicz. A recipe for semidefinite relaxation for 0-1
quadratic programming. J. of Global Optimization, 7:51–73, 1995.

92. G.G. Pu, Z. Chong, Z.Y. Qiu, Z.Q. Lin, and J.F. He. A hybrid heuristic algorithm
for HW-SW partitioning within timed automata. In Proceedings of Knowledge-based
Intelligent Information and Engineering Systems, volume 4251 of Lecture Notes in
Artificial Intelligence, pages 459–466. Springer-Verlag, 2006.

93. M.G.C. Resende and T.A. Feo. A GRASP for satisfiability. In D.S. Johnson and
M.A. Trick, editors, Cliques, Coloring, and Satisfiability: The Second DIMACS Im-
plementation Challenge, volume 26 of DIMACS Series on Discrete Mathematics and
Theoretical Computer Science, pages 499–520. American Mathematical Society, 1996.

94. M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Approximate solution of weighted
MAX-SAT problems using GRASP. In J. Gu and P.M. Pardalos, editors, Satisfiability
problems, volume 35 of DIMACS Series on Discrete Mathematics and Theoretical
Computer Science, pages 393–405. American Mathematical Society, 1997.

95. M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Approximate solutions of weighted
MAX-SAT problems using GRASP. In D.-Z. Du, J. Gu, and P.M. Pardalos, editors,
Satisfiability Problem: Theory and Applications, DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, pages 393–405. American Mathematical
Society, 1997.

96. M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Fortran subroutines for comput-
ing approximate solutions of weighted MAX-SAT problems using GRASP. Discrete
Applied Mathematics, 100:95–113, 2000.

97. M.G.C. Resende and C.C. Ribeiro. A GRASP for graph planarization. Networks,
29:173–189, 1997.

98. C.C. Ribeiro and S. Urrutia. Heuristics for the mirrored traveling tournament problem.
European J. of Operational Research, 179:775–787, 2007.

99. A.J. Robertson. A set of greedy randomized adaptive local search procedure (GRASP)
implementations for the multidimensional assignment problem. Computational Opti-
mization and Applications, 19:145–164, 2001.

100. C. Roucairol. Du sequentiel au parallele: la recherche arborescente et son application
a la programmation quadratique en variables 0 et 1. PhD thesis, Université Pierre et
Marie Curie, Paris, France. In French., 1987.

101. S. Sahni and T. Gonzales. P-complete approximation problems. Journal of the Asso-
ciation for Computing Machinery, 23:555–565, 1976.

102. M. Scriabin and R.C. Vergin. Comparison of computer algorithms and visual based
methods for plant layout. Management Science, 22:172–187, 1975.

A Nonmonotone GRASP 35

103. N.Z. Shor. Quadratic optimization problems. Soviet J. of Computer and Systems
Science, 25:1–11, 1987.

104. J. Skorin-Kapov. Tabu search applied to the quadratic assingnment problem. ORSA
Journal on Computing, 2(1):33–45, 1990.

105. L. Steinberg. The backboard wiring problem: a placement algorithm. SIAM Review,
3:37–50, 1961.

106. U.W. Thonemann and A. Bölte. An improved simulated annealing algorithm for the
quadratic assignment problem. Technical report, Department of Production and Op-
erations Research, 1994.

107. L. Trevisan. Approximating satisfiable satisfiability problems. Algorithmica, 28(1):145–
172, 2000.

108. L. Trevisan, G. B. Sorkin, M. Sudan, and D. P. Williamson. Gadgets, approximation,
and linear programming. SIAM Journal on Computing, 29(6):2074–2097, 2000.

109. M.R. Wilhelm and T.L. Ward. Solving quadratic assignment problems by simulated
annealing. IIE Transaction, 19/1:107–119, 1987.

110. M. Yannakakis. On the approximation of maximum Satisfiability. In Proceedings of
the Third ACM-SIAM Symposium on Discrete Algorithms, pages 1–9, 1992.

36 M. De Santis et al.

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

g1250.n (target solution: 2518)

NM-GRASP

GRASP

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

 G40 (target solution: 2275)

NM-GRASP

GRASP

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

sg3dl142000.mc (target solution: 2379)

NM-GRASP

GRASP

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

toruspm3−15−50 (target solution: 2925)

NM-GRASP

GRASP

Fig. 9 TTTplots for the easy targets.

A Nonmonotone GRASP 37

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

g1250.n (target solution: 2532)

NM-GRASP

GRASP

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

 G40 (target solution: 2293)

NM-GRASP

GRASP

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

sg3dl142000.mc (target solution: 2382)

NM-GRASP

GRASP

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

toruspm3−15−50 (target solution: 2932)

NM-GRASP

GRASP

Fig. 10 TTTplots for the classical GRASP targets.

38 M. De Santis et al.

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

g1250.n (target solution: 2556)

NM-GRASP

GRASP

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

 G40 (target solution: 2362)

NM-GRASP

GRASP

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

sg3dl142000.mc (target solution: 2420)

NM-GRASP

GRASP

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time to target solution (seconds)

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

toruspm3−15−50 (target solution: 2980)

NM-GRASP

GRASP

Fig. 11 TTTplots for the Nonmonotone GRASP targets.

