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Abstract

In this paper, we present a two-phase augmented Lagrangian method, called QSDPNAL, for
solving convex quadratic semidefinite programming (QSDP) problems with constraints consist-
ing of a large number of linear equality and inequality constraints, a simple convex polyhedral
set constraint, and a positive semidefinite cone constraint. A first order algorithm which relies
on the inexact Schur complement based decomposition technique is developed in QSDPNAL-
Phase I with the aim of solving a QSDP problem to moderate accuracy or using it to generate
a reasonably good initial point for the second phase. In QSDPNAL-Phase II, we design an
augmented Lagrangian method (ALM) wherein the inner subproblem in each iteration is solved
via inexact semismooth Newton based algorithms. Simple and implementable stopping criteria
are designed for the ALM. Moreover, under mild conditions, we are able to establish the rate of
convergence of the proposed algorithm and prove the R-(super)linear convergence of the KKT
residual. In the implementation of QSDPNAL, we also develop efficient techniques for solving
large scale linear systems of equations under certain subspace constraints. More specifically,
simpler and yet better conditioned linear systems are carefully designed to replace the original
linear systems and novel shadow sequences are constructed to alleviate the numerical difficul-
ties brought about by the crucial subspace constraints. Extensive numerical results for various
large scale QSDPs show that our two-phase algorithm is highly efficient and robust in obtaining
accurate solutions.
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1 Introduction

Let Sn+ and Sn++ be the cones of positive semidefinite and positive definite matrices, respectively,
in the space of n× n symmetric matrices Sn endowed with the standard trace inner product 〈·, ·〉
and Frobenius norm ‖ · ‖. We consider the following convex quadratic semidefinite programming
(QSDP) problem:

(P) min

{
1

2
〈X, QX〉+ 〈C, X〉 | AX = b, X ∈ Sn+ ∩ K

}
,

where Q : Sn → Sn is a self-adjoint positive semidefinite linear operator, A : Sn → <m is a linear
map whose adjoint is denoted as A∗, C ∈ Sn, b ∈ <m are given data, K is a simple nonempty closed
convex polyhedral set in Sn, such as K = {X ∈ Sn | L ≤ X ≤ U} with L,U ∈ Sn being given
matrices. The main objective of this paper is to design and analyse efficient algorithms for solving
(P) and its dual. We are particularly interested in the case where the dimensions n and/or m are
large, and it may be impossible to explicitly store or compute the matrix representation of Q. For
example, if Q = H⊗H is the Kronecker product of a dense matrix H ∈ Sn+ with itself, then it would
be extremely expensive to store the matrix representation of Q explicitly when n is larger than,
say, 500. As far as we are aware of, the best solvers currently available for solving (P) are based
on inexact primal-dual interior-point methods [31]. However, they are highly inefficient for solving
large scale problems as interior-point methods have severe inherent ill-conditioning limitations
which would make the convergence of a Krylov subspace iterative solver employed to compute the
search directions to be extremely slow. While sophisticated preconditioners have been constructed
in [31] to alleviate the ill-conditioning, the improvement is however not dramatic enough for the
algorithm to handle large scale problems comfortably. On the other hand, an interior-point method
which employs a direct solver to compute the search directions is prohibitively expensive for solving
(P) since the cost is at least O((m+n2)3) arithmetic operations per iteration. It is safe to say that
there is currently no solver which can efficiently handle large scale QSDP problems of the form (P)
and our paper precisely aims to provide an efficient and robust solver for (P).

The algorithms which we will design later are based on the augmented Lagrangian function for
the dual of (P) (in its equivalent minimization form):

(D) min

{
δ∗K(−Z) +

1

2
〈W, QW 〉 − 〈b, y〉

∣∣∣ Z −QW + S +A∗y = C,

S ∈ Sn+, W ∈ W, y ∈ <m, Z ∈ Sn

}
,

where W is any subspace of Sn containing the range space of Q (denoted as Ran(Q)), δ∗K(·) is the
Fenchel conjugate of the indicator function δK(·).

Due to its great potential in applications and mathematical elegance, QSDP has been studied
quite actively both from the theoretical and numerical aspects [1, 11, 14, 15, 19, 23, 32, 31]. For the
recent theoretical developments, one may refer to [7, 10, 22, 30] and the references therein. Here
we focus on the numerical aspect and we will next briefly review some of the methods available for
solving QSDP problems. Toh et al [32] and Toh [31] proposed inexact primal-dual path-following
interior-point methods to solve the special class of convex QSDP without the constraint in K.
In theory, these methods can be used to solve QSDP problems with inequality constraints and
constraint in K by reformulating the problems into the required standard form. However, as
already mentioned above, in practice interior-point methods are not efficient for solving QSDP
problems beyond moderate scales either due to the extremely high computational cost per iteration
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or the inherent ill-conditioning of the linear systems governing the search directions. In [34],
Zhao designed a semismooth Newton-CG augmented Lagrangian (NAL) method and analyzed
its convergence for solving the primal QSDP problem (P). However, the NAL algorithm often
encounters numerical difficulty (due to singular or nearly singular generalized Hessian) when the
polyhedral set constraint X ∈ K is present. Subsequently, Jiang et al [13] proposed an inexact
accelerated proximal gradient method for least squares semidefinite programming with only equality
constraints where the objective function in (P) is expressed explicitly in the form of ‖BX − d‖2 for
some given linear map B.

More recently, inspired by the successes achieved in [28, 33] for solving linear SDP problems with
nonnegative constraints, Li, Sun and Toh [18] proposed a first-order algorithm, known as the Schur
complement based semi-proximal alternating direction method of multipliers (SCB-sPADMM), for
solving the dual form (D) of QSDP. As far as we aware of, [18] is the first paper to advocate using
the dual approach for solving QSDP problems even though the dual problem (D) looks a lot more
complicated than the primal problem (P), especially with the presence of the subspace constraint
involving W. By leveraging on the Schur complement based decomposition technique developed
in [18, 17], Chen, Sun and Toh [6] also employed the dual approach by proposing an efficient
inexact ADMM-type first-order method (which we name as SCB-isPADMM) for solving problem
(D). Promising numerical results have been obtained by the dual based first-order algorithms
in solving various classes of QSDP problems to moderate accuracy [18, 6]. Naturally one may
hope to also rely on the ADMM scheme to compute highly accurate solutions. However, as one
will observe from the numerical experiments presented later in Section 6, ADMM-type methods
are incapable of finding accurate solutions for difficult QSDP problems due to their slow local
convergence or stagnation. On the other hand, recent studies on the convergence rate of the
augmented Lagrangian method (ALM) for solving convex semidefinite programming with multiple
solutions [7] show that comparing to ADMM-type methods, the ALM can enjoy a faster convergence
rate (in fact asymptotically superlinear) under milder conditions. These recent advances thus
strongly indicate that one should be able to design a highly efficient algorithm based on the ALM
for (D) for solving QSDP problems to high accuracy. More specifically, we will propose a two-phase
augmented Lagrangian based algorithm with Phase I to generate a reasonably good initial point
to warm start the Phase II algorithm so as to compute accurate solutions efficiently. We call this
new method Qsdpnal since it extends the ideas of SDPNAL [35] and SDPNAL+ [33] for linear
SDP problems to QSDP problems. Although the aforementioned two-phase framework has already
been demonstrated to be highly efficient for solving linear SDP problems [33, 35], it remains to be
seen whether we can achieve comparable or even more impressive performance on various QSDP
problems.

In recent years, it has become fashionable to design first-order algorithms for solving convex
optimization problems, with some even claiming their efficacy in solving various challenging classes
of matrix conic optimization problems based on limited performance evaluations. However, based on
our extensive numerical experience in solving large scale linear SDPs [28, 33, 35], we have observed
that while first-order methods can be rather effective in solving easy problems which are well-posed
and nondegenerate, they are typically powerless in solving difficult instances which are ill-posed or
degenerate. Even for a well designed first-order algorithm with guaranteed convergence and highly
optimized implementations, such as the ADMM+ algorithm in [28], a first-order method may still
fail on slightly more challenging problems. For example, the ADMM+ algorithm designed in [33]
can encounter varying degrees of difficulties in solving linear SDPs arising from rank-one tensor
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approximation problems. On the other hand, the SDPNAL algorithm in [35] (which exploits second-
order information) is able to solve those problems very efficiently to high accuracy. We believe that
in order to design an efficient and robust algorithm to solve the highly challenging class of matrix
conic optimization problems including QSDPs, one must fully combine the advantages offered by
both the first and second order algorithms, rather than just solely relying on first-order algorithms
even though they may appear to be easier to implement.

Next we briefly describe our algorithm Qsdpnal. Let Z = Sn ×W × Sn × <m. Consider the
following Lagrange function associated with (D):

l(Z,W, S, y;X) := δ∗K(−Z) +
1

2
〈W, QW 〉+ δSn+(S)− 〈b, y〉+ 〈Z −QW + S +A∗y − C, X〉,

where (Z,W, S, y) ∈ Z and X ∈ Sn. For a given positive scalar σ, the augmented Lagrangian
function for (D) is defined by

Lσ(Z,W, S, y;X) := l(Z,W, S, y;X)+
σ

2
‖Z−QW+S+A∗y−C‖2, (Z,W, S, y) ∈ Z, X ∈ Sn. (1)

The algorithm which we will adopt in Qsdpnal-Phase I is a variant of the SCB-isPADMM algo-
rithm developed in [6]. In Qsdpnal-Phase II, we design an ALM for solving (D) where the inner
subproblem in each iteration is solved via an inexact semismooth Newton based algorithm. Given
σ0 > 0, (Z0,W 0, S0, y0, X0) ∈ Z ×Sn, the (k+ 1)th iteration of the ALM consists of the following
steps:

(Zk+1,W k+1, Sk+1, yk+1) ≈ argmin
{
Lσk(Z,W, S, y;Xk) | (Z,W, S, y) ∈ Z

}
,

Xk+1 = Xk + σk(Z
k+1 −QW k+1 + Sk+1 +A∗yk+1 − C),

where σk ∈ (0,+∞). The first issue in the above ALM is the choice of the subspaceW. The obvious
choice W = Sn can lead to various difficulties in the implementation of the above algorithm. For
example, since Q : Sn → Sn is only assumed to be positive semidefinite, the Newton systems
corresponding to the inner subproblems may be singular and the sequence {W k} generated by the
ALM can be unbounded. As a result, it will be extremely difficult to analyze the convergence
of the inner algorithm for solving the ALM subproblems. The second issue is that one needs to
design easy-to-check stopping criteria for the inner subproblems, and to ensure the fast convergence
of the ALM under reasonable conditions imposed on the QSDP problems. Concerning the first
issue, we propose to choose W = Ran(Q), although such a choice also leads to obstacles which
we will overcome in Section 4. Indeed, by restricting W ∈ Ran(Q), the difficulties in analyzing
the convergence and the superlinear (quadratic) convergence of the Newton-CG algorithm are
circumvented as the possibilities of singularity and unboundedness are removed. For the second
issue, under the restriction that W = Ran(Q), thanks to the recent advances in [7], we are able
to design checkable stopping criteria for solving the inner subproblems inexactly while establishing
the global convergence of the above ALM. Moreover, we are able to establish the R-(super)linear
convergence rate of the KKT residual. At the first glance, the restriction that W ∈ Ran(Q)
appears to introduce severe numerical difficulties when we need to solve a linear system under
this restriction. Fortunately, by carefully examining our algorithm and devising novel numerical
techniques, we are able to overcome these difficulties as we shall see in Section 4. Our extensive
evaluations of Qsdpnal have demonstrated that our algorithm is capable of solving large scale
general QSDP problems of the form (P) to high accuracy very efficiently and robustly. For example,
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we are able to solve an elementwise weighted nearest correlation matrix estimation problem with
matrix dimension n = 10, 000 in less than 11 hours to the relative accuracy of less than 10−6 in the
KKT residual. Such a numerical performance has not been attained in the past.

As the readers may have already observed, even though our goal in developing algorithms
for solving convex optimization problems such as (P) and (D) is to design those with desirable
theoretical properties such as asymptotic superlinear convergence, it is our belief that it is equally
if not even more important for the algorithms designed to be practically implementable and able
to achieve realistic numerical efficiency. It is obvious that our proposed two-phase augmented
Lagrangian based algorithm for solving (P) and (D) is designed based on such a belief.

The remaining parts of this paper are organized as follows. The next section is devoted to
our main algorithm Qsdpnal, which is a two-phase augmented Lagrangian based algorithm whose
Phase I is used to generate a reasonably good initial point to warm-start the Phase II algorithm so
as to obtain accurate solutions efficiently. In Section 3, we propose to solve the inner minimization
subproblems of the ALM by semismooth Newton based algorithms and study their global and local
superlinear (quadratic) convergence. In Section 4, we discuss critical numerical issues concerning
the efficient implementation of Qsdpnal. In Section 5.1, we discuss the special case of applying
Qsdpnal to solve least squares semidefinite programming problems. The extension of Qsdpnal
for solving QSDP problems with unstructured inequality constraints is discussed in Section 5.2. In
Section 6, we conduct numerical experiments to evaluate the performance of Qsdpnal in solving
various QSDP problems and their extensions. We conclude our paper in the final section.

Below we list several notation and definitions to be used in the paper. For a given closed
proper convex function θ : X → (−∞,∞], where X is a finite-dimensional real inner product space,
its Fenchel conjugate function is denoted by θ∗ : X → (−∞,+∞] . For a given closed convex
set D ⊆ X and x ∈ X , we define by ΠD(x) the metric projector of x onto D and dist(x,D) :=
infd∈D ‖x−d‖ = ‖x−ΠD(x)‖. For any X ∈ Sn, we use λmax(X) and λmin(X) to denote the largest
and smallest eigenvalues of X, respectively. Similar notation is used when X is replaced by the
linear operator Q.

2 A two-phase augmented Lagrangian method

In this section, we shall present our two-phase algorithm Qsdpnal for solving the QSDP problems
(D) and (P). For the convergence analysis of Algorithm Qsdpnal, we need to make the following
standard assumption for (P). Such an assumption is analogous to the Slater’s condition in the
context of nonlinear programming in <m.

Assumption 1. There exists X̂ ∈ Sn++ ∩ ri(K) such that

A(TK(X̂)) = <m,

where ri(K) denotes the relative interior of K and TK(X̂) is the tangent cone of K at point X̂.

2.1 Phase I: An SCB based inexact semi-proximal ADMM

In Phase I, we propose a new variant of the Schur complement based inexact semi-proximal ADMM
(SCB-isPADMM) developed in [6] to solve (D). Recall the augmented Lagrangian function associ-
ated with problem (D) defined in (1).
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The detailed steps of our Phase I algorithm for solving (D) are given as follows.

Algorithm Qsdpnal-Phase I: An SCB based inexact semi-proximal ADMM for (D).

Select an initial point (W 0, S0, y0, X0) ∈ Ran(Q)× Sn+ × <m × Sn and −Z0 ∈ dom(δ∗K). Let {εk}
be a summable sequence of nonnegative numbers, and σ > 0, τ ∈ (0,∞) are given parameters. For
k = 0, 1, . . ., perform the following steps in each iteration.

Step 1. Compute

Ŵ k = argmin{Lσ(Zk,W, Sk, yk;Xk)− 〈δ̂kQ, W 〉 |W ∈ Ran(Q)}, (2)

Zk+1 = argmin{Lσ(Z, Ŵ k, Sk, yk;Xk) | Z ∈ Sn},

W k+1 = argmin{Lσ(Zk+1,W, Sk, yk;Xk)− 〈δkQ, W 〉 |W ∈ Ran(Q)}, (3)

ŷk = argmin{Lσ(Zk+1,W k+1, Sk, y;Xk)− 〈δ̂ky , y〉 | y ∈ <m},

Sk+1 = argmin{Lσ(Zk+1,W k+1, S, ŷk;Xk) | S ∈ Sn},

yk+1 = argmin{Lσ(Zk+1,W k+1, Sk+1, y;Xk)− 〈δky , y〉 | y ∈ <m},

where δky , δ̂
k
y ∈ <m, δkQ, δ̂

k
Q ∈ Ran(Q) are error vectors such that

max{‖δky‖, ‖δ̂ky‖, ‖δkQ‖, ‖δ̂kQ‖} ≤ εk.

Step 2. Compute Xk+1 = Xk + τσ(Zk+1 −QW k+1 + Sk+1 +A∗yk+1 − C).

Remark 2.1. We shall explain here the role of the error vectors δky , δ̂
k
y , δ

k
Q and δ̂kQ. There is no

need to choose these error vectors in advance. The presence of these error vectors simply indicates
that the corresponding subproblems can be solved inexactly. For example, the updating rule of yk+1

in the above algorithm can be interpreted as follows: find yk+1 inexactly through

yk+1 ≈ argminLσ(Zk+1,W k+1, Sk+1, y;Xk)

such that the residual

‖δky‖ = ‖b−AXk − σA(Zk+1 −QW k+1 + Sk+1 +A∗yk+1 − C)‖ ≤ εk.

Remark 2.2. In contrast to Aglorithm SCB-isPADMM in [6], our Algorithm Qsdpnal-Phase I
requires the subspace constraint W ∈ Ran(Q) explicitly in the subproblems (2) and (3). Note that
due to the presence of the subspace constraint W ∈ Ran(Q), there is no need to add extra proximal
terms in the subproblems corresponding to W to satisfy the positive definiteness requirement needed
in applying the inexact Schur compliment based decomposition technique developed in [18, 17]. This
is certainly more elegant than the indirect reformulation strategy considered in [18, 6].

The convergence of the above algorithm follows from [6, Theorem 1] without much difficulty,
and its proof is omitted.
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Theorem 2.1. Suppose that the solution set of (P) is nonempty and Assumption 1 holds. Let
{(Zk,W k, Sk, yk, Xk)} be the sequence generated by Algorithm Qsdpnal-Phase I. If τ ∈ (0, (1 +√

5 )/2), then the sequence {(Zk,W k, Sk, yk)} converges to an optimal solution of (D) and {Xk}
converges to an optimal solution of (P).

Remark 2.3. Under some error bound conditions on the limit point of {(Zk,W k, Sk, yk, Xk)}, one
can derive the linear rate of convergence of the exact version of Algorithm Qsdpnal-Phase I. For
a recent study on this topic, see [10] and the references therein. Here we will not address this issue
as our Phase II algorithm enjoys a better rate of convergence under weaker conditions.

2.2 Phase II: An augmented Lagrangian algorithm

In this section, we discuss our Phase II algorithm for solving the dual problem (D). The purpose
of this phase is to obtain high accuracy solutions efficiently after being warm-started by our Phase
I algorithm. The Phase II of our algorithm has the following template.

Algorithm Qsdpnal-Phase II: An augmented Lagrangian method of multipliers for solv-
ing (D).

Let σ0 > 0 be a given parameter. Choose (W 0, S0, y0, X0) ∈ Ran(Q) × Sn+ × <m × Sn and
−Z0 ∈ dom(δ∗K). For k = 0, 1, . . ., perform the following steps in each iteration.

Step 1. Compute

(Zk+1,W k+1, Sk+1, yk+1) ≈ argmin

{
Ψk(Z,W, S, y) := Lσk(Z,W, S, y;Xk)

| (Z,W, S, y) ∈ Sn × Ran(Q)× Sn ×<m

}
. (4)

Step 2. Compute
Xk+1 = Xk + σk(Z

k+1 −QW k+1 + Sk+1 +A∗yk+1 − C).

Update σk+1 ↑ σ∞ ≤ ∞.

As an important issue on the implementation of the above algorithm, the stopping criteria
for approximately solving subproblem (4) shall be discussed here. Let the feasible set for (P) be
denoted as F := {X ∈ Sn | AX = b, X ∈ Sn+ ∩ K}. Define the feasibility residual function
γ : Sn → < for the primal problem (P) by

γ(X) := ‖b−AX‖+ ‖X −ΠSn+(X)‖+ ‖X −ΠK(X)‖, ∀X ∈ Sn.

Note that γ(X) = 0 if and only if X ∈ F . Indeed, for X 6∈ F , γ(X) provides an easy-to-compute
measure on the primal infeasibility of X. Similar to [7, Proposition 4.2], we can use this feasibility
residual function to derive an upper bound on the distance of a given point to the feasible set F
in the next lemma. Its proof can be obtained without much difficulty by applying Hoffman’s error
bound [9, Lemma 3.2.3] to the nonempty polyhedral convex set {X ∈ Sn | AX = b, X ∈ K}, e.g.,
see [2, Theorem 7].

Lemma 2.1. Assume that F ∩ Sn++ 6= ∅. Then, there exists a constant µ > 0 such that

‖X −ΠF (X)‖ ≤ µ(1 + ‖X‖)γ(X), ∀X ∈ Sn. (5)
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When the ALM is applied to solve (D), numerically it is difficult to execute the criteria (A′′)
and (B′′1) proposed in [26]. Fortunately, Lemma 2.1 and recent advances in the analysis of the ALM
[7] allow us to design easy-to-verify stopping criteria for the subproblems in Qsdpnal-Phase II.
For any k ≥ 0, denote

fk(X) := −1

2
〈X, QX〉 − 〈C, X〉 − 1

2σk
‖X −Xk‖2, ∀X ∈ Sn.

Note that fk(·) is in fact the objective function in the dual of problem (4). Let {εk} and {δk} be
two given positive summable sequences. Given k ≥ 0 and Xk ∈ Sn, we propose to terminate the
minimization of the subproblem (4) in the (k+1)th iteration of Algorithm Qsdpnal-Phase II with
either one of the following two easy-to-check stopping criteria:

(A)

Ψk(Z
k+1,W k+1, Sk+1, yk+1)− fk(Xk+1) ≤ ε2

k/2σk,

(1 + ‖Xk+1‖)γ(Xk+1) ≤ αkεk/
√

2σk,

(B)

Ψk(Z
k+1,W k+1, Sk+1, yk+1)− fk(Xk+1) ≤ δ2

k‖Xk+1 −Xk‖2/2σk,

(1 + ‖Xk+1‖)γ(Xk+1) ≤ βkδk‖Xk+1 −Xk‖/
√

2σk,

where

αk = min

{
1,
√
σk,

εk√
2σk‖∇fk(Xk+1)‖

}
and βk = min

{
1,
√
σk,

δk‖Xk+1 −Xk‖√
2σk‖∇fk(Xk+1)‖

}
.

Lemma 2.2. Assume that Assumption 1 holds. Let µ be the constant given in (5). Suppose
that for some k ≥ 0, Xk is not an optimal solution to problem (P). Then one can always find
(Zk+1,W k+1, Sk+1, yk+1) and Xk+1 = Xk + σk(Z

k+1 − QW k+1 + Sk+1 + A∗yk+1 − C) satisfying
both (A) and (B). Moreover, (A) implies that

Ψk(Z
k+1,W k+1, Sk+1, yk+1)− inf Ψk ≤ νε2

k/2σk

and (B) implies that

Ψk(Z
k+1,W k+1, Sk+1, yk+1)− inf Ψk ≤ (νδ2

k/2σk)‖Xk+1 −Xk‖2,

respectively, where

ν = 1 + µ+
1

2
λmax(Q) +

1

2
µ2. (6)

Proof. With the help of Lemma 2.1, one can establish the assertion in the same fashion as in [7,
Proposition 4.2, Proposition 4.3].

For the subsequent analysis, we need to define the essential objective function of (P), which is
given by

φ(X) := − inf { l(Z,W, S, y;X) | (Z,W, S, y) ∈ Sn × Ran(Q)× Sn ×<m}

=


1

2
〈X, QX〉+ 〈X, C〉+ δSn+(X) + δK(X) if AX = b,

+∞ otherwise.

8



For convenience, we also let Ω = ∂φ−1(0) denote the solution set of (P).
We say that for (P), the second order growth condition holds at an optimal solution X ∈ Ω

with respect to the set Ω if there exist κ > 0 and a neighborhood U of X such that

φ(X) ≥ φ(X) + κ−1dist2(X,Ω), ∀X ∈ U. (7)

Let the objective function g : Sn ×Ran(Q)×Sn ×<m → (−∞,+∞] associated with (D) be given
as follows:

g(Z,W, S, y) := δ∗K(−Z) +
1

2
〈W, QW 〉+ δSn+(S)−〈b, y〉, ∀ (Z,W, S, y) ∈ Sn×Ran(Q)×Sn×<m.

Now, with Lemma 2.2, we can prove the global and local (super)linear convergence of Algorithm
Qsdpnal-Phase II by adapting the proofs in [26, Theorem 4] and [7, Theorem 4.2]. It shows that,
for most QSDP problems, one can always expect the KKT residual of the sequence generated by
Qsdpnal-Phase II to converge at least R-(super)linearly.

Theorem 2.2. Suppose that Ω, the solution set of (P), is nonempty and Assumption 1 holds. Then
the sequence {(Zk,W k, Sk, yk, Xk)} generated by Algorithm Qsdpnal-Phase II under the stopping
criterion (A) for all k ≥ 0 is bounded, and {Xk} converges to an optimal solution X∞ of (P), and
{(Zk,W k, Sk, yk)} converges to an optimal solution of (D). Moreover, for all k ≥ 0, it holds that

g(Zk+1,W k+1, Sk+1, yk+1)− inf (D)

≤ Ψk(Z
k+1,W k+1, Sk+1, yk+1)− inf Ψk + (1/2σk)(‖Xk‖2 − ‖Xk+1‖2).

Assume that for (P), the second order growth condition (7) holds at X∞ with respect to the set
Ω, i.e., there exists a constant κ > 0 and a neighborhood U of X∞ such that

φ(X) ≥ φ(X∞) + κ−1dist2(X,Ω), ∀X ∈ U.

Suppose that the algorithm is executed under criteria (A) and (B) for all k ≥ 0 and ν is the constant
given in (6). Then, for all k sufficiently large, it holds that

dist(Xk+1,Ω) ≤ θkdist(Xk,Ω), (8)

‖Zk+1 −QW k+1 + Sk+1 +A∗y − C‖ ≤ τkdist(Xk,Ω), (9)

g(Zk+1,W k+1, Sk+1, yk+1)− inf (D) ≤ τ ′kdist(Xk,Ω), (10)

where

1 > θk =
(
κ/
√
κ2 + σ2

k + 2νδk
)
(1− νδk)−1 → θ∞ = κ/

√
κ2 + σ2

∞ (θ∞ = 0 if σ∞ =∞),

τk = σ−1
k (1− νδk)−1 → τ∞ = 1/σ∞ (τ∞ = 0 if σ∞ =∞),

τ ′k = τk(ν
2δ2
k‖Xk+1 −Xk‖+ ‖Xk+1‖+ ‖Xk‖)/2→ τ ′∞ = ‖X∞‖/σ∞ (τ ′∞ = 0 if σ∞ =∞).

Next we give a few comments on the convergence rates and assumptions made in Theorem 2.2.
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Remark 2.4. Under the assumptions of Theorem 2.2, we have proven that the KKT residual,
corresponding to (P) and (D), along the sequence {(Zk,W k, Sk, yk, Xk)} converges at least R-
(super)linearly. Indeed, under stopping criteria (A), (B) and from (8),(9) and (10), we know that
the primal feasibility, the dual feasibility and the duality gap all converge at least R-(super)linearly.

Remark 2.5. The assumption that the second order growth condition (7) holds for (P) is quite
mild. Indeed, it holds when any optimal solution X of (P), together with any of its multiplier S ∈ Sn+
corresponding only to the semidefinite constraint, satisfies the strict complementarity condition [7,
Corollary 3.1]. It is also valid when the “no-gap” second order sufficient condition holds at the
optimal solution1 to (P) [4, Theorem 3.137].

3 Inexact semismooth Newton based algorithms for solving the
inner subproblems (4) in ALM

In this section, we will design efficient inexact semismooth Newton based algorithms to solve the
inner subproblems (4) in the augmented Lagrangian method, where each subproblem takes the
form of:

min
{

Ψ(Z,W, S, y) := Lσ(Z,W, S, y; X̂) | (Z,W, S, y) ∈ Sn × Ran(Q)× Sn ×<m
}

(11)

for a given X̂ ∈ Sn. Note that the dual problem of (11) is given as follows:

max

{
−1

2
〈X, QX〉 − 〈C, X〉 − 1

2σ
‖X − X̂‖2 | AX = b, X ∈ Sn+, X ∈ K

}
.

Under Assumption 1, from [24, Theorems 17 & 18], we know that the optimal solution set of
problem (11) is nonempty and for any α ∈ <, the level set Lα := {(Z,W, S, y) ∈ Sn × Ran(Q) ×
Sn ×<m | Ψ(Z,W, S, y) ≤ α} is a closed and bounded convex set.

3.1 A semismooth Newton-CG algorithm for (11) with K = Sn

Note that in quite a number of applications, the polyhedral convex set K is actually the whole
space Sn. Therefore, we shall first study how the inner problems (11) in Algorithm ALM can be
solved efficiently when K = Sn. Under this setting, Z is vacuous, i.e., Z = 0.

Let σ > 0 be given. Denote

Υ(W, y) := A∗y −QW − Ĉ, ∀ (W, y) ∈ Ran(Q)×<m.

where Ĉ = C − σ−1X̂. Observe that if

(W ∗, S∗, y∗) = argmin{Ψ(0,W, S, y) | (W,S, y) ∈ Ran(Q)× Sn ×<m},

then (W ∗, S∗, y∗) can be computed in the following manner

(W ∗, y∗) = argmin
{
ϕ(W, y) | (W, y) ∈ Ran(Q)×<m

}
, (12)

S∗ = ΠSn+(−Υ(W ∗, y∗)),

1In this case, the optimal solution set to (P) is necessarily a singleton though (D) may have multiple solutions.
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where

ϕ(W, y) :=
1

2
〈W, QW 〉 − 〈b, y〉+

σ

2
‖ΠSn+(Υ(W, y))‖2, ∀ (W, y) ∈ Ran(Q)×<m.

Note that ϕ(·, ·) is a continuously differentiable function on Ran(Q)×<m with

∇ϕ(W, y) =

(
QW − σQΠSn+(Υ(W, y))

−b+ σAΠSn+(Υ(W, y))

)
.

Then, solving (12) is equivalent to solving the following nonsmooth equation:

∇ϕ(W, y) = 0, (W, y) ∈ Ran(Q)×<m.

Since ΠSn+ is strongly semismooth [27], we can design a semismooth Newton-CG (SNCG) method
to solve (12) and could expect to get a fast superlinear or even quadratic convergence. For any
(W, y) ∈ Ran(Q)×<m, define

∂̂2ϕ(W, y) :=

[
Q

0

]
+ σ

[
Q
−A

]
∂ΠSn+(Υ(W, y))[Q −A∗],

where ∂ΠSn+(Υ(W, y)) is the Clarke subdifferential [8] of ΠSn+(·) at Υ(W, y). Note that from [12],
we know that

∂̂2ϕ(W, y) (dW , dy) = ∂2ϕ(W, y) (dW , dy), ∀ (dW , dy) ∈ Ran(Q)×<m,

where ∂2ϕ(W, y) denotes the generalized Hessian of ϕ at (W, y), i.e., the Clarke subdifferential of
∇ϕ at (W, y).

Given (W̃ , ỹ) ∈ Ran(Q)×<m, consider the following eigenvalue decomposition:

Υ(W̃ , ỹ) = A∗ỹ −QW̃ − Ĉ = P ΓPT,

where P ∈ <n×n is an orthogonal matrix whose columns are eigenvectors, and Γ is the corresponding
diagonal matrix of eigenvalues, arranged in a nonincreasing order: λ1 ≥ λ2 ≥ · · · ≥ λn. Define the
following index sets

α := {i | λi > 0}, ᾱ := {i | λi ≤ 0}.

We define the operator U0 : Sn → Sn by

U0(H) := P (Σ ◦ (PTHP ))PT, H ∈ Sn, (13)

where “ ◦ ” denotes the Hadamard product of two matrices,

Σ =

[
Eαα ναᾱ

νT
αᾱ 0

]
, νij :=

λi
λi − λj

, i ∈ α, j ∈ ᾱ,

and Eαα ∈ S |α| is the matrix of ones. In [20, Lemma 11], it is proved that

U0 ∈ ∂ΠSn+(Υ(W̃ , ỹ)).
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Define

V 0 :=

[
Q

0

]
+ σ

[
Q
−A

]
U0[Q −A∗]. (14)

Then, we have V 0 ∈ ∂̂2ϕ(W̃ , ỹ).
After all the above preparations, we can design the following semismooth Newton-CG method

as in [35] to solve (12).

Algorithm SNCG: A semismooth Newton-CG algorithm.

Given µ ∈ (0, 1/2), η̄ ∈ (0, 1), τ ∈ (0, 1], τ1, τ2 ∈ (0, 1) and δ ∈ (0, 1). Choose (W 0, y0) ∈
Ran(Q)×<m. Set j = 0. Iterate the following steps.

Step 1. Choose U0 ∈ ∂ΠSn+(Υ(W j , yj)) defined as in (13). Let Vj := V 0 be given as in (14) and

εj = τ1 min{τ2, ‖∇ϕ(W j , yj)‖}. Apply the CG algorithm to find an approximate solution

(djW , d
j
y) ∈ Ran(Q)×<m to

Vj(dW , dy) + εj(0, dy) = −∇ϕ(W j , yj) (15)

such that

‖Vj(djW , d
j
y) + εj(0, d

j
y) +∇ϕ(W j , yj)‖ ≤ ηj := min(η̄, ‖∇ϕ(W j , yj)‖1+τ ).

Step 2. Set αj = δmj , where mj is the first nonnegative integer m for which

ϕ(W j + δmdjW , y
j + δmdjy) ≤ ϕ(W j , yj) + µδm〈∇ϕ(W j , yj), (djW , d

j
y)〉.

Step 3. Set W j+1 = W j + αj d
j
W and yj+1 = yj + αj d

j
y.

The convergence results for the above SNCG algorithm are stated in the next theorem.

Theorem 3.1. Suppose that Assumption 1 holds. Then Algorithm SNCG generates a bounded
sequence {(W j , yj)} and any accumulation point (W, ȳ) ∈ Ran(Q)× <m is an optimal solution to
problem (12).

The following proposition is the key ingredient in our subsequent convergence analysis.

Proposition 3.1. Let U : Sn → Sn be a self-adjoint positive semidefinite linear operator and
σ > 0. Then, it holds that AUA∗ is positive definite if and only if〈[

W
y

]
,

([
Q

0

]
+ σ

[
Q
−A

]
U [Q −A∗]

)[
W
y

]〉
> 0 (16)

for all (W, y) ∈ Ran(Q)×<m\{(0, 0)}.

Proof. Since the “if” statement obviously holds true, we only need to prove the “only if” statement.
Note that

〈W, QW 〉 > 0, ∀W ∈ Ran(Q)\{0}.
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Now suppose that AUA∗ is positive definite, and hence nonsingular. By the Schur complement
condition for ensuring the positive definiteness of a linear operator, we know that (16) holds if and
only if

〈W, (Q+ σQUQ− σQUA∗(AUA∗)−1AUQ)W 〉 > 0, ∀W ∈ Ran(Q)\{0}. (17)

But for any W ∈ Ran(Q)\{0}, we have that 〈W, QW 〉 > 0, and

〈W, (QUQ−QUA∗(AUA∗)−1AUQ)W 〉 = 〈W, QU
1
2 (I − U

1
2A∗(AUA∗)−1AU

1
2 )U

1
2QW 〉

= 〈U
1
2QW, (I − U

1
2A∗(AUA∗)−1AU

1
2 )U

1
2QW 〉 ≥ 0.

Hence, (17) holds automatically. This completes the proof of the proposition.

Base on the above proposition, under the constraint nondegeneracy condition for (P), we shall
show in the next theorem that one can still ensure the positive definiteness of the coefficient matrix
in the semismooth Newton system at the solution point.

Theorem 3.2. Let (W, ȳ) be the optimal solution for problem (12). Let Y := ΠSn+(A∗ȳ−QW−Ĉ).
The following conditions are equivalent:

(i) The constraint nondegeneracy condition,

A lin(TSn+(Y )) = <m, (18)

holds at Y , where lin(TSn+(Y )) denotes the lineality space of the tangent cone of Sn+ at Y .

(ii) Every element in [
Q

0

]
+ σ

[
Q
−A

]
∂ΠSn+(A∗ȳ −QW − Ĉ)[Q −A∗]

is self-adjoint and positive definite on Ran(Q)×<m.

Proof. In the same fashion as in [35, Proposition 3.2], we can prove that AUA∗ is positive definite
for all U ∈ ∂ΠSn+(A∗ȳ −QW − Ĉ) if only if (i) holds. Then, by Proposition 3.1, we readily obtain
the desired results.

Theorem 3.3. Assume that Assumption 1 holds. Let (W, ȳ) be an accumulation point of the
infinite sequence {(W j , yj)} generated by Algorithm SNCG for solving problem (12). Assume that
the constraint nondegeneracy condition (18) holds at Y := ΠSn+(A∗ȳ −QW − Ĉ). Then, the whole

sequence {(W j , yj)} converges to (W, ȳ) and

‖(W j+1, yj+1)− (W, ȳ)‖ = O(‖(W j , yj)− (W, ȳ)‖1+τ ).

Proof. From Theorem 3.2, we know that under the constraint nondegeneracy condition (18), every
V ∈ ∂̂2ϕ(W, ȳ) is self-adjoint and positive definite on Ran(Q) × <n. Hence one can obtain the
desired results from [35, Theorem 3.5] by further noting the strong semismoothness of ΠSn+(·).

We note that the convergence results obtained in this subsection depend critically on the
restriction that W ∈ W = Ran(Q). Without this restriction, the possible singularity of the
Newton systems (15) and the unboundedness of {W j} will make the convergence analysis highly
challenging, if possible at all.
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3.2 Semismooth Newton based inexact ABCD algorithms for (11) when K 6= Sn

When K 6= Sn, we will adapt the recently developed inexact accelerated block coordinate descent
(ABCD) algorithm [29] to solve the inner subproblems (11) in the augmented Lagrangian method.

The detailed steps of the ABCD algorithm to be used for solving (11) will be presented below.
In this algorithm, (Z,W, S, y) is decomposed into two groups, namely Z and (W,S, y). In this case,
(W,S, y) is regarded as a single block and the corresponding subproblem in the ABCD algorithm
can only be solved by an iterative method inexactly. Here, we propose to develop a semismooth
Newton-CG method to solve the corresponding subproblem.

Algorithm ABCD(Z0,W 0, S0, y0, X̂, σ): An inexact ABCD algorithm for (11).

Given (W 0, S0, y0) ∈ Ran(Q) × Sn+ × <m, −Z0 ∈ dom(δ∗K) and η > 0, set (Z̃1, W̃ 1, S̃1, ỹ1) =
(Z0,W 0, S0, y0) and t1 = 1. Let {εl} be a nonnegative summable sequence. For l = 1, . . . , perform
the following steps in each iteration.

Step 1. Let R̃l = σ(S̃k +A∗ỹl −QW̃ l − C + σ−1X̂). Compute

Z l = argmin
{

Ψ(Z, W̃ l, S̃l, ỹl) | Z ∈ Sn
}

=
1

σ

(
ΠK(R̃l)− R̃l

)
,

(W l, Sl, yl) = argmin

Ψ(Z l,W, S, y) +
η

2
‖y − ỹl‖2 − 〈δly, y〉 − 〈δlQ, W 〉

| (W,S, y) ∈ Ran(Q)× Sn ×<m

 , (19)

where δly ∈ <m, δlQ ∈ Ran(Q) are error vectors such that

max{‖δly‖, ‖δlQ‖} ≤ εl/tl.

Step 2. Set tl+1 =
1+
√

1+4t2l
2 , βl = tl−1

tl+1
. Compute

W̃ l+1 = W l + βl(W
l −W l−1), S̃l+1 = Sl + βl(S

l − Sl−1), ỹl+1 = yl + βl(y
l − yl−1).

Note that in order to meet the convergence requirement of the inexact ABCD algorithm, a
proximal term involving the positive parameter η is added in (19) to ensure the strong convexity
of the objective function in the subproblem. For computational efficiency, one can always take
η to be a small number, say 10−6. For the subproblem (19), it can be solved by a semismooth
Newton-CG algorithm similar to the one developed in Subsection 3.1. Since η > 0, the superlinear
convergence of such a semismooth Newton-CG algorithm can also be proven based on the strong
semismoothness of ΠSn+(·) and the symmetric positive definiteness of the corresponding generalized
Hessian.

The convergence results for the above Algorithm ABCD are stated in the next theorem, whose
proof essentially follows from that in [29, Theorem 3.1]. Here, we omit the proof for brevity.

Theorem 3.4. Suppose that Assumption 1 holds and η > 0. Let {(Z l,W l, Sl, yl)} be the sequence
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generated by Algorithm ABCD. Then,

inf
Z

Ψ(Z,W l, Sl, yl)−Ψ(Z∗,W ∗, S∗, y∗) = O(1/l2)

where (Z∗,W ∗, S∗, y∗) is an optimal solution of problem (11). Moreover, the sequence {(Z l,W l, Sl, yl)}
is bounded and all of its cluster points are optimal solutions to problem (11).

4 Numerical issues in Qsdpnal

In Algorithm Qsdpnal-Phase I, in order to obtain Ŵ k and W k+1 at the kth iteration, we need to
solve the following linear system of equations

(Q+ σQ2)W ≈ QR, W ∈ Ran(Q) (20)

with the residual
‖QR− (Q+ σQ2)W‖ ≤ ε, (21)

where R ∈ Sn and ε > 0 are given. Note that the exact solution to (20) is unique since Q + σQ2

is positive definite on Ran(Q). But the linear system is typically very large even for a moderate
n, say n = 500. Under the high dimensional setting which we are particularly interested in, the
matrix representation of Q is generally not available or too expensive to be stored explicitly. Thus
(20) can only be solved inexactly by an iterative method. However when Q is singular (and hence
Ran(Q) 6= Sn), due to the presence of the subspace constraint W ∈ Ran(Q), it is extremely
difficult to apply preconditioning to (20) while ensuring that the approximate solution is contained
in Ran(Q). Fortunately, as shown in the next proposition, instead of solving (20) directly, we can
solve a simpler and yet better conditioned linear system to overcome this difficulty.

Proposition 4.1. Let Ŵ be an approximate solution to the following linear system:

(I + σQ)W ≈ R (22)

with the residual satisfying

‖R− (I + σQ)Ŵ‖ ≤ ε

λmax(Q)
.

Then, ŴQ := ΠRan(Q)(Ŵ ) ∈ Ran(Q) solves (20) with the residual satisfying (21). Moreover,

QŴQ = QŴ and 〈ŴQ, QŴQ〉 = 〈Ŵ , QŴ 〉.

Proof. First we note that the results QŴQ = QŴ and 〈ŴQ, QŴQ〉 = 〈Ŵ , QŴ 〉 follow from the

decomposition Ŵ = ΠRan(Q)(Ŵ ) + ΠRan(Q)⊥(Ŵ ). Next, by observing that

‖QR− (Q+ σQ2)ŴQ‖ = ‖QR− (Q+ σQ2)Ŵ‖ ≤ λmax(Q) ‖R− (I + σQ)Ŵ‖ ≤ ε,

one can easily obtain the desired results.

By Proposition 4.1, in order to obtain ŴQ, we can first apply an iterative method such as the
preconditioned conjugate gradient (PCG) method to solve (22) to obtain Ŵ and then perform the
projection step. However, by carefully analysing the steps in Qsdpnal-Phase I, we are surprised
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to observe that instead of explicitly computing ŴQ, we can update the iterates in the algorithm
by using only QŴQ = QŴ . Thus, we only need to compute QŴ and the potentially expensive
projection step to compute ŴQ can be avoided completely.

It is important for us to emphasize the computational advantage of solving the linear system
(22) over (20). First, the former only requires one evaluation of Q(·) whereas the latter requires
two such evaluations in each PCG iteration. Second, the coefficient matrix in the former system
is typically much more well-conditioned than the coefficient matrix in the latter system. More
precisely, when Q is positive definite, then I + σQ is clearly better conditioned than Q+ σQ2 by
a factor of λmax(Q)/λmin(Q). When Q is singular, with its smallest positive eigenvalue denoted
as λ+(Q), then I + σQ is better conditioned when λmax(Q) ≥ λ+(Q)(1 + σλ+(Q)). The previous
inequality would obviously hold when λ+ ≤ (

√
4σλmax(Q) + 1− 1)/(2σ).

In Algorithm Qsdpal-Phase II, the subspace constraint W ∈ Ran(Q) also appears when we
solve the semismooth Newton linear system (15) in Algorithm SNCG. Specifically, we need to find
(dW, dy) to solve the following linear system

V (dW, dy) + %(0, dy) ≈ (Q(R1), R2), (dW, dy) ∈ Ran(Q)×<m (23)

with the residual satisfying the following condition

‖V (dW, dy) + %(0, dy)− (Q(R1), R2)‖ ≤ ε, (24)

where

V :=

[
Q

0

]
+ σ

[
Q
−A

]
U [Q −A∗],

U is a given self-adjoint positive semidefinite linear operator on Sn and ε > 0, σ > 0 and % > 0
are given. Again, instead of solving (23) directly, we can solve a simpler linear system to compute
Q(dW ) approximately, as shown in the next proposition. The price to pay is that we now need to
solve nonsymmetric linear system instead of a symmetric one.

Proposition 4.2. Let

V̂ :=

[
I

0

]
+ σ

[
I
−A

]
U [Q −A∗].

Suppose (d̂W , d̂y) is an approximate solution to the following system:

V̂ (dW, dy) + %(0, dy) ≈ (R1, R2) (25)

with the residual satisfying

‖V̂ (d̂W , d̂y) + %(0, d̂y)− (R1, R2)‖ ≤ ε

max{λmax(Q), 1}
.

Let d̂WQ = ΠRan(Q)(d̂W ) ∈ Ran(Q) Then (d̂WQ, d̂y) solves (23) with the residual satisfying (24).

Moreover, Q d̂WQ = Q d̂W and 〈d̂WQ, Q d̂WQ〉 = 〈d̂W , Q d̂W 〉.

Proof. The proof that Q d̂WQ = Q d̂W and 〈d̂WQ, Q d̂WQ〉 = 〈d̂W , Q d̂W 〉 is the same as in the
previous proposition. Observe that V = Diag(Q, I)V̂ . Then, by using the fact that

‖V (d̂WQ, d̂y) + %(0, d̂y)− (Q(R1), R2)‖ = ‖V (d̂W , d̂y) + %(0, d̂y)− (Q(R1), R2)‖

≤ ‖Diag(Q, I)‖2 ‖V̂ (d̂W , d̂y) + %(0, d̂y)− (R1, R2)‖ ≤ max{λmax(Q), 1} ε

max{λmax(Q), 1}
= ε,

we obtain the desired results readily.
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5 Adaption of QSDPNAL for least squares SDP and inequality
constrained QSDP

Here we discuss how our algorithm Qsdpnal can be modified and adapted for solving least squares
semidefinite programming as well as general QSDP problems with additional unstructured inequal-
ity constraints which are not captured by the polyhedral set K.

5.1 The case for least squares semidefinite programming

In this subsection, we show that for least squares semidefinite programming problems, Qsdpnal
can be used in a more efficient way to avoid the difficulty of handling the subspace constraint
W ∈ Ran(Q).

Consider the following least squares semidefinite programming problem

min
{1

2
‖BX − d‖2 + 〈C, X〉 | AX = b, X ∈ Sn+ ∩ K

}
, (26)

where A : Sn → <m and B : Sn → <s are two linear maps, C ∈ Sn, b ∈ <m and d ∈ <s are given
data, K is a simple nonempty closed convex polyhedral set in Sn.

It is easy to see that (26) can be rewritten as follows

min
{1

2
‖u‖2 + 〈C, X〉 | BX − d = u, AX = b, X ∈ Sn+ ∩ K

}
. (27)

The dual of (27) takes the following form

max
{
− δ∗K(−Z)− 1

2
‖ξ‖2 + 〈d, ξ〉+ 〈b, y〉 | Z + B∗ξ + S +A∗y = C, S ∈ Sn+

}
. (28)

When Qsdpnal-Phase I is applied to solve (28), instead of solving (20), the linear system
corresponding to the quadratic term is given by

(I + σBB∗)ξ ≈ R, (29)

where R ∈ <s and σ > 0 are given data. Correspondingly, in applying Qsdpnal-Phase II to (28),
the linear system in the SNCG method is given by([

I
0

]
+ σ

[
B
A

]
U
[
B∗ A∗

]) [ dξ
dy

]
≈
[
R1

R2

]
, (30)

where R1 ∈ <s and R2 ∈ <m are given data, U is a given self-adjoint positive semidefinite linear
operator on Sn. It is clear that just like (22), one can solve (29) efficiently via the PCG method.
For (30), one can also solve it by the PCG method, which is more appealing compared to using a
nonsymmetric iterative solver such as the preconditioned BiCGSTAB to solve the nonsymmetric
linear system (25).

Remark 5.1. When the polyhedral constraint X ∈ K in (26) is absent, i.e., the polyhedral convex
set K = Sn, Jiang, Sun and Toh in [14] have proposed a partial proximal point algorithm for solving
the least squares semidefinite programming problem (26). Here our Algorithm Qsdpnal is built to
solve the much more general class of convex composite QSDP problems.
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5.2 Extension to QSDP problems with inequality constraints

Consider the following general QSDP problem:

min
{1

2
〈X, QX〉+ 〈C, X〉 | AEX = bE , AIX ≤ bI , X ∈ Sn+ ∩ K

}
, (31)

where AE : Sn → <mE and AI : Sn → <mI are two linear maps. By adding a slack variable x, we
can equivalently rewrite (31) into the following standard form:

min
1

2
〈X, QX〉+ 〈C, X〉

s.t. AEX = bE , AIX +Dx = bI , X ∈ Sn+ ∩ K, Dx ≥ 0,
(32)

where D : <mI → <mI is a positive definite diagonal matrix introduced for the purpose of scaling
the variable x. The dual of (32) is given by

max −δ∗K(−Z)− 1

2
〈W, QW 〉+ 〈bE , yE〉+ 〈bI , yI〉

s.t. Z −QW + S +A∗EyE +A∗IyI = C,

D∗(s+ yI) = 0, S ∈ Sn+, s ≥ 0, W ∈ Ran(Q).

(33)

We can express (33) in a form which is similar to (D) as follows:

max −δ∗K(−Z)− 1

2
〈W, QW 〉+ 〈bE , yE〉+ 〈bI , yI〉

s.t.

(
I
0

)
Z −

(
Q
0

)
W +

(
I 0

0 D∗

)(
S

s

)
+

(
A∗E A∗I
0 D∗

)(
yE

yI

)
=

(
C

0

)
,

(S, s) ∈ Sn+ ×<
mI
+ , W ∈ Ran(Q).

(34)

We can readily extend Qsdpnal to solve the above more general form of (34), and our implemen-
tation of Qsdpnal indeed can be used to solve (34).

6 Computational experiments

In this section, we evaluate the performance of our algorithm Qsdpnal for solving large-scale
QSDP problems (31). Since Qsdpnal contains two phases, we also report the numerical results
obtained by running Qsdpnal-Phase I (a first-order algorithm) alone for the purpose of demon-
strating the power and importance of our two-phase framework for solving difficult QSDP prob-
lems. In the numerical experiments, we measure the accuracy of an approximate optimal solution
(X,Z,W, S, yE , yI) for QSDP (31) and its dual by using the following relative KKT residual:

ηqsdp = max{ηP , ηD, ηZ , ηS1 , ηS2 , ηI1 , ηI2 , ηI3 , ηW }, (35)

where

ηP =
‖bE −AEX‖

1 + ‖bE‖
, ηD =

‖Z −QW + S +A∗EyE +A∗IyI − C‖
1 + ‖C‖

, ηZ =
‖X −ΠK(X − Z)‖

1 + ‖X‖+ ‖Z‖
,

ηS1
=

|〈S, X〉|
1 + ‖S‖+ ‖X‖

, ηS2
=
‖X −ΠSn

+
(X)‖

1 + ‖X‖
, ηI1 =

‖min(bI −AIX, 0)‖
1 + ‖bI‖

, ηI2 =
‖max(yI , 0)‖

1 + ‖yI‖
,

ηI3 =
|〈bI −AIX, yI〉|

1 + ‖yI‖+ ‖bI −AIX‖
, ηW =

‖QW −QX‖
1 + ‖Q‖

.
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Additionally, we also compute the relative duality gap defined by

ηgap =
objP − objD

1 + |objP |+ |objD|
,

where objP := 1
2〈X, QX〉+ 〈C, X〉 and objD := −δ∗K(−Z)− 1

2〈W, QW 〉+ 〈bE , yE〉+ 〈bI , yI〉. We
terminate both Qsdpnal and Qsdpnal-Phase I when ηqsdp < 10−6 with the maximum number of
iterations set at 50,000.

In our implementation of Qsdpnal, we always run Qsdpnal-Phase I first to generate a rea-
sonably good starting point to warm start our Phase II algorithm. We terminate the Phase I
algorithm and switch to the Phase II algorithm if a solution with a moderate accuracy (say a so-
lution with ηqsdp < 10−4) is obtained or if the Phase I algorithm reaches the maximum number of
iterations (say 1000 iterations). If the underlying problems contain inequality or polyhedral con-
straints, we further employ a restarting strategy similar to the one in [33], i.e., when the progress
of Qsdpnal-Phase II is not satisfactory, we will restart the whole Qsdpnal algorithm by using
the most recently computed (Z,W, S, y,X, σ) as the initial point. In addition, we also adopt a
dynamic tuning strategy to adjust the penalty parameter σ appropriately based on the progress of
the primal and dual feasibilities of the computed iterates.

All our computational results are obtained from a workstation running on 64-bit Windows
Operating System having 16 cores with 32 Intel Xeon E5-2650 processors at 2.60GHz and 64 GB
memory. We have implemented Qsdpnal in Matlab version 7.13.

6.1 Evaluation of Qsdpnal on the nearest correlation matrix problems

Our first test example is the problem of finding the nearest correlation matrix (NCM) to a given
matrix G ∈ Sn:

min
{1

2
‖H ◦ (X −G)‖2F | diag(X) = e, X ∈ Sn+ ∩ K

}
, (36)

where H ∈ Sn is a nonnegative weight matrix, e ∈ <n is the vector of all ones, and K = {W ∈
Sn | L ≤W ≤ U} with L,U ∈ Sn being given matrices.

In our numerical experiments, we first take a matrix Ĝ, which is a correlation matrix generated
from gene expression data from [16]. For testing purpose, we then perturb Ĝ to

G := (1− α)Ĝ+ αE,

where α ∈ (0, 1) is a given parameter and E is a randomly generated symmetric matrix with entries
uniformly distributed in [−1, 1] except for its diagonal elements which are all set to 1. The weight
matrix H is generated from a weight matrix H0 used by a hedge fund company. The matrix H0

is a 93 × 93 symmetric matrix with all positive entries. It has about 24% of the entries equal to
10−5 and the rest are distributed in the interval [2, 1.28 × 103]. The Matlab code for generating
the matrix H is given by

tmp = kron(ones(110,110),H0); H = tmp(1:n,1:n); H = (H’+H)/2.

The reason for using such a weight matrix is because the resulting problems generated are more
challenging to solve as opposed to a randomly generated weight matrix. We also test four more
instances, namely PDidx2000, PDidx3000, PDidx5000 and PDidx10000, where the raw correlation
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matrix Ĝ is generated from the probability of default (PD) data obtained from the RMI Credit
Research Initiative2 at the National University of Singapore. We consider two choices of K, i.e.,
case (i): K = Sn and case (ii): K = {X ∈ Sn | Xij ≥ −0.5, ∀ i, j = 1, . . . , n}.

Table 1: The performance of Qsdpnal and Qsdpnal-Phase I on
H-weighted NCM problems (dual of (36)) (accuracy = 10−6). In
the table, “a” stands for Qsdpnal and “b” stands for Qsdpnal-
Phase I, respectively. The computation time is in the format of
“hours:minutes:seconds”.

K = Sn

iter.a iter.b ηqsdp ηgap time

problem n α it (subs) | itSCB a|b a|b a|b
Lymph 587 0.10 12 (40) | 52 251 9.1-7 | 9.1-7 8.2-7 | -3.9-7 13 | 23

Lymph 587 0.05 11 (32) | 38 205 9.5-7 | 9.9-7 7.5-7 | -4.1-7 09 | 19

ER 692 0.10 12 (41) | 54 250 9.8-7 | 9.9-7 5.4-7 | -4.8-7 17 | 33

ER 692 0.05 12 (38) | 43 218 7.3-7 | 9.7-7 2.5-7 | -4.4-7 14 | 28

Arabidopsis 834 0.10 12 (42) | 56 285 8.5-7 | 9.9-7 2.8-7 | -5.3-7 27 | 57

Arabidopsis 834 0.05 12 (41) | 44 230 8.0-7 | 9.5-7 -6.8-8 | -4.5-7 24 | 46

Leukemia 1255 0.10 12 (41) | 62 340 8.4-7 | 9.9-7 3.1-7 | -5.4-7 1:08 | 2:48

Leukemia 1255 0.05 12 (38) | 49 248 7.6-7 | 8.7-7 -1.3-7 | -4.5-7 58 | 2:06

hereditarybc 1869 0.10 13 (47) | 76 393 6.4-7 | 9.9-7 -2.2-7 | -9.8-7 3:01 | 7:10

hereditarybc 1869 0.05 13 (45) | 60 311 8.6-7 | 9.9-7 -4.7-7 | -1.0-6 2:39 | 5:44

PDidx2000 2000 0.10 13 (51) | 131 590 9.5-7 | 9.9-7 2.4-7 | -8.5-7 5:04 | 11:43

PDidx2000 2000 0.05 14 (58) | 139 626 7.5-7 | 9.9-7 -5.6-8 | -9.5-7 5:52 | 12:41

PDidx3000 3000 0.10 14 (55) | 145 1201 8.1-7 | 9.9-7 -2.8-7 | 2.1-6 14:59 | 1:15:01

PDidx3000 3000 0.05 14 (58) | 136 1263 6.8-7 | 9.7-7 -2.6-7 | 2.0-6 14:50 | 1:19:27

PDidx5000 5000 0.10 15 (63) | 189 1031 8.0-7 | 9.9-7 -1.9-7 | 1.8-6 1:17:47 | 4:17:10

PDidx5000 5000 0.05 14 (59) | 164 1699 9.2-7 | 9.9-7 -3.3-7 | -1.3-7 1:11:46 | 6:18:29

PDidx10000 10000 0.10 16 (71) | 200 2572 7.1-7 | 9.9-7 1.6-7 | -1.5-7 9:57:18 | 60:07:08

PDidx10000 10000 0.05 16 (73) | 200 2532 9.5-7 | 9.9-7 4.7-8 | 1.4-7 10:34:31 | 59:34:13

K = {X ∈ Sn | Xij ≥ −0.5 ∀ i, j = 1, . . . , n}
Lymph 587 0.10 5 (14) | 129 244 9.8-7 | 9.9-7 -1.0-7 | -4.4-7 18 | 30

Lymph 587 0.05 5 (12) | 120 257 9.9-7 | 9.9-7 -3.4-7 | -4.2-7 15 | 28

ER 692 0.10 5 (14) | 126 266 9.9-7 | 9.9-7 -1.5-7 | -5.1-7 22 | 40

ER 692 0.05 5 (14) | 117 217 8.4-7 | 9.9-7 -2.7-7 | -4.4-7 21 | 32

Arabidopsis 834 0.10 6 (16) | 240 472 9.9-7 | 9.9-7 -5.4-7 | -6.0-7 1:03 | 1:56

Arabidopsis 834 0.05 6 (15) | 240 442 8.5-7 | 9.9-7 -4.4-7 | -5.6-7 1:02 | 1:46

Leukemia 1255 0.10 7 (22) | 188 333 9.9-7 | 9.9-7 -4.4-7 | -5.5-7 2:10 | 3:06

Leukemia 1255 0.05 7 (19) | 159 253 9.9-7 | 9.9-7 -5.4-7 | -5.3-7 1:46 | 2:18

hereditarybc 1869 0.10 8 (22) | 397 577 9.3-7 | 9.9-7 -8.0-7 | -8.9-7 10:28 | 12:59

hereditarybc 1869 0.05 8 (22) | 361 472 9.6-7 | 9.9-7 -8.1-7 | -8.6-7 9:39 | 10:04

PDidx2000 2000 0.10 20 (52) | 672 716 9.9-7 | 9.9-7 -6.8-7 | -7.9-7 21:32 | 17:42

PDidx2000 2000 0.05 22 (60) | 756 1333 9.6-7 | 5.8-7 -6.3-7 | -4.0-7 25:20 | 39:34

PDidx3000 3000 0.10 34 (101) | 659 1647 9.9-7 | 9.9-7 -7.0-7 | -9.4-7 1:14:15 | 1:53:13

PDidx3000 3000 0.05 41 (117) | 728 1538 9.9-7 | 9.9-7 -6.2-7 | -1.2-6 1:21:13 | 1:50:47

PDidx5000 5000 0.10 29 (79) | 829 1484 9.3-7 | 8.4-7 -5.5-7 | 6.4-7 5:00:35 | 7:25:19

PDidx5000 5000 0.05 33 (107) | 1081 1722 9.9-7 | 9.9-7 -6.4-7 | -1.5-7 6:30:35 | 7:16:08

PDidx10000 10000 0.10 42 (136) | 1289 2190 9.9-7 | 9.9-7 -7.1-7 | 2.6-7 58:44:49 | 64:17:14

PDidx10000 10000 0.05 40 (122) | 1519 3320 9.9-7 | 4.5-7 -6.6-7 | -1.7-8 65:13:19 | 94:53:10

2http://www.rmicri.org/cms/cvi/overview/.
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In Table 1, we report the numerical results obtained by Qsdpnal and Qsdpnal-Phase I in
solving various instances of the H-weighted NCM problem (36). In the table, “it (subs)” denotes the
number of outer iterations with subs in the parenthesis indicating the number of inner iterations
of Qsdpnal-Phase II and “itSCB” stands for the total number of iterations used in Qsdpnal-
Phase I. We can see from Table 1 that Qsdpnal is more efficient than the purely first-order
algorithm Qsdpnal-Phase I. In particular, for the instance PDidx10000 where the matrix dimension
n = 10, 000, we are able to solve the problem in about 11 hours while the purely first-order method
Qsdpnal-Phase I needs about 60 hours.

6.2 Evaluation of Qsdpnal on instances generated from BIQ problems

Based on the SDP relaxation of a binary integer quadratic (BIQ) problem considered in [28], we
construct our second QSDP test example as follows:

(QSDP-BIQ) min
1

2
〈X, QX〉+

1

2
〈Q, Y 〉+ 〈c, x〉

s.t. diag(Y )− x = 0, α = 1, X =

(
Y x
xT α

)
∈ Sn+, X ∈ K,

−Yij + xi ≥ 0, −Yij + xj ≥ 0, Yij − xi − xj ≥ −1, ∀ i < j, j = 2, . . . , n− 1,

where the convex set K = {X ∈ Sn | X ≥ 0}. Here Q : Sn → Sn is a self-adjoint positive
semidefinite linear operator defined by

Q(X) =
1

2
(AXB +BXA) (37)

with A,B ∈ Sn+ being matrices truncated from two different large correlation matrices (generated
from Russell 1000 and Russell 2000 index, respectively) fetched from Yahoo finance by Matlab.
In our numerical experiments, the test data for Q and c are taken from the Biq Mac Library
maintained by Wiegele, which is available at http://biqmac.uni-klu.ac.at/biqmaclib.html.

Table 2 reports the numerical results for Qsdpnal and Qsdpnal-Phase I in solving some large
scale QSDP-BIQ problems. Note that from the numerical experiments conducted in [6], one can
clearly conclude that Qsdpnal-Phase I (a variant of SCB-isPADMM) is the most efficient first-
order algorithm for solving QSDP-BIQ problems with a large number of inequality constraints.
Even then, one can observe from Table 2 that Qsdpnal is still faster than Qsdpnal-Phase I on
most of the problems tested.

Table 2: Same as Table 1 but for QSDP-BIQ problems.

iter.a iter.b ηqsdp ηgap time

d mE ;mI | n it (subs)|itSCB a|b a|b a|b
be200.3.1 201 ; 59700 | 201 66 (135) | 3894 4701 7.8-7 | 9.8-7 -3.5-7 | -7.2-7 3:37 | 3:57

be200.3.2 201 ; 59700 | 201 37 (74) | 2969 13202 9.7-7 | 9.9-7 -2.1-7 | -6.7-8 2:42 | 12:20

be200.3.3 201 ; 59700 | 201 51 (107) | 5220 10375 8.1-7 | 9.9-7 -1.1-7 | -6.5-7 5:00 | 8:52

be200.3.4 201 ; 59700 | 201 36 (72) | 3484 4966 9.8-7 | 9.9-7 -1.6-7 | -4.1-7 3:15 | 4:14

be200.3.5 201 ; 59700 | 201 22 (44) | 2046 3976 9.8-7 | 9.9-7 -5.9-8 | -3.0-7 1:53 | 3:28

be250.1 251 ; 93375 | 251 98 (196) | 6931 12220 9.9-7 | 9.9-7 3.2-7 | 3.5-8 8:11 | 14:07

be250.2 251 ; 93375 | 251 81 (169) | 6967 16421 9.3-7 | 9.9-7 3.2-7 | -5.7-7 8:35 | 20:01

be250.3 251 ; 93375 | 251 123 (250) | 7453 9231 9.3-7 | 9.8-7 -1.7-7 | -5.1-7 9:27 | 10:25

be250.4 251 ; 93375 | 251 36 (72) | 3583 4542 9.9-7 | 9.9-7 5.2-8 | -2.1-7 4:31 | 5:06
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be250.5 251 ; 93375 | 251 99 (198) | 5004 12956 8.3-7 | 9.9-7 1.8-7 | -1.8-7 6:38 | 15:52

bqp500-1 501 ; 374250 | 501 62 (131) | 5220 11890 9.9-7 | 9.9-7 -7.1-7 | -8.2-8 37:56 | 1:23:58

bqp500-2 501 ; 374250 | 501 41 (84) | 3610 8159 5.5-7 | 9.9-7 -3.8-7 | -8.7-8 24:01 | 55:14

bqp500-3 501 ; 374250 | 501 89 (200) | 5877 6402 9.9-7 | 8.6-7 5.4-7 | -1.9-7 40:29 | 41:51

bqp500-4 501 ; 374250 | 501 95 (256) | 7480 11393 6.3-7 | 9.9-7 -1.5-7 | -1.1-7 56:12 | 1:17:56

bqp500-5 501 ; 374250 | 501 107 (247) | 6976 8823 5.1-7 | 9.9-7 6.2-7 | -1.0-7 52:24 | 59:11

bqp500-6 501 ; 374250 | 501 159 (412) | 10461 9587 8.3-7 | 9.9-7 -6.2-7 | -1.3-7 1:18:11 | 1:04:41

bqp500-7 501 ; 374250 | 501 92 (223) | 8585 9066 8.1-7 | 9.9-7 4.7-8 | -1.1-7 1:00:52 | 1:00:35

bqp500-8 501 ; 374250 | 501 68 (140) | 5828 7604 6.7-7 | 9.9-7 -4.7-8 | -1.1-7 40:56 | 51:58

bqp500-9 501 ; 374250 | 501 50 (108) | 4704 11613 9.5-7 | 9.9-7 -3.7-7 | -9.8-8 34:05 | 1:21:17

bqp500-10 501 ; 374250 | 501 71 (163) | 6462 8474 8.7-7 | 9.9-7 -6.2-7 | -8.7-8 48:07 | 57:33

gka1e 201 ; 59700 | 201 74 (163) | 5352 9071 9.2-7 | 9.9-7 -3.0-7 | -2.9-7 7:59 | 9:35

gka2e 201 ; 59700 | 201 49 (98) | 4008 6659 9.2-7 | 9.9-7 5.0-8 | -1.7-7 4:17 | 6:29

gka3e 201 ; 59700 | 201 35 (71) | 2731 4103 8.3-7 | 9.7-7 2.3-7 | -2.2-8 2:59 | 4:14

gka4e 201 ; 59700 | 201 34 (68) | 2999 3430 9.9-7 | 9.9-7 -1.7-7 | -4.6-7 3:20 | 3:21

gka5e 201 ; 59700 | 201 43 (90) | 3367 2712 9.9-7 | 9.9-7 -4.9-8 | -6.5-8 3:54 | 2:47

6.3 Evaluation of Qsdpnal on instances generated from QAP problems

Next we test the following QSDP problem motivated from the SDP relaxation of a quadratic
assignment problem (QAP) considered in [21]. The SDP relaxation we used is adopted from [33]
but we add a convex quadratic term in the objective to modify it into a QSDP problem. Specifically,
given the data matrices A1, A2 ∈ S l of a QAP problem, the problem we test is given by:

(QSDP-QAP) min
1

2
〈X, QX〉+ 〈A2 ⊗A1, X〉

s.t.
∑l

i=1X
ii = I, 〈I, Xij〉 = δij ∀ 1 ≤ i ≤ j ≤ l,

〈E, Xij〉 = 1 ∀ 1 ≤ i ≤ j ≤ l, X ∈ Sn+, X ∈ K,

where n = l2, and Xij ∈ <l×l denotes the (i, j)-th block of X when it is partitioned uniformly into
an l×l block matrix with each block having dimension l×l. The convex set K = {X ∈ Sn | X ≥ 0},
E is the matrix of ones, and δij = 1 if i = j, and 0 otherwise. Note that here we use the same
self-adjoint positive semidefinite linear operator Q : Sn → Sn constructed in (37). In our numerical
experiments, the test instances (A1, A2) are taken from the QAP Library [5].

In Table 3, we present the numerical results for Qsdpnal and Qsdpnal-Phase I in solving some
large scale QSDP-QAP problems. It is interesting to note that Qsdpnal can solve all the 73 difficult
QSDP-QAP problems to an accuracy of 10−6 efficiently, while the purely first-order algorithm
Qsdpnal-Phase I can only solve 2 of the problems (chr20a and tai25a) to the required accuracy.
The superior numerical performance of Qsdpnal over Qsdpnal-Phase I clearly demonstrates the
importance and necessity of our proposed two-phase algorithm for which second-order information
is incorporated in the inexact augmented Lagrangian algorithm in Phase II. Note that for QSDP-
QAP problems, the iteration counts of Qsdpnal sometimes can vary on different computers. The
root cause of this phenomenon is the accumulation of the rounding errors of the PCG steps used
in QSDPNAL. Indeed, for these difficult problems, a moderate number (sometimes can be up to
200) of PCG steps is needed for solving the corresponding Newton system.
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Table 3: Same as Table 1 but for QSDP-QAP problems.

iter.a iter.b ηqsdp ηgap time

problem mE | n it (subs)|itSCB a|b a|b a|b
chr12a 232 ; 144 45 (239) | 1969 50000 9.9-7 | 2.2-6 -6.0-6 | -2.5-5 41 | 6:34

chr12b 232 ; 144 56 (324) | 2428 50000 9.9-7 | 3.7-6 -2.0-5 | -6.0-5 50 | 6:27

chr12c 232 ; 144 56 (358) | 2201 50000 9.9-7 | 4.5-6 -1.6-5 | -6.1-5 46 | 6:27

chr15a 358 ; 225 84 (648) | 2866 50000 9.9-7 | 5.7-6 -1.6-5 | -1.0-4 2:25 | 12:23

chr15b 358 ; 225 90 (584) | 4700 50000 9.9-7 | 7.3-6 -1.3-5 | -1.3-4 3:07 | 12:31

chr15c 358 ; 225 65 (425) | 2990 50000 9.9-7 | 6.8-6 -2.4-5 | -9.7-5 1:58 | 12:40

chr18a 511 ; 324 256 (1957) | 6003 50000 7.3-7 | 6.1-6 -1.8-5 | -1.3-4 14:34 | 22:26

chr18b 511 ; 324 86 (565) | 3907 50000 9.9-7 | 8.4-6 -1.8-5 | -1.6-4 5:26 | 22:19

chr20a 628 ; 400 39 (274) | 1751 4133 9.5-7 | 9.7-7 -3.3-5 | -3.4-5 4:50 | 5:46

chr20b 628 ; 400 72 (490) | 4044 50000 9.6-7 | 9.1-6 -3.7-5 | -1.4-4 12:30 | 58:57

chr20c 628 ; 400 144 (981) | 5242 50000 9.9-7 | 1.4-5 -3.1-5 | -3.1-4 21:56 | 55:41

chr22a 757 ; 484 67 (473) | 2804 50000 9.9-7 | 5.0-6 -1.0-5 | -7.6-5 13:49 | 1:21:01

chr22b 757 ; 484 69 (505) | 3581 50000 9.9-7 | 6.5-6 -1.2-5 | -1.1-4 17:12 | 1:19:48

els19 568 ; 361 43 (403) | 2437 50000 9.8-7 | 1.2-6 -4.2-6 | -8.6-6 4:39 | 1:04:08

esc16a 406 ; 256 86 (506) | 5446 50000 9.9-7 | 8.3-6 -2.5-5 | -1.3-4 4:47 | 16:54

esc16b 406 ; 256 157 (1425) | 9222 50000 9.9-7 | 1.3-5 -3.7-5 | -2.7-4 11:18 | 16:56

esc16c 406 ; 256 188 (1404) | 13806 50000 9.9-7 | 1.2-5 -4.6-5 | -3.5-4 14:29 | 16:57

esc16d 406 ; 256 101 (603) | 8043 50000 9.9-7 | 4.8-6 -1.1-5 | -7.4-5 6:13 | 16:55

esc16e 406 ; 256 110 (847) | 4286 50000 9.9-7 | 4.8-6 -1.4-5 | -5.6-5 5:50 | 16:35

esc16g 406 ; 256 85 (581) | 3818 50000 9.9-7 | 7.2-6 -2.2-5 | -9.4-5 4:23 | 16:44

esc16h 406 ; 256 228 (1732) | 11733 50000 8.6-7 | 8.6-6 -9.3-6 | -8.7-5 13:58 | 16:21

esc16i 406 ; 256 41 (307) | 3165 50000 9.6-7 | 4.6-6 -2.0-5 | -6.0-5 2:28 | 16:54

esc16j 406 ; 256 163 (1179) | 5603 50000 9.9-7 | 6.6-6 -2.0-5 | -1.0-4 8:03 | 16:24

esc32b 1582 ; 1024 80 (456) | 5026 50000 9.9-7 | 1.5-4 -2.9-5 | -5.3-4 1:53:02 | 7:42:25

esc32c 1582 ; 1024 105 (667) | 4203 50000 8.9-7 | 7.2-6 -1.0-5 | -7.3-5 2:40:09 | 7:36:49

esc32d 1582 ; 1024 141 (909) | 4852 50000 9.9-7 | 5.7-6 -8.6-6 | -6.4-5 3:09:45 | 7:19:17

had12 232 ; 144 53 (320) | 2903 50000 9.3-7 | 3.3-6 -7.2-6 | -2.7-5 55 | 6:52

had14 313 ; 196 60 (443) | 3634 50000 9.9-7 | 4.5-6 -6.3-6 | -2.8-5 1:50 | 11:21

had16 406 ; 256 208 (1616) | 7604 50000 8.1-7 | 9.9-6 -4.7-6 | -9.1-5 10:49 | 16:54

had18 511 ; 324 82 (537) | 4367 50000 9.9-7 | 9.2-6 -1.5-5 | -7.3-5 6:10 | 24:46

had20 628 ; 400 121 (848) | 5024 50000 9.5-7 | 1.0-5 -1.2-5 | -1.0-4 20:30 | 51:08

kra30a 1393 ; 900 107 (674) | 4665 50000 9.5-7 | 6.5-6 -6.7-5 | -1.7-4 1:51:20 | 7:23:56

kra30b 1393 ; 900 107 (674) | 4853 50000 9.9-7 | 6.5-6 -5.7-5 | -1.7-4 2:00:03 | 8:02:08

kra32 1582 ; 1024 106 (636) | 6875 50000 9.9-7 | 7.4-6 -3.6-5 | -1.6-4 2:47:33 | 10:28:26

lipa30a 1393 ; 900 64 (451) | 2924 50000 9.9-7 | 5.6-6 -6.8-6 | -3.1-5 1:10:12 | 6:52:34

lipa30b 1393 ; 900 257 (1918) | 7507 50000 9.9-7 | 7.0-6 -1.9-6 | -1.9-4 4:28:38 | 7:18:10

lipa40a 2458 ; 1600 51 (349) | 2193 50000 7.7-7 | 4.2-6 -2.3-6 | -2.0-5 3:03:58 | 23:53:41

lipa40b 2458 ; 1600 156 (1339) | 4750 50000 9.1-7 | 3.9-6 6.0-6 | -8.9-5 9:36:10 | 18:57:01

nug12 232 ; 144 84 (478) | 4068 50000 9.8-7 | 5.4-6 -3.0-5 | -1.1-4 1:32 | 6:34

nug14 313 ; 196 93 (610) | 4953 50000 9.7-7 | 6.9-6 -2.6-5 | -1.1-4 3:12 | 10:27

nug15 358 ; 225 102 (660) | 5627 50000 7.0-7 | 1.1-5 -2.2-5 | -1.7-4 4:12 | 12:42

nug16a 406 ; 256 86 (530) | 4945 50000 9.9-7 | 7.2-6 -2.3-5 | -1.1-4 4:39 | 18:17
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Table 3: Same as Table 1 but for QSDP-QAP problems.

iter.a iter.b ηqsdp ηgap time

problem mE | n it (subs)|itSCB a|b a|b a|b
nug16b 406 ; 256 97 (631) | 4777 50000 9.9-7 | 1.2-5 -2.5-5 | -2.0-4 5:19 | 19:06

nug17 457 ; 289 110 (772) | 5365 50000 9.9-7 | 1.3-5 -2.4-5 | -1.8-4 7:41 | 22:47

nug18 511 ; 324 85 (559) | 4367 50000 9.9-7 | 6.1-6 -3.3-5 | -9.9-5 6:10 | 26:20

nug20 628 ; 400 114 (746) | 5220 50000 9.9-7 | 8.6-6 -2.3-5 | -1.3-4 19:25 | 55:36

nug21 691 ; 441 84 (569) | 4322 50000 9.7-7 | 6.8-6 -4.0-5 | -1.1-4 18:48 | 1:09:39

nug22 757 ; 484 121 (822) | 5822 50000 9.6-7 | 8.3-6 -4.1-5 | -1.3-4 34:03 | 2:08:02

nug24 898 ; 576 89 (542) | 4345 50000 9.9-7 | 6.5-6 -3.2-5 | -1.1-4 34:08 | 3:04:07

nug25 973 ; 625 129 (860) | 5801 50000 9.9-7 | 6.9-6 -2.2-5 | -1.1-4 1:09:12 | 3:41:22

nug27 1132 ; 729 148 (951) | 8576 50000 9.9-7 | 8.3-6 -2.6-5 | -1.3-4 2:09:22 | 4:59:06

nug28 1216 ; 784 119 (758) | 6389 50000 9.7-7 | 7.8-6 -2.9-5 | -1.1-4 1:43:52 | 5:50:50

nug30 1393 ; 900 105 (777) | 4912 50000 9.9-7 | 9.3-6 -2.6-5 | -1.2-4 2:08:56 | 7:40:43

rou12 232 ; 144 78 (418) | 6600 50000 9.9-7 | 4.4-6 -2.2-5 | -9.3-5 2:13 | 6:36

rou15 358 ; 225 106 (639) | 5952 50000 9.9-7 | 5.4-6 -2.7-5 | -1.0-4 4:12 | 13:02

rou20 628 ; 400 65 (359) | 4238 50000 9.9-7 | 3.6-6 -2.5-5 | -6.1-5 11:53 | 1:00:07

scr12 232 ; 144 56 (295) | 2205 50000 9.9-7 | 3.2-6 -7.5-6 | -4.0-5 43 | 6:57

scr15 358 ; 225 121 (769) | 5730 50000 7.4-7 | 1.0-5 -2.1-5 | -1.9-4 4:39 | 12:45

scr20 628 ; 400 89 (590) | 5621 50000 9.9-7 | 8.3-6 -4.1-5 | -1.6-4 18:49 | 1:01:19

tai12a 232 ; 144 110 (807) | 6090 50000 9.9-7 | 8.9-6 -1.8-5 | -1.3-4 2:40 | 6:15

tai12b 232 ; 144 123 (856) | 6323 50000 8.6-7 | 7.3-6 -2.5-5 | -1.1-4 2:43 | 6:19

tai15a 358 ; 225 67 (405) | 4301 50000 9.4-7 | 3.0-6 -2.8-5 | -5.9-5 2:48 | 13:09

tai17a 457 ; 289 95 (569) | 6142 50000 9.9-7 | 3.8-6 -2.0-5 | -6.5-5 6:33 | 19:23

tai20a 628 ; 400 87 (498) | 4762 50000 9.7-7 | 3.0-6 -2.2-5 | -5.4-5 15:00 | 1:00:55

tai25a 973 ; 625 25 (138) | 3438 10084 9.9-7 | 9.9-7 9.4-6 | -1.5-5 17:46 | 47:55

tai25b 973 ; 625 164 (1219) | 7803 50000 9.8-7 | 1.4-5 -4.8-5 | -2.6-4 1:33:02 | 3:33:13

tai30a 1393 ; 900 97 (546) | 4270 50000 7.8-7 | 2.8-6 -1.4-5 | -4.1-5 1:22:01 | 7:21:02

tai30b 1393 ; 900 162 (1229) | 6845 50000 9.9-7 | 1.2-5 -3.3-5 | -2.1-4 3:10:41 | 7:21:29

tai35a 1888 ; 1225 95 (537) | 5781 50000 9.9-7 | 2.8-6 -9.2-6 | -3.5-5 3:34:56 | 15:04:40

tai35b 1888 ; 1225 152 (1195) | 5303 50000 9.6-7 | 1.2-5 -3.8-5 | -1.9-4 5:56:59 | 13:37:28

tai40a 2458 ; 1600 79 (398) | 6381 50000 9.1-7 | 3.0-6 -1.7-5 | -3.4-5 6:01:56 | 23:07:21

tho30 1393 ; 900 116 (761) | 5468 50000 8.9-7 | 8.0-6 -3.1-5 | -1.3-4 2:15:55 | 7:39:54

tho40 2458 ; 1600 122 (762) | 3834 50000 9.9-7 | 7.4-6 -2.9-5 | -1.0-4 6:28:52 | 26:40:25

6.4 Evaluation of Qsdpnal on instances generated from sensor network local-
ization problems

We also test the QSDP problems arising from the following sensor network localization problems
with m anchors and l sensors:

minu1,...,ul∈<d

{
1
2

∑
(i,j)∈N

(
‖ui − uj‖2 − d2

ij

)2 | ‖ui − ak‖2 = d2
ik, (i, k) ∈M

}
, (38)

where the location of each anchor ak ∈ <d, k = 1, . . . ,m is known, and the location of each
sensor ui ∈ <d, i = 1, . . . , l, is to be determined. The distance measures {dij | (i, j) ∈ N}
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and {dik | (i, k) ∈ M} are known pair-wise distances between sensor-sensor pairs and sensor-
anchor pairs, respectively. Note that our model (38) is a variant of the model studied in [3]. Let
U = [u1 u2 . . . ul] ∈ <d×l be the position matrix that needs to be determined. We know that

‖ui − uj‖2 = eTijU
TUeij , ‖ui − ak‖2 = aTik[U Id]

T [U Id]aik,

where eij = ei − ej and aik = [ei;−ak]. Here, ei is the ith unit vector in <l, and Id is the d × d
identity matrix. Let gik = aik for (i, k) ∈M, gij = [eij ; 0m] for (i, j) ∈ N , and

V = UTU, X = [V UT ;U Id] ∈ S(d+l)×(d+l).

Following the same approach in [3], we can obtain the following QSDP relaxation model with a
regularization term for (38)

min 1
2

∑
(i,j)∈N

(
gTijXgij − d2

ij

)2 − λ〈In+d − aaT , X〉

s.t. gTikXgik = d2
ik, (i, k) ∈M, X � 0,

(39)

where λ is a given positive regularization parameter, a = [ê; â] with ê = e/
√
l +m and â =∑m

k=1 ak/
√
l +m. Here e ∈ <n is the vector of all ones.

The test examples are generated in the following manner. We first randomly generate l points
{x̂i ∈ <d | i = 1, . . . , l} in [−0.5, 0.5]d. Then, the edge set N is generated by considering only pairs
of points that have distances less than a given positive number R, i.e.,

N = {(i, j) | ‖ûi − ûj‖ ≤ R, 1 ≤ i < j ≤ l}.

Given m anchors {ak ∈ <d | k = 1, . . . ,m}, the edge set M is similarly given by

M = {(i, k) | ‖ûi − ak‖ ≤ R, 1 ≤ i ≤ l, 1 ≤ k ≤ m}.

We also assume that the observed distances dij are perturbed by random noises εij as follows:

dij = d̂ij |1 + τεij |, (i, j) ∈ N ,

where d̂ij is the true distance between point i and j, εij are assumed to be independent standard
Normal random variables, τ is the noise parameter. For the numerical experiments, we generate
10 instances where the number of sensors l ranges from 250 to 1500 and the dimension d is set to
be 2 or 3. We set the noise factor τ = 10%. The 4 anchors for the two dimensional case (d = 2)
are placed at

(±0.3,±0.3),

and the positions of the anchors for the three dimensional case (d = 3) are given by 1/3 2/3 2/3 1/3
1/3 2/3 1/3 2/3
1/3 1/3 2/3 2/3

− 0.5E,

where E is the 3× 3 matrix of all ones.
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Table 4: Same as Table 1 but for the sensor network localization prob-
lems (dual of (39)).

iter.a iter.b ηqsdp ηgap time

d mE | n | R it (subs)|itSCB a|b a|b a|b
2 452 | 252 | 0.50 12 (74) | 652 24049 7.1-7 | 9.9-7 -9.0-7 | 6.8-7 47 | 6:10

2 548 | 502 | 0.36 12 (62) | 1000 12057 7.6-7 | 9.9-7 -9.2-6 | -9.1-6 1:49 | 17:25

2 633 | 802 | 0.28 17 (85) | 1000 27361 3.0-7 | 9.9-7 -2.4-6 | -9.9-6 5:42 | 1:59:16

2 684 | 1002 | 0.25 17 (94) | 1000 50000 4.1-7 | 1.4-5 -2.6-6 | -3.0-7 10:18 | 6:16:37

2 781 | 1502 | 0.21 21 (104) | 1000 50000 3.6-7 | 9.5-4 -6.3-6 | 5.1-3 23:05 | 13:47:39

2 774 | 2002 | 0.18 29 (156) | 1000 50000 7.3-7 | 2.1-3 -3.8-6 | 1.4-2 49:53 | 23:20:28

3 395 | 253 | 0.49 11 (31) | 408 1487 9.8-7 | 9.7-7 -1.4-6 | 1.3-7 06 | 18

3 503 | 503 | 0.39 14 (61) | 877 7882 3.5-7 | 9.9-7 -1.1-6 | 2.5-6 1:46 | 7:18

3 512 | 803 | 0.33 15 (85) | 1000 10579 7.7-7 | 9.9-7 -1.3-6 | 4.2-7 7:13 | 26:15

3 513 | 1003 | 0.31 16 (71) | 1000 14025 2.5-7 | 9.9-7 -7.6-7 | 4.2-6 8:46 | 1:02:07

3 509 | 1503 | 0.27 19 (83) | 1000 23328 8.6-7 | 9.9-7 -4.5-6 | 7.2-6 28:34 | 4:13:07

3 505 | 2003 | 0.24 19 (97) | 1000 50000 9.5-7 | 3.3-4 -1.4-5 | -3.7-4 49:28 | 16:45:24

Let Ni = {p | (i, p) ∈ N} be the set of neighbors of the ith sensor. To further test our algorithm
Qsdpnal, we also generate the following valid inequalities and add them to problem (38)

‖ûi − ûj‖ ≥ R, ∀ (i, j) ∈ N̂ ,

where N̂ =
⋃n
i=1{(i, j) | j ∈ Np\Ni for some p ∈ Ni}. Then, we obtain the following QSDP

relaxation model
min 1

2

∑
(i,j)∈N

(
gTijXgij − d2

ij

)2 − λ〈In+d − aaT , X〉

s.t. gTikXgik = d2
ik, (i, k) ∈M,

gTijXgij ≥ R2, (i, j) ∈ N̂ , X � 0.

(40)

In Tables 4 and 5, we present the numerical results for Qsdpnal and Qsdpnal-Phase I in
solving some instances of problem (39) and (40), respectively. Clearly, Qsdpnal outperforms the
purely first-order algorithm Qsdpnal-Phase I by a significant margin. This superior numerical
performance of Qsdpnal over Qsdpnal-Phase I again demonstrates the importance and necessity
of our proposed two-phase framework.

Table 5: Same as Table 1 but for the sensor network localization prob-
lems (dual of (40)).

iter.a iter.b ηqsdp ηgap time

d mE ;mI | n | R it (subs)|itSCB a|b a|b a|b
2 452 ; 14402 | 252 | 0.50 15 (119) | 603 50000 6.4-7 | 1.9-6 -9.1-7 | -5.1-8 1:50 | 24:28

2 548 ; 55849 | 502 | 0.36 16 (180) | 1357 29565 4.4-7 | 9.9-7 -2.2-7 | -2.3-6 11:28 | 1:09:24

2 633 ; 118131 | 802 | 0.28 15 (226) | 2330 36651 6.3-7 | 9.9-7 -2.4-6 | -5.4-6 1:06:04 | 3:43:51

2 684 ; 160157 | 1002 | 0.25 20 (265) | 3384 50000 4.5-7 | 2.7-6 -1.7-6 | 2.2-6 2:36:41 | 8:30:28

2 724 ; 201375 | 1202 | 0.23 21 (487) | 3115 50000 9.8-7 | 3.8-6 5.2-6 | -2.8-6 6:36:28 | 11:57:56

3 395 ; 16412 | 253 | 0.49 12 (88) | 471 2897 3.1-7 | 9.8-7 -3.3-7 | -5.7-7 46 | 1:18

3 503 ; 53512 | 503 | 0.39 14 (136) | 949 11003 4.4-7 | 9.9-7 -9.9-7 | -3.1-7 8:23 | 20:26
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Table 5: Same as Table 1 but for the sensor network localization prob-
lems (dual of (40)).

iter.a iter.b ηqsdp ηgap time

d mE ;mI | n | R it (subs)|itSCB a|b a|b a|b
3 512 ; 104071 | 803 | 0.33 17 (145) | 1762 14144 6.6-7 | 9.9-7 -2.6-6 | 6.0-7 32:17 | 1:09:10

3 513 ; 139719 | 1003 | 0.31 21 (198) | 2406 31832 5.1-7 | 9.9-7 8.4-8 | 4.5-8 1:18:56 | 4:48:04

3 526 ; 180236 | 1203 | 0.29 21 (250) | 2639 19010 8.3-7 | 9.9-7 -3.8-8 | 1.1-5 2:15:54 | 4:16:09

7 Conclusions

We have designed a two-phase augmented Lagrangian based method, called Qsdpnal, for solving
large scale convex quadratic semidefinite programming problems. The global and local convergence
rate analysis of our algorithm is based on the classic results of proximal point algorithms [25,
26], together with the recent advances in second order variational analysis of convex composite
quadratic semidefinite programming [7]. By devising novel numerical linear algebra techniques, we
overcome various challenging numerical difficulties encountered in the efficient implementation of
Qsdpnal. Numerical experiments on various large scale QSDPs have demonstrated the efficiency
and robustness of our proposed two-phase framework in obtaining accurate solutions. Specifically,
for well-posed problems, our Qsdpnal-Phase I is already powerful enough and it is not absolutely
necessary to execute Qsdpnal-Phase II. On the other hand, for more difficult problems, the purely
first-order Qsdpnal-Phase I algorithm may stagnate because of extremely slow local convergence.
In contrast, with the activation of Qsdpnal-Phase II which has second order information wisely
incorporated, our Qsdpnal algorithm can still obtain highly accurate solutions efficiently.

Appendix

Along with the paper, we provide a Matlab implementation of our algorithm. The software
package has been issued the Digital Object Identifier doi: 10.5281/zenodo.1206980. Here, as a
short users’ guide, we present some general description of the structure of our software.

Installation. Qsdpnal is a Matlab software package developed under Matlab version 8.0 or
above. It includes some C subroutines written to carry out certain operations for which Matlab
is not efficient at. These subroutines are called within Matlab via the Mex interface. The user
can simply follow the steps below to install Qsdpnal within Matlab:

(a) unzip QSDPNAL+v0.1.zip;

(b) run Matlab in the directory QSDPNAL+v0.1;

After that, to see whether you have installed Qsdpnal correctly, try the following steps:

>> startup

>> qsdpdemo

In the above, startup.m sets up the paths for Qsdpnal in Matlab and qsdpdemo.m is a demo
file illustrating how to solve a QSDP problem (31) in Qsdpnal.
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Copyright. Qsdpnal: A Matlab software for convex quadratic semidefinite programming with
inequality, equality and bound constraints, is copyrighted in 2016 by Xudong Li, Defeng Sun and
Kim-Chuan Toh. The software Qsdpnal is distributed under the GNU General Public License 2.0.
You can redistribute it and/or modify it under the terms of the GNU General Public License 2.0
as published by the Free Software Foundation Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. For commercial applications that may be incompatible with this license, please
contact the authors to discuss alternatives. This software is distributed in the hope that it will be
useful, but without any warranty; without even the implied warranty of merchantability or fitness
for a particular purpose. See the GNU General Public License for more details.

Main function and data structure. Qsdpnal is an extension of the solvers Sdpnal [34] and
Sdpnal+ [33]. The internal implementation of Qsdpnal thus follows in part the data structures
and design framework of the above two solvers. A casual user does not need to understand the
internal implementation of Qsdpnal.

In the Qsdpnal solver, the main routine is qsdpnal.m, whose calling syntax is as follows:

[obj,Z,W,QW,S,yE,yI,X,runhist,info] = qsdpnal(blk,Q,AEt,bE,C,AIt,bI,options)

Input arguments.

• blk: a cell array describing the conic structure of the QSDP problem.

• Q, AEt, bE, C, AIt, bI: data of QSDP problem (31). If the linear map AI is not present,
one can set AIt = [], bI = [].

• options: a structure array of parameters.

Output arguments. The names chosen for the output arguments explain their contents. The
argument X is a solution to problem (31) up to the desired accuracy tolerance. The argument info
is a structure array which records various performance measures of the solver. For example

info.etaZ, info.etaI1, info.etaI2, info.etaI3

correspond to the measures ηZ , ηI1 , ηI2 and ηI3 defined in (35), respectively. The argument runhist
is a structure array which records the history of various performance measures during the course
of running qsdpnal. For example,

runhist.primobj, runhist.dualobj, runhist.primfeasorg, runhist.dualfeasorg

record the primal and dual objective values, primal and dual infeasibilities at each iteration, re-
spectively.

Data structure. The format of the input data in Qsdpnal is similar to those in Sdpnal [34]
and Sdpnal+ [33]. For problem (31), we set

blk{1,1} = ’s’, blk{1,2} = n,

Q.QXfun = @(X) some function handle output QX,

AEt = [n̄×mE sparse], AIt = [n̄×mI sparse],

C = [n× n double or sparse],
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where n̄ = n(n + 1)/2 and the self-adjoint linear operator Q is stored as a function handle which
takes any matrix X ∈ Sn as input and output the matrix QX ∈ Sn. For the sake of computational
efficiency, following the same approach used in Sdpnal [34] and Sdpnal+ [33], we store the linear
map AE in vectorized form as a single n̄ ×mE matrix AEt. The same procedure also applies to
the linear operator AI , i.e., AIt is stored in the same format as AEt. The data of the simple
nonempty closed convex polyhedral set K is encoded in the argument options. For example, if
K = {X ∈ Sn | L ≤ X ≤ U} with L,U ∈ Sn being given matrices, we set

options.L = [matrix L, sparse or double],

options.U = [matrix U, sparse or double ].

The default is options.L = [], options.U = []. If K = {X ∈ Sn | X ≥ 0}, then one can
simply set options.nonnegative = 1.

Apart from the information of K, various other parameters used in our solver qsdpnal.m are
set in the structure array options. We list here the important parameters which the user is likely
to reset.

• options.stoptol: accuracy tolerance to terminate the algorithm, default is 10−6.

• options.maxiter: maximum number of iterations allowed, default is 5000.

• options.sGSstoptol: accuracy tolerance to use for Qsdpnal-Phase I (SCB qsdp.m) when
generating a starting point for the algorithm in the second phase of qsdpnal.m (default =
10−4).

• options.sGSmaxiter: maximum number of Qsdpnal-Phase I iterations allowed for gener-
ating a starting point (default = 1500).

Examples. Next, we present two examples of using Qsdpnal for solving two QSDP problems
in detail. The segment below illustrates how one can solve the instance be250.2 of QSDP-BIQ
problems.

>> G = biqread([’be250 .2. sparse ’]);

>> [blk ,AEt ,C,bE ,AIt ,bI] = biq_sqsdp(G,3);

>> Q.QXfun = @(X) randQXfun(X,blk {1 ,2});

>> options.nonnegative = 1;

>> [obj ,Z,W,QW ,S,yE ,yI ,X,runhist ,info] = ...

qsdpnal(blk ,Q,AEt ,bE ,C,AIt ,bI ,options );

The next example is using qsdpnal.m to solve the instance chr15c of QSDP-QAP problems.

>> [AA ,BB] = qapread([’chr15c.dat ’]);

>> [blk ,AEt ,C,bE] = qapAW(AA ,BB ,2);

>> AEt = AEt {1}; C = C{1}; AIt = []; bI = [];

>> options.nonnegative = 1;

>> Q.QXfun = @(X) randQXfun(X,blk {1 ,2});

>> [obj ,Z,W,QW ,S,yE ,yI ,X,runhist ,info] = ...

qsdpnal(blk ,Q,AEt ,bE ,C,AIt ,bI ,options );

In the above codes, randQXfun generates the self-adjoint positive semidefinite linear operator Q in
(37) with randomly generated matrices A,B ∈ Sn+.
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