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Abstract

In this paper, we describe a comprehensive algorithmic framework for solving mixed integer
bilevel linear optimization problems (MIBLPs) using a generalized branch-and-cut approach.
The framework presented merges features from existing algorithms (for both traditional mixed
integer linear optimization and MIBLPs) with new techniques to produce a flexible and robust
framework capable of solving a wide range of bilevel optimization problems. The framework
has been fully implemented in the open-source solver MibS. The paper describes the algorithmic
options offered by MibS and presents computational results evaluating the effectiveness of the
various options for the solution of a number of classes of bilevel optimization problems from the
literature.

1 Introduction

This paper describes an algorithmic framework for the solution of mixed integer bilevel linear
optimization problems (MIBLPs) and MibS, its open-source software implementation. MIBLPs
comprise a difficult class of optimization problems that arise in applications in which multiple,
possibly competing decision-makers (DMs), make a sequence of decisions over time. For an ever-
increasing array of such applications, the traditional framework of mathematical optimization,
which assumes a single DM with a single objective function making a decision at a single point in
time, is inadequate.
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The motivation for the development of MibS, which was begun a decade ago, is both to serve as
an open test bed for new algorithmic ideas and to provide a platform for solution of the wide
variety of practical problems of this type currently coming under scientific study. The modeling
framework underlying MibS is that of multilevel optimization. Multilevel optimization problems
model applications in which decisions are made in a sequence, with decisions made earlier in the
sequence affecting the options available later in the sequence. Under the assumption that all DMs
are rational and have complete information about their own and each other’s models and input
data (there is no stochasticity), we can describe such problems formally using the language of
mathematical optimization. To do so, we consider a set of decision variables, partitioned into
subsets associated with individual DMs. Conceptually, these sets of decision variables are ordered
according to the sequence in which decisions are to be made. We use the term level (or stage, in
some contexts) to denote each DM’s position in the sequence. The term is intended to conjure up a
hierarchy in which decisions flow from top to bottom, so decisions earlier in the sequence are said to
be “at a higher level.” The decisions made by higher-level DMs influence those of lower-level DMs
through a parametric dependence of the lower-level decision problems on higher-level decisions.
Thus, higher-level decisions must be made taking into account the effect those decisions will have
on lower-level decisions, which in turn impact the objective value of the higher-level solution.

The decision hierarchy of a national government provides an archetypal example. The national
government makes decisions about tax rates or subsidies that in turn affect the decisions of state and
local governments, which finally affect the decisions of individual taxpayers. Since later decisions
affect the degree to which the national government achieves its original objective, the decisions at
that higher level must be made in light of the reactions of lower-level DMs to those decisions (Bard,
1998).

Thanks to the steady improvement in solution methodologies for traditional optimization prob-
lems and the availability of open-source solvers (COIN-OR), the development of practical solution
methods for MIBLPs has become more realistic. The availability of practical solution methods has
in turn driven an accompanying increase in demand for such methodologies. The literature is now
replete with applications requiring the solution of such models (Salmeron et al., 2004; Bienstock
and Verma, 2010; Zhang et al., 2016; Gao and You, 2017). In the remainder of this section, we
introduce the basic framework of bilevel optimization.

1.1 Mixed Integer Bilevel Optimization

In this section, we formally introduce MIBLPs, the class of multilevel optimization problem in
which we have only two levels and two associated DMs. The decision variables of an MIBLP are
partitioned into two subsets, each conceptually controlled by one of the DMs. We generally denote
by x the variables controlled by the first-level DM or leader and require that the values of these
variables be contained in the set X = Zr1

+ ×Rn1−r1
+ representing integrality constraints. We denote

by y the variables controlled by the second-level DM or follower and require the values of these
variables to be in the set Y = Zr2

+ × Rn2−r2
+ . Throughout the paper, we refer to a sub-vector of

x ∈ Rn1 indexed by a set K ⊆ {1, . . . , n1} as xK (and similarly for sub-vectors of y ∈ Rn2).

The general form of an MIBLP is
min
x∈X
{cx+ Ξ(x)} , (MIBLP)
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where the function Ξ is a risk function that encodes the part of the objective value of x that depends
on the response to x in the second level. This function may have different forms, depending on
the precise variant of the bilevel problem being solved. In this paper, we focus on the so-called
optimistic case (Loridan and Morgan, 1996), in which

Ξ(x) = min
{
d1y

∣∣ y ∈ P1(x), y ∈ argmin{d2y
∣∣ y ∈ P2(x) ∩ Y }

}
, (RF-OPT)

where
P1(x) =

{
y ∈ Rn2

+

∣∣ G1y ≥ b1 −A1x
}

is a parametric family of polyhedra containing points satisfying the linear constraints of the first-
level problem with respect to a given x ∈ Rn1 and

P2(x) =
{
y ∈ Rn2

+

∣∣ G2y ≥ A2x
}

is a second parametric family of polyhedra containing points satisfying the linear constraints of
the second-level problem with respect to a given x ∈ Rn1 . The input data is A1 ∈ Qm1×n1 ,
G1 ∈ Qm1×n2 , b1 ∈ Qm1 , A2 ∈ Qm2×n1 and G2 ∈ Qm2×n2 . As is customary, we define Ξ(x) =∞ in
the case of either x /∈ X or infeasibility of the problem on the right-hand side of (RF-OPT).

Note that it is typical in the literature on bilevel optimization for the parametric right-hand side
of the second-level problem to include a fixed component, i.e., to be of the form b2 −A2x for some
b2 ∈ Qm2

. The form introduced here is more general, since adding a constraint x1 = 1 to the upper
level problem results in a problem equivalent to the usual one. The advantage of the form here
is that it results in a risk function that is subadditive in certain important cases (though not in
general), a desirable property for reasons that are beyond the scope of this paper.

As we mentioned above, other variants of the risk function are possible and the algorithm we present
can be adapted to these cases (see Section 3.3). A pessimistic risk function can be obtained simply
by considering

Ξ(x) = max
{
d1y

∣∣ y ∈ P1(x), y ∈ argmin{d2y
∣∣ y ∈ P2(x) ∩ Y }

}
. (RF-PES)

Note that according to this definition, the second-level solution y is required to be a member of
P1(x) (i.e., be feasible for the upper-level constraints), though there could exist y ∈ argmin{d2y |
y ∈ P2(x) ∩ Y } \ P1(x). Allowing such second-level solutions to be chosen is also possible and can
be accommodated within the framework of (RF-PES) by the addition of dummy variables at the
first level. The details are beyond the scope of this paper.

It should be pointed out that we explicitly allow the second-level variables to be present in the
first-level constraints. This allowance is rather non-intuitive and leads to many subtle algorithmic
complications. Nevertheless, there are applications in which it is necessary to allow this and since
MibS does allow this possibility, we felt it appropriate to express the results in this full generality.
The reader should keep in mind, however, that many of the ideas discussed herein can be simplified
in the more usual case that G1 = 0 and we endeavor to point this out in particular cases.

Note that the formulation (MIBLP) does not explicitly involve the second-level variables. The
reason for expressing the formulation in this way is to emphasize two things. First, it emphasizes
that the goal of solving (MIBLP) is to determine the optimal values of the first-level variables only.
Thus, we would ideally like to “project out” the second-level variables. In contrast to the Benders
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method for traditional optimization problems, however, the second-level variables are re-introduced
in solving the relaxation that we employ in our branch-and-cut algorithm (see Section 2.1). Second,
it is necessary at certain points in the algorithm to evaluate Ξ(x), and it is convenient to give it an
explicit form here to make this step clearer.

MIBLPs also have an alternative formulation that employs the value function of the second-level
problem and explicitly includes the second-level variables. This formulation is given by

min
{
cx+ d1y

∣∣ x ∈ X, y ∈ P1(x) ∩ P2(x) ∩ Y, d2y ≤ φ(A2x)
}
, (MIBLP-VF)

where φ is the so-called value function of the second-level problem, which is a standard mixed integer
linear optimization problem (MILP). The value function returns the optimal value of second-level
problem for a given right-hand side, defined by

φ(β) = min
{
d2y

∣∣ G2y ≥ β, y ∈ Y
}
∀β ∈ Rm2 . (VF)

From this alternative formulation, it is evident that if the values of the first-level variables are fixed
in (MIBLP-VF) (i.e., the constraints imply that their values must be constant), then the problem
of minimizing over the remaining variables is an MILP. In fact, it is not difficult to observe that
only the first-level variables having non-zero coefficients in the second-level constraints need be
fixed in order for φ(A2x) to be rendered a constant and for (MIBLP-VF) to reduce to an MILP.
This result is stated formally in Section 2.2. Because of their central importance in what follows,
we formally define the concept of linking variables.

Definition 1 (Linking Variables). Let

L =
{
i ∈ {1, . . . , n1}

∣∣ A2
i 6= 0

}
,

be the set of indices of first-level variables with non-zero coefficients in the second-level problem,
where A2

i denotes the ith column of matrix A2. We refer to such variables as linking variables.

Per our earlier notation, xL is the sub-vector of x ∈ Rn1 corresponding to the linking variables.
By assuming all linking variables are integer variables, we assure the existence of an optimal solu-
tion (Vicente et al., 1996).

Assumption 1. L = {1, . . . , k1} for k1 ≤ r1.

We note here that it can in fact be assumed without loss of generality that k1 = r1 by simply
moving the non-linking variables to the second level. While this is conceptually inconsistent with
the intent of the original model, it is not difficult to see that the resulting model is mathematically
equivalent.

In what follows, it will be convenient to refer to the set

P =
{

(x, y) ∈ Rn1×n2
+

∣∣ y ∈ P1(x) ∩ P2(x)
}

of all points satisfying the non-negativity and linear inequality constraints at both levels and the
set

S = P ∩ (X × Y )

of points in P that also satisfy integrality restrictions.
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Assumption 2. P is bounded.

This assumption is made to simplify the exposition, but is easy to relax in practice. Corresponding
to each x ∈ Rn1 with xL ∈ ZL, we have the rational reaction set, which is defined by

R(x) = argmin
{
d2y

∣∣ y ∈ P2(x) ∩ Y
}
.

This set may be empty either because P2(x) ∩ Y is itself empty or because there exists r ∈ Rn2
+

such that G2r ≥ 0 and d2r < 0 (in which case the second-level problem is unbounded no matter
what first-level solution is chosen). The latter case can be easily detected in a pre-processing step,
so we assume w.l.o.g. that this does not occur (note that this case cannot occur when G1 = 0,
since Assumption 2 would then imply that

{
r ∈ Rn2

+ \ 0
∣∣ G2r ≥ 0

}
= ∅).

Assumption 3.
{
r ∈ Rn2

+

∣∣ G2r ≥ 0, d2r < 0
}

= ∅.

Under our assumptions, the bilevel feasible region (with respect to the first- and second-level vari-
ables in (MIBLP-VF)) is

F = {(x, y) ∈ X × Y | y ∈ P1(x) ∩R(x)}

and members of F are called bilevel feasible solutions. Although the ostensible goal of solv-
ing (MIBLP) is to determine x ∈ X minimizing cx+ Ξ(x), this is equivalent to finding a member
of F that optimizes the first-level objective function cx + d1y. Observe, however, that by this
definition of feasibility, we may have x∗ ∈ X that is optimal for (MIBLP), while for some ŷ ∈ Y ,
(x∗, ŷ) ∈ F but Ξ(x∗) < d1ŷ.

Because we consider the problem to be that of determining the optimal first-level solution, it is also
useful to denote the feasible set with respect to first-level variables only as

F1 = projx(F).

For x ∈ X, we have that

x ∈ F1 ⇔ x ∈ projx(F)⇔ R(x) ∩ P1(x) 6= ∅ ⇔ Ξ(x) <∞

and we say that x ∈ Rn1 is feasible if x ∈ F1. We can then interpret the conditions for bilevel
feasibility of (x, y) as consisting of the following two properties of the first- and second-level parts
of the solution independently.

Feasibility Condition 1. x ∈ F1.

Feasibility Condition 2. y ∈ P1(x) ∩R(x).

We exploit this notion of feasibility later in our algorithm.

A related set (see Figure 1) is the set of feasible solutions to the bilevel linear optimization problem
(BLP) that results from discarding the integrality restrictions, defined as

FLP =
{

(x, y) ∈ Rn1×n2
+

∣∣ y ∈ P1(x) ∩RLP(x)
}
,

where
RLP(x) = argmin

{
d2y

∣∣ y ∈ P2(x)
}
.

Note that we do not have in general that F ⊆ FLP, as discussed later in Section 1.3.
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1.2 Special Cases

There are a number of cases for which MibS has specialized methods. One of the most important
special cases is the zero sum case in which d1 = −d2. The mixed integer interdiction problem
(MIPINT) is a specific subclass of zero sum problem in which the first-level variables are binary
and are in one-to-one correspondence with the second-level variables (n = n1 = n2). When a first-
level variable is fixed to one, this prevents the associated variable in the second-level problem from
taking a non-zero value. The interdiction problem can be formulated as (Israeli, 1999; DeNegre,
2011)

min
{
d1y

∣∣ x ∈ PINT
1 ∩ Bn, y ∈ argmax{d1y

∣∣ y ∈ PINT
2 (x) ∩ Y }

}
, (MIPINT)

where
PINT
1 =

{
x ∈ Rn

+

∣∣ A1x ≥ b1
}
,

PINT
2 (x) =

{
y ∈ Rn

+

∣∣ G2y ≥ b2, y ≤ diag(u)(e− x)
}
,

e represents an n-dimensional vector of ones and ui ∈ R denotes the upper bound of yi for i =
1, ..., n. The special structure of MIPINTs can be employed to develop specialized methods for
these problems.

1.3 Computational Challenges

From the point of view of both theory and practice, bilevel problems are difficult to solve. From the
perspective of complexity theory, the problem is NP-hard even for the case in which all variables
are continuous (r1 = r2 = 0). The general case is in the class Σp

2-hard (Jeroslow, 1985), which is
the class of problems that can be solved in non-deterministic polynomial time, given an NP oracle.
To put it in terms that are a little less formal, these are problems for which even the problem of
checking feasibility of a given point in X × Y is complete for NP in general. Alternatively, simply
computing Ξ(x) for x ∈ X (determining its objective function value), is also NP-hard.

Because determining whether a given solution is feasible is an NP-complete problem, solution of
MIBLPs is inherently more difficult than solution of the more familiar case of MILP (equivalent
to the case of L = ∅). Search algorithms for MILPs rely on a certain amount of algorithmically
guided “luck” to find high-quality solutions quickly. This works reasonably well in this simpler case
because checking feasibility of any given solution is efficient. In the case of MIBLPs, we cannot rely
on this property and even if we are lucky enough to get a high-quality first-level solution, checking
its feasibility is still a difficult problem. Furthermore, some of the properties whose exploitation
we depend on in the case of MILP do not straightforwardly generalize to the MIBLP case. For
example, removing the integrality requirement for all variables does not result in a relaxation, since
relaxing the second-level problem may make solutions that were previously feasible infeasible. In
fact, as we mentioned earlier, the feasible region FLP of this BLP does not necessarily even contain
the feasible region F of (MIBLP). Thus, even if the solution to this BLP is in X × Y , it is not
necessarily optimal for (MIBLP). These properties can be seen in Figure 1, which displays a well-
known example originally from Moore and Bard (1990) that is well-suited for illustrating these
concepts.
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 optimal solution

1 2 3 4 5 6 7 8

1

2

3

4

5

objective
F

x

y

FLP

min
x∈Z+

− x− 10y

s.t. y ∈ argmin {y :

−25x+ 20y ≤ 30

x+ 2y ≤ 10

2x− y ≤ 15

2x+ 10y ≥ 15

y ∈ Z+ }

Figure 1: The feasible region of IBLP (Moore and Bard, 1990).

1.4 Previous Work

Bilevel optimization has its roots in game theory and the general class of problems considered
in this paper are a type of Stackelberg game. The Stackelberg game was studied in a seminal
work by Von Stackelberg (1934). The first bilevel optimization formulations in the form presented
here were introduced and the term was coined in the 1970s by Bracken and McGill (1973), but
computational aspects of related optimization problems have been studied since at least the 1960s
(see, e.g., Wollmer (1964)). Study of algorithms for the case in which integer variables appear is
generally acknowledged to have been launched by Moore and Bard (1990), who initiated working
on general MIBLPs and discussed the computational challenges of solving them. They proposed a
branch-and-bound algorithm for solving MIBLPs which is guaranteed to converge if all first-level
variables are integer or all second-level variables are continuous.

Until recently, most computational work focused on special cases with exploitable structure. Bard
and Moore (1992), Wen and Huang (1996) and Fáısca et al. (2007) studied the bilevel problems
with binary variables. Bard and Moore (1992) proposed an exact algorithm for integer bilevel
optimization problems (IBLPs) in which all variables are binary. Wen and Huang (1996), on the
other hand, considered MIBLPs with binary first-level variables and continuous second-level ones
and suggested a tabu search heuristic for generating solutions to these problems. Fáısca et al.
(2007) concentrated on MIBLPs in which all discrete variables are constrained to be binary. They
reformulated the second-level problem as a multi-parametric problem with the first-level variables
as parameters.

DeNegre and Ralphs (2009) and DeNegre (2011) generalized the existing framework of branch and
cut, which is the standard approach for solving MILPs, to the case of IBLPs by introducing the
integer no-good cut to separate bilevel infeasible solutions from the convex hull of bilevel feasible
solutions (see Section 2.4). They also initiated development of the open-source solver MibS. Xu
and Wang (2014) focused on problems in which all first-level variables are discrete and suggested
a multi-way branch-and-bound algorithm in which branching is done on the slack variables of the
second-level problem. A decomposition algorithm based on column-and-constraint generation was
employed by Zeng and An (2014) for solving general MIBLPs. Their method finds the optimal
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solution if it is attainable, otherwise it finds an ε-optimal solution. Caramia and Mari (2015)
introduced a non-linear cut for IBLPs and suggested a method of linearizing this cut by the addition
of auxiliary binary variables. Furthermore, they introduced a branch-and-cut algorithm for IBLPs
which employs the integer no-good cut from (DeNegre and Ralphs, 2009). Knapsack interdiction
problems were studied by Caprara et al. (2016) and they proposed an exact algorithm for these
problems. Hemmati and Smith (2016) formulated competitive prioritized set covering problem as
an MIBLP and proposed a cutting plane algorithm for solving it. Wang and Xu (2017) proposed
the watermelon algorithm for solving IBLPs, which removes bilevel infeasible solutions that satisfy
integrality constraints by a non-binary branching disjunction. Lozano and Smith (2017) employed
a single-level value function reformulation for solving the MIBLPs in which all first-level variables
are integer. Fischetti et al. (2018) suggested a branch-and-cut algorithm for MIBLPs employing a
class of intersection cuts valid for MIBLPs under mild assumptions and developed a new family
of cuts for the MIBLPs with binary first-level variables. In (Fischetti et al., 2017), they extended
their algorithm by suggesting new types of intersection cuts and introduced the so-called hypercube
intersection cut, valid for MIBLPs in which the linking variables are discrete. Finally, Mitsos
(2010) and Kleniati and Adjiman (2014a,b) considered the more general case of mixed integer
bilevel non-linear optimization.

1.5 Overview of Branch and Cut

Branch and cut (a term coined by Padberg and Rinaldi (1987, 1991)) is a variant of the well-known
branch-and-bound algorithm of Land and Doig (1960), the most widely-used algorithm for solving
many kinds of non-convex optimization problems. For purposes of illustration, we consider here
the solution of the general optimization problem

min
x∈X

f(x), (GO)

where X ⊆ Rn is the feasible region and f : Rn → R is the objective function.

The approach of both the branch-and-bound and the branch-and-cut algorithms is to search the fea-
sible region by partitioning it and then recursively solving the resulting subproblems. Implemented
naively, this results in an inefficient complete enumeration. This potential inefficiency is avoided
by utilizing upper and lower bounds computed for each subproblem to intelligently “prune” the
search. The recursive partitioning process can be envisioned as a process of searching a rooted tree,
each of whose nodes corresponds to a subproblem. The root of the tree is the node corresponding
to the original problem (sometimes called the root problem) and the nodes adjacent to it are its
children. The parent-child relationship applies to other nodes connected along paths in the tree in
the obvious way. Nodes with no children are called leaf nodes. Henceforth, we denote the set of all
leaf nodes in the current search tree by T .

Although it is not usually described this way, we consider the algorithm as a method for iteratively
removing parts of the feasible region of the given relaxation that can be proven not to contain
any improving feasible solutions (feasible solutions that are better than the best solution found
so far) until no more such regions can be found. Although most sophisticated branch-and-bound
algorithms for optimization do implicitly discard parts of the feasible region that can be shown to
contain only suboptimal solutions, the algorithm we present does this more explicitly. The removal
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is done either by branching (partitioning the remaining set of improving solutions to define smaller
subproblems) or cutting (adding inequalities satisfied by all improving solutions).

A crucial element of both branching and cutting is the identification of valid disjunctions. The
notion of valid disjunction defined here, which we refer to as an improving valid disjunction in
order to distinguish it from the more standard definition, refers to a collection of sets that contain
all improving feasible solutions (while the standard valid disjunction should include all feasible
solutions). In the remainder of the paper, we drop the word “improving” when referring to such
disjunctions.

Definition 2 (Improving Valid Disjunction). An (improving) valid disjunction for (GO) with
respect to a given x∗ ∈ X is a disjoint collection

X1, X2, . . . , Xk

of subsets of Rn such that

{x ∈ X | f(x) < f(x∗)} ⊆
⋃

1≤i≤k
Xi.

Imposing such disjunctions is our primary method of eliminating suboptimal solutions and improv-
ing the strength of the relaxations used to produce bounds on the optimal value. They play a
crucial role in defining methods of both branching and cutting, as we discuss in what follows. We
now briefly describe the individual components of branch and cut that we refer to in Section 2.

Bounding. The most important factor needed to improve the efficiency of the algorithm is a
tractable method of producing strong upper and lower bounds on the optimal solution value of
each subproblem. Typically, lower bounds (assuming minimization) are obtained by solving a
relaxation of the original (sub)problem. In most cases, a convex relaxation is chosen in order to
ensure tractability, though with problems as difficult as MIBLPs, even a non-convex relaxation
may be tractable enough to serve the desired purpose. Upper bounds are obtained by producing a
solution feasible to the subproblem, either by heuristic methods or by showing that the solution of
the relaxation is feasible to the original problem. We denote the lower and upper bounds associated
with node t by Lt and U t, respectively. Whenever we cannot obtain a feasible solution to a given
subproblem t, we set U t =∞. Similarly, if the relaxation at node t is infeasible, we have Lt =∞.

The bounds on the individual subproblems can be aggregated to obtain global bounds on the
optimal solution value to the root problem. Upper bounds of all leaf nodes are aggregated to
obtain the global upper bound

U = min
t∈T

U t,

which represents the objective value of the best solution found so far (known as the incumbent).
Note that this formula is a bit simplified for the purposes of presentation, since it is possible for
bilevel feasible solutions that are not feasible for the current subproblem to be produced during
the bounding step. While these do not technically update the upper bound for the subproblem,
they do contribute to improvement of the global upper bound. Similarly, lower bounds for the leaf
nodes are aggregated to form the global lower bound

L = min
t∈T

Lt.
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These global upper and lower bounds are updated as the algorithm progresses and when they
become equal, the algorithm terminates.

Pruning. Any node t for which Lt ≥ U can be discarded (pruned), since the feasible region
of such a node cannot contain a solution with objective value lower than the current incumbent.
This pruning rule implicitly subsumes two special cases. The first is when the feasible region of
subproblem t is empty in which case Lt = ∞. The second is when Lt = U t ≥ U , which typically
arises when solving the relaxation of the subproblem associated with node t produces a solution
feasible for the original problem.

Since the global bounds are updated dynamically, this means that whether a node can be pruned or
not is not a fixed property—a node that previously could not have been pruned may be pruned later
when a better incumbent is found. We discuss bounding techniques in more detail in Sections 2.1
and 2.5.

Branching. When bounds have been computed for a node and it cannot be pruned, we then
partition the feasible region by identifying and imposing a valid disjunction of the form specified
in Definition 2. The subproblems resulting from partitioning the feasible region X t of node t are
optimization problems of the form

min
x∈X t∩Xi

f(x), 1 ≤ i ≤ k,

which can then be solved recursively using the same algorithm, provided that the collection
{Xi}1≤i≤k is chosen so as not to change the form of the optimization problem.

Typically, the disjunction is chosen so that
⋃

1≤i≤kXi does not contain the solution to the current
relaxation, but we will see that this is not always possible in the case of MIBLP. When X ⊆
Zr × Rn−r, the disjunction

X1 = {x ∈ Rn | πx ≤ π0} X2 = {x ∈ Rn | πx ≥ π0 + 1} (GD)

is always valid when (π, π0) ∈ Zn+1 and πi = 0 for i > r, since we must then have πx ∈ Z for
all x ∈ X . If the solution x̂ to the relaxation is such that πx̂ 6∈ Z, then we have x̂ 6∈ X1 ∪ X2.
When π is the ith unit vector and π0 = bx̂ic (assuming x̂i 6∈ Z), then the disjunction (GD) is
called a variable disjunction. In the case of a standard MILP, at least one such disjunction must be
violated whenever the solution to the relaxation is not feasible to the original problem (assuming
the relaxation is a linear optimization problem (LP)). Thus, such disjunctions are all that is needed
for a convergent algorithm. The situation is slightly different in the case of MIBLPs.

An important question for achieving good performance is how to choose the branching disjunctions
effectively, as it is typically easy to identify many such disjunctions. A measure often used to judge
effectiveness is the resulting increase in the lower bound observed after imposing the disjunction.
We discuss branching strategies in more detail in Section 2.3.

Searching. The order in which the subproblems are considered is critically important, since, as
we have already noted, the global bounds are evolving and the order in which the subproblems
are considered affects their evolution. Typical options are depth-first (prioritize the “deepest”
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nodes in the tree, which tends to emphasize improvement of the upper bound by locating better
incumbents) and best-first (prioritize those with the smallest lower bound, which tends to emphasize
improvement of the lower bound). In practice, one usually employs hybrids that balance these two
goals.

Cutting. The main way in which the branch-and-cut algorithm differs in its basic strategy from
the branch-and-bound algorithm is that it dynamically strengthens the relaxation by adding valid
inequalities. As with our notion of valid disjunction, we allow here for a definition slightly different
than the standard one in order to allow for inequalities that remove feasible, non-improving solu-
tions. We drop the term “improving” when discussing such inequalities in the remainder of the
paper.

Definition 3 (Improving Valid Inequality). The pair (α, β) ∈ Rn+1 is an (improving) valid in-
equality for (GO) with respect to x∗ ∈ X if

{x ∈ X | f(x) < f(x∗)} ⊆ {x ∈ Rn | αx ≥ β} .

As with branching, we typically aim to add inequalities that are violated by the solution to the
current relaxation, thus removing the solution from the feasible region of the relaxation, along with
some surrounding polyhedral region that contains no (improving) solutions to the original problem
(or subproblem), from consideration.

Furthermore, as with branching, it is generally possible to derive a large number of valid inequalities
and a choice must be made as to which ones to add to the current relaxation (adding too many can
negatively impact the effectiveness of the relaxation). Also as with branching, the goal of cutting is
to improve the lower bound, although selecting directly for this measure is problematic for a number
of reasons. We discuss strategies for generating valid inequalities in more detail in Section 2.4. We
refer the reader to (Achterberg, 2007) for more detailed description of the branch-and-cut algorithm.

1.6 Outline

The remainder of the paper is organized as follows. In Section 2, we discuss different components of
the basic branch-and-cut algorithm implemented in MibS. Section 3 describes the overall algorithm
in MibS and the implementation of this software. In Section 4, we discuss computational results.
Finally, in Section 5, we conclude the paper with some final thoughts.

2 A Branch-and-cut Algorithm

The algorithm implemented in MibS is based on the algorithmic framework originally described
by DeNegre and Ralphs (2009), but with many additional enhancements. The framework utilizes a
variant of the branch-and-cut algorithm and is similar in basic outline to state-of-the-art algorithms
currently used for solving MILPs in practice. The case of MIBLP is different from the MILP case
in a few important ways that we discuss here at a high level before we discuss various specific
components.
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As we have described earlier in Section 1.5, one way of viewing the general approach taken by the
branch-and-cut algorithm is as a method for iteratively removing parts of the feasible region of the
given relaxation that can be proven not to contain any improving feasible solutions. In MILP, this
is done primarily by either removing lattice-point free polyhedral regions (usually by imposing valid
disjunctions or by generating associated valid inequalities) or by maintaining an objective cutoff
that removes all non-improving solutions through the usual pruning process. In the MILP case,
we do not generally need to explicitly track or remove solutions that are feasible to the original
MILP. Such a solution can only be feasible for the relaxation at one leaf node in the search tree
and is either suboptimal for the corresponding subproblem (in which case the solution must have
been generated by an auxiliary heuristic) or optimal to that subproblem (in which case the node
will be immediately pruned). In either case, it is unlikely the solution will arise again and there is
no computational advantage to tracking it explicitly.

In MIBLP, in contrast, we may need to track and remove discrete sets of solutions. This is mainly
to avoid the duplication of effort in evaluating the value function φ for a specific value of the linking
variables. It is possible that the same computation will arise in more than one node in the search
tree and re-computation should be avoided. In particular, for x1, x2 ∈ X, we have

x1L = x2L ⇒ φ(A2x1) = φ(A2x2).

Thus, tracking which sub-vectors of values for linking variables have been seen before in a pool
(called the linking solution pool) can be computationally advantageous. We discuss the mechanism
for doing this in Section 3.

2.1 Bounding

Lower Bound. Perhaps the most important step in the branch-and-bound algorithm is that of
deriving a lower bound on the optimal solution value. As we have already described, relaxing
integrality restrictions does not provide an overall relaxation. However, since F ⊆ S ⊆ P, relaxing
the optimality condition d2y ≤ φ(A2x) in the formulation (MIBLP-VF) results in two alternative
relaxations to the original problem. The first relaxation (known as high-point problem (Moore and
Bard, 1990)) is

min
(x,y)∈S

cx+ d1y, (R)

in which only the optimality condition is relaxed, while the second is

min
(x,y)∈P

cx+ d1y, (LR)

in which the integrality constraints are also relaxed. Although both are rather weak bounds, they
can be strengthened by the addition of the valid inequalities described in Section 2.4. Because of
the enhanced tractability of (LR) and because of the advantages in warm-starting the computation
during iterative computation of the bound, we use (LR) as our relaxation of choice. While it is
clear that this is a relaxation of (MIBLP-VF), to see that it is a relaxation of (MIBLP), note that
we have

d1y∗ ≤ Ξ(x∗),

where (x∗, y∗) is a solution to (LR).
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At nodes other than the root node, we can use a similar bounding strategy. Since the branching
strategy we describe shortly employs only changes to the bounds of variables, the subproblems that
arise have feasible regions of the form

F t =
{

(x, y) ∈ F
∣∣ ltx ≤ x ≤ utx, lty ≤ y ≤ uty} ,

where t is the index of the node/subproblem, and (ltx, u
t
x) and (lty, u

t
y) represent vectors of upper

and lower bounds for the first- and second-level variables, respectively. The subproblem at node t
is thus the optimization problem

min
(x,y)∈Ft

cx+ d1y, (MIBLPt)

which one can easily show is itself an MIBLP. Thus, we can apply a similar relaxation to obtain
the bound

Lt = min
(x,y)∈Pt

cx+ d1y, (LRt)

where Pt = {(x, y) ∈ P | ltx ≤ x ≤ utx, lty ≤ y ≤ uty}. If it can be verified that conditions for pruning
are met (see Section 2.2), then node t should be discarded. Otherwise, the next step is to check
feasibility of

(xt, yt) ∈ argmin
(x,y)∈Pt

cx+ d1y,

the solution obtained when solving the relaxation.

Feasibility Check. Recall that the upper bound for a given node is derived by exhibiting a
feasible solution. Unlike in the case of MILP, checking whether a solution to (LRt) is feasible
for (MIBLP-VF) may itself be a difficult computational problem. Such check involves verifying that
(xt, yt) satisfies the constraints that were relaxed: integrality conditions and second-level optimality
conditions. In other words, (xt, yt) is bilevel feasible if and only if the following conditions are
satisfied.

Feasibility Condition 3. xt ∈ X.

Feasibility Condition 4. yt ∈ R(xt).

Condition 3 ensures that the integrality constraints for the first-level variables are satisfied, while
Condition 4 guarantees that (xt, yt) satisfies the optimality constraint of second-level problem.
Satisfaction of these two conditions (as opposed to the more general Conditions 1 and 2) is enough
to ensure (xt, yt) ∈ F , given that (xt, yt) is also a solution to (LRt).

Verifying Condition 3 is straightforward, so this is done first. If Condition 3 is satisfied, then we
consider verification of Condition 4. This involves checking both whether yt ∈ Y and whether
d2yt = φ(A2xt). Checking whether yt ∈ Y is inexpensive so we do this first. The latter check is
more expensive and is only required under conditions detailed later in Section 3. We may thus
defer it until later, depending on the values of parameters described in Section 3.2.

If we decide to undertake this latter check, we first evaluate φ(A2xt) to either obtain

ŷt ∈ argmin
{
d2y

∣∣ y ∈ P2(xt) ∩ Y } , (SL-MILP)
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or determine P2(xt)∩Y = ∅. The MILP (SL-MILP) is solved using an auxiliary MILP solver (more
details on this in Section 3.4). If (SL-MILP) has a solution (as it must when yt ∈ Y ), we check
whether d2yt = d2ŷt. If so, (xt, yt) is bilevel feasible and must furthermore be an optimal solution
to the subproblem at node t. In this case, U t = Lt and the current global upper bound U can be
set to U t if U t < U . If (SL-MILP) has no solution, we have that xt 6∈ F1 and xt can be eliminated
from further consideration either by branching or cutting. In fact, in this case, we can eliminate
not only xt, but any first-level solution for which xL = xtL. We thus add xtL to the linking solution
pool in this case.

Although it is not necessary for correctness, (SL-MILP) may be solved even when yt 6∈ Y (and even
if xti 6∈ Z for some k1 < i ≤ r1), since this may still lead either to the discovery of a new bilevel
feasible solution or a proof that xt 6∈ F1. In Section 3, we discuss when the problem (SL-MILP)
should necessarily be solved and when solving it is optional. Even in the case of infeasibility of
(xt, yt), (xt, ŷt) is bilevel feasible (though not necessarily optimal to (MIBLPt)) whenever xt ∈ X
and ŷt ∈ P1(xt). The second condition is satisfied vacuously in the usual case of G1 = 0. If (xt, ŷt)
is feasible, then we can update the global upper bound if cxt + d1ŷt < U .

Observe that solving (SL-MILP) reveals more information than the simple value of φ(A2xt). Note
that we have

φ(A2x) ≤ φ(A2xt) ∀x ∈ X such that P2(x) 3 ŷt, (VFB)

which means that φ(A2xt) reveals an upper bound on the second-level problem for any other first-
level solutions that admits ŷt as a feasible reaction. This upper bound can be exploited in the
generation of certain valid inequalities (see DeNegre (2011); Fischetti et al. (2018)) and is also the
basis for an algorithm by Mitsos (2010). Furthermore, we have

φ(A2x) = φ(A2xt) ∀x ∈ Rn1 such that xL = xtL,

which means we get the exact value of the second-level problem with respect to certain other first-
level solutions “for free”. Because (i) it may improve the global upper bound, (ii) can reveal that
xt 6∈ F1 (and, along with other solutions sharing the same values for the linking variables, should
no longer be considered), and (iii) may also provide bounds on the second-level value function for
other first-level solutions, (SL-MILP) may be solved in MibS even when (xt, yt) does not satisfy
integrality requirements (see Section 3 for details).

Upper Bound. As we have just highlighted, the feasibility check may produce a bilevel feasible
solution (xt, ŷt), but R(xt)∩P1(xt) may not be a singleton and there may exist a rational reaction
ȳ ∈ R(xt) ∩ P1(xt) to xt with d1ȳ < d1ŷt, which results d1ŷt > Ξ(xt) (note that the selected
policy is the optimistic one). To compute the “true” objective function value cxt +Ξ(xt) associated
with xt and produce the best possible upper bound, we may explicitly compute Ξ(xt). Once this
computation is done and the associated solution and bound are stored, we can safely eliminate
xt from the feasible region by either branching or cutting, as we describe below, in order to force
consideration of alternative solutions. This computation is required under certain conditions and
may be optionally undertaken in others, depending on the parameter settings described in detail
in Section 3. Ξ(xt) is obtained by solving

Ξ(xt) = min
{
d1y

∣∣ y ∈ P1(xt) ∩ P2(xt) ∩ Y, d2y ≤ φ(A2xt)
}
,
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which is an MILP since we have already computed φ(A2xt) in the feasibility check. Solving this
MILP to evaluate Ξ(xt) yields the globally valid upper bound cxt + Ξ(xt).

Observe that even the problem of minimizing Ξ(x) over {x ∈ X | xL = xtL} is still an MILP and can
reveal an upper bound across a range of first-level solutions. This result is formalized in Theorem 1
below.

2.2 Pruning

As is the case with all branch-and-bound algorithms, pruning of node t occurs whenever Lt ≥ U .
This again subsumes two special cases. First, if checking Conditions 3 and 4 verifies that (xt, yt)
is bilevel feasible, then we must have Lt = U t ≥ U . Second, when the relaxation is infeasible, we
have Lt =∞ and we can again prune the node.

There is one additional case that is particular to MIBLPs and that is when all linking variables are
fixed. In this case, we utilize the property of MIBLPs illustrated in the next theorem.

Theorem 1 ((Fischetti et al., 2018)). For γ ∈ ZL, we have

F ∩ {(x, y) ∈ X × Y | xL = γ} = S ∩
{

(x, y) ∈ X × Y
∣∣ d2y ≤ φ(A2x), xL = γ

}
.

Proof. From the definitions of sets S and F provided in Section 1.1, it follows that

F = S ∩
{

(x, y) ∈ X × Y
∣∣ d2y ≤ φ(A2x)

}
.

The result follows.

Corollary 1. For γ ∈ ZL, we have

min{cx+ d1y | (x, y) ∈ F , xL = γ} = min{cx+ d1y | (x, y) ∈ S, d2y ≤ φ(A2x),

xL = γ}.
(UB)

What Theorem 1 tells us is that when the values of all linking variables are fixed at node t (ltxL
= utxL

,
either because of branching constraints or otherwise), then optimizing over F t is equivalent to
optimizing over St while additionally imposing an upper bound on the objective value of the
second-level problem. In other words, we have the following.

Corollary 2. Whenever F t ⊆ {(x, y) ∈ F | xL = γ} for some γ ∈ ZL, then

min
(x,y)∈Ft

cx+ d1y = min
{
cx+ d1y

∣∣ (x, y) ∈ St, d2y ≤ φ(A2x), xL = γ
}
, (UBt)

where St = Pt ∩ (X × Y ).

Therefore, the optimal solution value for the subproblem at node t can be obtained by solving
problem (UBt) with γ = xtL. Furthermore, solving problem (UB) instead of (UBt) provides a
bilevel feasible solution which is at least as good as the optimal solution of node t since it is a
relaxation (it is explained in detail in Section 4.3 that there may be more than one node with
xL = γ). Hence, node t can be pruned after solving either (UBt) or (UB). Note that these

15



problems may be infeasible, in which case node t is infeasible. Although solving problem (UB) may
be more difficult than solving problem (UBt), solving problem (UB) provides useful information
about all bilevel feasible solutions with xL = xtL (not only those feasible for node t), so it is generally
recommended to solve (UB) instead of (UBt) (see Sections 3.2 and 3.3).

Even if the values of linking variables are not fixed at node t (ltxL
6= utxL

), it may be advantageous
to solve (UB) with γ = xtL whenever xtL ∈ ZL in order to improve the upper bound. In Section 3,
we describe the parameters of MibS that control when problem (UB) is solved during the solution
process. The cases in which, this problem must be solved, regardless of the values of parameters,
are also discussed.

2.3 Branching

As previously described, the role of the branching procedure is to remove regions of the feasible
set of the relaxation that contain no improving bilevel feasible solutions. This is accomplished by
imposing a valid disjunction, which we typically choose such that it is violated by the solution to
the current relaxation (i.e., removes it from the feasible region). When the branching procedure is
invoked for node t, we have that either

• the solution (xt, yt) 6∈ F because

– (xt, yt) 6∈ X × Y or

– d2yt > φ(A2xt) (we have previously solved the corresponding (SL-MILP));

or

• we have (xt, yt) ∈ X × Y and we are not sure of its feasibility status because we chose not
to solve (SL-MILP) (see Section 3 for an explanation of the conditions under which we may
make this choice).

These alternatives make it clear that we may sometimes want to branch, even though (xt, yt) ∈
X × Y , necessitating a branching scheme that is more general than the one traditionally used in
MILP.

Branching on Linking Variables. Due to Theorem 1, we know that once the values of linking
variables are fixed completely at a given node t (ltxL

= utxL
), the node can be pruned after solv-

ing (UB). One strategy for branching is therefore to think of the search as being over the set of
possible values of the linking variables and to prefer a branching disjunction that partitions this
set of values. In such a scheme, we only consider branching on linking variables as long as any
such variables remain unfixed. We show in Section 4 that the apparent logic in such a scheme is
effective empirically in some cases, but this scheme also raises issues that do not generally arise in
branching on variables in MILP. In particular, situations may arise in which there are no linking
variables with fractional values (xtL ∈ ZL) and yet we would still like to (or need to) impose a
branching disjunction.

Naturally, when there does exist i ∈ L such that xti 6∈ Z, we can impose a variable disjunction

X1 =
{

(x, y) ∈ Rn1×n2
∣∣ xi ≤ bxtic} X2 =

{
(x, y) ∈ Rn1×n2

∣∣ xi ≥ bxtic+ 1
}
,
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as usual. When xtL ∈ ZL, however, it is less obvious what to do. If we either have xti 6∈ Z
for k1 < i ≤ r1 or we have that yt 6∈ Y , then there exists the option of breaking with the
scheme and imposing a standard variable disjunction on a non-linking variable (those not in set
L). Computational experience has shown that this may not always be a good idea empirically.

When xtL ∈ ZL, there is no single variable disjunction that can be imposed on linking variables
that would eliminate xt from (the projection of) the feasible region of both resulting subproblems.
Suppose we nevertheless branch on the variable disjunction associated with some variable indexed
i ∈ L. Since xti ∈ Z (and assuming that ltxi

6= utxi
), we may branch, e.g., either on the valid

disjunction

X1 =
{

(x, y) ∈ Rn1×n2
∣∣ xi ≤ xti} , X2 =

{
(x, y) ∈ Rn1×n2

∣∣ xi ≥ xti + 1
}

or

X1 =
{

(x, y) ∈ Rn1×n2
∣∣ xi ≤ xti − 1

}
, X2 =

{
(x, y) ∈ Rn1×n2

∣∣ xi ≥ xti} ,
preferring the former when xti ≤ utxi

−1 (otherwise, one of the resulting subproblem will be trivially
infeasible and the other will be equivalent to node t). This means xt satisfies either the first or
second term of this disjunction. Although imposing this valid disjunction seems undesirable, since
it does not remove (xt, yt) from the union of the feasible regions of the resulting subproblems, let
us explore the logic of the approach.

Suppose we continue to branch in this way and consider the indices of the set of leaf nodes T t of
the subtree of the search tree rooted at node t. Since this set of leaf nodes represents a partition of
St, the projection of the feasible region of exactly one of these nodes contains xt. We have that the
values of all linking variables are fixed at this node, since we would otherwise continue branching
(we have already noted that such node can be pruned after solving problem (UB)). The projection
of the union of the feasible regions of the remaining leaf nodes is thus equal to

projx(St) \
{
x ∈ X

∣∣ xL = xtL
}
.

Hence, this branching rule can be seen as implicitly branching on the disjunction

X1 =
{

(x, y) ∈ Rn1×n2
∣∣ xL = xtL

}
, X2 =

{
(x, y) ∈ Rn1×n2

∣∣ xL 6= xtL
}
,

which is obviously valid.

As a practical matter, if we implement the scheme of only branching on linking variables using simple
variable disjunctions, we inevitably create a number of additional nodes for which xt remains in the
projection of the feasible set (one at each level of the tree down to the leaf node at which all linking
variables are fixed). This can easily be detected using the scheme for maintaining a pool of linking
solutions that have already been seen and will not cause any significant computational issues. For
the remaining nodes, we are guaranteed that xt is not contained in the projection (though these
nodes may also be the root of a subtree in which all linking variables are integer-valued). An
alternative would be to branch in a non-binary way using a more complicated disjunction that
would directly create the leaf nodes of the subtree rooted at node t, but there seems to be no
advantage to such a scheme.
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In forming the list of variables that are candidates for branching, we add only linking variables
with fractional values if xtL 6∈ ZL. If xtL ∈ ZL, then we are forced to add integer-valued linking
variables that remain unfixed to the list. If all linking variables are fixed, then we have several
options, depending on how parameters are set (see Section 3.2).

• We may prune the node after solving problem (UB), as explained in Section 2.2.

• When (xt, yt) 6∈ X × Y , we may add non-linking variables with fractional values to the
candidate set.

• (xt, yt) may be removed by generating a cut (after solving (SL-MILP) if (xt, yt) ∈ X ×Y , see
Section 2.4).

Branching on Fractional Variables. Naturally, we may also consider a more traditional
branching scheme in which we only branch on variables with fractional values. In such a scheme,
we must consider branching on all variables (first- and second-level), since we may have no other
option when xt ∈ X.

Selecting Candidates. We have so far neglected to address the question of which variable to
choose as the basis for our branching disjunction when there is more than one candidate. The
idea of limiting branching only to the linking variables differs from the usual scheme employed
in algorithms for MILP in that we only consider a subset of the integer variables for branching.
Nevertheless, in both of the schemes described above, we face a similar decision regarding which of
the (possibly many) variables available for branching should actually be chosen. It is well-known
that the choice of branching variable can make a substantial difference in practical performance.

In branching procedures for MILP, it is typical to first choose a set of candidates for branching
(typically, all integer variables with fractional values are considered). The selection of the “best”
branching candidate is then made from this set of candidates based on one of a number of schemes
for scoring/predicting the “impact” of choosing a particular branching variable. The details of these
scoring mechanisms can be found in any number of references (see, e.g., Achterberg et al. (2005)).
Although the method used to define the set of branching candidates differs from the one used in
MILP, the method employed in MibS for selecting from the candidates is similar to the schemes
that can be found in the literature. MibS offers the pseudocost, strong branching and reliability
branching schemes.

2.4 Cutting

The generation of valid inequalities is an alternative to branching for removing infeasible and/or
non-improving solutions. We refer the reader to (Marchand et al., 2002) and (Wolter, 2006) for
theoretical background on the separation problem and cutting plane methods in general. In the
case of MIBLP, the valid inequalities we aim to generate are those that separate the solution to
the current relaxation from the convex hull of the (improving) bilevel feasible solutions. These
inequalities are generated iteratively in order to improve the relaxation, as in a standard cutting
plane method. DeNegre and Ralphs (2009) showed that such a pure cutting plane algorithm can
be used to solve certain classes of MIBLPs.
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In order to allow the separation of points that are in conv(F) but have already been identified (or
can be shown not to be improving), we recall here the notion of improving valid inequality that
we introduced in Definition 3, re-stating it in the notation of (MIBLP-VF). A triple (αx, αy, β) ∈
Rn1+n2+1 is said to constitute an improving valid inequality for F if

αxx+ αyy ≥ β ∀(x, y) ∈ conv
({

(x, y) ∈ F
∣∣ cx+ d1y < U

})
,

where U is the current global upper bound. As mentioned before, we shall drop the word “improv-
ing” from the remaining discussion.

In Section 2.1, we stated that the difference between the feasible region of a subproblem and that
of the original problem is only in changes to the bounds on variables. This is no longer strictly
true when valid inequalities are also being generated and added dynamically to the constraint set
of the relaxation. The feasible region Pt of the relaxation at node t from (LRt) then becomes

Pt =
{

(x, y) ∈ P ∩Πt
∣∣ ltx ≤ x ≤ utx, lty ≤ y ≤ uty} ,

where Πt is a polyhedron representing the valid inequalities applied at node t. The set of valid
inequalities may include inequalities generated at any of the ancestor nodes in the path to the root
node of the search tree.

There are several distinct categories of valid inequality that can be generated, depending on the
feasibility conditions violated by the solution (xt, yt) that we are trying to separate at node t.
Generally speaking, all valid inequalities can be classified as

• Feasibility cuts: Inequalities valid for conv
{

(x, y) ∈ S
∣∣ cx+ d1y < U

}
.

• Optimality cuts: Inequalities valid for conv
{

(x, y) ∈ F
∣∣ cx+ d1y < U

}
.

• Projected optimality cuts: Inequalities valid for conv ({(x, y) ∈ Rn1×n2 | x ∈ F1, cx+ Ξ(x) < U}).

The feasibility cuts include those classes generally employed in solution of MILPs. Inequalities
used to remove solutions (xt, yt) ∈ S at node t may be referred to roughly as optimality cuts, while
projected optimality cuts are those that may remove all solutions with specific first-level values. For
example, inequalities that remove the solutions with the same linking component as xt once the
problem (UB) with γ = xtL has been solved. Clearly, these three classes are not entirely distinct
and the categorization is meant only to provide a rough categorization.

MibS includes separation routines for a variety of known classes of valid inequalities in the current
literature. We give a brief overview here. More details are provided in a companion paper that
analyzes the impact of various classes of inequalities in greater detail.

Integer No-Good Cut. This class of inequalities are valid for problems in which r1 = n1,
r2 = n2 and all problem data are integer (with the possible exception of the objective function). It
was introduced by DeNegre and Ralphs (2009) and is derived from a split disjunction obtained by
taking combinations of inequalities binding at (xt, yt) in a fashion similar to that used in deriving
the Chvátal cuts valid for the feasible regions of MILPs. The cut eliminates a single extremal
solution that is integral yet not bilevel feasible from the feasible region of the relaxation. It is easy
to derive such a cut under the given assumptions.
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Generalized No-good Cut. This class of inequalities are valid for problems in which all linking
variables are binary. It is a generalization of the no-good cut introduced by DeNegre (2011) in
the context of MIBLPs. Similar cuts have been used in many other contexts. The idea of a “no-
good cut” seems to have first been suggested by Balas and Jeroslow (1972). The purpose of this
cut is to remove all solutions for which the linking variables have certain fixed values. If at node
t, we have xtL ∈ ZL and either (i) we choose to solve (SL-MILP) and it is infeasible or (ii) we
choose to solve (UB), then we can store xtL in the linking solution pool (if applicable) and add a
generalized no-good cut with γ = xtL in order to avoid generating the same linking solution again.
This inequality can also be added in other subproblems if/when this linking solution arises again.

Intersection Cut. Fischetti et al. (2018, 2017) generalized the well-known concept of an inter-
section cut (Balas, 1971), used extensively in the MILP setting, to MIBLPs. The various classes
introduced differ from each other in the way the underlying “bilevel-free” convex set used for gen-
erating the cuts is defined. Three classes of introduced cuts are working for the problems with
G2y − A2x ∈ Zm2 for all (x, y) ∈ S and d2 ∈ Zn2 . These cuts can be employed for removing the
infeasible solution (xt, yt) /∈ F from the feasible region, but it is not guaranteed when (xt, yt) /∈ S.
The other class known as hypercube intersection cut is valid for the MIBLPs with xL ⊆ ZL and
can be added when xtL ∈ ZL. We solve (UB) and store the solution in the linking solution pool
(if applicable) and after doing so, the hypercube intersection cut can be added. This inequality
is guaranteed to be violated by (xt, yt) and may also eliminate some other solutions for which
xL = xtL, but is not guaranteed to eliminate all such solutions.

Increasing Objective Cut. This class of inequalities are valid for problems in which linking
variables are binary and A2 ≥ 0. Proposed by DeNegre (2011), it is a disjunctive cut derived from
the following valid disjunction based on the value function bound (VFB).

X1 =

{
(x, y) ∈ Rn1×n2

∣∣∣ ∑
i∈L:xt

i=0

xi = 0, d2y ≤ d2ŷ
}
, X2 =

{
(x, y) ∈ Rn1×n2

∣∣∣ ∑
i∈L:xt

i=0

xi ≥ 1

}
,

where ŷ ∈ R(xt). In addition to the way in which this disjunction was exploited by DeNegre
(2011), there are other inequalities that could also be derived from this disjunction. This cut can
be applied to eliminate (xt, yt) ∈ X × Y from the feasible region at node t when (xt, yt) is found
to be infeasible. Note that by solving (UB) following the feasibility check, we could also apply the
stronger generalized no-good cut in this situation.

Benders Cut. This class of inequalities are valid for problems in which linking variables are
binary and the second-level variables coefficients are not greater than 0 in the second-level con-
straints in which the linking variables do not participate. Furthermore, corresponding to each
linking variable xi, there exists yi so that xi = 1 results yi = 0 and this is the only restriction
from the second-level constraints in which the linking variables participate. This cut was originally
mentioned by Caprara et al. (2016) in the context of knapsack interdiction problems, but is valid
for a broader class of problems. This cut utilizes the value function bound (VFB) and a new such
cut can be imposed anytime we find a new feasible solution.
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2.5 Primal Heuristics

Just as in the solution of MILPs, the primal heuristics can be employed within a branch-and-cut
algorithm for solving MIBLPs in order to enhance the discovery of bilevel feasible solutions. Three
different heuristics introduced in (DeNegre, 2011) are implemented in MibS, as follows.

Improving Objective Cut Heuristic. Let (x̄, ȳ) ∈ S and ŷ ∈ R(x̄). As we discussed in
Section 2.1, (x̄, ŷ) is a bilevel feasible solution if it satisfies the first-level constraints. However,
(x̄, ŷ) is not necessarily a good solution with respect to the first-level objective function. The idea
of this heuristic is to exploit the information from both (x̄, ȳ) (which is a good solution with respect
to the first-level objective) and (x̄, ŷ) (which is a likely bilevel feasible solution). To do so, we first
determine

(x̃, ỹ) ∈ argmin
{
cx+ d1y

∣∣ (x, y) ∈ S, d2y ≤ d2ŷ
}
.

When (x̄, ŷ) ∈ F , such (x̃, ỹ) must exist. Further, we must have (x̃, ỹ) ∈ F . A separate feasibil-
ity check is thus required and this check is what is expected to finally produce the (potentially)
improved solution.

Second-level Priority Heuristic. This heuristic is similar to the improving objective cut heuris-
tic in that it also tries to balance bilevel feasibility with the quality of obtained solution. The MILP
solved with this heuristic, however, is

min
{
d2y

∣∣ (x, y) ∈ S, cx+ d1y ≤ U
}
, (PH)

where U is the current upper bound. In this problem, the goal of the added constraint is to improve
the quality of the solution, while the objective function of this problem increases the chance of
generating a bilevel feasible solution (however, it does not guarantee the bilevel feasibility of the
produced solution). Note that the upper bound U could be replaced by any chosen “target” to
try to ensure improvement on the current incumbent, but then we would not be assured feasibility
of (PH).

Weighted Sums Heuristic. This heuristic employs techniques from multi-objective optimiza-
tion to generate bilevel feasible solutions. The main idea of this heuristic is finding a subset of
efficient solutions (those for which we cannot improve one of the objectives without degrading the
other while maintaining feasibility (Ehrgott and Wiecek, 2005)) of the following problem by using
a weighted-sum subproblem (Geoffrion, 1968).

argvmin
(x,y)∈S

{cx+ d1y, d2y},

where the operator argvmin means finding a solution (or more than one) that is efficient. For more
details, see DeNegre (2011).

3 Software Framework

In this section, we describe the implementation of the MibS software (DeNegre et al., 2019). This
paper refers to version 1.1.2, the latest released version at the time of this writing. The overall

21



algorithm employed in MibS combines the procedures described in Section 2 in a fashion typical
of existing branch-and-cut algorithms for other problems. In fact, MibS is built on top of BLIS,
a parallel implementation of branch and cut for the solution of MILPs (Xu et al., 2009). In
Section 3.1, we describe the class structure of the C++ code that encapsulates the implementation.
Furthermore, there are a number of important parameters, described in Section 3.2, that determine
how the various components described in Section 2 are coordinated. Although there are defaults
that are set automatically after analyzing the structure of a particular instance, these parameters
can and should be tuned for use in particular applications, Understanding their role in the algorithm
is crucial to understanding the overall strategy, described in Section 3.3. Finally, in Section 3.4, we
describe important implementational issues surrounding how the second-level problem is solved.

3.1 Design of MibS

We first briefly describe the overall design of the software. MibS is an open-source implementation
in C++ of the branch-and-cut algorithm described in Section 3.3. In addition to a core library, MibS
utilizes a number of other open-source packages available from the Computational Infrastructure
for Operations Research (COIN-OR) repository (COIN-OR). These packages include the following.

• The COIN-OR High Performance Parallel Search (CHiPPS) Framework (Ralphs et al., 2004),
which includes a hierarchy of three libraries.

– Abstract Library for Parallel Search (ALPS) (Xu and Ralphs, 2019a; Xu et al., 2005):
This project is utilized for managing the global branch and bound.

– Branch, Constrain, and Price Software (BiCePS) (Ralphs et al., 2004; Xu and Ralphs,
2019b): This project provides base classes for objects used in MibS.

– BiCePS Linear Integer Solver (BLIS) (Xu et al., 2009; Xu and Ralphs, 2019c): This
project is the parallel MILP Solver framework from which MibS is derived.

• COIN-OR Linear Programming Solver (CLP) (Forrest, 2017b): MibS employs this software
for solving the LPs arising in the branch-and-cut algorithm.

• SYMPHONY (Ralphs et al., 2019; Ralphs and Güzelsoy, 2005): This software is used for
solving the MILPs required to be solved in the branch-and-cut algorithm.

• COIN-OR Cut Generation Library (CGL) (Cgl): Both MibS and SYMPHONY utilize this
library to generate valid inequalities valid for MILPs.

• COIN-OR Open Solver Interface (OSI) (Osi): This project is used for interfacing with solvers,
such as SYMPHONY, Cbc and CPLEX.

MibS is comprised of a number of classes that are either specific to MibS, or are classes derived from
a class in one of the libraries of CHiPPS. The main classes of MibS are as follows.

• MibSModel: This class is derived from the BlisModel class. It extracts and stores the model
from the input files, which consist of an MPS file and an auxiliary information file. We refer
the reader to the README file of MibS for a comprehensive description of the input file format.
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• MibSBilevel: This class is specific to MibS and is utilized for checking the bilevel feasibility of
solutions of the relaxation problem. Furthermore, this class finds the bilevel feasible solutions,
as described in lines 18, 23 and 28 of Algorithm 1.

• MibSTreeNode: This class is derived from the class BlisTreeNode and contains the methods
for processing the branch-and-bound nodes.

• MibSCutGenerator: This class is specific to MibS and contains the methods for generating
the valid inequalities described in Section 2.4.

• MibSBranchStrategyXyz: These classes (one for each strategy MibS can use for selecting the
final branching candidate: Pseudo, Strong, and Reliability) are derived from the parent
classes BlisBranchStrategyXyz and contain the implementation used for selecting the final
branching candidate.

• MibSHeuristic: This class is specific to MibS and contains the methods for generating heuris-
tic solutions by employing the primal heuristics illustrated in Section 2.5.

• MibSSolution: This is a class derived from BlisSolution class and is utilized for storing
the bilevel feasible solutions.

Since one important feature of a practical solver is ease of use, we have tried to make MibS as
user-friendly as possible. Prior to the solution process, MibS analyzes the problem to determine
its properties, e.g., the type of instance (interdiction or general), the type of variables present at
each level (continuous, discrete, or binary) and signs of the coefficients in the constraint matrices.
It then checks the parameters set by the user and modifies them if it determines that those values
of parameters are not valid for this problem, informing the user of any change in the parameters.
For example, MibS turns off any cuts selected by the user that are not valid for the instance to be
solved.

3.2 Parameters

A wide range of parameters are available for controlling the algorithm.

Branching Strategy. There are several parameters that control the branching strategy. The
main one is branchStrategy, which controls what variables we allow as branching candidates. The
options are

• linking: Branch only on linking variables, as long as any such variable remains unfixed, with
priority given to such variables with fractional values.

• fractional: Branch on any integer first- or second-level variable that has fractional value,
as is traditional in solving MILPs.

We also have parameters for controlling the strategy by which the final branching candidate is
selected (strong, pseudocost, reliability). The default is to use pseudocost scoring.
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Search Strategy. The search strategy used by MibS is controlled by ALPS, the underlying tree
search framework. The default is the best-first strategy.

Cutting Strategy. There are parameters for the types of valid inequalities to generate and
the strategy for when to generate them (only in the root node, periodically, etc.). Note that we
are forced to generate cuts whenever there are no available branching candidates and the current
node cannot be pruned. With branchStrategy set to linking, the parameters for solving prob-
lems (SL-MILP) and (UB) (which are described later) can be set so that a pure branch and bound
is possible, but this is not possible for the fractional case. The default settings for cuts depends
on the instance. MibS includes an automatic analyzer that determines which classes of cuts are
applicable and likely to be effective for a given instance. The frequency of generation is selected
automatically by default, based on statistics gathered during early stages, as is standard in many
solvers.

Primal Heuristics. Types of primal heuristics to employ and the strategy for how often to
employ them (see Section 2.5). Only BLIS (generic MILP) heuristics are turned on by default.

Linking Solution Pool. There is a parameter useLinkingSolutionPool that determines whether
to maintain a pool L of linking solutions seen so far, as described earlier, in order to avoid solving
identical instances of (SL-MILP) and (UB). When the parameter is set to True, we check L before
solving either of (SL-MILP) or (UB).

Each linking solution stored in L is stored along with both a status tag and, if appropriate, an
associated solution. The status tag is one of the following:

• secondLevelIsInfeasible: If the corresponding problem (SL-MILP) is solved and it is
infeasible.

• secondLevelIsFeasible: If the corresponding problem (SL-MILP) is solved and it has an
optimal solution, but problem (UB) is not solved.

• UBIsSolved: If the corresponding problem (UB) is solved.

All linking solutions are stored in a hash table in order to enable an efficient membership check.

Feasibility Check. The following binary parameters determine the strategy for when to solve
the second-level problem (SL-MILP) (for details on solution of the second-level problem, see Sec-
tion 3.4).

• solveSecondLevelWhenLVarsFixed: Whether to solve when ltxL
= utxL

= xtL (linking vari-
ables fixed).

• solveSecondLevelWhenLVarsInt: Whether to solve when xtL ∈ ZL.

• solveSecondLevelWhenXVarsInt: Whether to solve when xt ∈ X.
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• solveSecondLevelWhenXYVarsInt: Whether to solve when (xt, yt) ∈ X × Y .

When problem (SL-MILP) is solved, we have the following implications, depending on the result.

• If (SL-MILP) is infeasible, then all solutions (x, y) with xL = xtL are infeasible and can be
removed from the feasible region of the relaxation either by generation of a cut or by branching.
To avoid solving problems (SL-MILP) for a different solution with the same linking part, the
tuple [xtL, secondLevelIsInfeasible] can be added to the linking solution pool L.

• If (SL-MILP) has an optimal solution, we can avoid solving problem (SL-MILP) for any (x, y)
for which xL = xtL arising in the future by adding the tuple [xtL, secondLevelIsFeasible]
and the associated solution to (SL-MILP) to the linking solution pool L.

Regardless of parameter settings, we must always solve (SL-MILP) whenever (xt, yt) ∈ X × Y ,
xtL 6∈ L (we have not previously solved (SL-MILP) for xtL), and there are no branching candidates.
Clearly, if we have branching candidates, then we can avoid solution of (SL-MILP) by branching.
Similarly, if (xt, yt) 6∈ X×Y , we can generate standard MILP cuts. Otherwise, we must have either

• branchStrategy is fractional, in which case we must solve (SL-MILP) and then may either
remove (xt, yt) by generating a valid inequality (if infeasible) or prune the node (if feasible).

• branchStrategy is set to linking and all linking variables are fixed, in which case we must
also solve (UB) (if (SL-MILP) is feasible) and prune the node.

Computing Best UB. The following binary parameters determine when the problem (UB)
should be solved in order to compute the best bilevel feasible solution (x, y) with xL = xtL (if such
solution exists).

• computeBestUBWhenLVarsFixed: Whether to solve when ltxL
= utxL

= xtL.

• computeBestUBWhenLVarsInt: Whether to solve when xtL ∈ ZL.

• computeBestUBWhenXVarsInt: Whether to solve when xt ∈ X.

After solving (UB), we know that no solution (x, y) with xL = xtL can be improving and thus,
all such solutions can be removed either by generation of a cut or by branching. To avoid solv-
ing problem (UB) for any solutions (x, y) arising in the future for which xL = xtL, the tuple
[xtL, secondLevelIsFeasible] should be replaced with the tuple [xtL, UBIsSolved] and the associ-
ated solution stored in the linking solution pool L.

Note that it would be possible to solve (UBt) rather than (UB) if the goal were only to prune
the node. Solving (UB) (which may not be much more difficult) allows us to exploit the solution
information globally through the linking solution pool.

Regardless of parameter setting, we must always solve problem (UB) (if it has not been previously
solved for xtL) when (i) branchStrategy is linking, (ii) (xt, yt) ∈ X × Y and is bilevel infeasible
and (iii) all linking variables are fixed. This does not mean that in this case, solving problem (UB)
(and further fathoming node t) is the only algorithmic option, as explained in Section 2.3.
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3.3 Outline of the Algorithm

Algorithm 1 gives the general outline of the node processing loop in this branch-and-cut algorithm.
Note that for simplicity, the algorithm as stated assumes that the linking pool is used, though
the option of not using this pool is also provided. In almost all cases, use of the linking pool is
advantageous (see Section 4.3). At a high level, the procedure consists of the following steps.

1. Solve the relaxation (LRt) (line 3) and prune the node (lines 5–6) if either

• (LRt) is infeasible;

• Lt ≥ U ; or

• xL is fixed and it has been stored in set L with either secondLevelIsInfeasible or
UBIsSolved tags.

2. If (SL-MILP) was not previously solved with respect to xtL, then depending on (xt, yt) and
the parameter settings, we may next solve it (lines 7–8).

• (SL-MILP) is infeasible ⇒ xt 6∈ F1 (line 9)

– Add [xtL, secondLevelIsInfeasible] to L (line 10).

– If xL is fixed, fathom node t (lines 11–12).

• (SL-MILP) is feasible ⇒ add [xtL, secondLevelIsFeasible] to L (lines 13–14).

3. If (SL-MILP) was solved now or previously and is feasible (line 15), we have either

• (xt, yt) ∈ F ⇒ update U and fathom node t (lines 17–19).

• (xt, yt) 6∈ F
– Update U if (xt, ŷt) ∈ F (in case of not solving (UB)) (lines 27–28) and eliminate

(xt, yt) (lines 29–34).

– If (UB) was not previously solved with respect to xtL, then depending on (xt, yt)
and the parameter settings, we may solve it (lines 20–21).

∗ (UB) is feasible ⇒ update U (lines 22–23).

∗ Remove [xtL, secondLevelIsFeasible] from set L and add [xtL, UBIsSolved]
(line 24).

∗ If xL is fixed, fathom node t (lines 25–26).

4. Finally, we must either branch or remove (xt, yt) by adding valid inequalities (lines 29–34).

• If there are no branching candidates, then we must remove (xt, yt) by adding valid
inequalities (lines 29–30).

• If (SL-MILP) was not solved now or previously, we must branch if (xt, yt) ∈ X × Y
(lines 31–32).

• Otherwise, we have the choice of either adding valid inequalities or branching (lines 33–
34).
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Algorithm 1: Node processing loop in MibS

Input : [Set L, U ]
Output: [Set L, U, Lt, U t]

1 branch ← False,Lt ← −∞, U t ←∞
2 while branch is False do
3 Solve (LRt)

4 Lt ← The optimal value of (LRt)

5 if (LRt) is infeasible or Lt ≥ U or
(ltxL

= utxL
and ([xtL, secondLevelIsInfeasible] ∈ L or [xtL, UBIsSolved] ∈ L)) then

6 Fathom node t

7 if [xtL, ·] 6∈ L and
((branchStrategy is linking and (xt, yt) ∈ X × Y and ltxL

= utxL
) or

(branchStrategy is fractional and (xt, yt) ∈ X × Y ) or
(solveSecondLevelWhenXYVarsInt and (xt, yt) ∈ X × Y ) or
(solveSecondLevelWhenXVarsInt and xt ∈ X) or
(solveSecondLevelWhenLVarsInt and xL ∈ ZL)or
(solveSecondLevelWhenLVarsFixed and ltxL

= utxL
)) then

8 Solve (SL-MILP) to find φ(A2xt)
9 if (SL-MILP) is infeasible then

10 L ← L ∪ [xtL, secondLevelIsInfeasible]
11 if ltxL

= utxL
then

12 Fathom node t

13 else
14 L ← L ∪ [xtL, secondLevelIsFeasible]

15 if [xtL, secondLevelIsFeasible] ∈ L or [xtL, UBIsSolved] ∈ L then
16 ŷt ← The optimal solution of (SL-MILP)
17 if (xt, yt) ∈ F then
18 U t ← cxt + d1yt, U ← min{U,U t}
19 Fathom node t

20 if [xtL, UBIsSolved] 6∈ L and
((branchStrategy is linking and (xt, yt) ∈ X × Y and ltxL

= utxL
) or

(computeBestUBWhenXVarsInt and xt ∈ X) or
(computeBestUBWhenLVarsFixed and ltxL

= utxL
) or

(computeBestUBWhenLVarsInt)) then
21 Solve (UB)
22 if (UB) is feasible then
23 U ← min{U, optimal value of (UB)}
24 L ← L \ [xtL, secondLevelIsFeasible], L ← L ∪ [xtL, UBIsSolved]
25 if ltxL

= utxL
then

26 Fathom node t

27 else if (xt, ŷt) ∈ F then
28 U ← min{U, cxt + d1ŷt}

29 if branchStrategy is fractional and (xt, yt) ∈ X × Y then
30 Remove (xt, yt) by generating a cut

31 else if [xtL, ·] 6∈ L and (xt, yt) ∈ X × Y then
32 branch ← True

33 else
34 Remove (xt, yt) by generating a cut or branch ← True
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In the case of not using the linking solution pool, the structure of algorithm is similar to Algo-
rithm 1, but differs in the steps where information from the linking solution pool is exploited or
new information is added to this pool. For example, the lines 10, 14 and 24 are eliminated and the
lines 5, 7, 15 and 20 are modified.

As mentioned earlier, this algorithm can be adapted for other risk functions. For example, the
pessimistic risk function (RF-PES) can be accommodated with a few modifications as follows. The
same relaxation is used, but the feasibility check is slightly different. At node t, if (xt, yt) /∈ X×Y ,
it is infeasible and should be removed, as usual. Otherwise, we compute φ(A2xt) and check whether
d2yt = φ(A2xt). If d2yt > φ(A2xt), (xt, yt) is infeasible, as in the optimistic case, but d2yt = φ(A2xt)
does not guarantee its feasibility. Feasibility of (xt, yt) must be verified by also ensuring that d1yt

is equal to the optimal value of the MILP

max
{
d1y

∣∣ y ∈ P1(xt) ∩ P2(xt) ∩ Y, d2y ≤ φ(A2xt)
}
.

Finding the best feasible solution with xL = γ ∈ ZL requires solving a new bilevel problem and its
details are beyond the scope of this paper. To avoid this, the fractional branching strategy can
be used instead.

3.4 Solving the Second-level Problem

It is evident that in most cases, much (if not most) of the computational effort in executing the
algorithm arises from the time required to solve (SL-MILP) and (UB) (See Table 2). A major focus
of ongoing work, therefore, is the development of methodology to reduce the time spent solving
these problems.

In closely related work on solving two-stage stochastic mixed integer optimization problems, method-
ology for warm-starting the solution process of an MILP using information derived from previously
solved instances has been developed. Hassanzadeh and Ralphs (2014) described a method for solv-
ing a sequence of MILPs differing only in the right-hand side. It is shown that a sequence of such
solves can be performed within a single branch-and-bound tree, with each solve starting where the
previous one left off. Under mild conditions, this method can be used to construct a complete
description of the value function φ. This method of solving such a sequence of MILPs has been im-
plemented within the SYMPHONY MILP solver (Ralphs et al., 2019; Ralphs and Güzelsoy, 2006,
2005), which is one of several supported solvers that can be used for solution of (SL-MILP) and (UB)
within MibS. Other supported solvers include CPLEX (CPLEX) and Cbc (Forrest, 2017a). The
parameter feasCheckSolver determines which MILP solver to be employed.

4 Computational Results

A number of experiments were conducted to evaluate the impacts of the various algorithmic options
provided by MibS. The parameters investigated in this section are

• The parameters that determine when the problems (SL-MILP) and (UB) should be solved.

• The parameter that determines the branching strategy.
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• The parameter that determines whether to use the linking solution pool or not.

• The parameters that determine whether to use the primal heuristics or not.

Because of space constraints and to allow more in-depth analysis, testing of the effectiveness of
various classes of valid inequalities and parameters for controlling them is not included here, but
will be the subject of a future study. Three different data sets (171 instances in total) were employed
in our experiments as follows.

• IBLP-DEN: This set was generated by DeNegre (2011), and contains 50 instances with 15–20
integer variables and 20 constraints, all at the second level.

• IBLP-FIS: This is a selected set of 21 of the instances generated by Fischetti et al. (2018).
These instances originate from MILPLIB 3.0 (Bixby et al., 1998) and all variables are binary
and all constraints are at the second level.

• MIBLP-XU: This set was introduced by Xu and Wang (2014) and includes 100 randomly-
generated instances. In these problems, all first-level variables are integer with upper bound
10, while the second-level variables are continuous with probability 0.5. The number of first-
and second-level variables are equal and n1 is in the range of 10 − 460 with an increments
of 50. Furthermore, the number of first-level and second-level constraints are equal to 0.4n1.
To have specific bounds on all integer variables, we added the very loose upper bound 1500
for all integer second-level variables in converting these instances to the MibS format.

Table 1 summarizes the properties of the data sets. Note that in the described data sets, all
first-level variables are linking.

Table 1: The summary of data sets

Data Set
First-level
Vars Num

Second-level
Vars Num

First-level
Cons Num

Second-level
Cons Num

First-level
Vars Type

Second-level
Vars Type

Size

IBLP-DEN 5-15 5-15 0 20 discrete discrete 50

IBLP-FIS 4-2481 2-2480 0 16-4944 binary binary 21

MIBLP-XU 10-460 10-460 4-184 4-184 discrete
continuous,

discrete
100

All computational results we report were generated on compute nodes running the Linux (Debian
8.7) operating system with dual AMD Opteron 6128 processors and 32 GB RAM and all experiments
were run sequentially. The time limit was 3600 seconds and the pseudocost branching strategy was
used to choose the best variable among the branching candidates for all experiments. In all numer-
ical experiments, the generation of generic MILP cuts by the Cut Generation Library (Cgl) was
disabled, since these cuts seem unlikely to be effective in addition to the classes specific to MIBLPs
and their integration can cause other algorithmic issues that would first need to be addressed.
SYMPHONY was employed as the MILP solver (preprocessing and primal heuristics were turned
off) in all experiments, unless otherwise noted. In all experiments, the integer no-good cut was
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employed for solving the instances of IBLP-DEN and IBLP-FIS sets, and the problems belonging
to the MIBLP-XU set were solved by using the hypercube intersection cut. Furthermore, all primal
heuristics of MibS were disabled in the numerical experiments except as otherwise noted, since these
have in general also not proven to be very effective.

All instances were initially solved by all methods described in Sections 4.1–4.3 below, but in plotting
performance profiles, we chose the 125 problems that could be solved by at least one method in
3600 seconds and whose solution time exceeds 5 seconds for at least one method. This test set was
used for all plots and tables shown in Section 4. The details of the results employed for plotting all
of these figures and tables, are shown in the appendix (the reported running times do not include
the required time for reading the instances).

4.1 Impact of Strategy for Solving (SL-MILP) and (UB)

In order to evaluate the impacts of the parameters for solving problems (SL-MILP) and (UB), we
employed five different methods:

• whenLInt-LInt: Problems (SL-MILP) and (UB) were both solved only when xtL ∈ ZL, i.e.,
the parameters solveSecondLevelWhenLVarsInt and computeBestUBWhenLVarsInt were set
to true.

• whenLInt-LFixed: Problem (SL-MILP) was solved when xtL ∈ ZL and problem (UB) was
solved when all linking variables are fixed, i.e., the parameters solveSecondLevelWhenLVarsInt

and computeBestUBWhenLVarsFixed were set to true.

• whenLFixed-LFixed: Problems (SL-MILP) and (UB) were both solved only when linking vari-
ables were fixed, i.e., solveSecondLevelWhenLVarsFixed and computeBestUBWhenLVarsFixed

were set to true.

• whenXYInt-LFixed: Problem (SL-MILP) was solved only when (xt, yt) ∈ X × Y and prob-
lem (UB) was solved only when, in addition, all linking variables were fixed, i.e., the pa-
rameters solveSecondLevelWhenXYVarsInt and computeBestUBWhenLVarsFixed were set
to true.

• whenXYIntOrLFixed-LFixed: Problem (SL-MILP) was only solved when (xt, yt) ∈ X × Y or
all linking variables were fixed and problem (UB) was solved only whenever all linking vari-
ables are fixed, i.e., solveSecondLevelWhenXYVarsInt, solveSecondLevelWhenLVarsFixed
and computeBestUBWhenLVarsFixed were set to true.

In this first set of experiments, the branchStrategy was set to linking and useLinkingSolutionPool

was set to true. The performance profiles shown in Figure 2 compare the solution time of the five
described methods.

Figure 2a shows the results for the IBLP-DEN and IBLP-FIS sets and Figure 2b shows the results for
the MIBLP-XU set. These figures show the superiority of whenLFixed-LFixed and whenXYIntOrLFixed-LFixed

over the other three methods, with roughly the same performance for each. Based on these results,
the settings for whenXYIntOrLFixed-LFixed have been chosen as the default setting for MibS and
in the remainder of these experiments unless otherwise noted.
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(a) IBLP-DEN and IBLP-FIS sets
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Figure 2: Impact of the parameters for solving problems (SL-MILP) and (UB).

4.2 Impact of Branching Strategy

As mentioned earlier, the branchStrategy parameter controls which variables are considered
branching candidates and can be set to fractional and linking. In order to evaluate the ef-
fect of the parameter, we compared the performance of these two methods. The linking solution
pool was used in both cases.

In initial testing, we observed a possible relationship between the number of integer first- and
second-level variables and the performance of branching strategies. Hence, we further analyzed
the results by dividing them into two separate sets with r1 ≤ r2 (27 instances) and r1 > r2 (98
instances). Figure 3 shows the performance profiles for these two sets with the solution time as the
performance measure.
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Figure 3: Impact of the branchStrategy parameter.

Figure 3a shows that linking generally performed better when r1 ≤ r2, while Figure 3b indicates
that the fractional branching strategy performed better when r1 > r2. Based on these results,
the default value of branchStrategy parameter in MibS has been set to linking and fractional

for the instances with r1 ≤ r2 and r1 > r2, respectively. In general, it would not be easy to predict
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which branching strategy will behave better for a particular given instance, but it is intuitive that
when r1 << r2, the linking strategy would be better.

4.3 Impact of Linking Solution Pool

A set of eight experiments were evaluated to assess the impact of the linking solution pool. The
chosen parameters for these experiments were:

• withoutPoolWhenXYInt-LFixed: The linking solution pool is not used and whenXYInt-LFixed

strategy is used for solving problems (SL-MILP) and (UB).

• withPoolWhenXYInt-LFixed: The same as withoutPoolWhenXYInt-LFixed, but with the
use of linking solution pool.

• withoutPoolWhenXYIntOrLFixed-LFixed: The linking solution pool is not used and the
strategy for solving problems (SL-MILP) and (UB) is whenXYIntOrLFixed-LFixed.

• withPoolWhenXYIntOrLFixed-LFixed: The same as withoutPoolWhenXYIntOrLFixed-LFixed,
but with the use of the linking solution pool.

Each of the above four settings was tested with both fractional and linking branching strategies,
although the linking pool was only expected to have a large impact when we allow branching on
non-linking variables. This is because when branching only on linking variables, linking solutions
can only arise again within the same subtree as they first arose and this can only happen if the
solution was not already removed with a valid inequality.

The performance profiles shown in Figure 4 compare the solution time of the described methods.
Figure 4a shows the methods which use fractional branching strategy, and Figure 4b shows the
methods with linking branching strategy.
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Figure 4: Impact of the linking solution pool.

As expected, when branching was not limited to linking variables, the linking solution pool was
effective in decreasing the solution time. This can be observed by comparing
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• withPoolWhenXYInt-LFixed and withoutPoolWhenXYInt-LFixed for both the fractional

and linking branching strategies; and

• withPoolWhenXYIntOrLFixed-LFixed and withoutPoolWhenXYIntOrLFixed-LFixed for the
fractional branching strategy.

In these cases, branching can also be done on non-linking variables. However, use of the solution
pool for withoutPoolWhenXYIntOrLFixed-LFixed with linking branching strategy does not im-
prove performance because the branching was only done on linking variables. Based on the results
achieved in this section, the linking solution pool is used by default in MibS.

Table 2 shows the total number of instances of problems (SL-MILP) and (UB) solved when using
the methods withPoolWhenXYIntOrLFixed-LFixed and withoutPoolWhenXYIntOrLFixed-LFixed

with both linking and fractional branching strategies, as well as the percent of total solution
time required. Comparing the columns for the linking branching strategy verifies the results shown
in Figure 4b. These columns show that using the linking solution pool does not decrease the number
of (SL-MILP) and (UB) instances solved, so we do not expect to improve the solution time either.
Similarly, the columns for the fractional branching strategy verify the results shown in Figure 4a
and show that the number of instances of (SL-MILP) and (UB) can be reduced significantly by
using the pool in this case, resulting in decreased solution time.

The results with both the linking and fractional strategies with the linking pool (the first
and third columns) show that fewer instances of (SL-MILP) and (UB) are solved in general (and a
smaller percentage of time required) with the fractional strategy, regardless of whether the overall
solution time is smaller with the linking strategy or not. This does not mean, however, that using
the fractional strategy always results in the need to solve fewer problems (SL-MILP) and (UB).
It is generally only by taking advantage of the linking solution pool that this is avoided. Comparing
linking strategy without the pool to the fractional strategy without the pool illustrates that
the fractional strategy sometimes requires solving more problems (SL-MILP). Moreover, Table 2
shows that different data sets do not have the same behavior from the point of required time for
solving MILPs.

Table 2: Analysis of total time and frequency of solving problems (SL-MILP) and (UB)

withPoolWhenXYIntOr

LFixed-LFixed(Linking)

withoutPoolWhenXYIntOr

LFixed-LFixed(Linking)

withPoolWhenXYIntOr

LFixed-LFixed(Fractional)

withoutPoolWhenXYIntOr

LFixed-LFixed(Fractional)

Data Set
SL

Count
UB

Count
Time
(%)

SL
Count

UB
Count

Time
(%)

SL
Count

UB
Count

Time
(%)

SL
Count

UB
Count

Time
(%)

IBLP-DEN
(r1 ≤ r2)

1,027,234 1,023,867 89 1,029,644 1,023,867 89 203,711 48,190 4 5,570,810 316,227 91

IBLP-DEN
(r1 > r2)

1,300,436 1,184,094 53 1,317,993 1,184,094 55 820,832 2,333 17 2,571,199 2,355 39

IBLP-FIS
(r1 ≤ r2)

699 695 84 699 695 84 201 29 0 1,336,226 31,058 43

IBLP-FIS
(r1 > r2)

91,280 56,014 13 93,013 56,014 13 19,103 0 2 27,980 0 3

MIBLP-XU 26,593 8,791 4 26,597 8,795 4 5,972 5,618 18 10,654 10,239 38
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4.4 Impact of Primal Heuristics

In order to evaluate the impact of employing primal heuristics implemented in MibS (see Sec-
tion 2.5), we compared four different methods:

• noHeuristics: Parameters are set to the default values obtained from the results of previous
sections, i.e.,

– the strategy for solving problems (SL-MILP) and (UB) is whenXYIntOrLFixed-LFixed.

– branchStrategy is set to linking and fractional for the instances with r1 ≤ r2 and
r1 > r2, respectively.

– the linking solution pool is used.

• impObjectiveCut: The same as noHeuristics, but the improving objective cut heuristic is
turned-on.

• secondLevelPriority: The same as noHeuristics, but the second-level priority heuristic
is turned-on.

• weightedSums: The same as noHeuristics, but the weighted sums heuristic is turned-on.

Figure 5 shows the performance profiles for these four methods with the solution time as the
performance measure. The frequency of using heuristics was set to 100.
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Figure 5: Impact of the primal heuristics.

Based on Figure 5, the primal heuristics implemented so far are not effective in improving the
solution time. However, it may be possible to improve their performance by parameter tuning. No
serious effort has been made so far to do this.

4.5 Impact of MILP Solver

SYMPHONY was employed as the MILP solver in all experiments described in previous sections.
In order to investigate the impact of the employed MILP solver in solving MIBLPs, we repeated
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some of these experiments using CPLEX (with its default setting) as the MILP solver. We observed
that when the total time for solving the required MILPs was not large and the MILPs were easy
to solve, the impact of the change in MILP solver was not considerable. In cases where solution
of the MILPs required more effort, CPLEX did reduce the time for solving the MILPs by roughly
half on average (but the exact amount of reduction depends highly on the instance).

5 Conclusions

We have presented a generalized branch-and-cut algorithm, which is able to solve a wide range of
MIBLPs. The components of this algorithm have been explained in detail and we have discussed
precisely how the specific features of MIBLPs can be utilized to solve various classes of problems
that arise in practical applications. Moreover, we have introduced MibS, which is an open-source
solver for MIBLPs. This solver has been implemented based on the branch-and-cut algorithm
described in the paper and provides a comprehensive and flexible framework in which a variety of
algorithmic options are available. We have demonstrated the performance of MibS and shown that
it is a robust solver capable of solving generic MIBLPs of modest size. In future papers, we will
describe additional details of the methodology in MibS, including the cut generation, which we have
not discussed here. Our future plans for MibS include the implementation of additional techniques
for generating valid inequalities and the possible addition of alternative algorithms.
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Appendices

Tables 3–10 present detailed results applied for plotting Figures 2 –5.

Table 3: Detailed results of Figure 2a

whenLInt-LInt whenLInt-LFixed whenLFixed-LFixed whenXYInt-LFixed
whenXYIntOr

LFixed-LFixed

Instance BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes

miblp-20-15-50-0110-10-10 -206.00 1.82 423 -206.00 1.08 423 -206.00 0.97 1414 -206.00 1.06 423 -206.00 1.70 423
miblp-20-15-50-0110-10-2 -398.00 12.25 2590 -398.00 9.18 2450 -398.00 11.12 27625 -398.00 9.09 2450 -398.00 11.52 2590
miblp-20-15-50-0110-10-3 -42.00 0.74 267 -42.00 0.61 267 -42.00 0.71 1343 -42.00 0.62 267 -42.00 0.70 267
miblp-20-15-50-0110-10-6 -246.00 12.16 340 -246.00 4.47 340 -246.00 2.19 853 -246.00 4.56 340 -246.00 8.67 340
miblp-20-15-50-0110-10-9 -635.00 26.62 2387 -635.00 14.06 2380 -635.00 7.86 6457 -635.00 14.05 2380 -635.00 25.35 2387
miblp-20-20-50-0110-10-10 -441.00 1322.97 134901 -441.00 684.67 134585 -441.00 526.56 639146 -441.00 692.00 134585 -441.00 1121.84 134901
miblp-20-20-50-0110-10-1 -359.00 264.46 96136 -359.00 244.20 94019 -359.00 260.31 423149 -359.00 228.67 96141 -359.00 248.95 96136
miblp-20-20-50-0110-10-2 -659.00 12.72 3261 -659.00 3.93 3191 -659.00 2.78 7547 -659.00 3.69 3191 -659.00 10.56 3261
miblp-20-20-50-0110-10-3 -618.00 40.06 21622 -618.00 13.04 20780 -618.00 10.74 38188 -618.00 13.18 20788 -618.00 29.85 21622
miblp-20-20-50-0110-10-4 -604.00 >3600 654402 -604.00 3127.12 830908 -604.00 3405.57 6452671 -604.00 3145.16 830808 -604.00 >3600 714877
miblp-20-20-50-0110-10-7 -683.00 3233.20 3069661 -683.00 2046.70 2978073 -683.00 3184.99 11502091 -683.00 1887.37 3003967 -683.00 2511.36 3069661
miblp-20-20-50-0110-10-8 -667.00 182.80 12868 -667.00 87.14 12856 -667.00 40.78 30873 -667.00 80.45 12857 -667.00 148.40 12868
miblp-20-20-50-0110-10-9 -256.00 45.39 35295 -256.00 21.06 31244 -256.00 23.97 76055 -256.00 20.99 31245 -256.00 33.92 35295
miblp-20-20-50-0110-15-1 -450.00 60.74 3516 -450.00 60.84 3506 -450.00 65.16 49137 -450.00 59.38 3506 -450.00 60.89 3516
miblp-20-20-50-0110-15-2 -645.00 73.76 17251 -645.00 50.01 17251 -645.00 96.13 346065 -645.00 50.14 17251 -645.00 63.85 17251
miblp-20-20-50-0110-15-3 -593.00 100.53 3083 -593.00 70.36 3081 -593.00 65.25 42877 -593.00 71.15 3081 -593.00 92.89 3083
miblp-20-20-50-0110-15-4 -441.00 66.29 1625 -441.00 42.88 1625 -441.00 36.99 29904 -441.00 43.00 1625 -441.00 55.23 1625
miblp-20-20-50-0110-15-5 -379.00 860.42 16715 -379.00 632.14 16715 -379.00 615.16 205025 -379.00 651.28 16715 -379.00 730.86 16715
miblp-20-20-50-0110-15-6 -596.00 23.24 1657 -596.00 17.26 1657 -596.00 17.87 29923 -596.00 17.31 1657 -596.00 22.10 1657
miblp-20-20-50-0110-15-7 -471.00 133.26 13405 -471.00 110.80 13405 -471.00 125.24 241285 -471.00 111.02 13405 -471.00 127.42 13405
miblp-20-20-50-0110-15-8 -370.00 41.05 21589 -370.00 39.51 21589 -370.00 138.34 579309 -370.00 39.12 21589 -370.00 40.56 21589
miblp-20-20-50-0110-15-9 -584.00 2.58 588 -584.00 2.03 582 -584.00 1.96 4072 -584.00 2.00 582 -584.00 2.34 588
miblp-20-20-50-0110-5-13 -519.00 >3600 4221171 -519.00 2002.06 4392628 -519.00 2307.90 10196998 -519.00 2464.25 7128138 -519.00 >3600 5830754
miblp-20-20-50-0110-5-15 -617.00 >3600 3325012 -617.00 1122.66 2749914 -617.00 1219.33 6630921 -617.00 1310.67 4018058 -617.00 2953.78 4018081
miblp-20-20-50-0110-5-16 -833.00 44.15 18278 -833.00 6.48 17680 -833.00 4.86 19013 -833.00 6.60 17680 -833.00 38.30 18278
miblp-20-20-50-0110-5-17 -944.00 16.80 18200 -944.00 4.62 17712 -944.00 3.99 21541 -944.00 4.78 17679 -944.00 10.64 18200
miblp-20-20-50-0110-5-19 -431.00 104.93 79279 -431.00 26.75 77256 -431.00 27.52 147268 -431.00 26.56 77256 -431.00 65.55 79279
miblp-20-20-50-0110-5-1 -548.00 52.43 42629 -548.00 14.31 42364 -548.00 12.98 64067 -548.00 14.50 42364 -548.00 36.55 42629
miblp-20-20-50-0110-5-20 -438.00 48.38 60990 -438.00 14.95 50531 -438.00 15.81 76091 -438.00 17.30 60944 -438.00 31.77 60990
miblp-20-20-50-0110-5-6 -1061.00 202.25 224425 -1061.00 62.75 223494 -1061.00 58.74 284550 -1061.00 63.70 222566 -1061.00 127.84 224425
lseu-0.100000 1120.00 657.06 1132617 1120.00 235.84 734286 1120.00 248.54 1071409 1120.00 270.78 1003976 1120.00 626.90 1132617
lseu-0.900000 5838.00 13.91 1023 5838.00 14.41 1023 5838.00 1063.02 4718749 5838.00 14.10 1023 5838.00 13.83 1023
p0033-0.500000 3095.00 12.65 20855 3095.00 10.44 20695 3095.00 6.24 33614 3095.00 10.48 20695 3095.00 11.55 20855
p0033-0.900000 4679.00 0.06 27 4679.00 0.05 27 4679.00 0.65 3455 4679.00 0.06 27 4679.00 0.04 27
p0201-0.900000 15025.00 7.05 2481 15025.00 6.66 2481 15025.00 20.58 18801 15025.00 6.62 2481 15025.00 6.68 2481
stein27-0.500000 19.00 6.21 12115 19.00 6.24 14362 19.00 7.36 21515 19.00 5.88 12115 19.00 5.91 12115
stein27-0.900000 24.00 0.01 15 24.00 0.02 15 24.00 1.25 4445 24.00 0.02 15 24.00 0.02 15
stein45-0.100000 30.00 51.06 89035 30.00 96.92 61518 30.00 50.47 89035 30.00 50.19 89035 30.00 50.17 89035
stein45-0.500000 32.00 554.15 640308 32.00 1088.96 1014908 32.00 635.22 952123 32.00 519.59 640308 32.00 520.73 640308
stein45-0.900000 40.00 0.16 63 40.00 0.16 63 40.00 85.92 103661 40.00 0.14 63 40.00 0.15 63
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Table 4: Detailed results of Figure 2b

whenLInt-LInt whenLInt-LFixed whenLFixed-LFixed whenXYInt-LFixed
whenXYIntOr

LFixed-LFixed

Instance BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes

bmilplib-110-10 -177.67 336.74 75952 -177.67 150.88 75141 -177.67 149.10 93801 -177.67 153.82 75499 -177.67 223.95 75952
bmilplib-110-1 -181.67 9.23 2806 -181.67 5.35 3629 -181.67 5.42 2878 -181.67 5.35 2806 -181.67 6.34 2806
bmilplib-110-2 -110.67 9.16 4183 -110.67 6.53 4439 -110.67 6.50 4272 -110.67 6.48 4174 -110.67 7.46 4183
bmilplib-110-3 -215.16 10.15 3484 -215.16 6.07 3529 -215.16 5.42 3556 -215.16 5.58 3471 -215.16 7.13 3484
bmilplib-110-4 -197.29 16.30 1917 -197.29 3.66 1740 -197.29 3.54 1801 -197.29 3.69 1751 -197.29 8.20 1917
bmilplib-110-6 -148.25 25.96 8857 -148.25 14.57 8735 -148.25 14.14 9392 -148.25 15.06 8770 -148.25 19.35 8857
bmilplib-110-7 -160.86 11.92 2221 -160.86 4.66 2167 -160.86 4.01 2281 -160.86 4.94 2189 -160.86 7.45 2221
bmilplib-110-8 -155.00 39.85 11835 -155.00 20.66 11916 -155.00 20.65 12498 -155.00 20.78 11663 -155.00 27.93 11835
bmilplib-110-9 -192.92 9.14 2155 -192.92 3.46 2099 -192.92 3.28 2171 -192.92 3.66 2151 -192.92 5.84 2155
bmilplib-160-10 -189.82 87.08 9130 -189.82 30.70 8676 -189.82 31.24 9344 -189.82 33.42 9071 -189.82 55.24 9130
bmilplib-160-1 -165.00 63.76 7908 -165.00 25.00 8028 -165.00 24.18 8145 -165.00 25.70 7901 -165.00 38.00 7908
bmilplib-160-2 -178.24 87.14 8680 -178.24 29.51 8612 -178.24 29.64 8710 -178.24 30.59 8635 -178.24 47.52 8680
bmilplib-160-3 -174.94 196.12 15164 -174.94 62.78 14998 -174.94 54.62 15427 -174.94 63.37 15002 -174.94 104.06 15164
bmilplib-160-4 -135.83 77.00 15005 -135.83 48.60 14708 -135.83 50.86 15354 -135.83 51.02 14772 -135.83 60.24 15005
bmilplib-160-5 -140.78 62.61 4981 -140.78 19.78 4842 -140.78 19.35 5178 -140.78 20.52 4948 -140.78 36.78 4981
bmilplib-160-6 -111.00 32.32 8685 -111.00 27.50 10149 -111.00 25.08 8864 -111.00 24.66 8676 -111.00 27.50 8685
bmilplib-160-7 -96.00 65.43 16589 -96.00 51.07 16804 -96.00 50.97 17430 -96.00 51.20 16560 -96.00 58.05 16589
bmilplib-160-8 -181.40 22.24 3464 -181.40 12.47 3417 -181.40 9.32 3540 -181.40 10.49 3444 -181.40 14.93 3464
bmilplib-160-9 -207.50 34.05 4715 -207.50 16.51 5169 -207.50 14.90 4728 -207.50 15.85 4607 -207.50 23.34 4715
bmilplib-210-10 -130.59 84.71 12226 -130.59 58.89 12010 -130.59 61.00 12497 -130.59 61.81 12176 -130.59 72.22 12226
bmilplib-210-1 -136.80 77.67 7429 -136.80 37.71 7182 -136.80 40.04 7598 -136.80 41.96 7429 -136.80 56.23 7429
bmilplib-210-2 -117.80 153.16 22441 -117.80 111.87 22597 -117.80 109.56 23096 -117.80 113.38 22294 -117.80 131.02 22441
bmilplib-210-3 -130.80 74.50 8897 -130.80 44.80 8523 -130.80 47.44 9165 -130.80 48.19 8848 -130.80 59.95 8897
bmilplib-210-4 -162.20 62.23 4738 -162.20 36.19 5094 -162.20 25.92 4806 -162.20 26.81 4687 -162.20 41.52 4738
bmilplib-210-5 -134.00 156.90 21193 -134.00 106.25 21560 -134.00 105.03 21552 -134.00 108.22 21058 -134.00 130.51 21193
bmilplib-210-6 -125.43 269.65 38538 -125.43 198.77 38367 -125.43 197.88 39941 -125.43 201.40 38443 -125.43 227.81 38538
bmilplib-210-7 -169.73 146.39 13960 -169.73 76.42 13960 -169.73 77.62 14305 -169.73 77.84 13960 -169.73 104.02 13960
bmilplib-210-8 -101.46 70.64 11105 -101.46 56.97 11324 -101.46 58.14 11347 -101.46 61.79 11105 -101.46 62.56 11105
bmilplib-210-9 -184.00 1822.79 143571 -184.00 790.46 144603 -184.00 859.46 143665 -184.00 879.61 142294 -184.00 1184.18 143571
bmilplib-260-10 -151.73 785.34 62063 -151.73 503.08 62143 -151.73 502.94 63026 -151.73 546.55 61767 -151.73 633.15 62063
bmilplib-260-1 -139.00 155.24 10994 -139.00 83.01 11369 -139.00 81.74 11242 -139.00 85.81 10980 -139.00 119.94 10994
bmilplib-260-2 -82.62 117.18 15300 -82.62 156.75 15292 -82.62 109.75 15712 -82.62 109.75 15287 -82.62 114.50 15300
bmilplib-260-3 -144.25 148.68 8777 -144.25 72.67 9563 -144.25 69.26 8859 -144.25 71.54 8769 -144.25 94.43 8777
bmilplib-260-4 -117.33 294.39 32964 -117.33 245.58 32696 -117.33 260.01 33931 -117.33 259.48 32787 -117.33 272.70 32964
bmilplib-260-5 -121.00 201.31 21557 -121.00 167.30 22480 -121.00 173.32 22121 -121.00 166.03 21542 -121.00 183.46 21557
bmilplib-260-6 -124.00 258.94 25420 -124.00 191.68 25826 -124.00 209.79 26023 -124.00 197.04 25362 -124.00 223.31 25420
bmilplib-260-7 -137.80 472.66 40528 -137.80 304.36 40400 -137.80 318.76 41180 -137.80 312.12 40274 -137.80 383.16 40528
bmilplib-260-8 -119.89 112.17 10094 -119.89 73.72 9961 -119.89 76.70 10332 -119.89 87.01 10025 -119.89 96.85 10094
bmilplib-260-9 -160.00 510.37 33496 -160.00 257.08 33928 -160.00 271.18 34236 -160.00 273.66 33468 -160.00 394.98 33496
bmilplib-310-10 -141.86 129.77 9904 -141.86 110.26 9896 -141.86 114.38 10033 -141.86 121.07 9900 -141.86 127.87 9904
bmilplib-310-1 -117.00 521.12 28360 -117.00 301.34 28373 -117.00 329.80 29055 -117.00 329.71 28330 -117.00 372.68 28360
bmilplib-310-2 -105.00 523.84 43448 -105.00 457.17 44736 -105.00 457.69 44841 -105.00 497.66 43399 -105.00 539.20 43448
bmilplib-310-3 -127.52 943.53 66426 -127.52 907.46 72139 -127.52 783.89 67441 -127.52 777.74 66410 -127.52 916.69 66426
bmilplib-310-4 -147.78 701.76 47718 -147.78 510.81 48131 -147.78 572.76 48950 -147.78 569.43 47711 -147.78 652.54 47718
bmilplib-310-5 -161.45 557.76 31838 -161.45 339.05 31553 -161.45 382.13 32454 -161.45 366.90 31782 -161.45 488.65 31838
bmilplib-310-6 -141.18 1448.71 102047 -141.18 1159.42 110836 -141.18 1264.60 103214 -141.18 1191.51 101904 -141.18 1324.84 102047
bmilplib-310-7 -142.00 1443.70 102030 -142.00 1057.98 104876 -142.00 1199.47 104166 -142.00 1129.24 102000 -142.00 1396.34 102030
bmilplib-310-8 -115.34 143.13 11375 -115.34 110.74 11067 -115.34 114.80 11293 -115.34 127.94 11109 -115.34 142.93 11375
bmilplib-310-9 -115.65 423.77 20552 -115.65 231.20 21846 -115.65 248.24 20838 -115.65 255.27 20490 -115.65 281.90 20552
bmilplib-360-10 -108.59 257.34 13727 -108.59 209.20 13671 -108.59 242.94 14064 -108.59 234.92 13697 -108.59 258.65 13727
bmilplib-360-1 -133.00 2416.81 75780 -133.00 1239.50 77206 -133.00 1297.32 77066 -133.00 1353.62 75421 -133.00 1500.96 75780
bmilplib-360-2 -138.44 1187.29 53004 -138.44 829.40 52868 -138.44 999.50 54354 -138.44 965.52 52919 -138.44 1169.80 53004
bmilplib-360-3 -131.00 834.51 40671 -131.00 728.80 40353 -131.00 624.78 41302 -131.00 832.88 40487 -131.00 731.63 40671
bmilplib-360-4 -119.00 371.93 18350 -119.00 286.84 18870 -119.00 338.49 18813 -119.00 332.90 18293 -119.00 361.79 18350
bmilplib-360-5 -164.26 593.68 30001 -164.26 420.56 29790 -164.26 484.66 30352 -164.26 618.86 29947 -164.26 600.63 30001
bmilplib-360-6 -110.12 1169.00 68863 -110.12 1005.68 69453 -110.12 1018.82 70283 -110.12 1181.02 68863 -110.12 1210.13 68863
bmilplib-360-7 -105.00 538.80 31092 -105.00 457.98 32124 -105.00 517.46 31884 -105.00 634.17 30900 -105.00 542.81 31092
bmilplib-360-8 -98.25 399.32 22995 -98.25 343.65 22787 -98.25 416.97 23337 -98.25 362.89 22857 -98.25 386.45 22995
bmilplib-360-9 -127.22 815.44 40383 -127.22 622.13 40733 -127.22 746.66 41235 -127.22 736.16 40329 -127.22 819.68 40383
bmilplib-410-10 -153.37 3527.64 101673 -153.37 2725.83 103359 -153.37 2879.03 103400 -153.37 2729.77 101447 -153.37 2976.52 101673
bmilplib-410-1 -103.50 582.60 20790 -103.50 535.58 20612 -103.50 589.62 21088 -103.50 553.76 20634 -103.50 534.12 20790
bmilplib-410-2 -108.59 803.44 31603 -108.59 734.82 31602 -108.59 748.06 32251 -108.59 840.56 31603 -108.59 882.69 31603
bmilplib-410-3 -96.24 1275.98 33041 -96.24 791.92 33963 -96.24 777.04 33473 -96.24 871.58 32882 -96.24 973.12 33041
bmilplib-410-4 -119.50 1582.86 38489 -119.50 930.82 39270 -119.50 1041.97 39371 -119.50 1031.12 38489 -119.50 1101.03 38489
bmilplib-410-5 -119.22 700.45 23865 -119.22 567.85 23747 -119.22 681.99 24163 -119.22 678.49 23852 -119.22 696.17 23865
bmilplib-410-6 -151.31 404.52 11130 -151.31 261.83 10795 -151.31 333.36 11193 -151.31 322.88 11130 -151.31 337.71 11130
bmilplib-410-7 -123.00 624.95 22208 -123.00 519.43 22843 -123.00 601.78 22628 -123.00 560.34 22146 -123.00 560.38 22208
bmilplib-410-8 -125.78 1717.64 62336 -125.78 1484.95 61784 -125.78 1692.35 63421 -125.78 1547.88 62218 -125.78 1579.12 62336
bmilplib-410-9 -100.77 505.02 20424 -100.77 579.73 20095 -100.77 607.44 20920 -100.77 531.88 20400 -100.77 494.06 20424
bmilplib-460-10 -102.51 1949.07 55030 -102.51 1782.80 55882 -102.51 1701.70 56265 -102.51 1857.94 55024 -102.51 1822.52 55030
bmilplib-460-1 -97.59 2961.39 86689 -97.59 3575.71 93301 -97.59 2938.02 87709 -97.59 2822.97 86632 -97.59 2915.62 86689
bmilplib-460-2 -139.00 739.75 16720 -139.00 527.76 16721 -139.00 608.40 16863 -139.00 625.95 16623 -139.00 694.03 16720
bmilplib-460-3 -86.50 1921.88 57462 -86.50 1853.40 59065 -86.50 2102.77 58229 -86.50 1995.92 57395 -86.50 1946.46 57462
bmilplib-460-4 -107.03 3321.16 95231 -107.03 3173.50 94899 -107.03 3328.91 97160 -107.03 3291.28 95035 -107.03 3301.27 95231
bmilplib-460-5 -100.50 1407.70 41312 -100.50 1366.52 40903 -100.50 1619.91 41796 -100.50 1424.54 41109 -100.50 1450.14 41312
bmilplib-460-6 -107.00 1623.54 46158 -107.00 1537.79 48966 -107.00 1483.17 46732 -107.00 1635.42 46076 -107.00 1598.68 46158
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Table 5: Detailed results of Figure 2b (continued)

whenLInt-LInt whenLInt-LFixed whenLFixed-LFixed whenXYInt-LFixed
whenXYIntOr

LFixed-LFixed

Instance BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes

bmilplib-460-7 -83.75 1735.67 48973 -83.75 1606.84 49516 -83.75 1728.92 49717 -83.75 1601.34 48897 -83.75 1671.84 48973
bmilplib-460-8 -115.39 1074.21 27663 -115.39 858.20 27275 -115.39 911.51 28075 -115.39 982.30 27572 -115.39 1017.28 27663
bmilplib-460-9 -128.70 3410.18 86426 -128.70 2671.50 86656 -128.70 2715.98 87796 -128.70 2830.59 85977 -128.70 3004.49 86426
bmilplib-60-10 -186.21 14.85 5929 -186.21 6.88 9593 -186.21 6.91 6134 -186.21 6.93 5922 -186.21 9.50 5929
bmilplib-60-1 -153.20 16.56 4896 -153.20 4.84 5366 -153.20 6.50 5041 -153.20 6.71 4877 -153.20 10.92 4896
bmilplib-60-5 -116.40 15.19 11289 -116.40 7.57 11308 -116.40 8.65 13984 -116.40 8.15 11202 -116.40 11.54 11289
bmilplib-60-6 -187.31 15.38 7120 -187.31 7.08 9241 -187.31 7.34 7304 -187.31 7.62 7016 -187.31 10.44 7120
bmilplib-60-8 -232.12 8.38 3653 -232.12 2.54 4052 -232.12 3.33 3683 -232.12 3.36 3570 -232.12 5.66 3653
bmilplib-60-9 -136.50 33.85 27036 -136.50 18.90 31312 -136.50 20.22 28603 -136.50 19.61 26792 -136.50 26.84 27036

Table 6: Detailed results of Figure 3a

linkingBranching fractionalBranching
Instance r1 r2 BestSol Time(s) Nodes BestSol Time(s) Nodes
miblp-20-15-50-0110-10-10 5 10 -206.00 1.06 423 -206.00 4.25 15741
miblp-20-15-50-0110-10-2 5 10 -398.00 9.09 2450 -398.00 947.81 2929420
miblp-20-15-50-0110-10-3 5 10 -42.00 0.62 267 -42.00 12.66 46349
miblp-20-15-50-0110-10-6 5 10 -246.00 4.56 340 -246.00 1.56 1367
miblp-20-15-50-0110-10-9 5 10 -635.00 14.05 2380 -635.00 6.52 7667
miblp-20-20-50-0110-10-10 10 10 -441.00 692.00 134585 -441.00 2867.85 7261247
miblp-20-20-50-0110-10-1 10 10 -359.00 228.67 96141 -357.00 >3600 9234364
miblp-20-20-50-0110-10-2 10 10 -659.00 3.69 3191 -659.00 3.16 5100
miblp-20-20-50-0110-10-3 10 10 -618.00 13.18 20788 -618.00 12.05 51970
miblp-20-20-50-0110-10-4 10 10 -604.00 3145.16 830808 -604.00 >3600 7988914
miblp-20-20-50-0110-10-7 10 10 -683.00 1887.37 3003967 -629.00 >3600 9709672
miblp-20-20-50-0110-10-8 10 10 -667.00 80.45 12857 -667.00 68.08 75661
miblp-20-20-50-0110-10-9 10 10 -256.00 20.99 31245 -256.00 305.78 757349
miblp-20-20-50-0110-15-1 5 15 -450.00 59.38 3506 -317.00 >3600 9813005
miblp-20-20-50-0110-15-2 5 15 -645.00 50.14 17251 -645.00 >3600 10839884
miblp-20-20-50-0110-15-3 5 15 -593.00 71.15 3081 -593.00 >3600 13042109
miblp-20-20-50-0110-15-4 5 15 -441.00 43.00 1625 -398.00 >3600 8692428
miblp-20-20-50-0110-15-5 5 15 -379.00 651.28 16715 -320.00 >3600 7284040
miblp-20-20-50-0110-15-6 5 15 -596.00 17.31 1657 -596.00 >3600 7851818
miblp-20-20-50-0110-15-7 5 15 -471.00 111.02 13405 -471.00 >3600 9675451
miblp-20-20-50-0110-15-8 5 15 -370.00 39.12 21589 -290.00 >3600 10350188
miblp-20-20-50-0110-15-9 5 15 -584.00 2.00 582 -584.00 19.58 56459
lseu-0.900000 9 80 5838.00 14.10 1023 5838.00 >3600 8743754
p0033-0.900000 4 29 4679.00 0.06 27 4679.00 5.56 28241
p0201-0.900000 21 180 15025.00 6.62 2481 15025.00 >3600 1310278
stein27-0.900000 3 24 24.00 0.02 15 24.00 419.87 702055
stein45-0.900000 5 40 40.00 0.14 63 40.00 >3600 1499583
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Table 7: Detailed results of Figure 3b

linkingBranching fractionalBranching
Instance r1 r2 BestSol Time(s) Nodes BestSol Time(s) Nodes
bmilplib-110-10 110 63 -177.67 153.82 75499 -177.67 116.32 55177
bmilplib-110-1 110 50 -181.67 5.35 2806 -181.67 0.93 306
bmilplib-110-2 110 45 -110.67 6.48 4174 -110.67 1.16 303
bmilplib-110-3 110 55 -215.16 5.58 3471 -215.16 0.89 360
bmilplib-110-4 110 50 -197.29 3.69 1751 -197.29 1.34 148
bmilplib-110-6 110 55 -148.25 15.06 8770 -148.25 3.84 1448
bmilplib-110-7 110 61 -160.86 4.94 2189 -160.86 0.91 205
bmilplib-110-8 110 54 -155.00 20.78 11663 -155.00 7.66 2274
bmilplib-110-9 110 58 -192.92 3.66 2151 -192.92 0.39 146
bmilplib-160-10 160 83 -189.82 33.42 9071 -189.82 7.73 728
bmilplib-160-1 160 80 -165.00 25.70 7901 -165.00 4.76 881
bmilplib-160-2 160 76 -178.24 30.59 8635 -178.24 5.95 507
bmilplib-160-3 160 86 -174.94 63.37 15002 -174.94 13.71 1102
bmilplib-160-4 160 81 -135.83 51.02 14772 -135.83 19.13 2447
bmilplib-160-5 160 83 -140.78 20.52 4948 -140.78 7.72 668
bmilplib-160-6 160 81 -111.00 24.66 8676 -111.00 5.02 627
bmilplib-160-7 160 79 -96.00 51.20 16560 -96.00 18.72 2855
bmilplib-160-8 160 85 -181.40 10.49 3444 -181.40 1.74 311
bmilplib-160-9 160 77 -207.50 15.85 4607 -207.50 2.02 268
bmilplib-210-10 210 99 -130.59 61.81 12176 -130.59 8.59 1100
bmilplib-210-1 210 101 -136.80 41.96 7429 -136.80 6.67 550
bmilplib-210-2 210 96 -117.80 113.38 22294 -117.80 19.78 2306
bmilplib-210-3 210 119 -130.80 48.19 8848 -130.80 12.93 1380
bmilplib-210-4 210 115 -162.20 26.81 4687 -162.20 3.64 309
bmilplib-210-5 210 110 -134.00 108.22 21058 -134.00 20.03 2079
bmilplib-210-6 210 115 -125.43 201.40 38443 -125.43 45.28 4875
bmilplib-210-7 210 102 -169.73 77.84 13960 -169.73 11.46 1181
bmilplib-210-8 210 116 -101.46 61.79 11105 -101.46 9.60 942
bmilplib-210-9 210 103 -184.00 879.61 142294 -184.00 240.14 9466
bmilplib-260-10 260 117 -151.73 546.55 61767 -151.73 73.10 4716
bmilplib-260-1 260 135 -139.00 85.81 10980 -139.00 10.10 887
bmilplib-260-2 260 126 -82.62 109.75 15287 -82.62 18.07 1607
bmilplib-260-3 260 120 -144.25 71.54 8769 -144.25 8.70 518
bmilplib-260-4 260 125 -117.33 259.48 32787 -117.33 66.89 4426
bmilplib-260-5 260 132 -121.00 166.03 21542 -121.00 29.19 2165
bmilplib-260-6 260 146 -124.00 197.04 25362 -124.00 40.59 2420
bmilplib-260-7 260 129 -137.80 312.12 40274 -137.80 44.45 3200
bmilplib-260-8 260 143 -119.89 87.01 10025 -119.89 10.92 1025
bmilplib-260-9 260 132 -160.00 273.66 33468 -160.00 36.36 2526
bmilplib-310-10 310 157 -141.86 121.07 9900 -141.86 5.51 397
bmilplib-310-1 310 169 -117.00 329.71 28330 -117.00 44.79 2624
bmilplib-310-2 310 154 -105.00 497.66 43399 -105.00 98.39 5372
bmilplib-310-3 310 157 -127.52 777.74 66410 -127.52 149.07 7067
bmilplib-310-4 310 152 -147.78 569.43 47711 -147.78 70.22 4767
bmilplib-310-5 310 164 -161.45 366.90 31782 -161.45 34.22 1993
bmilplib-310-6 310 148 -141.18 1191.51 101904 -141.18 169.96 8300
bmilplib-310-7 310 170 -142.00 1129.24 102000 -142.00 139.15 7263
bmilplib-310-8 310 154 -115.34 127.94 11109 -115.34 19.23 921
bmilplib-310-9 310 150 -115.65 255.27 20490 -115.65 32.31 1590
bmilplib-360-10 360 172 -108.59 234.92 13697 -108.59 25.75 1106
bmilplib-360-1 360 181 -133.00 1353.62 75421 -133.00 158.38 4923
bmilplib-360-2 360 179 -138.44 965.52 52919 -138.44 148.90 4493
bmilplib-360-3 360 195 -131.00 832.88 40487 -131.00 65.41 2654
bmilplib-360-4 360 184 -119.00 332.90 18293 -119.00 42.95 1564
bmilplib-360-5 360 194 -164.26 618.86 29947 -164.26 44.45 1713
bmilplib-360-6 360 172 -110.12 1181.02 68863 -110.12 142.81 5520
bmilplib-360-7 360 188 -105.00 634.17 30900 -105.00 89.22 3346
bmilplib-360-8 360 170 -98.25 362.89 22857 -98.25 44.85 1686
bmilplib-360-9 360 184 -127.22 736.16 40329 -127.22 50.24 2642
bmilplib-410-10 410 201 -153.37 2729.77 101447 -153.37 258.89 7428
bmilplib-410-1 410 196 -103.50 553.76 20634 -103.50 87.94 1944
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Table 7: Detailed results of Figure 3b (continued)

linkingBranching fractionalBranching
Instance r1 r2 BestSol Time(s) Nodes BestSol Time(s) Nodes
bmilplib-410-2 410 189 -108.59 840.56 31603 -108.59 103.57 2887
bmilplib-410-3 410 212 -96.24 871.58 32882 -96.24 147.99 3781
bmilplib-410-4 410 187 -119.50 1031.12 38489 -119.50 100.21 2995
bmilplib-410-5 410 209 -119.22 678.49 23852 -119.22 71.23 1520
bmilplib-410-6 410 206 -151.31 322.88 11130 -151.31 13.54 533
bmilplib-410-7 410 225 -123.00 560.34 22146 -123.00 35.87 1177
bmilplib-410-8 410 211 -125.78 1547.88 62218 -125.78 169.15 4480
bmilplib-410-9 410 216 -100.77 531.88 20400 -100.77 82.17 2071
bmilplib-460-10 460 217 -102.51 1857.94 55024 -102.51 228.12 4465
bmilplib-460-1 460 227 -97.59 2822.97 86632 -97.59 569.22 10803
bmilplib-460-2 460 249 -139.00 625.95 16623 -139.00 43.65 964
bmilplib-460-3 460 222 -86.50 1995.92 57395 -86.50 223.58 3882
bmilplib-460-4 460 218 -107.03 3291.28 95035 -107.03 412.76 7856
bmilplib-460-5 460 216 -100.50 1424.54 41109 -100.50 170.30 3025
bmilplib-460-6 460 222 -107.00 1635.42 46076 -107.00 236.30 4143
bmilplib-460-7 460 254 -83.75 1601.34 48897 -83.75 294.68 5252
bmilplib-460-8 460 256 -115.39 982.30 27572 -115.39 94.67 1903
bmilplib-460-9 460 224 -128.70 2830.59 85977 -128.70 327.68 6185
bmilplib-60-10 60 25 -186.21 6.93 5922 -186.21 4.29 2590
bmilplib-60-1 60 29 -153.20 6.71 4877 -153.20 2.79 1094
bmilplib-60-5 60 33 -116.40 8.15 11202 -116.40 10.08 9996
bmilplib-60-6 60 27 -187.31 7.62 7016 -187.31 3.34 1383
bmilplib-60-8 60 30 -232.12 3.36 3570 -232.12 1.15 572
bmilplib-60-9 60 26 -136.50 19.61 26792 -136.50 12.34 9888
miblp-20-20-50-0110-5-13 15 5 -519.00 2464.25 7128138 -519.00 2709.29 6515097
miblp-20-20-50-0110-5-15 15 5 -617.00 1310.67 4018058 -617.00 1130.92 4312915
miblp-20-20-50-0110-5-16 15 5 -833.00 6.60 17680 -833.00 1.80 5913
miblp-20-20-50-0110-5-17 15 5 -944.00 4.78 17679 -944.00 1.53 4038
miblp-20-20-50-0110-5-19 15 5 -431.00 26.56 77256 -431.00 25.50 116041
miblp-20-20-50-0110-5-1 15 5 -548.00 14.50 42364 -548.00 8.45 31298
miblp-20-20-50-0110-5-20 15 5 -438.00 17.30 60944 -438.00 10.82 33315
miblp-20-20-50-0110-5-6 15 5 -1061.00 63.70 222566 -1061.00 51.74 213928
lseu-0.100000 81 8 1120.00 270.78 1003976 1120.00 3.15 8603
p0033-0.500000 17 16 3095.00 10.48 20695 3095.00 0.25 1467
stein27-0.500000 14 13 19.00 5.88 12115 19.00 6.51 17648
stein45-0.100000 41 4 30.00 50.19 89035 30.00 64.27 90241
stein45-0.500000 23 22 32.00 519.59 640308 32.00 471.57 753845

44



Table 8: Detailed results of Figure 4a

withoutPoolWhen

XYInt-LFixed

withPoolWhen

XYInt-LFixed

withoutPoolWhen

XYIntOrLFixed-LFixed

withPoolWhen

XYIntOrLFixed-LFixed

Instance BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes

bmilplib-110-10 -177.67 355.72 55177 -177.67 117.08 55177 -177.67 357.09 55177 -177.67 116.32 55177
bmilplib-110-1 -181.67 1.08 306 -181.67 0.94 306 -181.67 1.08 306 -181.67 0.93 306
bmilplib-110-2 -110.67 1.56 303 -110.67 1.17 303 -110.67 1.56 303 -110.67 1.16 303
bmilplib-110-3 -215.16 1.18 360 -215.16 0.91 360 -215.16 1.14 360 -215.16 0.89 360
bmilplib-110-4 -197.29 2.38 148 -197.29 1.34 148 -197.29 2.38 148 -197.29 1.34 148
bmilplib-110-6 -148.25 8.77 1448 -148.25 3.83 1448 -148.25 8.78 1448 -148.25 3.84 1448
bmilplib-110-7 -160.86 1.16 205 -160.86 0.93 205 -160.86 1.17 205 -160.86 0.91 205
bmilplib-110-8 -155.00 12.40 2274 -155.00 7.74 2274 -155.00 12.29 2274 -155.00 7.66 2274
bmilplib-110-9 -192.92 0.39 146 -192.92 0.38 146 -192.92 0.38 146 -192.92 0.39 146
bmilplib-160-10 -189.82 17.00 728 -189.82 7.70 728 -189.82 16.94 728 -189.82 7.73 728
bmilplib-160-1 -165.00 6.52 881 -165.00 4.72 881 -165.00 6.48 881 -165.00 4.76 881
bmilplib-160-2 -178.24 9.39 507 -178.24 5.98 507 -178.24 9.42 507 -178.24 5.95 507
bmilplib-160-3 -174.94 32.47 1102 -174.94 13.76 1102 -174.94 32.60 1102 -174.94 13.71 1102
bmilplib-160-4 -135.83 35.80 2447 -135.83 19.06 2447 -135.83 36.00 2447 -135.83 19.13 2447
bmilplib-160-5 -140.78 29.26 668 -140.78 7.73 668 -140.78 29.33 668 -140.78 7.72 668
bmilplib-160-6 -111.00 7.26 627 -111.00 5.01 627 -111.00 7.30 627 -111.00 5.02 627
bmilplib-160-7 -96.00 35.18 2855 -96.00 18.04 2855 -96.00 35.13 2855 -96.00 18.72 2855
bmilplib-160-8 -181.40 2.30 311 -181.40 1.67 311 -181.40 2.28 311 -181.40 1.74 311
bmilplib-160-9 -207.50 2.02 268 -207.50 2.01 268 -207.50 2.00 268 -207.50 2.02 268
bmilplib-210-10 -130.59 13.92 1100 -130.59 8.78 1100 -130.59 14.28 1100 -130.59 8.59 1100
bmilplib-210-1 -136.80 6.72 550 -136.80 6.71 550 -136.80 6.74 550 -136.80 6.67 550
bmilplib-210-2 -117.80 40.52 2306 -117.80 20.60 2306 -117.80 41.96 2306 -117.80 19.78 2306
bmilplib-210-3 -130.80 24.72 1380 -130.80 13.09 1380 -130.80 24.48 1380 -130.80 12.93 1380
bmilplib-210-4 -162.20 4.82 309 -162.20 3.65 309 -162.20 4.80 309 -162.20 3.64 309
bmilplib-210-5 -134.00 29.57 2079 -134.00 20.08 2079 -134.00 30.96 2079 -134.00 20.03 2079
bmilplib-210-6 -125.43 105.93 4875 -125.43 46.30 4875 -125.43 107.54 4875 -125.43 45.28 4875
bmilplib-210-7 -169.73 18.21 1181 -169.73 11.59 1181 -169.73 18.14 1181 -169.73 11.46 1181
bmilplib-210-8 -101.46 17.89 942 -101.46 9.69 942 -101.46 17.97 942 -101.46 9.60 942
bmilplib-210-9 -184.00 334.58 9466 -184.00 241.89 9466 -184.00 336.35 9466 -184.00 240.14 9466
bmilplib-260-10 -151.73 106.84 4716 -151.73 75.99 4716 -151.73 106.74 4716 -151.73 73.10 4716
bmilplib-260-1 -139.00 10.55 887 -139.00 9.72 887 -139.00 10.17 887 -139.00 10.10 887
bmilplib-260-2 -82.62 25.82 1607 -82.62 17.95 1607 -82.62 24.39 1607 -82.62 18.07 1607
bmilplib-260-3 -144.25 12.22 518 -144.25 8.70 518 -144.25 12.20 518 -144.25 8.70 518
bmilplib-260-4 -117.33 82.73 4426 -117.33 62.90 4426 -117.33 84.74 4426 -117.33 66.89 4426
bmilplib-260-5 -121.00 36.18 2165 -121.00 29.80 2165 -121.00 37.57 2165 -121.00 29.19 2165
bmilplib-260-6 -124.00 67.59 2420 -124.00 39.43 2420 -124.00 69.01 2420 -124.00 40.59 2420
bmilplib-260-7 -137.80 76.55 3200 -137.80 46.85 3200 -137.80 79.79 3200 -137.80 44.45 3200
bmilplib-260-8 -119.89 16.52 1025 -119.89 10.90 1025 -119.89 17.44 1025 -119.89 10.92 1025
bmilplib-260-9 -160.00 61.66 2526 -160.00 36.58 2526 -160.00 64.72 2526 -160.00 36.36 2526
bmilplib-310-10 -141.86 5.42 397 -141.86 5.95 397 -141.86 5.88 397 -141.86 5.51 397
bmilplib-310-1 -117.00 58.20 2624 -117.00 43.64 2624 -117.00 62.56 2624 -117.00 44.79 2624
bmilplib-310-2 -105.00 109.26 5372 -105.00 96.63 5372 -105.00 117.75 5372 -105.00 98.39 5372
bmilplib-310-3 -127.52 171.44 7067 -127.52 148.52 7067 -127.52 174.17 7067 -127.52 149.07 7067
bmilplib-310-4 -147.78 90.78 4767 -147.78 77.28 4767 -147.78 95.75 4767 -147.78 70.22 4767
bmilplib-310-5 -161.45 48.58 1993 -161.45 34.30 1993 -161.45 45.88 1993 -161.45 34.22 1993
bmilplib-310-6 -141.18 197.54 8300 -141.18 179.02 8300 -141.18 198.16 8300 -141.18 169.96 8300
bmilplib-310-7 -142.00 179.47 7263 -142.00 144.99 7263 -142.00 169.98 7263 -142.00 139.15 7263
bmilplib-310-8 -115.34 25.48 921 -115.34 20.24 921 -115.34 24.68 921 -115.34 19.23 921
bmilplib-310-9 -115.65 43.85 1590 -115.65 37.72 1590 -115.65 45.18 1590 -115.65 32.31 1590
bmilplib-360-10 -108.59 27.82 1106 -108.59 25.17 1106 -108.59 31.69 1106 -108.59 25.75 1106
bmilplib-360-1 -133.00 207.62 4923 -133.00 146.36 4923 -133.00 194.58 4923 -133.00 158.38 4923
bmilplib-360-2 -138.44 230.49 4493 -138.44 135.61 4493 -138.44 225.09 4493 -138.44 148.90 4493
bmilplib-360-3 -131.00 68.30 2654 -131.00 63.40 2654 -131.00 75.82 2654 -131.00 65.41 2654
bmilplib-360-4 -119.00 54.68 1564 -119.00 47.06 1564 -119.00 51.33 1564 -119.00 42.95 1564
bmilplib-360-5 -164.26 58.30 1713 -164.26 45.64 1713 -164.26 56.12 1713 -164.26 44.45 1713
bmilplib-360-6 -110.12 155.42 5520 -110.12 132.79 5520 -110.12 146.64 5520 -110.12 142.81 5520
bmilplib-360-7 -105.00 135.16 3346 -105.00 93.50 3346 -105.00 125.91 3346 -105.00 89.22 3346
bmilplib-360-8 -98.25 66.38 1686 -98.25 50.86 1686 -98.25 66.34 1686 -98.25 44.85 1686
bmilplib-360-9 -127.22 67.05 2642 -127.22 58.36 2642 -127.22 68.26 2642 -127.22 50.24 2642
bmilplib-410-10 -153.37 332.48 7428 -153.37 265.98 7428 -153.37 333.37 7428 -153.37 258.89 7428
bmilplib-410-1 -103.50 103.54 1944 -103.50 85.04 1944 -103.50 109.43 1944 -103.50 87.94 1944
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Table 8: Detailed results of Figure 4a (continued)

withoutPoolWhen

XYInt-LFixed

withPoolWhen

XYInt-LFixed

withoutPoolWhen

XYIntOrLFixed-LFixed

withPoolWhen

XYIntOrLFixed-LFixed

Instance BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes

bmilplib-410-2 -108.59 128.11 2887 -108.59 107.05 2887 -108.59 125.37 2887 -108.59 103.57 2887
bmilplib-410-3 -96.24 176.89 3781 -96.24 162.97 3781 -96.24 167.58 3781 -96.24 147.99 3781
bmilplib-410-4 -119.50 111.28 2995 -119.50 96.04 2995 -119.50 115.22 2995 -119.50 100.21 2995
bmilplib-410-5 -119.22 72.48 1520 -119.22 67.90 1520 -119.22 73.09 1520 -119.22 71.23 1520
bmilplib-410-6 -151.31 14.12 533 -151.31 14.66 533 -151.31 13.95 533 -151.31 13.54 533
bmilplib-410-7 -123.00 43.96 1177 -123.00 42.46 1177 -123.00 42.43 1177 -123.00 35.87 1177
bmilplib-410-8 -125.78 292.85 4480 -125.78 168.87 4480 -125.78 284.91 4480 -125.78 169.15 4480
bmilplib-410-9 -100.77 95.70 2071 -100.77 81.09 2071 -100.77 89.94 2071 -100.77 82.17 2071
bmilplib-460-10 -102.51 284.10 4465 -102.51 232.16 4465 -102.51 272.39 4465 -102.51 228.12 4465
bmilplib-460-1 -97.59 638.06 10803 -97.59 574.36 10803 -97.59 636.80 10803 -97.59 569.22 10803
bmilplib-460-2 -139.00 65.03 964 -139.00 51.23 964 -139.00 68.32 964 -139.00 43.65 964
bmilplib-460-3 -86.50 226.69 3882 -86.50 223.11 3882 -86.50 229.43 3882 -86.50 223.58 3882
bmilplib-460-4 -107.03 640.32 7856 -107.03 413.15 7856 -107.03 607.29 7856 -107.03 412.76 7856
bmilplib-460-5 -100.50 229.94 3025 -100.50 171.50 3025 -100.50 196.94 3025 -100.50 170.30 3025
bmilplib-460-6 -107.00 251.71 4143 -107.00 219.39 4143 -107.00 221.43 4143 -107.00 236.30 4143
bmilplib-460-7 -83.75 334.13 5252 -83.75 295.91 5252 -83.75 331.02 5252 -83.75 294.68 5252
bmilplib-460-8 -115.39 117.85 1903 -115.39 102.20 1903 -115.39 134.03 1903 -115.39 94.67 1903
bmilplib-460-9 -128.70 409.66 6185 -128.70 346.00 6185 -128.70 388.74 6185 -128.70 327.68 6185
bmilplib-60-10 -186.21 4.82 2590 -186.21 4.12 2590 -186.21 4.90 2590 -186.21 4.29 2590
bmilplib-60-1 -153.20 3.59 1094 -153.20 2.83 1094 -153.20 3.82 1094 -153.20 2.79 1094
bmilplib-60-5 -116.40 16.18 9996 -116.40 10.33 9996 -116.40 15.85 9996 -116.40 10.08 9996
bmilplib-60-6 -187.31 3.58 1383 -187.31 3.43 1383 -187.31 3.65 1383 -187.31 3.34 1383
bmilplib-60-8 -232.12 1.79 572 -232.12 1.16 572 -232.12 1.78 572 -232.12 1.15 572
bmilplib-60-9 -136.50 14.85 9888 -136.50 12.36 9888 -136.50 15.14 9888 -136.50 12.34 9888
miblp-20-15-50-0110-10-10 -206.00 36.93 21203 -206.00 4.22 15741 -206.00 39.37 15741 -206.00 4.25 15741
miblp-20-15-50-0110-10-2 -354.00 >3600 642894 -398.00 970.06 2929420 -354.00 >3600 596423 -398.00 947.81 2929420
miblp-20-15-50-0110-10-3 -42.00 188.57 48461 -42.00 12.65 46349 -42.00 203.74 46349 -42.00 12.66 46349
miblp-20-15-50-0110-10-6 -246.00 12.02 1385 -246.00 1.53 1367 -246.00 13.22 1367 -246.00 1.56 1367
miblp-20-15-50-0110-10-9 -635.00 25.65 7667 -635.00 6.62 7667 -635.00 26.03 7667 -635.00 6.52 7667
miblp-20-20-50-0110-10-10 -405.00 >3600 304054 -441.00 2908.94 7261247 -405.00 >3600 297842 -441.00 2867.85 7261247
miblp-20-20-50-0110-10-1 -315.00 >3600 281846 -357.00 >3600 9176214 -315.00 >3600 268812 -357.00 >3600 9234364
miblp-20-20-50-0110-10-2 -659.00 14.46 5106 -659.00 3.21 5100 -659.00 13.90 5100 -659.00 3.16 5100
miblp-20-20-50-0110-10-3 -618.00 16.74 52259 -618.00 12.21 51970 -618.00 17.08 51970 -618.00 12.05 51970
miblp-20-20-50-0110-10-4 -597.00 >3600 509252 -604.00 >3600 8018349 -597.00 >3600 502089 -604.00 >3600 7988914
miblp-20-20-50-0110-10-7 -627.00 >3600 4935849 -629.00 >3600 9735490 -627.00 >3600 4698965 -629.00 >3600 9709672
miblp-20-20-50-0110-10-8 -667.00 998.04 80603 -667.00 68.15 75661 -667.00 1085.58 75661 -667.00 68.08 75661
miblp-20-20-50-0110-10-9 -256.00 2292.26 852328 -256.00 306.60 757349 -256.00 2483.24 757349 -256.00 305.78 757349
miblp-20-20-50-0110-15-1 -246.00 >3600 250531 -317.00 >3600 9807301 -246.00 >3600 238329 -317.00 >3600 9813005
miblp-20-20-50-0110-15-2 -645.00 >3600 1416126 -645.00 >3600 10740865 -645.00 >3600 1395442 -645.00 >3600 10839884
miblp-20-20-50-0110-15-3 -476.00 >3600 189624 -593.00 >3600 13332780 -476.00 >3600 183565 -593.00 >3600 13042109
miblp-20-20-50-0110-15-4 -310.00 >3600 125392 -398.00 >3600 8670375 -310.00 >3600 125871 -398.00 >3600 8692428
miblp-20-20-50-0110-15-5 -60.00 >3600 48876 -320.00 >3600 7275287 -60.00 >3600 47748 -320.00 >3600 7284040
miblp-20-20-50-0110-15-6 -596.00 >3600 227767 -596.00 >3600 7842912 -596.00 >3600 197263 -596.00 >3600 7851818
miblp-20-20-50-0110-15-7 -471.00 >3600 393906 -471.00 >3600 9577404 -471.00 >3600 362335 -471.00 >3600 9675451
miblp-20-20-50-0110-15-8 -290.00 >3600 1772115 -290.00 >3600 10439854 -290.00 >3600 1614730 -290.00 >3600 10350188
miblp-20-20-50-0110-15-9 -584.00 269.87 56931 -584.00 19.38 56459 -584.00 271.42 56459 -584.00 19.58 56459
miblp-20-20-50-0110-5-13 -507.00 >3600 6006058 -519.00 2723.02 6515097 -507.00 >3600 6189742 -519.00 2709.29 6515097
miblp-20-20-50-0110-5-15 -617.00 1754.55 4312915 -617.00 1113.82 4312915 -617.00 1844.46 4312915 -617.00 1130.92 4312915
miblp-20-20-50-0110-5-16 -833.00 2.06 5913 -833.00 1.76 5913 -833.00 2.06 5913 -833.00 1.80 5913
miblp-20-20-50-0110-5-17 -944.00 1.61 4050 -944.00 1.50 4038 -944.00 1.66 4038 -944.00 1.53 4038
miblp-20-20-50-0110-5-19 -431.00 38.74 116041 -431.00 25.54 116041 -431.00 38.55 116041 -431.00 25.50 116041
miblp-20-20-50-0110-5-1 -548.00 13.07 31432 -548.00 8.63 31298 -548.00 13.53 31298 -548.00 8.45 31298
miblp-20-20-50-0110-5-20 -438.00 13.53 33315 -438.00 10.80 33315 -438.00 13.51 33315 -438.00 10.82 33315
miblp-20-20-50-0110-5-6 -1061.00 66.75 214009 -1061.00 51.65 213928 -1061.00 67.85 213928 -1061.00 51.74 213928
lseu-0.100000 1120.00 3.17 8603 1120.00 3.12 8603 1120.00 3.16 8603 1120.00 3.15 8603
lseu-0.900000 5838.00 >3600 2463002 5838.00 >3600 8762978 5838.00 >3600 2460978 5838.00 >3600 8743754
p0033-0.500000 3095.00 0.28 1467 3095.00 0.27 1467 3095.00 0.26 1467 3095.00 0.25 1467
p0033-0.900000 4679.00 37.10 33451 4679.00 5.58 28241 4679.00 31.19 28241 4679.00 5.56 28241
p0201-0.900000 15025.00 >3600 690347 15025.00 >3600 1309676 15025.00 >3600 689225 15025.00 >3600 1310278
stein27-0.500000 19.00 6.60 17648 19.00 6.43 17648 19.00 6.84 17648 19.00 6.51 17648
stein27-0.900000 24.00 644.53 713061 24.00 413.77 702055 24.00 638.54 702055 24.00 419.87 702055
stein45-0.100000 30.00 64.50 90241 30.00 63.84 90241 30.00 64.46 90241 30.00 64.27 90241
stein45-0.500000 32.00 465.23 753845 32.00 468.17 753845 32.00 472.32 753845 32.00 471.57 753845
stein45-0.900000 40.00 >3600 1379438 40.00 >3600 1504193 40.00 >3600 1376878 40.00 >3600 1499583
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Table 9: Detailed results of Figure 4b

withoutPoolWhen

XYInt-LFixed

withPoolWhen

XYInt-LFixed

withoutPoolWhen

XYIntOrLFixed-LFixed

withPoolWhen

XYIntOrLFixed-LFixed

Instance BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes

bmilplib-110-10 -177.67 416.71 121469 -177.67 149.10 93801 -177.67 155.24 75499 -177.67 153.82 75499
bmilplib-110-1 -181.67 5.52 2892 -181.67 5.42 2878 -181.67 5.32 2806 -181.67 5.35 2806
bmilplib-110-2 -110.67 7.04 4279 -110.67 6.50 4272 -110.67 6.49 4174 -110.67 6.48 4174
bmilplib-110-3 -215.16 6.11 3599 -215.16 5.42 3556 -215.16 5.55 3471 -215.16 5.58 3471
bmilplib-110-4 -197.29 4.64 1827 -197.29 3.54 1801 -197.29 3.70 1751 -197.29 3.69 1751
bmilplib-110-6 -148.25 19.75 9578 -148.25 14.14 9392 -148.25 14.88 8770 -148.25 15.06 8770
bmilplib-110-7 -160.86 4.30 2291 -160.86 4.01 2281 -160.86 4.86 2189 -160.86 4.94 2189
bmilplib-110-8 -155.00 25.37 12659 -155.00 20.65 12498 -155.00 20.78 11663 -155.00 20.78 11663
bmilplib-110-9 -192.92 3.33 2177 -192.92 3.28 2171 -192.92 3.63 2151 -192.92 3.66 2151
bmilplib-160-10 -189.82 40.10 9425 -189.82 31.24 9344 -189.82 33.76 9071 -189.82 33.42 9071
bmilplib-160-1 -165.00 26.18 8157 -165.00 24.18 8145 -165.00 25.67 7901 -165.00 25.70 7901
bmilplib-160-2 -178.24 33.86 8719 -178.24 29.64 8710 -178.24 30.82 8635 -178.24 30.59 8635
bmilplib-160-3 -174.94 74.85 15456 -174.94 54.62 15427 -174.94 65.13 15002 -174.94 63.37 15002
bmilplib-160-4 -135.83 69.61 15513 -135.83 50.86 15354 -135.83 51.56 14772 -135.83 51.02 14772
bmilplib-160-5 -140.78 45.58 5362 -140.78 19.35 5178 -140.78 20.58 4948 -140.78 20.52 4948
bmilplib-160-6 -111.00 27.27 8878 -111.00 25.08 8864 -111.00 24.82 8676 -111.00 24.66 8676
bmilplib-160-7 -96.00 67.91 17668 -96.00 50.97 17430 -96.00 52.58 16560 -96.00 51.20 16560
bmilplib-160-8 -181.40 9.50 3564 -181.40 9.32 3540 -181.40 10.45 3444 -181.40 10.49 3444
bmilplib-160-9 -207.50 15.01 4754 -207.50 14.90 4728 -207.50 15.87 4607 -207.50 15.85 4607
bmilplib-210-10 -130.59 66.32 12596 -130.59 61.00 12497 -130.59 61.65 12176 -130.59 61.81 12176
bmilplib-210-1 -136.80 43.30 7608 -136.80 40.04 7598 -136.80 41.01 7429 -136.80 41.96 7429
bmilplib-210-2 -117.80 132.27 23482 -117.80 109.56 23096 -117.80 118.80 22294 -117.80 113.38 22294
bmilplib-210-3 -130.80 60.91 9404 -130.80 47.44 9165 -130.80 48.09 8848 -130.80 48.19 8848
bmilplib-210-4 -162.20 27.29 4812 -162.20 25.92 4806 -162.20 26.63 4687 -162.20 26.81 4687
bmilplib-210-5 -134.00 117.77 21646 -134.00 105.03 21552 -134.00 106.92 21058 -134.00 108.22 21058
bmilplib-210-6 -125.43 261.84 40736 -125.43 197.88 39941 -125.43 213.31 38443 -125.43 201.40 38443
bmilplib-210-7 -169.73 82.57 14351 -169.73 77.62 14305 -169.73 77.43 13960 -169.73 77.84 13960
bmilplib-210-8 -101.46 67.82 11406 -101.46 58.14 11347 -101.46 56.85 11105 -101.46 61.79 11105
bmilplib-210-9 -184.00 912.62 143788 -184.00 859.46 143665 -184.00 849.38 142294 -184.00 879.61 142294
bmilplib-260-10 -151.73 559.37 63243 -151.73 502.94 63026 -151.73 514.35 61767 -151.73 546.55 61767
bmilplib-260-1 -139.00 82.50 11269 -139.00 81.74 11242 -139.00 81.82 10980 -139.00 85.81 10980
bmilplib-260-2 -82.62 125.39 15896 -82.62 109.75 15712 -82.62 107.89 15287 -82.62 109.75 15287
bmilplib-260-3 -144.25 74.50 8865 -144.25 69.26 8859 -144.25 74.50 8769 -144.25 71.54 8769
bmilplib-260-4 -117.33 284.35 34237 -117.33 260.01 33931 -117.33 272.56 32787 -117.33 259.48 32787
bmilplib-260-5 -121.00 181.75 22295 -121.00 173.32 22121 -121.00 167.03 21542 -121.00 166.03 21542
bmilplib-260-6 -124.00 240.41 26166 -124.00 209.79 26023 -124.00 195.61 25362 -124.00 197.04 25362
bmilplib-260-7 -137.80 357.63 41519 -137.80 318.76 41180 -137.80 342.97 40274 -137.80 312.12 40274
bmilplib-260-8 -119.89 87.09 10445 -119.89 76.70 10332 -119.89 75.72 10025 -119.89 87.01 10025
bmilplib-260-9 -160.00 318.76 34545 -160.00 271.18 34236 -160.00 273.16 33468 -160.00 273.66 33468
bmilplib-310-10 -141.86 119.62 10032 -141.86 114.38 10033 -141.86 110.92 9900 -141.86 121.07 9900
bmilplib-310-1 -117.00 363.13 29350 -117.00 329.80 29055 -117.00 346.52 28330 -117.00 329.71 28330
bmilplib-310-2 -105.00 519.72 45235 -105.00 457.69 44841 -105.00 519.36 43399 -105.00 497.66 43399
bmilplib-310-3 -127.52 781.32 67649 -127.52 783.89 67441 -127.52 803.04 66410 -127.52 777.74 66410
bmilplib-310-4 -147.78 584.37 49620 -147.78 572.76 48950 -147.78 564.98 47711 -147.78 569.43 47711
bmilplib-310-5 -161.45 392.22 32631 -161.45 382.13 32454 -161.45 396.10 31782 -161.45 366.90 31782
bmilplib-310-6 -141.18 1191.16 103385 -141.18 1264.60 103214 -141.18 1229.32 101904 -141.18 1191.51 101904
bmilplib-310-7 -142.00 1132.52 104378 -142.00 1199.47 104166 -142.00 1142.79 102000 -142.00 1129.24 102000
bmilplib-310-8 -115.34 129.19 11336 -115.34 114.80 11293 -115.34 137.89 11109 -115.34 127.94 11109
bmilplib-310-9 -115.65 262.22 20893 -115.65 248.24 20838 -115.65 254.18 20490 -115.65 255.27 20490
bmilplib-360-10 -108.59 254.46 14127 -108.59 242.94 14064 -108.59 261.28 13697 -108.59 234.92 13697
bmilplib-360-1 -133.00 1390.85 77371 -133.00 1297.32 77066 -133.00 1380.33 75421 -133.00 1353.62 75421
bmilplib-360-2 -138.44 980.62 54874 -138.44 999.50 54354 -138.44 953.84 52919 -138.44 965.52 52919
bmilplib-360-3 -131.00 689.69 41459 -131.00 624.78 41302 -131.00 643.52 40487 -131.00 832.88 40487
bmilplib-360-4 -119.00 334.15 18870 -119.00 338.49 18813 -119.00 331.26 18293 -119.00 332.90 18293
bmilplib-360-5 -164.26 527.22 30465 -164.26 484.66 30352 -164.26 526.38 29947 -164.26 618.86 29947
bmilplib-360-6 -110.12 1147.18 70479 -110.12 1018.82 70283 -110.12 1131.67 68863 -110.12 1181.02 68863
bmilplib-360-7 -105.00 554.89 32224 -105.00 517.46 31884 -105.00 479.93 30900 -105.00 634.17 30900
bmilplib-360-8 -98.25 438.62 23402 -98.25 416.97 23337 -98.25 423.75 22857 -98.25 362.89 22857
bmilplib-360-9 -127.22 708.99 41321 -127.22 746.66 41235 -127.22 656.26 40329 -127.22 736.16 40329
bmilplib-410-10 -153.37 2756.08 103891 -153.37 2879.03 103400 -153.37 2624.30 101447 -153.37 2729.77 101447
bmilplib-410-1 -103.50 614.03 21120 -103.50 589.62 21088 -103.50 590.37 20634 -103.50 553.76 20634
bmilplib-410-2 -108.59 846.60 32377 -108.59 748.06 32251 -108.59 746.96 31603 -108.59 840.56 31603

47



Table 9: Detailed results of Figure 4b (continued)

withoutPoolWhen

XYInt-LFixed

withPoolWhen

XYInt-LFixed

withoutPoolWhen

XYIntOrLFixed-LFixed

withPoolWhen

XYIntOrLFixed-LFixed

Instance BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes

bmilplib-410-3 -96.24 877.76 33590 -96.24 777.04 33473 -96.24 874.84 32882 -96.24 871.58 32882
bmilplib-410-4 -119.50 957.38 39535 -119.50 1041.97 39371 -119.50 944.66 38489 -119.50 1031.12 38489
bmilplib-410-5 -119.22 677.99 24188 -119.22 681.99 24163 -119.22 583.64 23852 -119.22 678.49 23852
bmilplib-410-6 -151.31 291.60 11213 -151.31 333.36 11193 -151.31 300.03 11130 -151.31 322.88 11130
bmilplib-410-7 -123.00 514.64 22684 -123.00 601.78 22628 -123.00 588.83 22146 -123.00 560.34 22146
bmilplib-410-8 -125.78 1679.79 64013 -125.78 1692.35 63421 -125.78 1462.52 62218 -125.78 1547.88 62218
bmilplib-410-9 -100.77 561.87 20968 -100.77 607.44 20920 -100.77 539.37 20400 -100.77 531.88 20400
bmilplib-460-10 -102.51 1837.01 56744 -102.51 1701.70 56265 -102.51 1964.44 55024 -102.51 1857.94 55024
bmilplib-460-1 -97.59 2829.00 87769 -97.59 2938.02 87709 -97.59 2843.15 86632 -97.59 2822.97 86632
bmilplib-460-2 -139.00 652.85 16943 -139.00 608.40 16863 -139.00 651.97 16623 -139.00 625.95 16623
bmilplib-460-3 -86.50 1976.55 58270 -86.50 2102.77 58229 -86.50 1941.05 57395 -86.50 1995.92 57395
bmilplib-460-4 -107.03 3577.74 97665 -107.03 3328.91 97160 -107.03 3160.13 95035 -107.03 3291.28 95035
bmilplib-460-5 -100.50 1519.85 41863 -100.50 1619.91 41796 -100.50 1517.44 41109 -100.50 1424.54 41109
bmilplib-460-6 -107.00 1603.92 46833 -107.00 1483.17 46732 -107.00 1528.18 46076 -107.00 1635.42 46076
bmilplib-460-7 -83.75 1813.99 49915 -83.75 1728.92 49717 -83.75 1826.46 48897 -83.75 1601.34 48897
bmilplib-460-8 -115.39 983.08 28147 -115.39 911.51 28075 -115.39 901.08 27572 -115.39 982.30 27572
bmilplib-460-9 -128.70 3006.84 88287 -128.70 2715.98 87796 -128.70 3043.95 85977 -128.70 2830.59 85977
bmilplib-60-10 -186.21 7.00 6136 -186.21 6.91 6134 -186.21 6.70 5922 -186.21 6.93 5922
bmilplib-60-1 -153.20 7.31 5060 -153.20 6.50 5041 -153.20 6.48 4877 -153.20 6.71 4877
bmilplib-60-5 -116.40 13.21 15368 -116.40 8.65 13984 -116.40 7.98 11202 -116.40 8.15 11202
bmilplib-60-6 -187.31 7.57 7310 -187.31 7.34 7304 -187.31 7.22 7016 -187.31 7.62 7016
bmilplib-60-8 -232.12 3.66 3700 -232.12 3.33 3683 -232.12 3.16 3570 -232.12 3.36 3570
bmilplib-60-9 -136.50 22.60 28947 -136.50 20.22 28603 -136.50 19.79 26792 -136.50 19.61 26792
miblp-20-15-50-0110-10-10 -206.00 5.32 3150 -206.00 0.97 1414 -206.00 1.03 423 -206.00 1.06 423
miblp-20-15-50-0110-10-2 -398.00 427.10 229000 -398.00 11.12 27625 -398.00 9.11 2450 -398.00 9.09 2450
miblp-20-15-50-0110-10-3 -42.00 6.10 3151 -42.00 0.71 1343 -42.00 0.62 267 -42.00 0.62 267
miblp-20-15-50-0110-10-6 -246.00 5.47 1183 -246.00 2.19 853 -246.00 4.47 340 -246.00 4.56 340
miblp-20-15-50-0110-10-9 -635.00 16.24 7425 -635.00 7.86 6457 -635.00 14.46 2380 -635.00 14.05 2380
miblp-20-20-50-0110-10-10 -441.00 3568.40 1159333 -441.00 526.56 639146 -441.00 717.56 134585 -441.00 692.00 134585
miblp-20-20-50-0110-10-1 -353.00 >3600 686972 -359.00 260.31 423149 -359.00 231.63 96141 -359.00 228.67 96141
miblp-20-20-50-0110-10-2 -659.00 5.16 7729 -659.00 2.78 7547 -659.00 3.80 3191 -659.00 3.69 3191
miblp-20-20-50-0110-10-3 -618.00 14.11 42906 -618.00 10.74 38188 -618.00 13.14 20788 -618.00 13.18 20788
miblp-20-20-50-0110-10-4 -604.00 >3600 1351975 -604.00 3405.57 6452671 -604.00 3089.99 830808 -604.00 3145.16 830808
miblp-20-20-50-0110-10-7 -650.00 >3600 7509639 -683.00 3184.99 11502091 -683.00 2009.54 3003967 -683.00 1887.37 3003967
miblp-20-20-50-0110-10-8 -667.00 155.00 39744 -667.00 40.78 30873 -667.00 87.06 12857 -667.00 80.45 12857
miblp-20-20-50-0110-10-9 -256.00 77.53 127374 -256.00 23.97 76055 -256.00 21.78 31245 -256.00 20.99 31245
miblp-20-20-50-0110-15-1 -289.00 >3600 474713 -450.00 65.16 49137 -450.00 65.21 3506 -450.00 59.38 3506
miblp-20-20-50-0110-15-2 -645.00 >3600 1897076 -645.00 96.13 346065 -645.00 49.73 17251 -645.00 50.14 17251
miblp-20-20-50-0110-15-3 -593.00 >3600 231893 -593.00 65.25 42877 -593.00 72.10 3081 -593.00 71.15 3081
miblp-20-20-50-0110-15-4 -323.00 >3600 205392 -441.00 36.99 29904 -441.00 43.47 1625 -441.00 43.00 1625
miblp-20-20-50-0110-15-5 -75.00 >3600 103173 -379.00 615.16 205025 -379.00 644.67 16715 -379.00 651.28 16715
miblp-20-20-50-0110-15-6 -596.00 >3600 317849 -596.00 17.87 29923 -596.00 18.98 1657 -596.00 17.31 1657
miblp-20-20-50-0110-15-7 -471.00 >3600 1084548 -471.00 125.24 241285 -471.00 126.10 13405 -471.00 111.02 13405
miblp-20-20-50-0110-15-8 -290.00 >3600 4898557 -370.00 138.34 579309 -370.00 39.01 21589 -370.00 39.12 21589
miblp-20-20-50-0110-15-9 -584.00 20.00 12193 -584.00 1.96 4072 -584.00 2.07 582 -584.00 2.00 582
miblp-20-20-50-0110-5-13 -519.00 2582.26 10718411 -519.00 2307.90 10196998 -519.00 2516.55 7128138 -519.00 2464.25 7128138
miblp-20-20-50-0110-5-15 -617.00 2170.42 8462491 -617.00 1219.33 6630921 -617.00 1297.16 4018058 -617.00 1310.67 4018058
miblp-20-20-50-0110-5-16 -833.00 6.04 20129 -833.00 4.86 19013 -833.00 7.36 17680 -833.00 6.60 17680
miblp-20-20-50-0110-5-17 -944.00 3.71 20049 -944.00 3.99 21541 -944.00 5.21 17679 -944.00 4.78 17679
miblp-20-20-50-0110-5-19 -431.00 52.75 197157 -431.00 27.52 147268 -431.00 32.98 77256 -431.00 26.56 77256
miblp-20-20-50-0110-5-1 -548.00 16.54 69127 -548.00 12.98 64067 -548.00 17.63 42364 -548.00 14.50 42364
miblp-20-20-50-0110-5-20 -438.00 17.24 80526 -438.00 15.81 76091 -438.00 18.83 60944 -438.00 17.30 60944
miblp-20-20-50-0110-5-6 -1061.00 66.85 301416 -1061.00 58.74 284550 -1061.00 63.82 222566 -1061.00 63.70 222566
lseu-0.100000 1120.00 248.50 1071409 1120.00 248.54 1071409 1120.00 262.55 1003976 1120.00 270.78 1003976
lseu-0.900000 5838.00 >3600 1631763 5838.00 1063.02 4718749 5838.00 14.12 1023 5838.00 14.10 1023
p0033-0.500000 3095.00 6.08 33614 3095.00 6.24 33614 3095.00 10.55 20695 3095.00 10.48 20695
p0033-0.900000 4679.00 14.66 23699 4679.00 0.65 3455 4679.00 0.06 27 4679.00 0.06 27
p0201-0.900000 15025.00 >3600 1037538 15025.00 20.58 18801 15025.00 6.66 2481 15025.00 6.62 2481
stein27-0.500000 19.00 7.94 22537 19.00 7.36 21515 19.00 5.82 12115 19.00 5.88 12115
stein27-0.900000 24.00 29.12 36927 24.00 1.25 4445 24.00 0.02 15 24.00 0.02 15
stein45-0.100000 30.00 49.86 89035 30.00 50.47 89035 30.00 50.33 89035 30.00 50.19 89035
stein45-0.500000 32.00 640.82 963098 32.00 635.22 952123 32.00 516.60 640308 32.00 519.59 640308
stein45-0.900000 40.00 >3600 2651427 40.00 85.92 103661 40.00 0.16 63 40.00 0.14 63
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Table 10: Detailed results of Figure 5

noHeuristics impObjectiveCut secondLevelPriority weightedSums
Instance BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes

bmilplib-110-10 -177.67 116.32 55177 -177.67 117.32 55177 -177.67 146.32 55177 -177.67 1024.90 55177
bmilplib-110-1 -181.67 0.93 306 -181.67 0.96 306 -181.67 2.90 306 -181.67 67.04 306
bmilplib-110-2 -110.67 1.16 303 -110.67 1.26 303 -110.67 1.64 303 -110.67 25.89 303
bmilplib-110-3 -215.16 0.89 360 -215.16 1.50 361 -215.16 1.93 360 -215.16 30.52 360
bmilplib-110-4 -197.29 1.34 148 -197.29 1.54 148 -197.29 2.79 148 -197.29 68.13 148
bmilplib-110-6 -148.25 3.84 1448 -148.25 4.24 1448 -148.25 4.84 1446 -148.25 59.02 1446
bmilplib-110-7 -160.86 0.91 205 -160.86 2.19 205 -160.86 1.98 205 -160.86 52.88 207
bmilplib-110-8 -155.00 7.66 2274 -155.00 7.68 2274 -155.00 10.06 2274 -155.00 73.62 2274
bmilplib-110-9 -192.92 0.39 146 -192.92 1.33 146 -192.92 1.15 146 -192.92 16.48 154
bmilplib-160-10 -189.82 7.73 728 -189.82 7.89 728 -189.82 11.28 728 -189.82 65.95 728
bmilplib-160-1 -165.00 4.76 881 -165.00 4.76 881 -165.00 5.82 893 -165.00 51.48 893
bmilplib-160-2 -178.24 5.95 507 -178.24 6.64 507 -178.24 6.96 507 -178.24 53.77 507
bmilplib-160-3 -174.94 13.71 1102 -174.94 13.57 1102 -174.94 15.78 1102 -174.94 70.46 1102
bmilplib-160-4 -135.83 19.13 2447 -135.83 18.91 2463 -135.83 24.00 2447 -135.83 116.48 2422
bmilplib-160-5 -140.78 7.72 668 -140.78 8.94 668 -140.78 10.34 668 -140.78 56.74 668
bmilplib-160-6 -111.00 5.02 627 -111.00 5.03 627 -111.00 5.40 627 -111.00 19.14 627
bmilplib-160-7 -96.00 18.72 2855 -96.00 17.83 2855 -96.00 19.22 2855 -96.00 74.44 2855
bmilplib-160-8 -181.40 1.74 311 -181.40 2.12 311 -181.40 2.44 311 -181.40 28.91 311
bmilplib-160-9 -207.50 2.02 268 -207.50 2.85 268 -207.50 2.98 268 -207.50 40.33 268
bmilplib-210-10 -130.59 8.59 1100 -130.59 8.66 1100 -130.59 10.02 1100 -130.59 73.44 1100
bmilplib-210-1 -136.80 6.67 550 -136.80 6.68 550 -136.80 7.59 550 -136.80 80.52 550
bmilplib-210-2 -117.80 19.78 2306 -117.80 20.49 2306 -117.80 22.29 2298 -117.80 149.96 2308
bmilplib-210-3 -130.80 12.93 1380 -130.80 13.04 1386 -130.80 16.16 1380 -130.80 218.18 1380
bmilplib-210-4 -162.20 3.64 309 -162.20 5.41 309 -162.20 4.63 309 -162.20 41.06 309
bmilplib-210-5 -134.00 20.03 2079 -134.00 20.03 2079 -134.00 22.31 2079 -134.00 161.23 2079
bmilplib-210-6 -125.43 45.28 4875 -125.43 46.46 4875 -125.43 52.83 4878 -125.43 230.84 4875
bmilplib-210-7 -169.73 11.46 1181 -169.73 12.35 1153 -169.73 14.19 1181 -169.73 148.58 1152
bmilplib-210-8 -101.46 9.60 942 -101.46 12.36 976 -101.46 12.71 942 -101.46 255.24 942
bmilplib-210-9 -184.00 240.14 9466 -184.00 242.65 9466 -184.00 267.90 9466 -184.00 1639.04 9466
bmilplib-260-10 -151.73 73.10 4716 -151.73 75.91 4716 -151.73 119.40 4716 -151.73 783.50 4716
bmilplib-260-1 -139.00 10.10 887 -139.00 11.58 887 -139.00 11.79 887 -139.00 135.30 887
bmilplib-260-2 -82.62 18.07 1607 -82.62 18.48 1607 -82.62 29.56 1607 -82.62 195.56 1607
bmilplib-260-3 -144.25 8.70 518 -144.25 9.34 518 -144.25 9.60 518 -144.25 105.89 518
bmilplib-260-4 -117.33 66.89 4426 -117.33 62.45 4426 -117.33 80.66 4426 -117.33 671.57 4426
bmilplib-260-5 -121.00 29.19 2165 -121.00 27.30 2165 -121.00 30.22 2165 -121.00 212.90 2165
bmilplib-260-6 -124.00 40.59 2420 -124.00 39.48 2420 -124.00 42.70 2420 -124.00 426.31 2420
bmilplib-260-7 -137.80 44.45 3200 -137.80 45.80 3200 -137.80 48.73 3200 -137.80 267.10 3200
bmilplib-260-8 -119.89 10.92 1025 -119.89 10.46 1025 -119.89 11.77 1025 -119.89 102.82 1025
bmilplib-260-9 -160.00 36.36 2526 -160.00 38.08 2526 -160.00 39.54 2526 -160.00 231.78 2526
bmilplib-310-10 -141.86 5.51 397 -141.86 6.24 397 -141.86 6.86 397 -141.86 95.24 397
bmilplib-310-1 -117.00 44.79 2624 -117.00 41.07 2624 -117.00 44.15 2624 -117.00 381.97 2624
bmilplib-310-2 -105.00 98.39 5372 -105.00 94.00 5372 -105.00 97.58 5372 -105.00 385.78 5372
bmilplib-310-3 -127.52 149.07 7067 -127.52 141.25 7067 -127.52 151.24 7067 -127.52 694.04 7067
bmilplib-310-4 -147.78 70.22 4767 -147.78 73.75 4908 -147.78 74.72 4863 -147.78 510.45 4892
bmilplib-310-5 -161.45 34.22 1993 -161.45 34.42 1993 -161.45 35.32 1993 -161.45 205.57 1993
bmilplib-310-6 -141.18 169.96 8300 -141.18 172.88 8300 -141.18 214.66 8300 -141.18 >3600 4459
bmilplib-310-7 -142.00 139.15 7263 -142.00 140.50 7263 -142.00 164.46 7263 -142.00 1416.36 7263
bmilplib-310-8 -115.34 19.23 921 -115.34 19.53 952 -115.34 23.06 921 -115.34 425.10 921
bmilplib-310-9 -115.65 32.31 1590 -115.65 32.39 1590 -115.65 34.56 1590 -115.65 151.96 1590
bmilplib-360-10 -108.59 25.75 1106 -108.59 23.23 1106 -108.59 26.41 1102 -108.59 156.13 1102
bmilplib-360-1 -133.00 158.38 4923 -133.00 148.68 4920 -133.00 188.86 4923 -120.00 >3600 1611
bmilplib-360-2 -138.44 148.90 4493 -138.44 138.96 4493 -138.44 160.91 4493 -138.44 1961.79 4493
bmilplib-360-3 -131.00 65.41 2654 -131.00 56.59 2654 -131.00 66.60 2654 -131.00 609.13 2654
bmilplib-360-4 -119.00 42.95 1564 -119.00 44.65 1564 -119.00 61.20 1564 -119.00 825.58 1564
bmilplib-360-5 -164.26 44.45 1713 -164.26 45.39 1713 -164.26 41.95 1713 -164.26 221.40 1713
bmilplib-360-6 -110.12 142.81 5520 -110.12 127.35 5520 -110.12 148.17 5520 -110.12 2890.94 5556
bmilplib-360-7 -105.00 89.22 3346 -105.00 88.94 3346 -105.00 86.08 3346 -105.00 357.79 3346
bmilplib-360-8 -98.25 44.85 1686 -98.25 48.77 1686 -98.25 72.01 1686 -98.25 2774.87 1686
bmilplib-360-9 -127.22 50.24 2642 -127.22 52.33 2642 -127.22 58.90 2642 -127.22 1191.63 2642
bmilplib-410-10 -153.37 258.89 7428 -153.37 254.18 7428 -153.37 278.87 7428 -153.37 2497.78 7428
bmilplib-410-1 -103.50 87.94 1944 -103.50 76.78 1944 -103.50 88.08 1944 -103.50 2256.70 1944
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Table 10: Detailed results of Figure 5 (continued)

noHeuristics impObjectiveCut secondLevelPriority weightedSums
Instance BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes BestSol Time(s) Nodes

bmilplib-410-2 -108.59 103.57 2887 -108.59 92.86 2887 -108.59 97.35 2887 -108.59 947.06 2887
bmilplib-410-3 -96.24 147.99 3781 -96.24 157.30 3781 -96.24 257.83 3781 -79.49 >3600 878
bmilplib-410-4 -119.50 100.21 2995 -119.50 100.04 2995 -119.50 100.85 2995 -119.50 1042.52 2995
bmilplib-410-5 -119.22 71.23 1520 -119.22 61.46 1527 -119.22 107.73 1520 -119.22 426.60 1527
bmilplib-410-6 -151.31 13.54 533 -151.31 13.74 533 -151.31 17.48 533 -151.31 727.04 533
bmilplib-410-7 -123.00 35.87 1177 -123.00 35.79 1175 -123.00 41.41 1177 -123.00 406.53 1177
bmilplib-410-8 -125.78 169.15 4480 -125.78 171.56 4480 -125.78 190.33 4480 -125.78 1408.43 4488
bmilplib-410-9 -100.77 82.17 2071 -100.77 79.34 2071 -100.77 85.38 2071 -100.77 478.13 2071
bmilplib-460-10 -102.51 228.12 4465 -102.51 204.04 4465 -102.51 238.28 4465 -102.51 1557.08 4465
bmilplib-460-1 -97.59 569.22 10803 -97.59 610.72 10803 -97.59 666.13 10803 -93.40 >3600 1240
bmilplib-460-2 -139.00 43.65 964 -139.00 46.56 964 -139.00 45.27 964 -139.00 557.54 964
bmilplib-460-3 -86.50 223.58 3882 -86.50 219.35 3882 -86.50 251.89 3882 -82.83 >3600 2966
bmilplib-460-4 -107.03 412.76 7856 -107.03 425.15 7856 -107.03 399.79 7794 -102.61 >3600 4784
bmilplib-460-5 -100.50 170.30 3025 -100.50 189.63 3025 -100.50 177.04 3025 -100.50 1788.18 3025
bmilplib-460-6 -107.00 236.30 4143 -107.00 205.48 4143 -107.00 266.17 4143 -107.00 2457.96 4143
bmilplib-460-7 -83.75 294.68 5252 -83.75 282.83 5252 -83.75 341.16 5252 -83.75 >3600 1538
bmilplib-460-8 -115.39 94.67 1903 -115.39 92.26 1908 -115.39 140.92 1903 -103.50 >3600 611
bmilplib-460-9 -128.70 327.68 6185 -128.70 316.77 6227 -128.70 318.04 6185 -128.70 3166.24 6185
bmilplib-60-10 -186.21 4.29 2590 -186.21 4.32 2590 -186.21 4.68 2590 -186.21 22.24 2590
bmilplib-60-1 -153.20 2.79 1094 -153.20 3.01 1094 -153.20 3.47 1094 -153.20 18.65 1094
bmilplib-60-5 -116.40 10.08 9996 -116.40 10.41 9996 -116.40 12.63 9996 -116.40 35.73 9996
bmilplib-60-6 -187.31 3.34 1383 -187.31 3.68 1383 -187.31 4.07 1383 -187.31 22.35 1383
bmilplib-60-8 -232.12 1.15 572 -232.12 1.22 572 -232.12 1.61 572 -232.12 9.46 572
bmilplib-60-9 -136.50 12.34 9888 -136.50 12.45 9888 -136.50 13.56 9888 -136.50 47.50 9888
miblp-20-15-50-0110-10-10 -206.00 1.06 423 -206.00 1.07 423 -206.00 1.01 423 -206.00 1.81 423
miblp-20-15-50-0110-10-2 -398.00 9.09 2450 -398.00 9.43 2450 -398.00 8.85 2450 -398.00 15.52 2450
miblp-20-15-50-0110-10-3 -42.00 0.62 267 -42.00 0.72 267 -42.00 0.68 267 -42.00 1.36 267
miblp-20-15-50-0110-10-6 -246.00 4.56 340 -246.00 4.43 340 -246.00 4.24 340 -246.00 6.40 340
miblp-20-15-50-0110-10-9 -635.00 14.05 2380 -635.00 14.97 2382 -635.00 15.48 2380 -635.00 19.90 2380
miblp-20-20-50-0110-10-10 -441.00 692.00 134585 -441.00 758.37 134585 -441.00 743.82 134585 -441.00 1113.34 134585
miblp-20-20-50-0110-10-1 -359.00 228.67 96141 -359.00 232.30 96141 -359.00 242.52 96141 -359.00 407.03 96141
miblp-20-20-50-0110-10-2 -659.00 3.69 3191 -659.00 4.15 3191 -659.00 3.94 3191 -659.00 9.48 3191
miblp-20-20-50-0110-10-3 -618.00 13.18 20788 -618.00 13.68 20788 -618.00 14.77 20788 -618.00 54.78 20715
miblp-20-20-50-0110-10-4 -604.00 3145.16 830808 -604.00 3286.17 830808 -604.00 3223.61 830808 -604.00 >3600 666302
miblp-20-20-50-0110-10-7 -683.00 1887.37 3003967 -683.00 1960.64 3014456 -683.00 2049.54 3004274 -683.00 >3600 2542388
miblp-20-20-50-0110-10-8 -667.00 80.45 12857 -667.00 94.47 12857 -667.00 87.72 12858 -667.00 134.18 12859
miblp-20-20-50-0110-10-9 -256.00 20.99 31245 -256.00 21.84 31245 -256.00 22.38 31245 -256.00 38.71 31245
miblp-20-20-50-0110-15-1 -450.00 59.38 3506 -450.00 59.36 3506 -450.00 62.04 3506 -450.00 85.24 3506
miblp-20-20-50-0110-15-2 -645.00 50.14 17251 -645.00 52.11 17251 -645.00 61.00 17251 -645.00 222.62 17251
miblp-20-20-50-0110-15-3 -593.00 71.15 3081 -593.00 66.66 3081 -593.00 67.67 3081 -593.00 95.58 3083
miblp-20-20-50-0110-15-4 -441.00 43.00 1625 -441.00 43.74 1625 -441.00 39.84 1625 -441.00 57.56 1625
miblp-20-20-50-0110-15-5 -379.00 651.28 16715 -379.00 634.58 16715 -379.00 639.80 16715 -379.00 750.81 16715
miblp-20-20-50-0110-15-6 -596.00 17.31 1657 -596.00 17.40 1657 -596.00 18.50 1657 -596.00 25.94 1657
miblp-20-20-50-0110-15-7 -471.00 111.02 13405 -471.00 109.14 13405 -471.00 113.83 13405 -471.00 191.29 13405
miblp-20-20-50-0110-15-8 -370.00 39.12 21589 -370.00 39.12 21589 -370.00 44.93 21589 -370.00 122.50 21589
miblp-20-20-50-0110-15-9 -584.00 2.00 582 -584.00 2.24 582 -584.00 1.93 582 -584.00 3.44 584
miblp-20-20-50-0110-5-13 -519.00 2709.29 6515097 -519.00 2756.40 6514987 -519.00 2828.20 6521367 -519.00 3465.54 6515355
miblp-20-20-50-0110-5-15 -617.00 1130.92 4312915 -617.00 1123.27 4312915 -617.00 1202.16 4312915 -617.00 1826.00 4309751
miblp-20-20-50-0110-5-16 -833.00 1.80 5913 -833.00 1.76 5913 -833.00 2.22 5925 -833.00 9.74 5925
miblp-20-20-50-0110-5-17 -944.00 1.53 4038 -944.00 1.48 4037 -944.00 1.84 4038 -944.00 8.31 4212
miblp-20-20-50-0110-5-19 -431.00 25.50 116041 -431.00 26.02 116041 -431.00 27.33 116065 -431.00 45.05 116285
miblp-20-20-50-0110-5-1 -548.00 8.45 31298 -548.00 9.08 31298 -548.00 9.13 31298 -548.00 22.96 31298
miblp-20-20-50-0110-5-20 -438.00 10.82 33315 -438.00 10.92 33315 -438.00 11.25 33315 -438.00 17.54 33130
miblp-20-20-50-0110-5-6 -1061.00 51.74 213928 -1061.00 52.57 213928 -1061.00 56.75 214449 -1061.00 235.63 234647
lseu-0.100000 1120.00 3.15 8603 1120.00 3.11 8603 1120.00 3.82 13352 1120.00 45.32 22411
lseu-0.900000 5838.00 14.10 1023 5838.00 14.11 1023 5838.00 251.51 1023 5838.00 21.57 1023
p0033-0.500000 3095.00 0.25 1467 3095.00 0.28 1467 3095.00 0.29 1471 3095.00 0.80 2239
p0033-0.900000 4679.00 0.06 27 4679.00 0.06 27 4679.00 0.07 27 4679.00 0.12 27
p0201-0.900000 15025.00 6.62 2481 15025.00 7.09 2481 15025.00 359.66 2481 15025.00 34.52 2481
stein27-0.500000 19.00 6.51 17648 19.00 6.44 17648 19.00 6.76 16969 19.00 9.57 16969
stein27-0.900000 24.00 0.02 15 24.00 0.02 15 24.00 0.02 15 24.00 1.62 15
stein45-0.100000 30.00 64.27 90241 30.00 64.12 90241 30.00 83.80 90002 30.00 256.23 58729
stein45-0.500000 32.00 471.57 753845 32.00 459.73 753845 32.00 511.05 862249 32.00 880.47 565867
stein45-0.900000 40.00 0.14 63 40.00 0.16 63 40.00 0.16 63 40.00 72.23 63
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