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POLYTOPE VOLUME BY DESCENT IN THE FACE LATTICE

AND APPLICATIONS IN SOCIAL CHOICE

WINFRIED BRUNS AND BOGDAN ICHIM

ABSTRACT. We describe the computation of polytope volumes by descent in the face

lattice, its implementation in Normaliz, and the connection to reverse-lexicographic tri-

angulations. The efficiency of the algorithm is demonstrated by several high dimensional

polytopes of different characteristics. Finally, we present an application to voting theory

where polytope volumes appear as probabilities of certain paradoxa.

1. INTRODUCTION

The volume of a polytope is a geometric magnitude that has been studied since an-

tiquity – formulas for the area of polygons or the volume of common 3-dimensional

polytopes like pyramids were known in Babylonian and Egyptian mathematics. From

a modern viewpoint one can say that these formulas are recursive: they reduce volume

computations to the measurement of lengths.

In toric algebra and geometry, volumes are almost a synonym for multiplicities, de-

fined as leading coefficients of Hilbert (quasi)polynomials. For this classical connection

see Teissier [33] or Bruns and Gubeladze [5, Section 6.E]. The package Normaliz [8]

has contained options for the computation of Hilbert series and multiplicities from its be-

ginnings. Until recently, the only approach to volumes was based on lexicographic (or

placing) triangulations: the volume of a polytope is obtained as sum of simplex volumes,

and the volume of a simplex is essentially computed as a determinant. (We refer the reader

to [5] for unexplained algebraic notions and to Section 2 for geometric terminology.) The

algorithm has been improved in several steps; see [9] and [11] for a description of the

present state and [12] for a refined version computing integrals.

An attractive application of polytope volumes is probabilities of certain events in voting

theory where results of elections with n candidates can be identified with lattice points in

the positive orthant of RN , N = n!. Several classical phenomena, most prominently the

Condorcet paradox, can be described by homogeneous linear inequalities. In a suitable

probabilistic model, their probabilities for a large number of voters can be computed as

lattice normalized volumes of rational polytopes. Already for n = 4 one has N = 24, so

that these computations pose a challenging problem. Nevertheless, quite a number of

interesting volumes and Hilbert series have been determined via lexicographic triangula-

tions [10].
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When more complicated computations of voting theory turned out inaccessible for the

approach by lexicographic triangulations, we decided to add an algorithm for the volume

of a polytope P that is based on descent in the face lattice of P. (The twofold meaning

of “lattice” is an unfortunate, if customary clash of terminology.) In principle, it follows

the classical formulas in reducing the computation of volumes to the measurement of

lengths. However, we take a hybrid approach, and compute the volume of a simplex as a

determinant. For this reason our descent algorithm behaves quite well also for simplicial

polytopes.

We have not yet made precise what we mean by “volume”. From our viewpoint, the

central invariant for rational polytopes is lattice (normalized) volume, for which a uni-

modular lattice simplex Σ has volume 1 in the affine space spanned by Σ. Lattice normal-

ized volume in Rn is invariant under the action of GL(n,Z). This group can be exactly

represented in rational arithmetic. In contrast to Euclidean volume, which is invariant

under the orthogonal group O(n), it is a rational number also for lower dimensional poly-

topes (i.e., polytopes of dimension smaller than that of the ambient space). Therefore it

is well-suited for precise computation by recursion to faces of a polytope. At the end, the

Euclidean volume can be (and is) obtained by conversion from the lattice volume.

When the height HtF(v) of a point v over a facet is also measured by the lattice, then

the recursion formula takes the simple form

Vol(P) = ∑
F facet of P

HtF(v)Vol(F)

for a point v ∈ P. We call a subset D of the face lattice a descent system if it contains

all faces that come up in the successive application of this formula. We try to keep D

small by carefully choosing the points v, but the polytope should not have too many non-

simplex faces to keep the descent system from explosion. The largest descent system that

has been computed for this paper has cardinality > 6 · 108. This number makes it clear

that a careful balance between memory usage and computation time is imperative if a

wide range of applications is desired.

Though it is not visible straightaway, there is a triangulation or at least a similar de-

composition in the background of the descent algorithm, namely a reverse lexicographic

(or pulling) triangulation. The crucial point is not to compute it explicitly, but to distill the

volume relevant information into a weight function associated with the descent system.

Normaliz is not the first package to exploit descent in the face lattice for volume com-

putations. In Büeler and Enge’s package Vinci [13] it appears as the hot algorithm, where

“hot” is an acronym for “hybrid orthonormalization technique”. Vinci is based on the ar-

ticle [14] by Büeler, Enge and Fukuda. In contrast to Normaliz, Vinci uses floating point

arithmetic and computes only Euclidean volumes, and it does not contain convex hull

computation or vertex enumeration, so that another package is needed for this auxiliary

task.

In their very recent paper [20] Emiris and Fisikopoulos discuss probabilistic methods

for estimating the volume of a polytope. On p. 38:2 they say that several packages, in-

cluding Normaliz, “cannot handle general polytopes for dimension d > 15”. Based on

our experience, we cannot fully support this finding.
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Section 2 introduces the geometric terminology used in the sequel. In Section 3 we

discuss lattice volume, height and the linear algebra aspects of the algorithm. Section 4

describes the algorithm and its connection with reverse lexicographic triangulations. We

give sample computations in Section 5. They are based on Normaliz 3.6.11 and include

a wide range of polytopes with quite different characteristics and of dimensions between

15 and 55. The descent algorithm has staid essentially unchanged since version 3.6.1.

Section 5 contains also a comparison of the two Normaliz algorithms (triangulation

and descent) to vinci’s “hot” (descent) and “rch” (reverse lexicographic triangulation),

and additionally to vinci’s “rlass” (a revised version of Lassere’s algorithm [28]) that is

based on the same type of recursion, but has no Normaliz analogue. Despite of the same

basic algorithmic approach of Normaliz’ descent and vinci’s hot, the implementations in

Normaliz and vinci differ substantially, with significant consequences for applicability. A

zip file with input for all computations of this paper can be downloaded from

https://www.normaliz.uni-osnabrueck.de/wp-content/uploads/2020/03/PolytopeVolumes.zip.

Finally, Section 6 discusses applications to voting theory. We have included it to

demonstrate the efficiency of our algorithm in the field of voting theory. It provided

many challenges for us without which this algorithm would not have been developed. We

quote from [31]: It seems, however, that the latest version of Normaliz is, at the present

time, the most efficient software tool to obtain the IAC probabilities of electoral outcomes

when more than three alternatives are in contention . . .

2. POLYTOPES AND CONES

A polytope P ⊂ Rn is the convex hull of finitely many points v1, . . . ,vm ∈ Rn:

P = conv(v1, . . . ,vm) =
{

α1v1 + · · ·+αmvm : 0 ≤ αi ≤ 1, i = 1 . . . ,m,
m

∑
i=1

αi = 1
}

.

By a fundamental theorem of Minkowski, a polytope can equivalently be described as a

compact set that is the intersection of finitely many affine halfspaces:

P =
s
⋂

j=1

H+
i ,

where an affine halfspace is a set

H+ = {x ∈ Rn : λ (x)≥ β}
for a nonzero linear form λ ∈ (Rn)∗ and β ∈ R. (Not necessarily compact intersections

of halfspaces are called polyhedra.) The halfspace H+ is bounded by the hyperplane

H = {x ∈ Rn : λ (x) = β}.

The two descriptions of polytopes are often called V-representations and H-represent-

ations. If v1, . . . ,vm ∈ Qn, then P is a rational polytope; equivalently one can choose the

halfspaces to be rational: λ has coefficients in Q and β ∈ Q. The dimension of P is the

dimension of its affine hull aff(P). The polytope P ⊂ Rn is full dimensional if dimP = n.

1released July 7, 2018

https://www.normaliz.uni-osnabrueck.de/wp-content/uploads/2020/03/PolytopeVolumes.zip
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A cone C is the conical hull of finitely many vectors:

C =
{

α1v1 + · · ·+αmvm : αi ≥ 0, i = 1 . . . ,m
}

.

Equivalently, it is the intersection of finitely many linear halfspaces in whose definition

β = 0. The attribute rational is given in analogy with polyhedra. A cone is pointed if

{0} is the only vector subspace contained in C. For computations one usually represents

a polytope P ⊂ Rn as the intersection of a pointed cone C ⊂ Rn+1 with an affine hyper-

plane H ∼= Rn. We introduce this technique in Section 3; see the discussion surrounding

Equation (3.2).

Let P be a polytope or cone (or a polyhedron in general). If P is contained in one of

the two halfspaces bounded by a hyperplane S, then S is called a support hyperperplane

of P. A subset F ⊂ P is called a face if F = P∩S for a support hyperplane S of P. The

polytope P is an improper face of P, as well as /0 if P is a polytope. There are only finitely

many faces, and every face is a polytope or cone, respectively. The maximal proper faces

of P are called facets. The faces of P are partially ordered by inclusion. They actually

form a lattice, the face lattice of P. Every face F 6= P is the intersection of facets. The

properties of the face lattice are important in the following; for the details see Ziegler

[35]. The only point in a face of dimension 0 is a vertex of P. A face of dimension 1

is an edge if P is a polytope and an extreme ray if P is a pointed cone. The difference

codimF = dimP−dimF is called the codimension of F . We say that F is a subfacet if it

has codimension 2. Often subfacets are called ridges.

The vertices of a polytope P form the unique minimal set V of points such that P =
conv(V ). Similarly a set E containing exactly one vector from each extreme ray is a

unique minimal generating set of a pointed cone. It is clear that one wants to work with

such minimal descriptions in computations.

In the following we use the term “support hyperplane” in a restricted sense: we ad-

ditionally require that a support hyperplane S intersects P in a facet. This is justified:

P = aff(P)∩H+
1 ∩· · ·∩H+

s where H+
1 , . . . ,H+

s are halfspaces whose support hyperplanes

intersect P in pairwise different facets. The intersections aff(P)∩H+
i in such an irredun-

dant representation are uniquely determined. In the fulldimensional case the halfspaces

themselves are therefore uniquely determined.

A simplex is a polytope of dimension d with exactly d + 1 vertices: a triangle in di-

mension 2, a tetrahedron in dimension 3 etc. A polytope is simplicial if all its facets are

simplices. If every vertex of a polytope P of dimension d is contained in exactly d facets,

then P is simple. It follows that every face is contained in exactly codimF facets.

3. LATTICE NORMALIZED VOLUME

As mentioned in the introduction, we compute the lattice normalized volume of a ratio-

nal polytope P ⊂ Rn, i.e., a polytope with vertices in Qn. Let us explain this notion. The

affine hull A = aff(P) is a rational affine subspace of Rn. First assume that 0 ∈ A. Then

L = aff(P)∩Zn is a subgroup of Zn of rank d = dimP (and Zn/L is torsionfree). Choose

a Z-basis v1, . . . ,vd of L. The lattice (normalized) volume Vol on A is the Lebesgue mea-

sure on A scaled in such a way that the simplex conv(0,v1, . . . ,vd) has measure 1. The

definition is independent of the choice of v1, . . . ,vd since all invertible d×d matrices over

Z have determinant ±1. If 0 /∈ A, then we replace A by a translate A0 = A−w, w ∈ A,
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and set Vol(X) = Vol(X −w) for X ⊂ A. This definition is independent of the choice of w

since Vol is translation invariant on A0. Note that the polytope containing a single point

x ∈ Qn has lattice volume 1. (If desired, the definition of lattice volume can be extended

to arbitrary measurable subsets of A.)

If P is a lattice polytope, i.e., a polytope with vertices in Zn, then Vol(P) is an integer.

For an arbitrary rational polytope we have Vol(P) ∈Q. As a consequence, Vol(P) can be

computed precisely by rational arithmetic.

If P has full dimension n, then Vol(P) = n!vol(P) where vol denotes the Euclidean

volume. So it is only a matter of scaling by the integer n! whether one computes the

lattice volume or the Euclidean volume. However, if dimP < n, then vol(P) need not

be rational anymore: the diagonal in the unit square has Euclidean length
√

2, but lattice

length 1.

A second invariant we need is the lattice height of a rational point x over a rational

subspace H 6= /0. More generally, one can consider points x such that aff(H,x) is again

rational; for example, this is the case if H is a hyperplane in Rn. If x ∈H, we set HtH(x) =
0. Otherwise let A = aff(x,H) so that H is a hyperplane in A. Assume first that 0 ∈ A.

Then H is cut out from A by an equation λ (y) = β with a primitive Z-linear form λ
on L = A∩Zn and β ∈ Q. That λ is primitive means that there exists y ∈ L such that

λ (y) = 1. Note that λ can be chosen such that it has integral values not only on L, but on

the whole of Zn. In fact, L is not an arbitrary sublattice, but Zn/L is torsionfree: L is the

intersection of a vector subspace of Rn with Zn. This implies that L has a complement M

in Zn such that Zn = L⊕M. So λ can be extended as a Z-linear form on Zn by the linear

form 0 on M.

With this choice of λ , HtH(x) = |λ (x)− β | is called the lattice height of x over H.

(There are exactly two choices for the pair (λ ,β ), differing by the factor −1.) If 0 /∈ A,

then we choose an auxiliary point v ∈ A, replace H by H−v, A by A−v and x by x−v. (In

the algorithm we will only have to deal with the case 0 ∈ H.) If P is a rational polytope

and F is a facet or, more generally, a face of P, then HtF(x) = HtH(x) where H = aff(F).
In order to compute the lattice height Ht{0}(x) of a rational point x over the origin, one

considers the ray from 0 through x and chooses u as the first nonzero integer point on this

ray. Then v = au for some a ∈Q, and Ht{0}(x) = Ht{x}(0) = a.

In Figure 1 we have chosen v = (1/2,1) and w = (−1/2,1). The primitive linear

forms defining E and F are λ (x,y) = y and µ(x,y) = −2x+ y, respectively. Note that

for measuring Ht{v}(w) we must replace µ by µ/2 since µ(s) and µ(t) differ by ±2 for

successive lattice points s and t on the line through w and v. Analogously, for measuring

Ht{v}(0) we must replace λ by λ/2 since λ (s) and λ (t) differ by ±2 for successive lattice

points s and t on the line through 0 and v. We obtain

HtF(w) = 2, Ht{v}(w) = 1, Ht{v}(0) = 1/2, HtE(0) = 1,

Vol(P) = 1, Vol(E) = 1, Vol(F) = 1/2.

Proposition 1. Let P ⊂ Rn be a rational polytope, and v ∈ P. Then

(3.1) Vol(P) = ∑
F facet of P

HtF(v)Vol(F).
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vw

F

E

P

FIGURE 1. A rational polytope

Proof. P is the union of the “pyramids” conv(v,F) where F runs through the facets of P.

These pyramids intersect in lower dimensional polytopes conv(v,G) where G is a face of

codimension ≥ 2 of P. Since the intersections have measure 0 in the Lebesgue measure

on aff(P) independently of the scaling, the proposition follows by the additivity of the

measure, provided Vol(conv(v,F)) = HtF(v)Vol(F) for all facets F of P.

To prove this claim, we can triangulate F , and use additivity again, thereby reducing

it to the case of a pyramid over a simplex ∆, dim∆ = dimP − 1. Then we choose a

positive integer k such that kv and all vertices of k∆ have integer coordinates. This scales

Vol(conv(v,∆)) as well as Ht∆(v)Vol(∆) by the factor kd , d = dimP. Therefore we can

finally assume that v is a vertex of a lattice simplex P and F = ∆ is its opposite facet.

Under these hypotheses [5, 3.9] says exactly what we need: Vol(P) = HtF(v)Vol(F). In

[5] the lattice volume of a lattice polytope is called its multiplicity; we will explain this

terminology in Remark 3. For the convenience of the reader we include a proof of [5, 3.9]

below. �

Figure 2 illustrates Proposition 1 in a simple case. It is clear that one should take v as a

vertex of P in order to minimize the number of nonzero summands in Equation (3.1). Our

choice of v will be discussed in the next section.

v

FIGURE 2. Decomposition of a polygon into pyramids

Remark 1. The proposition holds for all v ∈ aff(P), provided we replace Ht by its signed

variant: In the definition choose the sign of λ in such a way that λ (x)−β ≥ 0 for x ∈ P

and set HtF(y) = λ (y)−β for y ∈ aff(P). This is important if one wants to represent P

by the signed decomposition into the pyramids conv(v,F). Normaliz does not use signed

decompositions at present.
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Together with the observation that a single point has lattice volume 1, the proposition

constitutes a complete, recursive algorithm for the computation of lattice volumes, pro-

vided one can compute lattice height. In principle, this is the algorithm that we have

implemented. However, an implementation of any practical value requires considerable

care, as we will see in the next section.

The first useful modification is to stop the recursion if one hits a simplex face in the

descent, and to compute the volume of a simplex directly.

Proposition 2. Let ∆ ⊂ Rn be a rational simplex with vertices v0, . . . ,vd . Choose a ba-

sis u1, . . . ,ud of the lattice aff(∆− v0)∩Zn. Define the d × d matrix T = (ti j) by the

representations vi − v0 = ∑d
j=1 ti ju j, i = 1, . . . ,d. Then

Vol(∆) = |det(T )|.
Proof. This follows immediately from the substitution rule for Lebesgue integrals applied

to the constant function f = 1. See [5, 2.C] for an algebraic proof. �

Remark 2. (a) With the help of Proposition 2 one can easily complete the proof of Propo-

sition 1 without a reference to [5]. After a parallel translation we can assume that v0 = 0

is a vertex of ∆ and v = vd (v as as in Proposition 2). Let U be the Q-vector subspace

spanned by v1, . . . ,vd and U ′ its subspace spanned by v1, . . . ,vd−1. Then we define sub-

lattices L ⊂ Zn and L′ ⊂ L by L = Zn∩U and L′ = Zn ∩U ′. Evidently L/L′ is torsionfree.

In other words, L′ is a direct summand of L. This means, we can complete a Z-basis

u1, . . . ,ud−1 of U ′ by ud ∈ L to a Z-basis of L.

Let ∆′ be the (d−1)-subsimplex conv(0,v1, . . . ,vd−1). With the notation of Proposition

2, we obtain Vol(∆) = |tdd|Vol(∆′) by Laplace expansion of det(T ) along the last column

of T . For Proposition 1 it remains to show that |tdd| = Ht∆′(vd). In fact, the primitive

Z-linear form λ on L that vanishes on L′ has value ±1 on ud . So |λ (vd)|= |tdd|.
(b) As an anonymous referee pointed out, one can prove Proposition 1 by using the

notion of determinant of an affine lattice; see Martinet [29, Prop. 1.3.4]. This approach

reduces Proposition 1 to an assertion about Euclidean volume.

If we follow the definition of lattice height, then it is clear that we must choose a

vertex of F as the origin of the coordinate system for every face F that comes up in the

recursive application of Proposition 1. This complication disappears if 0 ∈ Rn is a vertex

of every face F involved. The reduction of the general case to the special situation is by

the standard operation of homogenization.

Normaliz represents a rational polytope P in homogeneous coordinates as follows: C is

a pointed cone generated by integral vectors v1, . . . ,vm, δ is a primitive Z-linear form on

Zn such that δ (x)> 0 for all x ∈C, x 6= 0, and

(3.2) P = {x ∈C : δ (x) = 1}.
(In the terminology of [5], δ defines a grading on Zn.) If P is not already given in this

form, we can easily realize it as such by introducing a homogenizing (n+1)-th coordinate:

we replace P ⊂ Rn by P′ = P×{1} ⊂ Rn+1, set C = R+P′ and δ (x) = xn+1 for x =
(x1, . . . ,xn+1). Consequently one can directly assume that P is given by Equation (3.2).

Then it is natural to pass to P = conv(0,P). All faces of P have 0 as a vertex, except P
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and its faces. Under a mild condition we have Vol(P) = Vol(P), and in the general case

we can easily find the correcting factor:

Proposition 3. Suppose that the rational polytope P is given as in Equation (3.2). If aff(P)
contains an integral point, then Vol(P) = Vol(P). More generally, if k is the smallest

positive integer such that aff(kP) contains an integral point, then Vol(P) = k Vol(P).

Proof. It is enough to discuss the general case. That the parallels aff( jP), 1 ≤ j < k, do

not contain lattice points implies that k | δ (x) for all x ∈ L = aff(P)∩Zn. On the other

hand, δ (y) = k for some y ∈ aff(kP)∩L. Therefore δ/k is a primitive linear form on L.

Clearly HtP(0) = 1/k, and we can apply Proposition 1. �

If, in the situation of Proposition 3, dimP = n− 1 or P itself contains a lattice point,

then evidently Vol(P) = Vol(P).
The discussion above is summarized in the next proposition. It describes exactly the

arithmetic of the practical computation.

Proposition 4. Let v1, . . . ,vm ∈Zn and suppose C =R+v1+ · · ·+R+vm is a pointed cone,

generated by v1, . . . ,vm. Let δ be a primitive Z-linear form on Zn with δ (x) > 0 for all

nonzero x ∈C. Set P = {x ∈C : δ (x) = 1} and suppose that d = dimP ≥ 1. As above, we

set P = conv(0,P).

(1) For v ∈C, v 6= 0, one has

Vol(P) =
1

δ (v) ∑
F facet of P

HtF(v)Vol(F).

(2) Let F be a facet of P and F = conv(0,F) the corresponding facet of P. Suppose

that F is cut out from P by the Z-linear form λ with λ (x) ≥ 0 for x ∈ P. Let

u1, . . . ,ud+1 be a Z-basis of aff(P)∩Zn and set g = gcd(λ (u1), . . . ,λ (ud+1)).
Then HtF(v) = λ (v)/g.

(3) Suppose that m = d +1 and that v1, . . . ,vm are linearly independent. With u1, . . . ,
ud+1 as in (2), one has

Vol(P) =
1

δ (v1) · · ·δ (vm)
|det(T )|,

where T = (ti j) is the m×m-matrix defined by vi = ∑m
j=1 ti ju j, i = 1, . . . ,m.

Proof. For (1) we observe that v/δ (v) ∈ P. Therefore HtP(v/δ (v)) = 0 and we need to

sum in Proposition 1 (applied to v/δ (v)) only over the facets 6= P of P. They are exactly

the facets of type F with F a facet of P. Since 0 ∈ F , the function HtF is linear so that

HtF(v/δ (v)) = HtF(v)/δ (v).
For (2) we note that the primitive linear form on aff(P)∩Zn that computes HtF is indeed

λ/g.

(3) follows from Proposition 2 after scaling v1, . . . ,vm by 1/δ (v1), . . . ,1/δ (vm), respec-

tively, and setting v0 = 0. �

Remark 3. (a) The number k of Proposition 3 is called the grading denominator by

Normaliz, for good reason as the proof shows. The user can choose whether Normaliz

should compute Vol(P) or Vol(kP), together with the corresponding Euclidean volume.
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(b) Suppose that aff(P) contains a lattice point. Then the Ehrhart function, the lattice

point enumerator of iP, i∈N, is a quasipolynomial q(i) of degree d = dimP, with constant

leading coefficient Vol(P)/d!. If the grading denominator is k > 1, then the components

q( j) of the quasipolynomial are zero for j 6≡ 0 (k), but the components q( j) for j ≡ 0 (k)
again have constant leading coefficient Vol(P)/d!. By the similarity with (or interpreta-

tion as) a Hilbert function it is justified to call Vol(P) the multiplicity of P. This extends

the standard usage of “multiplicity” for lattice polytopes (see [5, Section 6.E]).

(c) Normaliz contains all the linear algebra over Z that is necessary for the computa-

tions of Proposition 4. There are however aspects that deserve mentioning. For the linear

algebra operations mentioned below, Normaliz uses the transformation of integer matrices

to row echelon form by the Gaussian algorithm over Z, which in its turn is based on the

Euclidean algorithm for gcd computations. The determinant of a full rank square matrix

is then the product of the diagonal elements of its rowechelon transform.

The basis u1, . . . ,ud+1 in Proposition 4(2) is obtained by saturating the sublattice of

Zn that is generated by v1, . . . ,vm. Since m can be extremely large, it saves a substantial

amount of time to compute the saturation from a small subset that generates a sublattice

of the same rank. Therefore Normaliz tries a random selection that is increased if the rank

should not yet suffice.

The saturation itself is computed by a twofold orthogonalization. Let L be a sublattice

of Zn. Then we compute the orthogonal sublattice

L⊥ = {x ∈ Zn : 〈x,y〉= 0 for all y ∈ L}.
The saturation of L is given by L⊥⊥, as it not hard to see. The computation of L⊥ amounts

to solving a homogeneous system of linear equations, and in its turn this task is reduced

to the computation of an Hermite normal form [15, 2.4.3].

The computation of the primitive linear form λ amounts to solving a homogeneous

system of linear equations as well.

It is difficult to control the size of intermediate results in linear algebra over Z. Nor-

maliz uses a twofold strategy to deal with overflows if the user tries a computation with

64 bit integers. The linear algebra operations are constantly monitored for overflows, and

if such an overflow occurs for an intermediate result, the whole computation, for example

the computation of an Hermite normal form, is repeated in GMP arithmetic. If an over-

flow occurs in a final result, then Normaliz starts from scratch in GMP arithmetic. Of the

examples considered in Section 5 only one (par-24) uses GMP arithmetic.

The rational numbers that are computed as the volumes of rational polytopes often have

very large numerators and denominators. They must not be interpreted as consequences of

overflows of 64 bit integers in the linear algebra operations. They are inevitable because

we must divide by the products of the degrees of the generators in Proposition 4(1) and

(3) and further increase by the addition of these fractions.

4. DESCENT SYTEMS

The discussion in the previous section has made it clear that we should compute Vol(P),
given a rational polytope in homogenized coordinates. This is automatically taken care of

by the use of Proposition 4. All faces of P that come up in the recursive use of Equation
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(3.1) are of type F where F is a face of P. Therefore we can work directly with P in the

combinatorial description of the implementation. To simplify notation in this section, we

assume that δ (vi) = 1 for all i (with the notation of Proposition 4). Otherwise Ht...(vi)
must be divided by δ (vi) whenever it appears. Moreover, we identify Vol(P) and Vol(P).

As an example let us discuss a 3-dimensional cube (or any polytope that is combinato-

rially equivalent to it). All vertices of P itself have the same number of opposite facets.

v

w

vT

vR

vB

FIGURE 3. A 3-dimensional cube

Let us choose v as in Figure 3. Then the opposite facets of v are T , B and R, namely the

top, the back and the right side of P. Thus

Vol(P) = HtT (v)Vol(T )+HtB(v)Vol(B)+HtR(v)Vol(R).

A moment of thought shows that the best choice of the vertices of T , B and R are vT , vB

and vR respectively: only 3 edges appear as opposite facets, namely the 3 edges emanating

from the vertex w that is antipodal to v. The edges are simplices so that we can compute

their volumes as determinants, and no further recursion is necessary. Altogether we have

constructed a 3-level system D = (D0,D1,D2)

D0 = {P}, D1 = {T,B,R}, D2 = {T ∩B,T ∩R,B∩R}
of faces and distinguished vertices v,vT ,vB,vR in the nonsimplex faces that allow the

recursive computation of Vol(P).

Definition 1. A descent system D = (Di : i = 0, . . . ,d−1) for a polytope P of dimension

d is a family of sets Di of faces F together with a map F 7→ v(F) assigning a vertex

v(F) ∈ F to every nonsimplex F ∈ ⋃

i Di such that the following conditions are satisfied

for all i:

(1) every F ∈ Di is a (d− i)-dimensional face of P;

(2) if G is a facet of the nonsimplex face F ∈ Di and v(F) /∈ G, then G ∈ Di+1;

(3) if G ∈ Di+1, then there exists F ∈ Di such that G is a facet of F not containing

v(F).

(There is no need to introduce Dd since all edges of P are simplices.)

It is immediately clear that a memoryless depth-first recursion would be a bad choice: it

does not take into account that lower dimensional faces appear in a large number of higher

dimensional ones, and would therefore be computed over and over again. (Compare the

numbers #D and #ΣF in Table 1.)
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We compute the descent system by generation: Di+1 is computed from Di, and if

Di = /0, the computation is complete; otherwise Di is processed itself in a parallelized

loop. It is enough to store only the consecutive layers Di and Di+1 at any time since

the recursive application of Equation (3.1) can be replaced by a forward transfer of the

accumulated height information by means of a weight w(F) that is assigned to each face

in the descent system. The weight of P is 1, and the total volume Vol(P), initially set to 0,

is accumulated step by step. For each face F ∈ Di we perform the following operations:

(1) Decide whether F is a simplex; if so, w(F)Vol(F) is added to Vol(P), and we are

done with F .

(2) Otherwise we must find the facets G of F ,

(3) select the vertex v = v(F) (according to a rule explained below),

(4) for each facet G of F not containing v

(a) compute HtG(v),
(b) insert G with w(G) = 0 into Di+1 if it has not yet been found by an already

processed face F ′ ∈ Di,

(c) increase w(G) by w(F)HtG(v).

The implementation deviates from this description in the treatment of simplex faces; see

Remark 4(e); however, the algorithm as described makes the theoretical analysis easier.

Proposition 5. The algorithm computes Vol(P) correctly.

Proof. The only question could be whether the weight w(F) is computed correctly. Let

us say that the sequence F = (F0, , . . . ,Fk) is a flag in D if Fi ∈ Di for all i (and therefore

F0 = P) and Fi+1 is a face of Fi not containing v(Fi).
Let F ∈Dk be a face of P. It follows from Equation (3.1) that Vol(F) contributes to the

total volume Vol(P) with the weight

∑
F

HtF1
(v0) · · ·HtFk

(vk−1)

where F runs through all flags (F0, , . . . ,Fk−1,F) with vi = v(Fi), i = 0, . . . ,k− 1. This

weight is exactly w(F) as computed by the algorithm. The proposition follows immedi-

ately by induction on k. �

Polytopes P are usually given as the convex hull of their vertices (V-description) or as

the intersection of halfspaces (H-description), where the hyperplanes bounding the halfs-

paces define the facets of P. It is clear from Equation (3.1) that we need both descriptions.

Regardless of which of them defines P, one must compute the other one. This is covered

by the basic functionality of Normaliz (and many other packages). Once facets and ver-

tices are known, one can compute the incidence matrix of facets and vertices. It is the

basis of all combinatorial computations in the face lattice of P.

Since the number of faces in the descent system is potentially very large, the combina-

torial details of the implementation are critical. We have tried to find a balance between

computation time and memory usage. The main question is what to use as the signature

of a face F in the descent system. Since the descent algorithm is meant for polytopes with

a moderate number of facets and potentially many vertices, we use the set of facets of P

that contain F and not the vertices of F . The set of facets is represented by a bitset.
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For the “local” computations within F ∈ Di the faces of F are identified by their ver-

tices. These local computations consist of several steps: (i) selecting the vertices of F as

those vertices of P that belong to all facets of P containing F , (ii) finding the facets of

F by intersecting F with the facets of P not containing F , (iii) selecting the vertex v(F),
computing the heights of v(F) over the facets of F not containing it, and finally (iv) push-

ing these facets, heights and w(F) to Di+1. We describe step (ii) in more detail in Remark

4(a) below.

Among all candidates for v(F) we choose a vertex v of F that (i) minimizes the set of

“opposite” facets of F , and (ii) then minimizes the number of faces F ′ ∈ Di containing

v. While rule (i) is an obvious choice, rule (ii) tries to take v as “exterior” as possible

in the set
⋃

F ′∈Di
F ′, so that the facets sent to Di+1 share as many subfacets as possible.

(The choice of vT ,vT ,vR for the cube illustrates this rule.) The introduction of rule (ii)

has reduced the size of the descent systems typically by 20%.

Remark 4. (a) Every face of a polytope P is the intersection of a set of support hyper-

planes H of P with P. This implies for a given face F that each facet F ′ of F is obtained as

the intersection F ′ = F ∩H ′ with a support hyperplane H ′ of P, F 6⊂ H ′. After the vertex

set of F has been computed as the intersection of all H ⊃ F , we compute the intersections

F ∩H, F 6⊂ H. This operation yields a set of faces F of F . In general, F contains also

non-facets of F , and a face F ′′ ∈ F can be cut out by several hyperplanes H.

Despite of these observations, finding the facets F ′ of F in F is a purely set theoretic

task: we must find the maximal elements in F. These are exactly the facets of F , and each

such facet F ′ satisfies dimF ′ = dimF −1.

All the operations just mentioned use only the facet-vertex incidence vectors of P.

There is no need to compute dimensions of faces which would be an alternative for se-

lecting the facets among the elements of F.

(b) Normaliz tests whether the polytope P is simple. For simple polytopes the situation

is simpler (!): If F is a face of P and H 6⊃ F a support hyperplane of P, then either

F ∩H = /0 or G = F ∩H is a facet of F . Moreover, H is the only support hyperplane of P

that cuts out G from F .

(c) The vertex sets of G are known for the facets G of F ∈Di that go into Di+1. Storing

them with G would accelerate the computation somewhat, but would require considerably

more memory, making computations for polytopes with large vertex sets impossible.

(d) One could modify rule (i) for the selection of v(F) by counting only nonsimplex

facets that contain v. Experiments have shown that this is not a good choice.

(e) Instead of sending simplex facets of F ∈Di into Di+1 the implementation computes

them directly. This has almost no influence on computation time in general, but reduces

memory usage somewhat. For simplicial polytopes the gain is however tremendous.

(f) If the number of faces in Di exceeds one million, Di is processed in blocks of this

size, and each block is freed when it is finished. This reduces memory usage further.

Remark 5. We give an overview of the complexity of the descent algorithm. It is propor-

tional to the total number #D = ∑i #Di. With h denoting the number of facets of P and V

the number of its vertices, the bit operations per face F can be estimated as follows:

(1) O(hV ) bit operations for finding the vertices of F , the candidates for the facets of

F , and selecting the vertex v(F),
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(2) if P is not simple, O(h2V ) bit operations for selecting the facets among the faces

found in (2),

(3) O(h2 log#D) bit operations for the insertion of the facets of F ∈ Di into Di+1.

These are rough estimates that do not take into account that many bit operations are

implemented as operations of bit sets represented by a vector of words of size 64.

The linear algebra methods over Z are described in Remark 3. Their complexity is

very difficult to estimate. Even authoritative sources such as Cohen [15] do not contain

bounds.

The role of the simplices in the descent system raises the suspicion that the algorithm

implicitly uses a triangulation or at least a decomposition with similar properties. This

is indeed the case. For each complete flag F = (F0, . . . ,Fk), in which Fk is necessarily a

simplex, set

ΣF = conv(v0, . . . ,vk−1,Fk), vi = v(Fi).

By the choice of v0, . . . ,vk−1 and Fk this set is indeed a d-simplex, and one has

P =
⋃

F

ΣF.

Moreover, the relativ) interiors of the simplices ΣF are pairwise disjoint, and this property

is good enough for volume computations. In general ΣF ∩ΣF′ is not a face of both sim-

plices so that the decomposition is not a triangulation in the strong combinatorial sense.

If a true triangulation is desired, one has to fix an order of the vertices v1, . . . ,vm of P

beforehand, and for every nonsimplex face F select v(F) as the first vertex that belongs to

F . The triangulation constructed in this way is reverse-lexicographic in the sense of the

Sturmfels correspondence or pulling in combinatorial terminology (for example, see [5,

Section 7.C]) .

The primal algorithm of Normaliz that builds a cone (over a polytope) incrementally

by successively adding generators produces a lexicographic (or placing) triangulation. Its

construction is discussed in [9]. Lexicographic triangulations have many advantages and

go very well with the Fourier-Motzkin elimination in convex hull computations.

However, if a cone or polytope is given by inequalities, then the reverse-lexicographic

approach is more natural. Future versions of Normaliz may use it as well for the com-

putations of triangulations. Nevertheless note that its success in volume computation is

based on the fact that the number w(F) captures the relevant information of the set of all

flags ending in F . We will illustrate this effect by several sample computations in the next

section.

5. SAMPLE COMPUTATIONS

5.1. The test polytopes. We demonstrate the power of the descent algorithm by some

sample calculations. The following polytopes are used:

(1) Strict Borda is the polytope underlying the computation of the probability of

the strict Borda paradox in social choice; see [10] for the details.

(2) Condorcet is one of the polytopes that appears in relation with the Condorcet’s

other paradox. It is discussed in Section 6.1, where it is labeled as Q1.

(3) 4 rules comes from social choice as well. Again, it is discussed in Section 6.1.
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(4) 8x8-score represents the monoid of “8× 8 ordered score sheets” and was dis-

cussed in [25] .

(5) 6x6-magic represents the monoid of “6×6 magic squares”, that is the monoid of

squares of size 6×6 filled with nonnegative integers such that all rows, columns

and the two main diagonals have the same sum called the “magic constant”.

(6) d-par is a parallelotope of dimension d produced as a test example.

(7) d-cube is the unit cube of dimension d.

(8) bool mod S5 represents the boolean model for the symmetric group S5 and lin

ord S6 is the linear order polytope for the symmetric group S6; they belong to the

area of statistical ranking, see [32] for example.

(9) A443 and A543 are monoids defined by the 2-dimensional marginal distributions

of the 3-dimensional contingency tables of sizes 4× 4× 3 and 5× 4× 3. In the

classification of Ohsugi and Hibi [30] are listed as open cases and were closed in

[6].

(10) cyclo60 represents the cyclotomic monoid of order 60 and was discussed by

Beck and Hoşten in [3].

(11) d-cross is the unit cross polytope of dimension d spanned by the unit vectors

±ei, i = 1, . . . ,d.

The first 9 polytopes in Table 1 are defined by inequalities and equations whereas the

other 8 are lattice polytopes given by their vertices. The computation times in the “primal”

and “descent” columns of Table 2 include the conversion from one representation to the

other; for those in the “special” column it is superfluous. All computations can be (and

were) done in 64 bit arithmetic, with the exception of 24-par that needs GMP integers.

In Table 1 edim is the dimension of the space in which the polytope is computed – it

is dimP+1. The number of vertices is denoted by #vert and that of support hyperplanes

by #supp. Moreover, #D is the total size of the descent system, #det the number of

determinants computed by the descent algorithm, and #ΣF the number of simplices in a

decomposition that would be produced by the algorithm. (The triangulations used by the

primal algorithm usually have somewhat different sizes, and also the number of computed

determinants is most often different.)

5.2. Parallelized volume computations. The computation times in Table 2 are “wall

clock times” taken on a Dell R640 system with two Intel™Xeon™Gold 6152 (a total

of 44 cores) using 20 parallel threads (of the maximum of 88). The efficiency of the

parallelization is discussed below. We define it as the quotient

T1

tTt

where T1 is the time of the strictly sequential computation, t the number of threads and

Tt the time of parallel computation with t threads. The times listed are for the descent

algorithm discussed in this paper, the Normaliz primal algorithm using lexicographic tri-

angulations, and special algorithms that can be applied in some cases; see Remark 6(b)

and (e).

For the primal algorithm a missing entry in Table 2 means that the computation is

not doable in a reasonable amount of time since the triangulation would have > 1012
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edim # supp # vert #D #det #ΣF

strict Borda 24 33 6,363 4,407,824 901,955 2 ·1010

Condorcet 24 33 51,168 82,524,473 22,222,231 2.7 ·1012

4 rules 24 36 233,644 652,216,133 177,513,245 17.9 ·1012

8x8-score 56 63 6,725,600 6,725,550 343 4.2 ·1040

6x6-magic 24 36 97,548 494,867,792 113,068,158 31.8 ·1012

20-par 21 40 220 220 −21 380 20!

24-par 25 48 224 224 −25 552 24!

20-cube 21 40 220 220 −21 380 20!

24-cube 25 48 224 224 −25 552 24!

bool mod S5 27 235 120 14,541,872 334,154 2 ·1010

lin ord S6 16 910 720 19,012,391 2,133,900 5.8 ·109

A443 30 4948 48 204,363 22,334 2,654,224

A543 36 29387 60 3,049,328 183,519 108

cyclo60 17 656100 60 1,712,752 149,253 9,188,100

20-cross 21 220 40 1 219 219

24-cross 25 224 48 1 223 223

28-cross 29 228 56 1 227 227

TABLE 1. Numerical data

simplices. A missing entry in the ‘special” column indicates that Normaliz has no special

method for the particular example.

Remark 6. (a) A profiler run of the example Strict Borda, which we consider as a

typical application of the descent algorithm, shows that ≈ 43% of the computation time

are spent on linear algebra, whereas the bitset operations take ≈ 26%. The rest goes into

preparations and administration.

(b) Among the polytopes calculated by the primal algorithm, strict Borda is by no

means the biggest (see [9] for much larger computations). However, among the polytopes

calculated for [10] it is the largest since most others can be simplified by symmetrization

(see [12]). Symmetrization can be applied very efficiently to 8x8-score, and this is the

special algorithm used for it in addition to descent. For it, the triangulation is approxi-

mately 1034 times as large as the descent system.

(c) Despite of the special algorithm for parallelotopes described in (e), we have run the

descent algorithms on some of them since the results are predictable and can therefore be

used as tests for correctness. Moreover, they are prototypes of simple polytopes with very

few facets, but a large number of vertices.

The polytope 20-par is an affine image of the 20-cube. It is not hard to see that the

selection rule for vertices in non-simplex faces produces the descent system D consisting

exactly of the faces containing the vertex w antipodal to the vertex v(P), as illustrated for

the 3-cube by Figure 3. The simplex faces are the lines emanating from w. In this case
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RAM in GB time

primal special descent primal special descent

strict Borda 1.03 0.36 5:30:27 h 25.37 s

Condorcet 4.26 14:42 m

4 rules 34.39 4:50:52 h

8x8-score 9.92 12.78 6:02 m 4:38:12 h

6x6-magic 22.77 1:59:43 h

20-par < 0.01 1.11 0.06 s 2:35 m

24-par < 0.01 66.67 0.10 s 12:39:49 h

20-cube < 0.01 1.11 < 0.01 s 2:26 m

24-cube < 0.01 20.94 < 0.01 s 11:57:01 h

bool mod S5 1.10 0.69 1:10:07 h 2:28 m

lin ord S6 0.84 1.96 19:03 m 2:22 m

A443 0.68 0.05 1.55 s 18.35 s

A543 0.94 1.83 30.06 s 26:26 m

cyclo60 1.30 96.37 40.2 s 3:13:57 h

20-cross 1.96 1.07 12.90 s 11.79 s

24-cross 14.79 22.87 2:20 m 3:56 m

28-cross 203.43 354.47 57:07 m 1:47:08 h

TABLE 2. Memory usage and times for parallelized volume calculations

the algorithm implicitly produces an affine image of the Knudsen-Mumford triangulation

determined by the root system A20 (for example, see [5, Section 3.A]). Parallelotopes

profit from the special handling of simple polytopes; see Remark 4(b).

(d) Analogous remarks apply to 24-cube and 24-par. If one compares the computa-

tion times of 24-cube with its trivial arithmetic to that of 24-par with substantially more

complicated arithmetic, it becomes clear that the bulk of the computation time for these

polytopes goes into the (identical) combinatorics. The handling of the very long bitsets

representing the vertices in a face is the bottleneck in these computations, as becomes

apparent also from 8x8-score.

(e) As the column “special” shows, there is a tremendously faster approach to the par-

allelotopes: if P is a d-parallelotope, then Vol(P) = d!Vol(σ) where σ is a “corner”

simplex of P spanned by a vertex and its neighbors. If there should be any doubt: this

follows from the transformation rule for volumes, once it has been observed for the unit

cube.

The recognition of parallelotopes was added to Normaliz for the computation of lattice

points in such polytopes, as they appear in numerical mathematics; see Kacwin, Oetters-

hagen and Ullrich [26]. One could of course add a recognizer for cross d-polytopes as

well. Again a single simplex would be sufficient: Vol(P) = 2d−1 Vol(σ) for every simplex
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σ spanned by a vertex and an opposite facet. (It is enough to consider the unit cross

polytope.)

(f) For the polytopes with a huge number of facets or vertices the transfer of these data

between the components of the Normaliz system of course takes its toll.

(g) For the polytopes defined by vertices the primal algorithm is usually more efficient,

as shown by several of the last 8 polytopes. This was to be expected for those with a

large number of non-simplex facets, but for the simplicial cross polytopes the difference

is small.

The number of facets is moderate for bool mod S5 and lin ord S6; nevertheless

it came as a surprise that the descent algorithm is significantly faster than the primal

algorithm.

The cross polytopes are a class for which exact computation seems to be faster than

probabilistic methods. The computation time for 18-cross reported in [20, Table 1] is

much higher than ours for 20-cross. This is of course also true for parallelotopes if one

uses the special approach explained in (e) above.

Table 3 documents the efficiency of parallelization on two different systems, the Dell

R640 mentioned above and another system equipped with 2 Intel™Xeon™E5-2660 at

2.20GHz (a total of 16 cores and 32 threads). The test example is Condorcet. The

computation times for a single thread are 213 minutes on the R640 and 370 minutes on

system 2. Until 16 threads the efficiency of parallelization on both systems is almost equal

and very acceptable.

# threads 1 2 4 8 16 32

R640 100 94 89 84 77 53

System 2 100 98 98 94 81 43

TABLE 3. Efficiency of parallelization in %

5.3. Normaliz vs. vinci. Tables 4 and 5 compare Normaliz, run with a single thread, to

vinci [13], [14]. Among the algorithms offered by vinci we took the three that do not

need third party software (except cdd) and do not a priori restrict the class of polytopes to

which they can be applied. These are

(1) rlass, a revised version of Lasserre’s algorithm [28];

(2) hot, “hybrid orthonormalization technique”, a recursive algorithm that is very sim-

ilar to Normaliz’ descent;

(3) rch, a revised version of Cohen and Hickey’s combinatorial triangulation algo-

rithm [16].

Remark 7. (a) As pointed out in the introduction, vinci computes only Euclidean vol-

umes. Floating point computations may be sufficient for applications as in Section 6, and,

as a posteriori comparisons with the exact rational computations of Normaliz show, the

approximations computed by vinci are very good. However, we do not know of any a

priori error bounds for volume computations in floating point.



18 W. BRUNS AND B. ICHIM

Normaliz 1x Vinci

-s primal descent cdd or lrs rlass hot rch

strict Borda 0.99 s 50:15:12 h 4:33 m 2.38 s 1:25 m 1:18 m 28:32:03 h

Condorcet 1.84 s T 4:18:56 h 26.83 s R 50:05 m T

4 rules 6.76 s T 85:38:56 h 9:49 m R 7:54:26 h T

8x8-score 5:48 m T 95:09:03 h 9:54 m E T T

6x6-magic 6.13 s T 31:05:16 h 4:07 m E LD T

20-par 12.91 s T 44:29 m 2:26:38 h 1:53 m R T

24-par 11:33 s T 216:09:45 h 6:30 m R T T

20-cube 7.29 s T 42:55 m 3:20:38 h 33.47 s R T

24-cube 2:40 m T 169:47:10 h 6:38 m R T T

bool mod S5 0.18 s 5:50:36 h 32:57 m 1.69 s T LD LD

lin ord S6 30.98 s 1:48:36 h 40:05 m 2:33 m H 5:15 m 59:31:08 h

A443 0.46 s 7.16 s 4:10 m 1.00 s H LD LD

A543 13.65 s 4:55 m 12:14:55 h 2:20 m H LD LD

cyclo60 1:32 m 2:20 m 89:09:53 h 35:21:10 h H 44:05:45 h 85:57:56 h

20-cross 5.21 s 9.80 s 18.06 s 2:15:07 h H 1:22:42 h 1:07:12 h

24-cross 1:57 m 2:22 m 5:53 m 4:24 m H T T

28-cross 54:34 m 1:22:34 h 2:28:17 h 1:36:45 h H T T

TABLE 4. Computation times Normaliz (single thread) vs. vinci

(b) Not all computations were successful. The letter T in the tables indicates that the

computation time exceeds 250 h. The letter R means that the RAM usage exceeds 500

GB. Moreover, LD stands for low dimension (see (d)), and H indicates that the number

of facets exceeds the preset bound of 254 for rlass. The letter E indicates that vinci ended

with an error message whose cause we could not find out.

(c) Convex hull computation and vertex enumeration are not contained in vinci. Instead

we used cdd [22] for this step as recommended by the vinci documentation, except in five

computations where cdd did not finish within 50 hours. These were done by lrs [2]. The

times of lrs are marked by italics in the table. The time spent by cdd or lrs has not been

added to the vinci computation times, whereas the Normaliz times contain convex hull

and vertex enumeration. These times were measured in separate computations and appear

in the -s column of Table 4.

The maximum Normaliz time with a single thread for this step is 54:34 m (28-cross)

and the second largest is 5:48 m (8x8-score). Benchmarks for convex hull computations

that include cdd and Normaliz can be found in [1] and [27]. Note that the lrs times have

the same order of magnitude as the Normaliz times, whereas the cdd times are often much

larger.

(d) We did not succeed to compute the volumes of lower dimensional polytopes, i.e.,

polytopes whose dimension is smaller than that of the ambient space, with vinci. The

volume computed by vinci is then 0, which is of course correct with respect to the full

dimensional volume of the ambient space, but this information is useless. In general,
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Normaliz 1x Vinci

primal descent rlass hot rch

strict Borda 0.75 0.3 58.3 1.37 0.003

Condorcet T 4.32 R 42.5 T

4 rules T 35.42 R 317.26 T

8x8-score T 14.27 E T T

6x6-magic T 23.06 E LD T

20-par T 1.06 72.14 R T

24-par T 84.54 R T T

20-cube T 1.06 26.94 R T

24-cube T 18.79 R T T

bool mod S5 0.79 0.66 T LD LD

lin ord S6 0.58 1.97 H 1.85 0.001

A443 0.50 0.4 H LD LD

A543 0.72 1.79 H LD LD

cyclo60 0.77 66.05 H 1.19 0.2

20-cross 0.26 0.93 H 0.32 0.32

24-cross 9.71 15.94 H T T

28-cross 159.39 271.76 H T T

TABLE 5. Memory usage Normaliz (single thread) vs. vinci

lower dimensional polytopes have no rational, isometric and full dimensional embedding,

as the diagonal of the unit square shows.

The polytopes strict Borda, Condorcet and 4 rules are lower dimensional, but

for them there exists a workaround, for Euclidean as well as for lattice volumes. The

latter are needed for applications like those in Section 6. Let P be one of these polytopes.

Then H = aff(P) is the affine hyperplane through the unit vectors. The lattice height of the

origin over this hyperplane is 1, and the Euclidean height is 1/
√

24. Set P = conv(P,0).
It is enough to compute one of the volumes of P since

vol(P) =
1

24

√
24vol(P), Vol(P) = Vol(P), Vol(P) = 24!vol(P).

The descent algorithm of Normaliz uses the same recursive approach as vinci’s hot.

But the implementations differ significantly. Normaliz’ descent has ben designed for low

memory usage, as pointed out in Section 4. This is a clear advantage for really large face

lattices like those of Condorcet, 4 rules or the parallelotopes, for which the memory

usage differs by a factor of 10 or more. On the other hand, when there is no shortage

of memory, hot is sometimes significantly faster than Normaliz with a single thread. Of

course, the floating point arithmetic of vinci is a general advantage for computation time.
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As the primal algorithm of Normaliz, rch evaluates a reverse lexicographic triangula-

tion. On the whole, it is significantly slower than Normaliz lexicographic triangulation

method. Both algorithms have modest memory requirements.

Normaliz has no equivalent of rlass. Therefore a direct comparison is not possible.

While rlass is certainly ultrafast when it can be applied, its greediness for memory sets a

rather tight bound for applications. It is our impression that the recursion tree of rlass is

growing extremely fast. (For bo5 it broke the time barrier without any result, for which

we had expected 0 since the polytope is lower dimensional.)

(e) Several computations in the case of four candidates elections by Diss, Kamwa and

Tlidi in [19] were done with Normaliz. We tried to repeat them with vinci, but did not

succeed since both rlass and hot broke the memory barrier.

6. APPLICATION: COMPUTATIONS OF VOLUMES IN FOUR CANDIDATES ELECTIONS

The appearance of rational polytopes in social choice is fully discussed in [10, Section

2] and we use the same notations in the following. We refer the reader to [23] or [24] for

extra details and a more extensive treatment. The basic assumption is that each voter has a

linear preference order of the candidates in an election. If there are n candidates, then the

number of preference orders is N = n!. The result of the election is the vector (x1, . . . ,xN)
that for every i lists the number of voters having preference order i = 1, . . . ,N. The further

computations are based on the Impartial Anonymous Culture (IAC) assumption, see [10,

Section 2] for details. (IAC) assumes that for a fixed number k of voters all election results

have equal probability. This allows the computation of probabilities, as k → ∞, of certain

phenomena as lattice normalized volumes of rational polytopes.

6.1. Four voting rules, same winner. First, we recall four well-known voting rules.

(1) The plurality rule (PR): the voters cast one vote for their preferred candidate.

The plurality winner (PW ) is the candidate which has the most first places in the

preference orders of the voters.

(2) The negative plurality rule (NPR): it requires the voters to cast one vote against

their least preferred candidate. The negative plurality winner (NPW ) is the candi-

date which has the fewest last places in the preference orders of the voters.

(3) The majority rule (MR): all voters preferences are considered and we say that

a candidate A ”beats” a candidate B by pairwise majority rule if there are more

voters which prefer A to B than voters that prefer B to A. The Condorcet winner

(CW ), i.e. the majority rule winner, is the candidate which beats all other candi-

dates by the pairwise majority rule. As the Marquis de Condorcet [17] observed,

the relation ”beats” is nontransitive in general, and one must consider the possi-

bility of Condorcet’s paradox, namely an outcome without a Condorcet winner.

(4) The Borda rule (BR): this is a weighted scoring rule which in the particular case

of four candidates assigns 3 points to a candidate for each most-preferred ranking

in a voter’s preferences, 2 points for each second-place ranking, 1 point for each

third-place ranking and zero points for each least-preferred ranking. The Borda

winner (BW ) is the candidate which cumulates the most points.
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We want to compute the probability that all four voting rules deliver the same winner

in four candidates elections as the numbers of voters k goes to ∞.

Let us choose a candidate A. The polytope P associated to the event that A is the winner

of all four voting rules is cut by 36 inequalities and 1 equation from R24: 24 inequalities

xi ≥ 0, 3 inequalities for each of the 4 rules fixing A as the winner, and the equation

x1 + · · ·+ x24 = 1; see [10] for several related systems of equations. The combinatorial

data of the polytope P and the computation time are listed in Table 1 and Table 2, 4

rules.

We have obtained

volP=
a

b
,

where

a =15434295102897069492696787224587569493324878059069286556500157094466280221

0031839904092203533576766900008697462518883193615863751857064434519917747

and

b =19734891994161694286368932836293271062441599301077174316463585667073366250

92787497360174222493081399494071993084340140223731960203182080000000000000.

The probability that all four voting rules deliver the same winner in four candidates

elections may then be computed as

4 ·volP=
4 ·a

b
≈ 0.312833.

We were surprised by this rather small value: even if a Condorcet winner exists, the

winner of the actual voting scheme is rather unpredictable. It would of course be possible

to analyze the situation further by considering 3 rules versus the 4-th in each case. The

computations need some hours, but they are well accessible.

6.2. On Condorcet’s other paradox. In [18] Condorcet presents several examples of

voting paradoxes that may appear in three candidates elections. In particular we are inter-

ested in [18, Example 4, page 150], illustrating a voting situation in which the Condorcet

winner is the same as the plurality winner, but not the Borda winner. We want to compute

the probability that this phenomenon will appear in four candidates elections under (IAC).

Set candidate A to be both the plurality and the Condorcet winner. Since the Borda rule

gives a total order of the candidates, we have four situations that may appear:

(1) A is placed first by the Borda rule. We denote the corresponding polytope by Q1;

(2) A is placed second by the Borda rule. We have to make a choice for the winning

candidate. Assume that B beats A by the Borda rule and denote the corresponding

polytope by Q2;

(3) A is placed third by the Borda rule. We have to make a choice for the losing

candidate. Assume that B and C beat A by the Borda rule (D is placed on last

place) and denote the corresponding polytope by Q3;

(4) A is placed last by the Borda rule (or in other words A is the Borda loser). We

denote the corresponding polytope by Q4;
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All polytopes of this family are cut by 33 inequalities and 1 equation in dimension 24.

Not all the inequalities are relevant, however minimizing the number of inequalities does

not make the problem easier to solve.

A fast computation shows that the polytope Q4 has empty absolute interior (i.e., the

dimension is < 23), so its 23-dimensional volume is zero. In fact, it is known in general,

see [21, Theorem 4], that the Condorcet winner cannot be the Borda loser. Further, there

are two independent ways to compute the probability that the Condorcet winner is the

same as the plurality winner, but not the Borda winner. It can be computed directly, with

the formula:

12 · (volQ2 +volQ3).

It can also be computed indirectly, using the fact that the probability that the Condorcet

winner is the same as the plurality winner was computed previously in [34]. We recall

from [10, Subsection 2.3] that the volume of the polytope associated is:

volE=
10658098255011916449318509

68475651442606080000000000
,

and the formula is:

4 · (volE−volQ1).

We have computed:

volQ1 =
155143659305367638658204514673150261711154597948604269685210422288200009

1102320838271070278766883635115881896290018550251848550368411648000000000
,

volQ2 =
8007917191946827148905632396266883808060150761021309697108559220076039

1653481257406605418150325452673822844435027825377772825552617472000000000
,

volQ3 =
2072705500667484952215435851434572363770941977453049707343465792912717

16534812574066054181503254526738228444350278253777728255526174720000000000
.

Both ways of computing the probability that the Condorcet winner is the same as the

plurality winner, but not the Borda winner, deliver the same result, that is:

82151877420135756441271759814103410444372449587666146678429057993673107

1377901047838837848458604543894852370362523187814810687960514560000000000
≈ 0.059621.

6.3. Condorcet efficiency of elimination. In this subsection we study the Condorcet

efficiency of elimination procedures. This is the conditional probability that the Condorcet

winner, provided that such winner exists, is elected by a certain voting scheme, as the

number of voters k → ∞. We consider the following two voting schemes.

First, the plurality elimination rule: this is an iterative procedure, in which, at each

voting step, the candidate who obtained the minimum number of first place votes is elim-

inated. The last candidate non eliminated is the winner. Second, the negative plurality

elimination rule: similarly, at each voting step the candidate with the maximum number

of last place votes is eliminated. For four candidates elections both lead to three-stage

elimination procedures, thus our study here completes the data presented in Table 7.4 of

[24].

It seems that the simplest way to compute this probability is to consider the comple-

mentary event, that is the event that the Condorcet winner is eliminated either in the first

or the second round. Notice that, if the Condorcet winner will pass through the first and
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the second round, then he or she will automatically win the third round, so the study of

the third round is not needed.

The outcome that the Condorcet winner is eliminated in the first round of a certain vot-

ing scheme is called the (reverse) strong Borda paradox and its study was first introduced

by the Chevalier de Borda in [4]. The occurrence of the (reverse) strong Borda paradox

under both the plurality rule and the negative plurality rule was fully studied in subsection

2.5 of [10] to where we refer the reader for details and we only recall here that the volume

of the polytope associated with the strong Borda paradox is

volBSg =
325451674835828550681491

68475651442606080000000000
= volBRevNPR,

while the volume of the polytope associated with reverse strong Borda paradox is

volBSgRev =
104898234852130241

21035720123168587776
= volBRevPR.

We also refer the reader to [10, Remark 3 (a)] for extra needed details, which will clarify

the second notation used.

Lest us denote by F the polytope corresponding to the event that candidate A is the Con-

dorcet winner, candidate D is eliminated in the first round and candidate A is eliminated

in the second round.

Then, the Condorcet efficiency of both elimination rules may be computed with the

formula
pA=CW −volBRev −3volF

pA=CW

,

where volBRev should be replaced by volBRevPR and volBRevNPR.

We have obtained

volFPR =
6537508029403236323215409545161316879405265171603

1989889702166773519891328549909849702400000000000000
,

so that the Condorcet efficiency of the plurality elimination rule turns out to be

129178312275188795293522359266689257253407234828397

139023462671726486558162887377734860800000000000000
≈ 0.929184,

while

volFNPR =
87391394898401644146716674012811354620163132417

31091026140009682822081785811945799024640000000000
,

so that the Condorcet efficiency of the negative plurality elimination rule turns out to be

2035523745603707762358521726967860659560986470207

2172171707454289770732195078088823930880000000000
≈ 0.937092.

It may come as a surprise the fact that the Condorcet efficiency of the negative plurality

elimination rule is greater than the Condorcet efficiency of the plurality elimination rule.

This is not totally unexpected, considering the data presented in Table 7.4 of [24] for three

candidates two-rounds elimination procedures. However, in order to check our results,

we have computed the probabilities for all ten possible results that the Condorcet winner

may obtain in the three-rounds elimination procedures. The approximative numbers are

contained in the tables below. For space reasons we did not include here the full exact

data, which is available on request from the authors.
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For the plurality elimination rule the probabilities are contained in Table 6.

2-nd round

I II III

I 0.69605467532 0.04320695864 0.00335247384

1-st round II 0.06678615010 0.08902016651 0.01327777245

III 0.01396067951 0.02015490336 0.03039424802

TABLE 6. Probabilities under PR

For the negative plurality elimination rule the probabilities are contained in Table 7.

2-nd round

I II III

I 0.46569938269 0.07611279571 0.00978979031

1-st round II 0.16256921634 0.11815379945 0.01272253146

III 0.04072126773 0.07383508505 0.01771994652

TABLE 7. Probabilities under NPR

The entries in both tables should be read as follows: the entry at row i and column

j represents an approximation of the conditional probability that the Condorcet winner

obtains the i-th place in the first round and j-th place in the second round, under the

assumption that such a winner exists. The missing number is the conditional proba-

bility that the Condorcet winner is eliminated in the first round, or in other words the

probability of the (corresponding) reverse Borda paradox. Those probabilities have been

computed in subsection 2.5 of [10] (they are also reported in [24, Table 7.5]). More

precisely, the probability of the reverse strong Borda paradox under the plurality rule

(respectively the negative plurality rule) is 104898234852130241
4408976007260798976

≈ 0.02379 (respectively
325451674835828550681491

14352135440302080000000000
≈ 0.02268). The exact numbers obtained add perfectly, in both

cases studies the sum of all ten numbers equals 1.

Remark 8. The examples in this subsection are also computable by pyramid decompo-

sition and symmetrization as discussed in [9] and [12]. However, this will take several

weeks on a quite powerful system in place of minutes on a rather standard computer.
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